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Abstract

Multi-criteria scheduling problems, involving optimiza-
tion of more than one criterion, are subject to a growing
interest. In this paper, we present a new bi-criteria schedul-
ing heuristic for scheduling data-flow graphs of operations
onto parallel heterogeneous architectures according to two
criteria: first the minimization of the schedule length, and
second the maximization of the system reliability. Reliabil-
ity is defined as the probability that none of the system com-
ponents will fail while processing. The proposed algorithm
is a list scheduling heuristics, based on a bi-criteria com-
promise function that introduces priority between the op-
erations to be scheduled, and that chooses on what subset
of processors they should be scheduled. It uses the active
replication of operations to improve the reliability. If the
system reliability or the schedule length requirements are
not met, then a parameter of the compromise function can
be changed and the algorithm re-executed. This process is
iterated until both requirements are met.

Keywords: Distributed real-time systems, safety-critical
systems, reliability, multi-criteria scheduling, heteroge-
neous systems, active software replication.

1 Introduction

Distributed systems are being increasingly used in criti-
cal real-time applications, such as avionics, air traffic con-
trol, autopilot systems, and nuclear plant control, in which
the consequences of missing a tasks deadline may cause
catastrophic loss of money, time, or even human life. This is
why such systems require a high reliability. Here, reliability
is defined as the probability that none of the system compo-

nents will fail while processing. For example, a commercial
flight-control system requires the probability of a system
failure to be approximately 10−10/hour, that is, the system
reliability should be approximately 0.999999999 [21].

Our goal is to produce automatically a reliable dis-
tributed static schedule of a given algorithm onto a given
distributed architecture, which satisfies two criteria: max-
imize the system’s reliability and minimize the system’s
run-time. Concretely, we are given as input a specifica-
tion of the algorithm to be distributed (Alg), a specifi-
cation of the target distributed architecture (Arc), some
distribution constraints (Dis), some information about the
execution times of the algorithm blocks on the architec-
ture processors and the communication times of the algo-
rithm data-dependencies on the architecture communication
links (Exe), some information about the reliability charac-
teristics of each component of the architecture (Rel ), a reli-
ability objective (Relobj), and a run-time objective (Rtobj).
The goal is to build a static schedule of Alg on Arc, satis-
fying both objectives Relobj and Rtobj , with respect to Exe,
Dis , and Rel (see Figure1).

This problem is difficult to solve because the two criteria
are antagonistic: indeed, the reliability is usually improved
by replicating the operations, which has a negative impact
on the schedule length, and hence on the system’s run-time.

The majority of hard real-time distributed systems in the
literature do not attempt to introduce reliability; rather, they
concentrate on the problems that arise from tasks deadline
assuming a reliable hardware. For example, the heuristics
proposed in [2, 15, 8, 17] are based on static or dynamic
allocation and scheduling of tasks to minimize the schedule
length. But none of these scheduling heuristics attempt to
improve the system’s reliability.
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Figure 1. Our methodology to generate reli-
able distributed code.

To maximize the system’s reliability in the task alloca-
tion problem, the authors of [21, 14, 22, 13] give an explicit
reliability expression in terms of system parameters. This
expression is used to drive theirs algorithms in search for
an allocation that maximizes the reliability. In [21], Shatz
et al. present a task allocation model for reliability; failures
from processors and communication links are considered
to measure the system’s reliability of the proposed algo-
rithm. In [14], Kartik et al. present an improved version
of Shatz et al. algorithm, which improves the system’s re-
liability. In [22], Srinivasan et al. present a cluster-based
allocation technique to maximize the reliability in heteroge-
neous systems. However, none of these heuristics attempts
to minimize the length of the generated schedule.

In the literature on bi-criteria scheduling problems, only
a few articles consider the reliability property [6, 5, 19, 18].
Taking both reliability and tasks deadline into account, Xiao
et al. [19] propose a scheduling algorithm, called eFRCD
(efficient Fault-tolerant Reliability Cost Driven Algorithm),
based on the reliability model of Shatz et al. [21]. Their
algorithm uses a primary-backup copy scheme that enables
the system to tolerate the permanent failure of any single
processor. However, the tasks deadline criterion has ad-
vantage over the reliability criterion. Dogan et al. have
proposed a bi-criteria list scheduling heuristics with two
objectives, minimizing the schedule length and maximiz-
ing the reliability of the obtained schedule [6]. Their
cost function considers the reliability of different system-
components when making decisions to schedule tasks.

The algorithm that we propose to generate a reliable dis-
tributed static schedule, called Reliable Bi-Criteria Schedul-

ing Algorithm (RBSA), is different than the ones proposed
in [6] and [19] in the sense that we use the active replication
of operations [10] to improve both the system’s reliability
and the schedule length (and hence the system’s run-time).
Indeed, even though these two objectives are antagonistic,
there are situations where replicating some operations actu-
ally reduces the schedule length, by improving the locality
of computations [3].

The paper is organized as follows. Section 2 gives the
system models and assumptions. The bi-criteria scheduling
problem is presented in Section 3. Section 4 presents the
proposed bi-criteria algorithm RBSA. Section 6 details the
performances of RBSA. Finally, Section 7 concludes the
paper and proposes future research directions.

2 System models and assumptions

2.1 Architecture model

The architecture is modeled by a graph, where each ver-
tex is a processor, and each edge is a communication link.
Classically, a processor is made of one computation unit,
one local memory, and one or more communication units,
each connected to one communication link. Communica-
tion units execute data transfers, called comms. The chosen
communication mechanism is the send/receive [11], where
the send operation is non-blocking and the receive opera-
tion blocks in the absence of data. Figure 2(b) is an exam-
ple of architecture graph, with four processors P1, P2, P3,
and P4, and four point-to-point communications links L12,
L23, L24 and L34.

(b)(a)

B

C

O’I’

ODI

A
P2

P3

P1
L12

L34

L14

P4

L23

Figure 2. Example of (a) an algorithm graph
Alg and (b) an architecture graph Arc.

2.2 Algorithm model

The algorithm to be distributed is modeled by a data-
flow graph. Each vertex is an operation and each edge is
a data-dependency. The algorithm is executed repeatedly
for each input event from the sensors (operations without
predecessors) in order to compute the output events for ac-
tuators (operations without successors). This periodic sam-



pled model is commonly used for embedded systems and
automatic control systems.

Figure 2(a) is an example of algorithm graph, with eight
operations: (I,I’) are sensor operations, (O,O’) are actu-
ator operations, while (A,B,C,D) are computation opera-
tions. The data-dependencies between operations are de-
picted by arrows. For instance, the data-dependency A . D
corresponds to the sending of some arithmetic result com-
puted by A and needed by D.

2.3 Execution characteristics and distribution
constraints

To each operation o of Alg , we associate in a table Exe
its execution time on each processor: each pair 〈o, p〉 of Exe
is the worst case execution time (WCET) of the operation
o on the processor p, expressed in time units. Since the
target architecture is heterogeneous, the WCET for a given
operation can be distinct on each processor. Similarly, to
each data-dependency of Alg , we associate in a table of ex-
ecution times Exe, its communication times on each com-
munication links: each pair 〈d, l〉 of Exe is the worst case
transmission time (WCTT) of the data dependency d on the
communication link l, again expressed in time units. Since
the target architecture is heterogeneous, the WCTT for a
given data-dependency can be distinct on each communica-
tion link.

For instance, Exe for Alg and Arc of Figure 2 is given in
Table 1. The point-to-point links L12, L23, L24 and L34 are
heterogeneous. The table only gives the WCTT for inter-
processor communications. For an intra-processor commu-
nication, the WCTT is always 0 time unit.

operation
time I I’ A B C D O O’
P1 2.5 ∞ 2.5 3.0 2.0 1.5 3.0 3.0
P2 1.5 1.5 1.5 2.0 1.0 0.5 2.0 ∞
P3 2.5 ∞ 2.5 3.0 2.0 1.5 3.0 3.0

pr
oc

.

P4 1.5 1.5 1.5 2.0 1.0 0.5 2.0 ∞

data-dependency
I . A I . B C . O’

time B . O’ B . D I’ . B I’ . C A . D D . O
L12 1.0 2.0 1.5 2.0 1.5 1.5
L23 2.0 4.0 3.0 3.0 4.0 3.0
L14 1.0 2.0 1.5 2.0 1.5 1.5lin

k

L34 2.0 4.0 3.0 3.0 4.0 3.0

Table 1. Distributed constraints Dis and exe-
cution/transmission times Exe for operations
and data-dependencies.

Finally, specifying the distribution constraints Dis

amounts to associating the value “∞” to some pairs 〈o, p〉 of
Exe, meaning that o cannot be executed on p (see Table 1).

2.4 Reliability model

We consider only hardware components (processors and
communication links) failures and we assume that the al-
gorithm is correct w.r.t. its specification, i.e., it has been
formally validated, for instance with model checking and/or
theorem proving tools. We assume that the failure of a com-
ponent has an exponential distribution [21], i.e., it follows
a Poisson law with a constant failure rate λ. Furthermore,
components failures are assumed to be independent. For in-
stance, Table 2 gives the failure rates of the processors and
communication links of the architecture of Figure 2(b).

processors communication links
P1, P4 P2 P3 L12, L34 L23, L24

λ 2 ∗ 10−6 10−6 3 ∗ 10−6 2 ∗ 10−5 4 ∗ 10−5

Table 2. Failure rates for system components

Finally, none of the figures from Tables 1 and 2 derive
from an existing real-life example. They are just meant for
the sake of the example, but are nontheless realistic w.r.t.
current real-time systems.

3 The bi-criteria problem

As said in the introduction, our goal is to find a static
schedule of Alg on Arc, satisfying two criteria: the run-
time objective Rtobj and the reliability objective Relobj . In
this section, we present in details these two criteria.

3.1 Real-time criterion

As we are targeting distributed real-time systems, we
want to obtain a schedule Rtsched that satisfies the run-time
objective Rtobj , which means that the obtained static dis-
tributed schedule Rtsched must complete in less than Rtobj

time units. The schedule length Rtsched is computed as fol-
lows:

Rtsched = max
pj

{

max
oi on pj

E(oi, pj)

}

where E(oi, pj) is the time at which operation oi terminates
its execution on processor pj .

For instance, the length of the temporary schedule dia-
gram of Figure 3(b) is 9 time units. In this diagram, each
replica o

j
i of an operation oi is represented by a white box,

whose height is proportional to its WCET. Each communi-
cation operation o

j
io

l
k is represented by a gray box, whose

height is proportional to its WCTT, and whose ends are
bound by two arrows: one from the source operation and
one to the destination operation.
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Figure 3. Temporary schedule diagram: (a)
without and (b) with replication.

3.2 Reliability criterion

Our second objective is to generate a reliable schedule,
that is, the system reliability Rel sched must be greater than
Relobj . In order to evaluate the overall reliability of a such
systems, we propose to use the Reliability Block Diagrams
(RBDs) [1, 7], which are well suited for representing and
analyzing the reliability of systems with redundancy. An
RBD depicts the components in a system and their connec-
tions in terms of functioning requirements.
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Figure 4. The reliability block diagram: (a)
without and (b) with replication.

Figures 4(a) and 4(b) show respectively the RBD cor-
responding to the schedules of Figures 3(a) and 3(b), with

appropriate links and terminals. A system is operational
if there is a path from the source S to the destination D

in its RBD. In our model, each component {oi, cj} of an
RBD is assigned the reliability cost of executing the opera-
tion/communication oi on the processor/link cj .

The system reliability of an RBD is based on the relia-
bility of each of its components. The computation of the
component reliability Rel sched(oi, cj) value is given by the
following equation [21]:

Relsched(oi, cj) = e−λcj
Exe(oi, cj) (1)

To compute the overall reliability Rel∗sched of a system,
we start by drawing the RBD of its final distributed sched-
ule. Then, using Equation (1), we compute the reliability of
the overall system as follows:

• In systems without replication, the RBD of the sched-
ule has a serial structure (see Figure 4(a)); its reliability
can therefore be obtained in linear time by multiplying
the reliability of each component of the RBD.

• In systems with replication, the RBD of the sched-
ule does not have a serial/parallel structure (see Fig-
ure 4(b)); its exact reliability can only be obtained in
exponential time. However, we can compute an upper
bound of the reliability Rel sched in polynomial time,
thanks to the Minimal Cut Sets (Mcs) method [4].
The Mcs is the minimum combination of failures that
might cause a system to fail. When processors/links
failures are assumed to be independent, the reliability
of an Mcs Mi is computed as follows:

Relsched(Mi) = 1 −
∏

(o,c) ∈ Mi

(1 −Relsched(o, c))

Since cut structures operate in series and components
in a cut set operate in parallel, the Mcs allows us to
compute the upper bound of the system’s reliability in
a linear time, as follows:

Rel∗sched ≤

k
∏

i=1

(

1 −
∏

(o,c) ∈ Mi

(1 −Relsched(o, c))
)

4 The reliable bi-criteria scheduling algo-
rithm RBSA

We now present our scheduling algorithm RBSA for
maximizing the system’s reliability (Rel sched) and mini-
mizing the system’s run-time (Rtsched). We present the al-
gorithm in macro-steps; the superscript number in paren-
theses refers to the step of the algorithm, e.g., O

(n)
sched. First,

we introduce the following notations:



• O
(n)
cand is the list of candidate operations, built from the

algorithm graph vertices. An operation is candidate if
all its predecessors are already scheduled.

• O
(n)
sched is the list of already scheduled operations.

• pred(oi) is the set of predecessors of operation oi.

• succ(oi) is the set of successors of operation oi.

• P is the set of all processors of Arc.

• 2P is the set of combinations of processors of P .

• Rt
(n−1)
sched is the length of the temporary schedule at

step n − 1.

• Rt
(n)
sched(oi, {p1, ..., pj}) is the length of the tempo-

rary schedule at step n where the j replicas o1
i , . . . , o

j
i

of oi are scheduled respectively on the j processors
p1, . . . , pj .

• Rel
(n−1)
sched is the reliability of the temporary schedule at

step n − 1.

• Rel
(n)
sched(oi, {p1, ..., pj}) is the reliability of the tem-

porary schedule at step n where the j replicas
o1

i , . . . , o
j
i of oi are scheduled respectively on the j

processors p1, . . . , pj .

4.1 Algorithm principles

The algorithm that we propose is a greedy list scheduling
heuristic [23], called RBSA (Reliable Bi-Criteria Schedul-
ing Algorithm), which uses a bi-criteria compromise func-
tion (Bcf ) as a cost function to introduce priority between
operations to be scheduled. It is based on two functions:
the reliability loss (L) and the schedule length gain (G).
The first function L(n)(oi, {p1, . . . , pj}) computes, at each
step n of the algorithm, the loss on reliability resulting from
the scheduling of the j replicas o1

i , . . . , o
j
i of oi respectively

on the j processors p1, . . . , pj (Figure 5):

L(n) =
Rel

(n)
sched(oi, {p1, . . . , pj}) −Rel

(n−1)
sched

Relobj −Rel
(n−1)
sched

(2)

The second function G(n)(oi, {p1, . . . , pj}) computes, at
each step n of the algorithm, the gain on the schedule length
resulting from the scheduling of the j replicas o1

i , . . . , o
j
i of

oi respectively on the j processors p1, . . . , pj (Figure 5):

G(n) =
Rt

(n)
sched(oi, {p1, . . . , pj}) −Rt

(n−1)
sched

Rtobj −Rt
(n−1)
sched

(3)
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Figure 5. Reliability and run-time objectives

The cost function Bcf computes the bi-criteria compro-
mise value between L and G; it tries to minimize the loss
on reliability and maximize the gain on schedule length by
replicating each operation oi on a subset of P . It selects, for
each operation oi, the best subset {p1, . . . , pj} which gives
the smallest compromise value Bcf (n)(oi, {p1, . . . , pj}) be-
tween L(n)(oi, {p1, . . . , pj}) and G(n)(oi, {p1, . . . , pj}).
To compute Bcf , we introduce a parameter θ (provided by
the user and set to 45◦ by default):

Bcf (n) = cos(θ)L(n) + sin(θ)G(n) (4)

Here lies the advantage of having normalized both ob-
jectives within their respective functions L and G: we can
combine them inside the compromise function Bcf . Other-
wise, the reliability being intrinsically in the interval [0,1],
while the schedule length can be several orders of magni-
tude greater, it would have been meaningless to compare
them. Actually, this would have resulted in giving much
more weight to Rtobj than to Relobj .
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Figure 6. Selection of the best choice withBcf .

Figure 6 illustrates the Bcf computation for operation o1.
We first compute the set 2P of all combinations of all pro-
cessors of P . We then compute, for each set Pi ∈ 2P ,



the compromise value Bcf (n)(o1, Pi). Graphically, it is the

length of the
−−−−−−−−−→
Bcf (n)(o1, Pi) vector, whose end is the orthog-

onal projection of the point (G(o1, Pi),L(o1, Pi)) onto the
line L = tan(θ)G (with θ = 45◦ here). In the present case,
the best compromise value is reached for Pi = {p1, p3}. As
a consequence, o1 is replicated onto two processors, p1 and
p3. In general, replicating an operation maximizes the sys-
tem reliability [20] and minimizes the schedule length [3].

4.2 Our scheduling algorithm RBSA

The RBSA scheduling algorithm is shown in Figure 7.

Algorithm RBSA:
input: Alg , Arc, Exe , Dis , Rel , Relobj , Rtobj , and θ;
output: a reliable distributed static schedule of Alg on Arc satis-
fying Relobj and Rtobj , or a fails message;
begin
Compute the set 2P of all combinations of processors of P;
/* the user can limit the degree k of processor combinations */
Initialize the lists of candidate and scheduled operations:
n := 0;
O

(0)
cand := {o ∈ O | pred(o) = ∅};

O
(0)
sched := ∅;

while O
(n)
cand 6= ∅ do

➀ For each candidate operation ocand, compute Bcf (n) on each
set Pk of 2P :

Bcf (n)(ocand, Pk) := cos(θ)L(n)(ocand, Pk) +

sin(θ)G(n)(ocand, Pk)

➁ For each candidate operation ocand, select the best set
P

ocand

best such that:

Bcf (n)(ocand, P
ocand

best ) := min
k

Bcf (n)(ocand, Pk)

➂ Select the most urgent candidate operation ourgent between
all oi

cand of O
(n)
cand such that:

Bcf (n)(ourgent, P
ourgent

best ) := max
i

Bcf (n)(oi
cand, P

oi
cand

best )

➃ Schedule actively each replica of ourgent on each proces-
sor of P

ourgent

best ; the implied communications are also im-
plemented actively on the communications links;

➄ Compute the new values Rel sched and Rtsched;
➅ if (Relsched < Relobj) or (Rtsched > Rtobj)

then return “fails to satisfy objectives” /* the user can re-
execute the algorithm by changing θ or the objectives */

➆ Update the lists of candidate and scheduled operations:
O

(n)
sched := O

(n−1)
sched ∪ {ourgent};

O
(n+1)
cand := O

(n)
cand − {ourgent} ∪

{o′ ∈ succ(ourgent) | pred(o′) ⊆ O
(n)
sched};

➇ n := n + 1;

end while
end

Figure 7. The RBSA scheduling algorithm.

Initially, O
(0)
sched is empty and O

(0)
cand is the list of opera-

tions without any predecessors. At the n-th step, these lists
are updated according to the data-dependencies of Alg .

At each step n, one operation ocand of the list O
(n)
cand is

selected to be scheduled on at least one processor. To se-
lect an operation, we select at the micro-steps ➀ and ➁,
for each candidate operation ocand, the set P ocand

best of pro-
cessors having the smallest bi-criteria compromise value.
Then, among those best pairs 〈ocand, P

ocand

best 〉, we select at
the micro-step ➂ the one having the biggest Bcf value, i.e.,
the most urgent pair 〈ourgent, P

ourgent

best 〉.
The selected operation ourgent is replicated and imple-

mented actively at the micro-step ➃ on each processor of
P

ourgent

best computed at micro-step ➁, and the communi-
cations implied by these implementations are also imple-
mented actively on communications links. When a com-
munication operation is generated, it is assigned to the set
of communication units bound to the fastest communication
medium connecting the processors executing the source and
destination operations.

Finally, we check at the micro-step ➅ if the two objec-
tives Relobj and Rtobj are satisfied or not. If they are not,
the user can change θ or the objectives and re-execute the
algorithm.

4.3 An example

Figure 8 shows the final reliable schedule produced by
RBSA with θ = 45◦ for the graphs Alg and Arc of Fig-
ure 2. The objectives taken for running RBSA were Rtobj

= 16 and Relobj = 0.999997. The results obtained by
RBSA are Rtfinal = 13 and Relfinal = 0.9999991.

Figure 8. The final reliable schedule produced
by RBSA with θ = 45◦.

4.4 Run-time behavior

In order to give the same weight to L and G in the Bcf
computation, we first take θ = 45◦. If the Relobj or Rtobj



requirements are not met at the micro-step ➄, then the user
can refer to Table 3 to change θ, Relobj , or Rtobj , and re-
execute RBSA until both requirements are met.

Reliability and run-time objectives

RBSA output Relobj and Rtobj Relobj and Rtobj

user action
θnew ∈ [θ, 90◦];

re-execute RBSA;

θnew ∈ [0◦, θ];

re-execute RBSA;

RBSA output Relobj and Rtobj Relobj and Rtobj

user action
change Relobj ,
Rtobj , and/or θ;
re-execute RBSA;

generate reliable
distributed code;

Relobj (resp. Rtobj ) means that Relobj (resp. Rtobj ) is not satisfied

Table 3. Re-execution strategy for RBSA.

Four cases can arise:

1. If Relobj is not met, then we re-execute RBSA with a
new θ: here, we take θnew ∈ [θ, 90◦], meaning that L
will have more weight than G in Bcf .

2. If Rtobj is not met, then we re-execute RBSA by
changing θ. We take θnew ∈ [0◦, θ], meaning that L
will have less weight than G in Bcf when we re-execute
RBSA. For instance, in Figure 9, we decrement θ; so
{p3} become the best replication set for operation o1,
instead of {p1, p3} previously; as a consequence, o1 is
not replicated in the new schedule.

(o1, {p1, p3})

(o1, {p1})

(oi, {p2})

(o1, {p3})

L(n)(o1, Pj)

G(n)(o1, Pj)
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θ

(case θnew
∈
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∗ G
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G
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Figure 9. Changing the bi-criteria compro-
mise parameters.

3. If none of the criteria are satisfied, then the user has
to loosen at least one of the two objectives Rel obj or
Rtobj before re-executing RBSA. He/she can also
change θ.

4. If both criteria are satisfied, then the user can generate
executable code from the final schedule, for instance
by using the SYNDEX tool [16, 9].

Finally, remember that for complexity reasons, we com-
pute in Bcf only the upper bound of the partial schedule’s
reliability. Hence, once we have obtained the final sched-
ule, we compute its exact reliability, which we compare to
Relobj .

5 RBSA time complexity

We compute the time complexity of RBSA as follows.
Among the micro-steps ➀ to ➇, the dominant one is ➀.
The computational complexity of the combinations of pro-
cessors of P is O(mk+1), where m is the number of pro-
cessors in Arc and k is the degree of maximum processor
combinations. Thus, the time complexity of micro-step ➀
is O(Nmk+1), where N is the number of operations in
Alg . Thus, for n iterations the overall time complexity is
O(nNmk+1). Finally, since exactly one operation is repli-
cated and scheduled at each iteration, n = N , and the total
time complexity is therefore O(N 2mk+1).

6 Performance evaluation

6.1 Simulation parameters

To evaluate RBSA, we have compared its performances
with our previous algorithm proposed in [8], called FT-
BAR (Fault-Tolerance Based Active Replication), and with
the algorithm proposed by Hashimoto in [12], called HBP
(Height-Based Partitioning). HPB actively replicates all op-
erations once, therefore producing schedules that tolerate
one processor failure, while FTBAR actively replicates all
operations a fixed number of times, say n, therefore pro-
ducing schedules that tolerate n − 1 processor failures. We
have implemented all three algorithms within the SYNDEX

tool [16, 9]. SYNDEX generates automatically executable
fault-tolerant distributed code, by first producing a static
fault-tolerant distributed schedule of a given algorithm on
a given distributed architecture (either with FTBAR, HBP,
or RBSA), and then by generating sthe real-time fault-
tolerant distributed executive implementing this schedule.

The performance comparisons were done in two ways
and with various parameters: first RBSA with θ = 0◦

against FTBAR and HBP without any replication of oper-
ation, then RBSA with θ = 45◦ against FTBAR and HBP
with exactly one replication of each operation. At each run,
the Relobj and Rtobj objectives given to RBSA were com-
puted on the final schedule produced by FTBAR.

The random algorithm graphs were generated as follows:
given the number of operations N, we randomly generate a
set of levels with a random number of operations. Then, op-
erations at a given level are randomly connected to opera-



tions at a higher level. The WCET of each operation are ran-
domly selected from a uniform distribution with the mean
equal to the chosen average execution time. Similarly, the
WCTT of each data dependency are randomly selected from
a uniform distribution with the mean equal to the chosen av-
erage communication time. For generating the complete set
of algorithm graphs, we have varied two parameters: N=25,
50, 75, 100, and the Communication-to-Computation Ratio
CCR=0.1, 1, and 10, defined as the average communication
time divided by the average computation time.

6.2 Performance of RBSA against HBP and FT-
BAR for θ = 0◦

In this simulation, the architecture graph Arc was a fully
connected network of 4 processors, with the failure rates of
processors and communications links given in Table 2. For
each schedule, we have computed the normalized sched-
ule length (NSL), obtained by dividing the output schedule
length by the sum of the computation costs on the critical-
path of each graph [3]. Thus, we have compared the average
NSL produced by RBSA with those produced by FTBAR
and HBP, averaged over 50 random Alg graphs. To make
the comparison fair, FTBAR and HBP were run without any
replication of operation.

In Figure 10, we have plotted the average NSL as a func-
tion of CCR, for N=100 operations. RBSA was run with
θ = 0◦, meaning that only Rtobj was taken into account as
objective (i.e., no reliability objective).
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Figure 10. Average NSLs for θ = 0◦ and N =
100 operations.

We note that when CCR increases, so does the NSL, due
to a greater communication cost. For small values of CCR,
the three algorithms bear almost similar results, RBSA and
FTBAR being slightly better than HBP. For CCR=10, there
is little difference between the performance of RBSA and
FTBAR, and both outperform significantly HBP. Hence,
since FTBAR is only very slightly better than RBSA, we

think that the latter can be used directly for minimizing the
schedule length, provided that θ = 0◦.

6.3 Performance of RBSA against HBP and FT-
BAR for θ = 45◦

In this simulation, the architecture graph was a fully con-
nected network of 6 processors. This time, RBSA was run
with θ = 45◦, meaning with an equal weight of the relia-
bility and the schedule length. FTBAR and HBP were both
required to replicate actively each operation exactly once.

In Figures 11 and 12, we have plotted respectively the av-
erage NSL and the average reliability as a function of CCR,
for N=100 operations.
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Figure 11. Average NSLs for θ = 45◦ and N =
100 operations.
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Figure 12. Average reliability for θ = 45◦ and
N = 100 operations.

For CCR=0.1, all three algorithms have similar perfor-
mances. For CCR=1, RBSA, FTBAR and HBP are similar
for the NSL, while HBP is slightly less efficient for the reli-
ability. However, for CCR=10, RBSA outperforms signif-



icantly FTBAR and HBP both for the NSL and the reliabil-
ity. This is due to the fact that we use the active replication
of Alg’s operations, not only to improve the system’s re-
liability, but also to improve the locality of computations
and hence the schedule length [3]; not surprisingly, this has
more influence when CCR=10 because communications are
more expensive compared to computations. Our results in-
dicates that the bi-criteria heuristics of RBSA can meet its
two requirements, and still outperform other existing single-
criterion heuristics.

In order to study the impact of Alg’s size on our algo-
rithm, we have applied RBSA, FTBAR and HBP to four
sets of 60 randoms graphs, respectively with N=25, 50, 75,
and 100 operations. Then, we have plotted in Figures 13
and 14 respectively the average NSL and the average relia-
bility as a function of N, for CCR=1.
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Figure 13. Average NSLs for θ = 45◦ and
CCR = 1.
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Figure 14. Average reliability for θ = 45◦ and
CCR = 1.

Again, we see that RBSA outperforms both FTBAR and
HBP, and that this effect becomes greater when N increases.

7 Conclusion and future work

We have proposed a new bi-criteria scheduling heuris-
tic, called RBSA (Reliable Bi-Criteria Scheduling Algo-
rithm), that produces automatically a reliable static dis-
tributed schedule of a given algorithm Alg on a given dis-
tributed architecture Arc according to two criteria: maxi-
mizing the system’s reliability and minimizing the system’s
run-time. The problem is that these two criteria are antag-
onistic: maximizing the reliability requires to replicate the
operations of Alg onto several processors of Arc, but this
penalizes the run-time. Conversely, scheduling each opera-
tion exactly once minimizes the run-time but does not im-
prove the reliability.

Our solution is based a the bi-criteria compromise func-
tion, called Bcf , which normalizes both criteria w.r.t. the ob-
jectives given by the user, and chooses, for each operation
of Alg , the subset of processors of Arc such that replicat-
ing this operation onto the processors of this subset maxi-
mizes the reliability and minimizes the run-time. Bcf uses
a parameter θ ∈ [0, 90◦], provided by the user, which gives
more weight either to the reliability objective if it is greater
than 45◦, or to the run-time objective otherwise.

Our algorithm can be re-executed if the system’s relia-
bility or run-time objective is not met, by changing the θ

parameter of Bcf , until both objectives are met.
The experimental results show that RBSA algorithm

slightly outperforms other scheduling algorithms with repli-
cation on both criteria. The two algorithms taken for
comparison duplicate each operation of Alg , and schedule
both replica onto two distinct processors of Arc, therefore
achieving a tolerance of exactly one processor failure in the
system. Instead of replicating brutally each operation of
Alg , RBSA chooses the best subset of processors of Arc

(possibly a one-element subset) onto which scheduling this
operation, in order to optimize both criteria.

Currently, we are working on new solutions to introduce
some backtracking into the heuristics to avoid re-executing
entirely the algorithm when one objective is not met.
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