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Coupling grain boundary motion to shear deformation
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Abstract

Molecular dynamics (MD) simulations confirm that normal grain boundary (GB) motion must often be coupled to tangential trans-
lation of grains and will then produce shear deformation of the lattice traversed by the GB. Conversely, shear stresses applied to a GB
can induce its normal motion. Using [001] symmetrical tilt GBs in copper as a model, the coupling factor b between the GB motion and
grain translations has been calculated by MD simulations over the entire misorientation range and a wide range of temperatures. The
coupling factor is multivalued, can be positive or negative, and shows an abrupt switch from one branch to another at a tilt angle of
about 35�. At high temperatures the response of high-angle GBs to shear changes from coupling to sliding until coupling disappears.
No sliding is observed for low-angle GBs up to near the melting point. A geometric model of coupling proposed in this work predicts
the misorientation dependence of b in excellent agreement with MD results and relates the multivalued character of b to the point sym-
metry of the crystal. Two kinds of low-angle GBs with different dislocations occur when the tilt angle is small and again when it
approaches 90�. In these limits, the multiplicity of b is explained by different Burgers vectors of the dislocations. The results of this work
are summarized as a temperature–misorientation diagram of mechanical responses of GBs. Unsolved problems and future work in this
area are discussed.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grain boundaries (GBs), i.e., interfaces between differ-
ently oriented crystallites of the same phase (grains), play
a significant role in many processes in materials [1,2]. A
unified approach to four fundamental phenomena associ-
ated with GBs has recently been formulated [3]:

1. Normal motion (migration), i.e., the process by which a
GB moves in its normal direction. The local GB velocity
vn is parallel to the GB normal vector bn and is taken to
be positive if it is in the direction of bn and negative
otherwise. In this process, one grain grows into another
and the GB plays the role of the growth and dissolution
front.
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2. Relative translation of the grains parallel to the GB
plane coupled to normal GB motion (Fig. 1(a) and
(b)). During this process, the GB shears the material tra-
versed by its motion. The coupled GB motion follows
one of several possible geometric relations between vn

and the relative grain translation velocity vi [4,5].
3. Relative rigid-body translation of the grains along the

GB by sliding (Fig. 1(c)). In this paper we define and
identify GB sliding by grain translation events that are
not coupled to normal GB motion.

4. Grain rotation, a process which changes the lattice mis-
orientation across the GB. This process is always accom-
panied by a relative grain translation along the GB.

In this paper we confine ourselves to cases in which the
motions of the grains are parallel to the GB; the case in
which the grain translation requires shape accommodation
is treated elsewhere [6].
rights reserved.
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Fig. 1. Two types of response of a planar GB to an applied shear stress s. (a) Initial bicrystal; (b) GB motion due to coupling; (c) GB sliding. The dotted
line crossing the GB represents a set of inert markers embedded in the lattice or any other fiduciary line. vn and vi are the velocities of normal GB motion
and grain translation, respectively.

1 The following sign convention is assumed in Eq. (1): the GB plane is
horizontal, the tilt axis is normal to the paper and n points in the up
direction, so that vn is positive if the GB moves up. We take s to be
positive if the force on the upper grain relative to the lower one is to the
right, and vi and vs to be positive if the upper grain translates to the right
relative to the lower one.
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The motion of low-angle GBs in Zn bicrystals in
response to shear stresses was one of the first observations
of coupled GB motion [7,8], and is still a textbook case [9].
Since then, stress-induced motion of tilt GBs with high mis-
orientation angles has been found in Al [10–14] and Zn [15]
bicrystals, suggesting that the coupling effect in metals is
not limited to low-angle GBs. Coupled GB motion was
recently found in cubic zirconia bicrystals [16]. The cou-
pling effect was occasionally observed in first-principles
calculations [17–19] and atomistic computer simulations
[20–24], but was not clearly identified as a generic phenom-
enon that must occur in most GBs in both metals and non-
metals.

Tangential translation of grains along a curved GB
should give rise to grain rotation [3,6]. In particular, curva-
ture-driven coupled GB motion should almost always be
accompanied by grain rotation. Conversely, a shear stress
applied along a curved GB not only leads to grain rotation
but also creates an additional driving force for the bound-
ary motion towards or even away from the center of curva-
ture. These coupled phenomena can be particularly
important in nanocrystalline materials, where grain growth
is often accompanied by grain rotation, especially during
plastic deformation [23,25–28].

Grain rotation during spontaneous, curvature-driven
shrinkage of an enclosed cylindrical grain was studied by
atomistic simulations in two [29,30] and three dimensions
[31]. The enclosed grain geometry is ideal for revealing
the coupling effects as it eliminates all constraints that
would otherwise be imposed by triple lines or the free sur-
face. In [31], kinetics of grain shrinkage and rotation were
studied for a series of [001] tilt GBs with tilt angles
between h = 5.5� and 38.3�. Low-angle grains were
observed to rotate to increase h until about h = 37�
misorientation.

In this paper we consider a tilt GB under a shear stress s
applied parallel to the GB plane and perpendicular to the
tilt axis (Fig. 1). The stress can either induce normal GB
motion due to the coupling effect or trigger rigid GB slid-
ing, or both. Assuming additivity of the two effects, the
net rate vi of the relative grain translation can be written
as [3]
vk ¼ bvn þ vsðsÞ; ð1Þ

where b is a coupling factor and vs(s) is the part of vi which
results from sliding under the action of stress s. Assuming
that b is known, Eq. (1) can be applied to determine vs(s).1

Without coupling (b = 0), Eq. (1) reduces to a constitu-
tive law of sliding, vi = vs(s). The linear law of sliding,
vs(s) � s, is adequate at high temperatures but is a poor
approximation at low temperatures when sliding does not
occur until a threshold stress is approached.

In the absence of sliding (vs = 0) Eq. (1) gives the ideal
coupling relation

vk ¼ bvn: ð2Þ

Since no driving forces are involved in this relation, it im-
plies that b is a geometric factor which characterizes the
shear deformation produced by the GB and which can only
depend on crystallographic parameters of the GB [3]. This
conclusion was confirmed by previous computer simula-
tions [4,5] and will be further studied in this paper.

While the recognition of the coupling effect reveals new
relationships between various seemingly disparate phenom-
ena [3], it also raises new questions:

1. What are the atomic mechanisms of GB motion in the
coupling mode? For low-angle symmetrical-tilt GBs
(Fig. 2), the mechanism is known to be the collective
glide of parallel edge dislocations, forming the GB, in
response to the Peach–Koehler forces imposed by the
stress s. The shear deformation of the region traversed
by the dislocations leads to a coupled lateral translation
of the grains. This simple model [32] predicts that b � h,
where h is the tilt angle. In high-angle GBs the disloca-
tions are not resolved. Nevertheless, it was found that
coupling still exists with b given by b = 2tan(h/2) [4,5].
This implies that the Frank–Bilby equation [1] for the
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Fig. 3. Geometry of the GB simulation block used in this work. For the
fixed boundary condition the atoms in the gray slab are fixed relative to
each other and move as a rigid body. The free boundary condition is
obtained by replacing all fixed atoms by dynamic atoms. vi is the velocity
imposed on the upper fixed slab.
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Fig. 2. The dislocation glide mechanism of coupled motion of low-angle
symmetrical tilt GBs, and the shear it produces. The solid and dashed lines
show selected atomic planes before and after the boundary displacement,
respectively. The old and new boundary locations are indicated.

J.W. Cahn et al. / Acta Materialia 54 (2006) 4953–4975 4955
GB dislocation content is applicable to high angles.
While simulations [4,5] show good agreement with the
Frank–Bilby equation for both small and large angles
h, detailed atomistic mechanisms of coupling in high-
angle GBs remain largely unknown.

2. What are the mechanisms of GB sliding? When the GB
contains dislocations that can slip in the GB plane, slid-
ing can occur by dislocation glide. Twist GBs do contain
such dislocations. The dislocations in the tilt GBs stud-
ied in this paper cannot slip in the GB plane and the slid-
ing we observe must happen by some other mechanism.
At low temperatures, GB sliding could occur by the
nucleation and glide of extrinsic GB dislocations with
Burgers vectors parallel to the boundary plane.

3. When and how does the mechanical response of a GB
change from coupling to sliding? Is it either coupling
or sliding, or can they coexist as postulated in Eq. (1)?
Coupling is found to be predominant at relatively low
temperatures, whereas sliding is activated at high tem-
peratures and large misorientations. How does the cou-
pling to sliding transition depend on temperature and
crystallographic characteristics of the GB?

We attempt to answer these questions with atomistic
computer simulations performed on planar Æ001æ symmet-
rical tilt GBs in Cu over the entire range of tilt angles and a
wide range of temperatures. Since the GBs are symmetrical,
the grains are oriented to have the same shear moduli par-
allel to the boundary. Consequently, applied shear stresses
do not produce any volume driving forces. The GBs have
no curvature and periodic boundary conditions prevent
any grain rotation. Thus, in the absence of coupling to
shear stresses the GBs can only display random walk by
thermal fluctuations. We thus have ideal conditions to
study the coupling effect. Since the bicrystal lacks twofold
symmetry around the tilt axis, it can interact with shear
stresses. Such stresses can only induce GB motion provided
this motion produces shear deformation of the bicrystal.

In Section 2, we describe our methodology, which we
apply in Sections 3–7 to study GB motion at relatively
low temperatures dominated by coupling. We establish
the misorientation dependence of b and determine the
atomic mechanisms of GB motion. In Section 8, we
examine the temperature effect on the GB motion and
demonstrate a crossover between coupling and sliding at
high temperatures. Our geometric theory of coupling is
presented in Sections 9 and 10. Finally, in Section 11 we
summarize our findings and outline future work.

2. Methodology

A series of [001] symmetrical tilt GBs was studied using
an embedded-atom potential fit to a large database of
experimental and first-principles data for Cu [33]. The
potential accurately reproduces a variety of properties of
Cu, including the elastic constants, phonon frequencies,
thermal expansion, the intrinsic stacking fault energy, the
coherent twin boundary energy and others.

A GB was created by constructing two separate crystals
with desired crystallographic orientations and joining them
along a plane normal to the x-direction (Fig. 3). Periodic
boundary conditions were applied in the y- and z-directions
parallel to the GB plane, the z-direction being parallel to
the tilt axis. Each grain had an approximately cubic shape.
Depending on the tilt angle h and the goal of a particular
simulation, the simulation block contained between
(1–5) · 104 atoms. Molecular dynamics (MD) simulations
were performed in the canonical ensemble (Nose–Hoover
thermostat) under a fixed volume. To include the effect of
thermal expansion, prior to MD simulations the block
was expanded uniformly by the lattice thermal expansion
factor at the desired temperature T. The thermal expansion
factors had been determined previously by zero-pressure
Monte Carlo simulations [33]. The MD integration time
step was 2 fs and the total time of an MD run was typically
a few nanoseconds.

Two types of boundary condition were imposed in the
x-direction. In the fixed boundary condition [34], the grains
are sandwiched between two slabs in which the atoms are
fixed in their perfect-lattice positions relative to one
another. The fixed atoms do not participate in MD simula-
tions and only serve to impose interatomic forces on neigh-
boring dynamic atoms. The thickness of each fixed slab is
twice the cutoff radius of atomic interactions. The fixed



Table 1
Characteristics of [001] symmetrical tilt GBs in Cu studied in this work. c
is the GB energy at 0 K

Boundary h (�) c(J/m2) Mode bMD bideal

R101(1010) 11.42� 0.684 Æ100æ 0.199 0.200
R25(710) 16.26� 0.796 Æ100æ 0.287 0.286
R37(610) 18.92� 0.837 Æ100æ 0.333 0.333
R13(510) 22.62� 0.878 Æ100æ 0.402 0.400
R17(410) 28.07� 0.914 Æ100æ 0.497 0.500
R53(720) 31.89� 0.939 Æ100æ 0.590 0.571
R5(310) 36.87� 0.905 Æ110æ �1.010 �1.000
R5(210) 53.13� 0.952 Æ110æ �0.667 �0.667
R17(530) 61.93� 0.856 Æ110æ �0.496 �0.500
R13(320) 67.38� 0.790 Æ110æ �0.391 �0.400
R37(750) 71.08� 0.732 Æ110æ �0.338 �0.333
R25(430) 73.74� 0.677 Æ110æ �0.285 �0.286
R41(540) 77.32� 0.595 Æ110æ �0.222 �0.222
R61(650) 79.61� 0.533 Æ110æ �0.195 �0.182

bMD and bideal are values of the coupling factor b computed by MD
simulations at 800 K and predicted by the geometric model, respectively.
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boundary condition restricts spontaneous translations of
the grains. Lattice regions adjacent to the GB can still
translate relative to each other but such translations are
accompanied by elastic deformation of those regions. This
boundary condition was used to apply a shear parallel to
the GB by moving all fixed atoms of the upper grain with
the same constant velocity vi, while the lower slab remained
fixed.

Most of the simulations reported here were performed
under the fixed boundary condition with vi = 1 m/s in the
y-direction, although some runs were made with smaller
velocities down to 10�2 m/s in order to probe the strain-rate
dependence of the results. This scheme is computationally
efficient because it guarantees a significant grain translation
over a period of time accessible by MD. We emphasize that
this simulation procedure implements shear deformation
with a constant rate, whereas the shear stress can vary dur-
ing the simulation. While constant-stress conditions could
be more suitable for testing the observed GB dynamics
against theoretical models, they make it difficult to avoid
‘‘wasteful’’ runs in which no interesting events happen if
the chosen stress level is too low.

In the free boundary condition, all atoms of the simula-
tion block are made dynamic, so that the grains terminate
at free surfaces. MD simulations under this boundary con-
dition are ideal for studying spontaneous GB motion in the
coupled regime since the grains are able to translate against
each other without any lateral constraints.

The stress tensor averaged over all dynamic atoms was
computed using the standard virial expression and was
constantly monitored during the MD simulations. The
GB position was tracked automatically using the layered
structure factor proposed in [35]. The static structure factor
jS(k)j2 averaged over atomic layers parallel to the GB plane
was calculated for the wave vector k = [0, 0,4p/a] (a being
the lattice parameter of Cu). Since the function jS(k)j2(x) is
almost constant in the grains and has a sharp minimum at
the GB, the position of the minimum can be used as a con-
venient GB locator. Preliminary results of these simula-
tions have been reported in [4,5].
2 Unless otherwise specified, all crystallographic indices used in this
work are taken relative to the lattice of the upper grain.

3 In defining the sign of the Burgers vector we assume that the
dislocation line vector is pointing away from the viewer and use the right-
hand finish–start (RH/FS) convention [36].
3. Grain boundary structures and coupling modes

The following convention is used to describe the GB
crystallography. The tilt axis is parallel to the [001] direc-
tion and normal to the viewer. A symmetrical tilt GB is
obtained by taking two identical face-centered cubic (fcc)
crystals aligned with the coordinate system and rotating
one of them (upper grain) around the tilt axis by h/2 coun-
terclockwise and the other (lower grain) by h/2 clockwise.
The GB plane is always horizontal and normal to the ini-
tially common [100] direction. Due to the mirrors in the
crystal symmetry around the tilt axis, the tilt of each grain
by 45� recovers the perfect crystal structure with the (11 0)
plane horizontal. All distinct GB structures can be
observed within the interval 0� < h < 90�. Accordingly,
there are two different types of low-angle GBs: when h is
small and when it approaches 90� from below.

Due to the periodic boundary conditions, all GBs stud-
ied here had to be coincident site lattice (CSL) boundaries
[1]. Each symmetrical CSL GB is uniquely defined by the
indices (h k0) of the GB plane2 and is characterized by a
R value (reciprocal density of CSL sites). The ground-state
structure of each GB was determined by minimizing the
total energy of the simulation block with respect to local
displacements of dynamic atoms and relative rigid-body
translations of the fixed slabs. Table 1 summarizes crystal-
lographic characteristics and 0 K energies of the bound-
aries studied in this work. They cover tilt angles from
11.42� to 79.61� and R values between 5 and 101.

All the GBs contain topologically identical kite-shaped
structural units always pointing to the left (Fig. 4). The
GBs only differ in the distance separating the kites and
their positions relative to the GB plane. The relatively
low-angle R37(61 0) (h = 18.9�) GB shown in Fig. 4(a) con-
tains an array of dislocations whose cores are formed by
the kite units and the Burgers vectors are b = [10 0]. Like-
wise, the relatively low-angle R41(540) (h = 77.3�) GB
shown in Fig. 4(d) is composed of b = �1/2[110] disloca-
tions formed by the kites. The Burgers vectors of the dislo-
cations were determined by the standard Burgers circuit
construction.3 Note that the dislocations in the GBs with
h approaching 0� and 90� have not only different Burgers
vectors but also different signs. This can be readily seen
by tracing crystal planes which are almost parallel to the
GB and noting that the extra half-planes terminating at
the dislocations come from the right in Fig. 4(a) and from
the left in Fig. 4(d).
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Fig. 4. Atomic structure of selected [001] symmetrical tilt GBs in Cu at
0 K. (a) R37(610) (h = 18.9�); (b) R5(310) (h = 36.9�); (c) R17(530)
(h = 61.9�); (d) R41(540) (h = 77.3�). The filled and open circles represent
rows of atoms with positions in alternating (002) planes. The structural
units and the GB plane are outlined. (a), (b) and (d) are flat boundaries;
(c) is an example of a zigzag boundary.

4 In typical MD simulations with periodic boundary conditions the
initial shape of the simulation block is preserved by mapping atoms back
into the block if they attempt to leave it. While this scheme has
computational advantages, it masks the deformation and motion of the
grains and is not suitable for studying GB coupling or sliding. In our
simulations the atoms are not mapped back into the initial block.
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In high-angle GBs, the kites approach each other and
form either flat (Fig. 4(b)) or zigzag (Fig. 4(c)) arrays.
The zigzag structures are found when h > 45� and the indi-
ces (hk0) of the GB plane satisfy the condition
h2 + k2 = 2R. Such boundaries are called centered [37]
and for the [001] tilt family occur only if both indices h

and k are odd numbers. In such cases the GB plane is par-
allel to a {110} plane of the CSL of the bicrystal. The non-
centered (flat) boundaries are parallel to a {100} CSL
plane and satisfy the condition h2 + k2 = R.

It has been shown [5] that the 4mm crystal symmetry
around the Æ100æ axis gives rise to two branches of the mis-
orientation dependence of b. One branch, termed Æ10 0æ
according to the slip direction of GB dislocations, origi-
nates from the coupled motion of low-angle GBs with
h! 0 and is described by the equation
bh1 0 0i ¼ 2 tan
h
2

� �
: ð3Þ

The other branch termed Æ110æ corresponds to coupled
motion of low-angle GBs with h! 90� and is given by

bh1 1 0i ¼ �2 tan
p
4
� h

2

� �
: ð4Þ

These equations are derived from geometric models of cou-
pling which will be discussed later (Section 9). Here we only
introduce these equations for future references.
4. Stress-induced boundary motion at medium temperatures

Shear was applied to all GBs by shifting the fixed atoms
of the upper grain to the right with a constant velocity vi.
At temperatures above �500 K and up to at least 800 K,
all GBs were observed to move either up or down with a
constant average velocity vn. The situation at lower and
higher temperatures can be different and will be discussed
separately (Sections 5 and 8). The stress-induced GB
motion is illustrated in Fig. 5, which shows that vn can
be either positive or negative, depending on h. Note the
uniform shear deformation of the initially rectangular
shape of the simulation block in the region traversed by
the GB.4 This shear is a signature of the coupled GB
motion and can be contrasted to rigid sliding along the
GB in which the block would be simply cut in two halves
along the GB plane (cf. Fig. 1). The lattice regions left
behind the moving GBs were carefully examined for vacan-
cies or any other lattice defects. No defect generation was
found in any simulations reported in this work. It was also
found that by reversing the direction of the grain transla-
tion each GB could be moved in the opposite direction with
exactly the same vn.

Fig. 6 shows typical plots of the normal GB displace-
ment versus time at 800 K. The average GB velocities vn

were determined by mean-squared linear fits to such plots.
Note that all GBs with h < 36.9� move up while the rest of
the GBs move down, indicating that the coupling effect is
discontinuous and changes sign.

Some of the GBs clearly reveal an incremental, stop-
and-go, character of motion while others appear to move
in a more stochastic manner at this temperature. At lower
temperatures, all GBs move by a stop-and-go mechanism,
each with its own increment of the normal displacement
H and the associated grain translation S. The relation of
H and S to GB structure will be discussed later (Sections
9.4 and 9.5). Incremental motion of GBs has been observed
experimentally [38].
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The coupling factor b = vi/vn was calculated from these
simulations. The results obtained at 800 K with vi = 1 m/s
are listed in Table 1 and the observed misorientation
dependence of b is plotted as points in Fig. 7. The two
curves shown in this figure were calculated from Eqs. (3)
and (4). All b values obtained by the MD simulations fall
on these two curves. Note the sudden switch between the
curves between the R53(720) (h = 31.9�) and R5(310)
(h = 36.9�) misorientations. This switch is accompanied
by a change of sign of b from b > 0 at h 6 31.9� to b < 0
at h P 36.9�. Calculations of b at all temperatures between
500 and 800 K and with vi between 0.01 and 1 m/s gave vir-
tually identical results, confirming that b behaves as a geo-
metric factor. Such agreement between the observed and
geometrically predicted b values will be called ‘‘perfect cou-
pling’’. The angle at which b changes sign does not depend
on temperature within the 500–800 K range as indicated in
Fig. 8.
Fig. 7 displays the central result of our work, which will
be discussed and interpreted in subsequent sections of this
paper: not only does the perfect coupling exist for both
low- and high-angle GBs, but also the misorientation
dependence of the coupling factor derived for low-angle
GBs continues to be perfectly accurate for all high-angle
misorientations. The observation of the discontinuous
behavior of b is another important result of the simulations.

Typical shear stress behavior during the coupled GB
motion is illustrated in Fig. 9. The stress increases almost
linearly due to elastic deformation of the material until a
critical value is reached at which the boundary makes a
rapid move to a new position a distance H away from
the previous one. The stress drops to a value which depends
on the simulation block size in the normal direction and
can be either positive or negative. This drop of stress is
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followed by a new increase until the next peak, and the pro-
cess repeats. Thus, the shear stress displays a very clear
stick–slip behavior which is well known in sliding friction
[39,40]. As expected, the scatter in the stress peak heights
and positions increases with temperature. While the aver-
age values of H and S typically remain nearly constant
and are determined by the GB geometry,5 the average
height of the stress peak decreases with increasing temper-
ature or decreasing vi.

Examination of MD snapshots shows that GB self-diffu-
sion took place during some of the coupling simulations at
the high end of the temperature range. As a crude estimate
of the range of diffusional motion, one can compare the dif-
5 See Fig. 10 for an exception.
fusion length over the time when an atom resides within the
moving GB, [Dd/vn]1/2, with interatomic distance (d is the
GB width). For example, at 800 K a typical value of Dd
in R5 Cu GBs calculated with the same EAM potential is
about 2.5 · 10�20 m2/s [41]. Taking one of our GB velocities
vn � 0.01 m/s, we obtain [Dd/vn]1/2 � 1.2 · 10�9 m, which is
about four times the interatomic distance 3 · 10�10 m. At
higher temperatures the amount of GB diffusion increases.
This estimate confirms that GB diffusion can occur and
does not seem to affect perfect coupling. This is consistent
with the notion that coupling is associated with a geometri-
cal correspondence between lattice sites but not necessarily
between individual atoms.

5. Stress-induced boundary motion at low temperatures

Coupled GB motion continues to exist at low tempera-
tures, where it is strongly dominated by stick–slip behavior
of the stress. Under such conditions, the frequently
assumed linear relation between GB velocity and stress is
not an adequate approximation. Instead, we postulate that
there is a critical value of the applied shear stress, sci,
needed to activate a particular coupling mode i = Æ100æ
or Æ110æ. The GB does not move unless s > min(scÆ1 0 0æ,
scÆ1 1 0æ).

For low-angle GBs we expect that sci satisfies the
relation

sciSiðhÞ ¼ rciðhÞ; ð5Þ
where Si(h) is the Schmid factor for the dislocation slip
plane and slip direction corresponding to mode i and rci(h)
is the respective critical resolved shear stress. The resolved
(glide) shear stress sSi(h) is proportional to the glide com-
ponent of the Peach–Koehler force acting on the disloca-
tions. Relation (5) expresses the postulated Schmid law,
which ignores all non-glide components of the stress and
predicts that the coupling mode with the smaller ratio
rci(h)/Si(h) must prevail. At low enough temperatures, rci

can be identified with the Peierls–Nabarro stress for the
collective glide of the array of parallel straight dislocations,
which can be different from the Peierls–Nabarro stress of
an isolated dislocation. Note that the GB dislocations con-
sidered here can have unusual Burgers vectors and glide on
unusual slip planes. At higher temperatures, the disloca-
tions can move by kink-pair formation and extension and
the meaning of rci becomes more complex.

For the [001] tilt GBs we have Si(h) = cosh for the
Æ1 00æ mode and cos(p/2 � h) for the Æ110æ mode. The
two Schmid factors are equal when h = p/4. Assuming that
Eq. (5) continues to hold for high-angle boundaries, and
recalling that the change of the coupling mode occurs at
h < p/4 (Fig. 7), we conclude that rci for the Æ100æ mode
is larger than for the Æ110æ mode in this misorientation
range. We will be examining rci in both modes in more
detail later (Section 10).

As shown in Fig. 8, as the temperature drops, the h
range of the Æ110æ mode expands and at T! 0 may cover
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all angles studied, while the range of the Æ100æ mode sh-
rinks to small h. There is an overlap area, which we term
‘‘dual behavior’’, in which both modes are observed at
the same h. In all cases of dual behavior, the GB begins
to move in the Æ110æ mode but later switches to the
Æ100æ mode and remains in it until the end of the simula-
tion. This observation of spontaneous reversal of coupled
GB motion shows that both coupling modes can be imple-
mented in the same boundary at the same temperature.
This dual behavior is only observed within a relatively nar-
row (�100 K) temperature range specific to each GB. The
time of the switch between the coupling modes depends on
the temperature, h and vi. At temperatures above the dual
area in Fig. 8, the GB makes its first movement in the Æ1 00æ
mode and the Æ110æ mode is never observed.

An example of dual behavior is given in Fig. 10. The
average slopes of the displacement–time curves in the
beginning of the run and after the reversal give b values
which are in good agreement with Eqs. (4) and (3), respec-
tively. Thus, the reversal signifies an abrupt switch from
one branch of the ideal coupling relation b(h) to another
at the same h. This clearly demonstrates that b is a multi-
valued function of h. Note that after the initial period of
time comprising three stick–slip events the critical stress
drops and the increments H and S of the GB motion
change. The switch to the Æ100æ mode after 1.5 ns is asso-
ciated with another, although smaller, decrease of the crit-
ical stress. The time-dependent critical stress reflects the
change in the GB migration mechanism as well as possible
changes in the boundary structure.

For each boundary there is a temperature below which
only Æ1 10æ motion is observed; a switch to the Æ10 0æ mode
never occurs during the simulation times available to us.
This allowed us to determine bÆ1 1 0æ for all GBs studied here
by choosing low enough temperatures. The values thus
obtained lie exactly on the theoretically predicted Æ11 0æ
branch of b(h), given by Eq. (4), over the entire misorienta-
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tion range we studied. On the other hand, we were unable
to observe the Æ100æ mode of coupling below a certain tem-
perature which depends on h. This limited our bÆ1 0 0æ calcu-
lations to relatively high temperatures and the angular
range h [ 35� (Fig. 8), where bÆ1 0 0æ was found to be inde-
pendent of temperature.

Fig. 11 displays the h dependence of H and S determined
from MD snapshots under ideal coupling and stick–slip
conditions. There is one branch for the Æ1 00æ mode and
two branches for the Æ110æ mode. Their interpretation will
be discussed in Sections 9.4 and 9.5.

6. Spontaneous boundary motion

Some of the GBs were observed to move during the MD
simulations as a result of thermal fluctuations even
without applied shear. This spontaneous GB motion was
especially extensive under the free boundary condition,
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which allowed free grain translations relative to each other.
Under this condition, the GB motion had the character of a
nearly random walk, during which some GBs could wander
far away from their initial position, especially at high
temperatures.

The spontaneous GB motion was often found to be cou-
pled to grain translations. When spontaneous GB motion
was coupled, it always occurred at temperatures where
stress-driven motion was also coupled. Fig. 12 illustrates
the strong coupling of the R17(530) GB at 800 K. This plot
shows that there is a close correlation between the grain
translations (which occur in opposite directions by equal
amounts) and the normal GB motion. Furthermore, by
plotting the relative grain translation against the GB dis-
placement, the coupling factor b was estimated and was
found to be in good agreement with results of stress-
induced simulations. Note that the random walk velocity
at this temperature can be about 1 m/s, which is compatible
with the imposed velocities in our stress-driven simulations.

In one of the runs performed at 1200 K, the R17(53 0)
boundary was observed to reach one of the free surfaces
and disappear on it, turning the simulation block into a sin-
gle crystal. Interestingly, when this GB was about 1 nm
away from the surface, the material confined between the
GB and the surface quickly turned into metastable melt,
which then crystallized with the lattice orientation of the
remaining grain. Other GBs were less mobile and never
approached a surface.

The fixed boundary condition strongly suppresses the
spontaneous GB motion but does not eliminate it com-
pletely. In this case, the grains can only translate at the
expense of elastic deformation, which completely changes
the character of the GB motion. Instead of a random walk,
the GB now moves up and down around its average posi-
tion with a correlation time and amplitude that depend on
the particular GB misorientation, temperature and the sys-
tem size in the normal direction.
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7. Atomic mechanisms of coupled boundary migration

In the previous sections we saw that there are two modes
of coupled GB motion differing in sign of b, that there can
be a switch between them as the tilt angle is varied, and
that there can be dual behavior in which the mode changes
at a given h. In this section we examine the atomic mecha-
nisms of coupled GB motion and then relate the dual
behavior to their change. Before explaining them, note that
the perfect FCC lattice viewed along [001] can be thought
of as containing many types of structural units. Two six-
member units are relevant to this discussion, which we label
as B and C as indicated in Fig. 13. The black and white cir-
cles represent atomic rows with different depths of atomic
positions. The six-member kite-shaped units forming the
GB structure are referred to as units A (see examples in
Fig. 4). Note that black and white circles alternate in units
A and B while unit C has three adjacent circles with the
same color.

The atomic mechanisms of coupled GB motion were
determined by examining multiple snapshots stored during
the MD simulations along with relevant parts of atomic
trajectories. Two different types of mechanisms were found,
corresponding to GB motion in the Æ100æ and Æ110æ
modes.

A typical Æ110æ mode mechanism is illustrated in Fig. 14
using the zigzag R17(530) GB as an example. Note a struc-
tural unit B adjacent to every GB unit A (Fig. 14(a)). The
two units can be transformed by relatively small in-plane
atomic displacements, so that B becomes a kite and A
becomes a B unit in the upper grain. If this transformation
happens in every other GB unit, the boundary makes one
step down while the upper grain translates to the right in
order to accommodate the unit deformations (Fig. 14(c)).
The transition state of this process is a mirror-symmetrical
structure shown in Fig. 14(b). Similar mechanisms operate
in all other GBs moving in the Æ110æ mode up to some dif-
ferences in relative positions of the A and B units. In GBs
with a planar stacking of the A units, the A–B transforma-
tions occurs in all such units simultaneously (see examples
in Fig. 15). In low-angle GBs with h approaching 90�, this
mechanism represents collective glide of an array of
�1/2[11 0] lattice dislocations along ð�1 10Þ planes. The
A–B transformations within the dislocation cores represent
elementary steps of the dislocation glide.
CB

Fig. 13. Perfect fcc lattice viewed along the [001] direction can be thought
of as composed of structural units B or C.
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Fig. 14. Atomic mechanism of coupled motion of the R17(530) GB.
(a) Initial state; (b) transition state; (c) final state. B is the lattice structural
unit converting to the GB unit A.
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A typical Æ100æ mechanism of GB migration is illus-
trated in Fig. 16 for the R37(610) GB. Consider the struc-
tural unit C interlocked with the kite-shaped GB unit A.
Unit C can be transformed to A by in-plane and out-of-
plane atomic displacements bringing atomic row 1 to the
same depth as row 2. The GB moves by translating this
row by ±a/2 along the tilt axis with simultaneous small
deformations of both units. Since the row translations by
1/2[0 01] and 1=2½00�1� are symmetrically equivalent, this
mechanism cannot operate at 0 K. Finite temperatures
can break the symmetry and activate this mechanism.
Whether the directions of row translations in neighboring
kite units correlate with each other depends on their sepa-
ration and temperature, but this aspect was not studied in
this work.
For low-angle GBs with small h, this mechanism is
equivalent to collective glide of the [100] dislocations along
(01 0) planes. Note that the dislocation core moves along
the slip direction by a vector 1/2[1 00] at a time. This
motion can be understood if we consider a [100] disloca-
tion as narrowly dissociated in two perfect lattice disloca-
tions by the reaction

½10 0�¡1=2½101� þ 1=2½10�1� ð6Þ
and moving by correlated displacements of both product
dislocations. Since both product dislocations have a screw
component parallel to the tilt axis, their motion involves a
shuffling of atomic rows parallel to that direction. Which
dislocation is leading and which is trailing are two symmet-
rically equivalent possibilities. This choice dictates the
sense of the direction of the row translation in unit C
(up-down or down-up).

The common idea of all these mechanisms is that struc-
tural units experience distortions as they are overrun by a
moving GB. These distortions have three components:
local atomic displacements, rotation of the atomic groups
forming the units and translation of their centers of mass.
The structural unit first turns into a GB unit A, and as
the GB moves on, the distortions continue until the unit
finally transforms back into a lattice unit left behind the
moving GB. This new structural unit has a different loca-
tion and orientation with respect to the initial one. In addi-
tion, there is a clockwise or counterclockwise (depending
on the sense of the stress) cyclic permutation of atoms
within the unit. Importantly, this mechanism does not
require diffusion. At 0 K it only requires a critical stress
to be reached. Thermal activation at finite temperatures
permits operation of this mechanism at lower stresses.
For low-angle GBs, the atomic shuffling only occurs when
a lattice unit is overrun by a moving dislocation core. The
units between the dislocations only experience small elastic
strains and rotations.

Inspection of all GB structures reveals that lattice units
B and C exist next to any GB unit A. Thus, purely geomet-
rically the unit transformations can proceed by either of the
two mechanisms. The actually operating mechanism is the
one with the smaller critical stress. However, the fact that
any GB is structurally ‘‘prepared’’ to move in either of
the two coupling modes is essential for understanding the
dual behavior of GBs and the multivalued character of
the coupling factor.

The origin of the dual behavior is in the fact that the
activation of the Æ100æ mode requires breaking the mirror
symmetry, which is blocking the row translations involved
in the GB migration. At low temperatures breaking the
symmetry takes significant time. Examination of MD snap-
shots also reveals that the switch to the Æ100æ mode does
not occur until the GB structure develops steps, ledges
and other defects, which presumably assist in breaking
the symmetry.

The atomic mechanisms just described explain the cou-
pled GB motion by transformations of structural units.
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Fig. 16. Atomic mechanism of coupled motion of the R37(610) GB. C is
the lattice structural unit converting to the GB unit A. 1 and 2 are atomic
rows normal to the viewer discussed in the text.
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In reality, such transformations are unlikely to happen
simultaneously in all units over a large GB area. MD sim-
ulations reveal that GBs typically move by a nucleation
and growth mechanism initiated by the formation of a rel-
atively small area over which the GB has advanced
(‘‘embryo’’). The ‘‘embryo’’ is separated from the rest of
the boundary by a one-dimensional defect, which can be
identified as a GB disconnection [42–44]. Sidewise propa-
gation of the disconnection loop eventually results in a nor-
mal displacement of the entire boundary by one elementary
step H, accompanied by a tangential grain translation by S.
Crystallographic characteristics of the disconnections will
be discussed later (Section 9.5) and their effect on GB
dynamics will be the subject of a separate publication.

The formation of a critical ‘‘embryo’’ is a thermally acti-
vated process, which can either occur spontaneously or be
driven by an applied shear stress. At a critical level of the
stress, the nucleation activation barrier is eliminated and
the boundary migration becomes athermal. It should be
Imentioned that the disconnection loops were only
observed in MD simulations with large lateral dimensions
of the simulation block. In small blocks, the boundary dis-
placements took place uniformly over the entire GB area.

8. Transition between coupling and sliding

So far we have only examined conditions under which
the GB response to applied shear was perfect coupled
motion. We will now consider situations when the response
changes, partially or completely, from coupling to sliding
with increasing temperature.

MD simulations of stress-driven GB motion were per-
formed at temperatures up to �30 K below the bulk melt-
ing point Tm (Tm = 1327 K) with this embedded-atom
potential [41]; the experimental value for copper is
1358 K. Above about 800 K the coupled GB motion begins
to be interrupted by occasional sliding events as illustrated
in Fig. 17. Such events are identified as sliding because they
are accompanied by relative grain translations and a drop
of stress without normal GB displacement. Between the
sliding events, the GB continues to move in a coupled
mode with a characteristic geometric value of b. This sug-
gests that the GB sliding occurs by a mechanism that pre-
serves the boundary structure. As the temperature increases
further, the relative frequency of the sliding events
increases and thus the average normal velocity vn decreases.
In high-angle GBs, at high enough temperatures the cou-
pled motion ceases to be observed and sliding becomes
the dominant mode of the GB response, although the GB
continues to execute random movements over small dis-
tances. Under such conditions we assign vn a zero value.

Fig. 18 shows the temperature dependence of the velocity
ratio vn/vi calculated for different GBs with the same shear
rate vi = 1 m/s. The tilt angle increases monotonically from
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the upper curves to the lower ones. At relatively low temper-
atures vn/vi remains practically constant and matches the
geometric value of 1/b, which confirms that the coupling
is perfect. For high-angle GBs there is a temperature, which
we refer to as the crossover temperature, at which jvn/vij
begins to decrease due to random switches between cou-
pling and sliding. The scatter of vn/vi values in the crossover
regime is due to the limited statistics collected under condi-
tions when only a few sliding events could happen during an
MD run. Above the crossover temperature range, sliding
dominates over coupling. These data can be mapped onto
the diagram of mechanical responses, Fig. 8, creating a
domain of sliding separated from the coupling domains
by relatively narrow crossover regions.

To check whether the crossover from coupling to sliding
is sensitive to vi, the calculations for the R5(210) GB were
repeated with a shear rate of 0.5 m/s. The temperature
dependence of vn/vi obtained, and thus the crossover tem-
perature, were found to be nearly the same as for
vi = 1 m/s. This observation only indicates that the results
shown in Fig. 18 are not extremely sensitive to vi; we can-
not, however, exclude their shear-rate dependence under
much greater variations in vi.

The observation of the crossover regime indicates that
coupling and sliding can coexist in the same GB, which val-
idates our postulated Eq. (1). Furthermore, because b(h) is
known from both theory and low-temperature simulations,
we are in a position to evaluate the sliding component vs of
the grain translation velocity by rearranging Eq. (1):

vs ¼ vk � bðhÞvn: ð7Þ

Since vi is imposed and vn is measured by the simulations,
the right-hand side of this equation is known and we can
deduce vs. We can also introduce the quantity

f � vs

vk
¼ 1� bvn

vk
; ð8Þ

which characterizes the fraction of vi associated with slid-
ing events. (Note that b has the same sign as the ratio
vn/vi, so that bvn/vi is always positive.)

Fig. 19 displays the temperature dependencies of f for
various GBs. As expected, high-angle GBs show a rapid
increase in f in the crossover temperature range and eventu-
ally reach the condition f � 1 (pure sliding). For low-angle
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GBs, f remains practically zero until the melting point.
Using the criterion f = 0.5 as a definition we can quantify
the crossover temperature. If this condition is never satis-
fied, we identify the crossover temperature with Tm for this
discussion. Fig. 20 shows that this crossover temperature
reaches a minimum of about 0.7Tm in the high-angle region,
where b changes sign. Although these estimates of the cross-
over temperatures relative to Tm are obtained for Cu, we
expect them to be valid for other metals as well.

We expect that the critical stresses for coupling and slid-
ing for the same h are different, and that both are temper-
ature-dependent. The coupling to sliding transition can be
explained by a crossover of the respective critical stresses.
Note that the temperature range of the crossover regime
is wider when it occurs a lower temperatures. This is con-
trary to what one would expect for Arrhenius behavior
of two competing reactions with different but tempera-
ture-independent barriers. In our case, however, the barri-
ers and the critical stresses do vary with temperature.
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To put these observations in a different perspective,
choose a temperature, e.g., 0.85Tm (�1100 K for Cu), for
which sliding dominates at high tilt angles. Suppose we
vary the tilt angle of a planar boundary gradually from 0
to 90� under a fixed vi. The diagram of mechanical
responses, Fig. 8, predicts that the boundary will initially
be moving with perfect coupling in the small-angle Æ100æ
mode (b � h > 0). As h increases, individual sliding events
will begin to happen, which will reduce the average vn. At
some point the GB response will switch completely from
coupling to sliding and the GB will stop moving, although
small random displacements may still be observed. At lar-
ger angles, coupling events will begin to be seen, but now
they will be driving the GB in the opposite direction
(Æ110æ mode, b < 0). Finally, with h approaching 90� we
will arrive at a low-angle GB moving with a perfect cou-
pling factor b � h � p/2 < 0.

A similar situation may have been realized during the
simulations of the shrinkage and rotation of an enclosed
cylindrical grain when the temperature was about 2/3 of
the melting point of the Lennard-Jones solid [31]. This tem-
perature is large enough to give rise to sliding in high-angle
GBs, which may explain the observed gradual reduction in
the rotation velocity at large tilt angles relative to its ideal
value bvn.

9. Geometric models of coupling

9.1. General considerations

The goal of this section is to relate the coupling factor b
and the increments H and S of GB motion to crystallo-
graphic characteristics of symmetrical tilt GBs. We will
also show how the multiplicity of possible geometric
descriptions of the same GB, arising from point symmetry
of the crystal lattice, leads to the multivalued character of
b, H and S.

As a GB moves, it produces a rotation of the lattice of
the receding grain into the orientation of the growing grain.
The essence of the coupling effect is that this lattice reorien-
tation is accompanied by a specific shape deformation of
the material. If we label atoms residing within a relatively
large (‘‘macroscopic’’) material region in front of the mov-
ing GB, the shape of this region will be altered by the pas-
sage of the GB. In the case of ideal coupling, the shape
change of any such region can be described by a unique
deformation tensor, D, which depends on crystallographic
characteristics of the GB. For a planar tilt GB, the shape
deformation D is a simple shear parallel to the GB charac-
terized by a coupling factor b, with the GB plane being the
invariant plane of the shear.6 Any other type of deforma-
tion would produce a long-range elastic strain field in the
grains.
6 For a boundary with a twist component, D can also include a rotation
around the boundary normal.
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This situation is formally similar to diffusionless trans-
formations [45,46], except that the lattices of the parent
and product ‘‘phases’’ are identical and only differ in their
crystallographic orientations. Furthermore, for the [00 1]
tilt GBs studied here, there is no homogeneous strain car-
rying one orientation of the fcc lattice to another with a
common [001] axis. Therefore, inhomogeneous plastic
deformation, e.g., by the passage of dislocations, is the only
type of lattice-invariant deformation that can produce the
transformation. It follows that D must be an appropriate
combination of lattice rotation and lattice-invariant plastic
deformation. In the case of low-angle GBs, the latter com-
ponent of the deformation is implemented by slip of dis-
crete lattice dislocations forming the GB structure. This
dislocation model of coupling will be discussed in Section
9.2. In high-angle GBs, the notion of discrete lattice dislo-
cations loses its significance. The Burgers vector content is
then prescribed by the Frank–Bilby equation [1,47–49],
which has multiple solutions. Borrowing from the theory
of martensitic transformations [45,49,50], we will show in
Section 9.3 how the shape deformation, and thus the cou-
pling factor, can be calculated as functions of the lattice
misorientation across the boundary. Finally, in Sections
9.4 and 9.5 we demonstrate that b, H and S of CSL bound-
aries can be associated with particular vectors of the
displacement shift complete lattice for both low and high-
angle GBs.

9.2. Discrete dislocation model of coupling

One way to describe the coupling effect is to explicitly
consider the dislocation structure of the GB and postulate
that it is the glide of the GB dislocations that produces the
shear deformation accompanying the GB motion. For low-
angle, symmetrical-tilt GBs, this dislocation model was first
proposed by Read and Shockley [32] and later discussed in
more detail by Read [51]. By analyzing glissile motion of
such boundaries in a simple cubic lattice under an applied
shear stress, Read and Shockley derived the expression
2tan(h/2) � h for the coupling factor. Building upon the
Read and Shockley model, we will derive expressions for
b, H and S for [00 1] symmetrical tilt GBs in fcc crystals
and will compare the results with our simulations.

Consider a GB whose tilt angle h is small enough to
resolve discrete GB dislocations (see e.g., Fig. 4(a)). As
was established by the simulations, the dislocations in such
GBs have the Burgers vector b = [100] and glide along
(010) slip planes. While the magnitude of this Burgers vec-
tor is uniquely defined, its direction is not unique and
depends on the arbitrary choice of the orientation of the
reference lattice, used in the Burgers circuit construction,
relative to the bicrystal. Frank [47] proposed to refer the
Burgers vector to the median lattice whose h/2 and �h/2
rotations produce the upper and lower grains, respectively.
The Burgers vector is then normal to the GB plane. For
our purposes, however, assuming that the GB moves up,
it is more appropriate to choose the upper grain as the ref-
erence lattice, because it is the dislocation glide through
that grain that produces the shear deformation. With this
choice of the reference lattice, the Burgers vector is parallel
to [100] of the upper grain and therefore forms the angle
h/2 with the GB normal in the counterclockwise direction.
The spacing L between neighboring dislocations must sat-
isfy the Frank equation [47]

b=L ¼ 2 sinðh=2Þ; ð9Þ
where in the present case b = a. This equation expresses the
fact that the dislocations are intrinsic, i.e., geometrically
necessary for accommodating the tilt h without producing
long-range elastic stresses in the grains.

Consider a block of material, OABC, whose horizontal
faces are initially parallel to the GB plane and whose sides
are parallel to the dislocation slip planes (Fig. 21(a)). Let
the GB segment OA comprised by the block have a unit
length and therefore contain q = 1/L dislocations. The
shape deformation of the block as it is traversed by the
GB can be thought of as occurring in two steps. First,
the block is sheared by the passage of the GB dislocations
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without changing its lattice orientation. Assuming that
point O is fixed, the block experiences the plastic deforma-
tion shown in Fig. 21(b). Side AB undergoes a parallel dis-
placement by the total Burgers vector of the dislocations,
B = qb, while the segment OA rotates by an angle w to a
new position OA 0.

At the second step, the block rotates clockwise by the tilt
angle h to align the lattice within the block with the lattice
of the lower grain. This rotation aligns [100] directions of
both grains parallel to each other. To maintain the contigu-
ity of the material, this rotation must close the void OAA 0

existing at the GB. This void does close perfectly since, by
Eq. (9), the length of the side OA is conserved and w = h. If
the sides OA and OA 0 were different, a tensile strain would
be required to close the void and the GB motion would
produce a long-range elastic strain field. As mentioned
above, the Frank equation (9) guarantees that such fields
do not arise.

In reality, the shear and rotation steps occur simulta-
neously. The resulting shape change of the block represents
a simple shear parallel to the GB plane (Fig. 21(c)). It fol-
lows that the angles formed by the sides OC and AB with
the GB normal before and after the deformation are h/2
and �h/2, respectively. From the symmetry of the triangle
OCC 0 we immediately obtain the coupling factor

bh1 0 0i ¼ 2 tanðh=2Þ: ð10Þ

This factor is positive by our sign convention and repre-
sents the Æ1 00æ mode of coupling.

The [100] dislocations advance along the slip direction
by increments of a/2 (Fig. 16). Therefore, each step of
the GB motion is accompanied by a normal displacement

H h1 0 0i ¼ ða=2Þ cosðh=2Þ ð11Þ

and a tangential translation of the upper grain to the right
by

Sh1 0 0i ¼ a sinðh=2Þ: ð12Þ

These relations are readily derived from the triangle OCC 0

assuming OC = OC 0 = a/2.
As indicated in Fig. 21, the shear deformation produced

by the dislocations is inhomogeneous. Atomic layers paral-
lel to the dislocation slip planes rotate by the angle h but
otherwise remain undistorted. By contrast, layers parallel
to the GB plane break into segments confined between
neighboring slip planes and each segment rotates by the
angle h individually. In fact, all atomic layers that are not
parallel to the slip planes break into segments. This seg-
mentation is caused by the inhomogeneous atomic move-
ments (‘‘shuffling’’) at the slip planes during the
dislocation glide. The segmentation of atomic planes was
verified in the atomistic simulations by labeling atoms
residing in particular planes and plotting their new posi-
tions after they were swept by a moving GB.

Despite the segmentation, any layer of labeled atoms
which is initially parallel to the GB plane remains on aver-
age parallel to it after the deformation. This is consistent
with the notion that the shape deformation is a macro-
scopic property defined by averaging over atomic-level
details. It is only on this macroscopic scale that the defor-
mation produced by the GB represents pure shear and that
the GB plane is the invariant plane of this shear.

This model is readily extended to GBs with h approach-
ing 90�. In this case, the GB dislocations have the Burgers
vector b = �1/2[1 10] (e.g., Fig. 4(d)) and glide along ð�110Þ
planes. A schematic illustrating the shear deformation pro-
duced by these dislocations is not shown here but can be
obtained by a 180� rotation of Fig. 21 around the axis nor-
mal to the viewer, with a replacement of h by u = 90� � h.
The Frank equation now becomes

b=L ¼ 2 sinðu=2Þ; ð13Þ
where b ¼ a=

ffiffiffi
2
p

. As the GB moves down, the block OABC
experiences a shear deformation parallel to the GB plane,
accompanied by a translation of the lower grain to the left.
In this process, the ½1�1 0� direction of the lower grain ro-
tates clockwise by the angle u and becomes parallel to
the [110] direction of the upper grain. Since the two direc-
tions are equivalent by cubic symmetry, the lattice remains
continuous across the GB plane.

Assuming that the dislocations move by increments of b

and repeating the preceding calculations, we obtain the
increments of normal GB motion and grain translation

H h1 1 0i ¼ �ða=
ffiffiffi
2
p
Þ cosðu=2Þ; ð14Þ

Sh1 1 0i ¼ a
ffiffiffi
2
p

sinðu=2Þ: ð15Þ

Their ratio b = S/H gives the expression for the coupling
factor,

bh1 1 0i ¼ �2 tanðu=2Þ ð16Þ
corresponding to the Æ110æ mode of coupling. Note that
b < 0.

This model has been verified by the MD simulations
(Section 4). The coupling factors obtained perfectly follow
Eq. (10) when h is small and Eq. (16) when it approaches
90� (Fig. 7). More importantly, both equations continue
to work perfectly well beyond the low-angle misorienta-
tions, suggesting that these equations have a more general
meaning. This meaning will be discussed below.

9.3. Extended model of coupling

The discrete dislocation model discussed in the previous
section essentially rests on the Frank equation, which relates
the intrinsic Burgers vector density to the lattice misorienta-
tion across a low-angle GB. The Frank equation remains
valid for high-angle GBs in a generalized form proposed
by Bilby [48,49] in the context of his continuously dislocated
crystal theory. In that theory, Eqs. (9) and (13) represent
definitions of the intrinsic dislocation content which is for-
mally assigned to a GB in order to accommodate the misori-
entation between the grains without producing long-range
stresses. For a general GB, this formal dislocation content
is characterized by a ‘‘surface dislocation density tensor’’
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Fig. 22. The shape deformation D produced by a moving GB as a
combination of shear S and rotation R, showing that Dr � r is parallel to
the GB. r is any macroscopic vector scribed in the upper grain.
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and the entire GB is treated as one entity called a ‘‘surface
dislocation’’ [48,49].

For a pure tilt GB, the surface dislocation density tensor
can be replaced by a vector quantity B, which represents
the total Burgers vector of all formal dislocations crossing
a unit vector bp which lies in the GB plane and is normal to
the tilt axis. If Ru and Rl are matrices of rotation of the
upper and lower grains relative to a chosen reference lat-
tice, the Frank–Bilby equation defining B reads7

B ¼ ðR�1
l � R�1

u Þbp: ð17Þ
A major problem associated with applications of this equa-
tion is the non-uniqueness of the dislocation content as-
signed to a GB. Indeed, point symmetry operations
applied to the lattice of either grain can alter the rotations
Rl or Ru, and thus B, without changing the actual GB
structure or energy.

As before, if the GB moves upwards, we choose the
upper grain as the reference lattice. The lower grain is then
obtained by a rotation R ¼ RuRlR

�1
u of the upper grain and

Eq. (17) takes the form

B ¼ ðR�1 � IÞbp; ð18Þ
where I is the identity matrix. Applying the rotation R to
both sides of this equation, we obtain a useful relation

RB ¼ bp � Rbp: ð19Þ
Represent B as Bbg, where bg is a unit vector parallel to B.
We postulate that the ‘‘surface dislocation’’ is capable of
gliding along the plane containing B and the tilt axis
(Fig. 22). Let bm be the unit normal to this plane, so thatbm � bg ¼ 0. Following Bullough and Bilby [50], we assume
that the material swept by the ‘‘surface dislocation’’ under-
goes a shape change D = RS consisting of two compo-
nents: (i) plastic deformation S performed without
altering the lattice orientation, and (ii) lattice rotation by
R. (A third component considered in [50] is a homogeneous
lattice strain, which is absent in our case.) The role of the
rotation is to align the lattice traversed by the GB parallel
to the lattice of the lower grain. The role of the plastic
deformation is to accommodate the shape change of the
material and eliminate any long-range stresses.

To calculate S, consider a macroscopic vector r scribed
in the upper grain and crossing the boundary at point O.
Resolving it along bg and bp we have r ¼ xbg þ ybp, where
x ¼ ðr � bnÞ=ðbg � bnÞ and y ¼ ðr � bmÞ=ðbg � bnÞ.8 We postulate
that under the transformation S the tip of r experiences a
displacement u equal to the net Burgers vector, yB, of all
dislocations crossed by the parallel component ybp. Thus,
7 In Bilby’s original theory [48,49] the matrices Ru and Rl represent
arbitrary lattice transformations which may include not only rotations but
also homogeneous lattice strains. This general form of the theory applies
to both GBs and interphase interfaces. For the present discussion we limit
the transformation matrices to lattice rotations around the tilt axis.

8 The component of r parallel to the tilt axis is invariant under all
transformations and can be safely disregarded.
u ¼ yB ¼ bðr � bmÞbg; ð20Þ
where we introduced

b � Bbg � bn : ð21Þ

Eq. (20) defines S through the relation Sr ¼ rþ u ¼
ðxþ yBÞbg þ ybp. It shows that S is a simple shear by b in
the direction bg parallel to the slip plane bm. Note that for
any r lying in the plane bm, Eq. (20) gives u = 0, showing
that bm is an invariant plane of this shear.

The total shape deformation D is now obtained by
applying the rotation R to the deformed vector Sr

Dr ¼ RSr ¼ ðxþ yBÞRbg þ yRbp; ð22Þ
which after some manipulation using Eq. (19) becomes

Dr ¼ rþ ðRbg � bgÞ r � bnbg � bn : ð23Þ

It can be shown (see Appendix) that Rbg � bg ¼ Bbp, which
allows us to rewrite Eq. (23) as

Dr ¼ rþ bðr � bnÞbp ð24Þ
with b given by Eq. (21). This relation shows that the shape
deformation produced by the moving boundary is indeed
simple shear by b parallel to the GB plane and normal to
the tilt axis. The GB plane is an invariant plane of the
shear, since for any r lying in the GB plane we have
r � bn ¼ 0 and Eq. (24) gives Dr = r.

Eq. (21) predicts coupling factors for both low- and
high-angle misorientations. As mentioned above, b and B

are not unique due to the point symmetry of the crystal.
For example, we can choose R as a clockwise rotation by
the smallest possible angle h. Then the Frank–Bilby equa-
tion (18) dictates that B has the magnitude B = 2sin(h/2)
and forms the angle h/2 counterclockwise with respect tobn. This makes B parallel to the [100] direction of the upper
grain, so that the ‘‘surface dislocation’’ glides along (010)
planes. We then have bg � bn ¼ cosðh=2Þ and Eq. (21) gives
b = 2 tan(h/2), an expression which was previously derived
for the Æ100æ mode of coupling within the discrete disloca-
tion model.

On the other hand, this rotation R can be combined with
a counterclockwise 90� rotation of the lattice of the lower
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grain around [001], which is a point-symmetry operation
that cannot affect the GB structure. With this new choice
of R, B becomes parallel to the ½�1�10� direction of the upper
grain and has the magnitude B = 2sin(u/2), where
u = 90� � h. The ‘‘surface dislocation’’ now glides along
ð�110Þ planes, which corresponds to the Æ110æ mode of cou-
pling. Considering that bg � bn ¼ � cosðu=2Þ, Eq. (21) yields
b = �2tan(u/2), which is the familiar Æ110æ mode expres-
sion derived earlier within the discrete dislocation model.
Thus, the shift of the rotation angle h by 90� gives rise to
a new mode of GB motion, in which the lattice of the reced-
ing grain rotates by the angle h � 90� instead of h. For-
mally, two more branches of b(h) could be obtained by
shifting h by �180� and �270�, but they are unlikely to
be realized in experiments or simulations since they require
larger lattice rotations than the previous two.

Thus, using the concept of a ‘‘surface dislocation’’ and
the formal analogy with martensitic transformations, we
have extended the discrete dislocation model of coupling
to high-angle GBs. In the limiting cases of low-angle GBs
arising at the ends of the misorientation range, we correctly
recover the expressions for b(h) obtained within the dis-
crete dislocation model. The extended model therefore pre-
dicts that those expressions continue to be valid across the
entire misorientation range, which was indeed verified by
atomistic simulations (Fig. 7). This analysis also demon-
strates that the multivalued character of b originates from
the invariance of the GB structure under point symmetry
operations in the grains.

Another important feature of the extended model is that
it does not require that the GB be symmetrical. The model
predicts that the coupling factor only depends on the tilt
angle but not on the GB plane inclination. We are in the
process of testing this prediction by atomistic simulations.
A low-angle asymmetrical tilt GB of the [001] family con-
tains a mixed array of Æ10 0æ and 1/2Æ110æ dislocations. It is
not immediately clear how the dislocations having different
Burgers vectors and gliding along intersecting slip planes
can conspire to move together and maintain the same GB
structure without locking each other. Besides dislocation
glide, this motion may involve other processes such as
cross-slip and dissociation–recombination reactions
between the dislocations. Read and Shockley [32,51] sug-
gested that glissile motion of asymmetrical GBs would be
impossible, but no convincing proof of this conjecture
was presented.

9.4. Increments of boundary motion

The dislocation model discussed in Section 9.2 also pre-
dicts the multiplicity of the increments, H and S, of the
coupled GB motion. Fig. 11 displays the misorientation
dependencies of H and S calculated from the dislocation
model and compared with results of atomistic simulations.
Two interesting features are revealed by this plot.

Firstly, excellent agreement is observed between predic-
tions of the dislocation model and MD results for both
coupling modes, not only for low-angle GBs but across
the entire misorientation range. We again observe that
the dislocation model proposed for low-angle GBs contin-
ues to work for high-angle misorientations, despite the fact
that individual dislocations can no longer be resolved.

Secondly, while H and S obtained for flat GBs perfectly
agree with Eqs. (14) and (15), the values for zigzag GBs are
exactly half of those predictions and thus fall on a separate
curve. This indicates that zigzag GBs actually move by
increments of b/2 and not b as was assumed in deriving
Eqs. (14) and (15). As a result, the Æ110æ branches of
H(h) and S(h) split in two sub-branches corresponding to
flat and zigzag GBs. The only exception is the R5(310)
GB, which has a planar structure but still lies on the zigzag
sub-branch. We emphasize that both sub-branches are
characterized by the same coupling factor b(h).

The origin of this difference between the flat and zigzag
GBs can be understood from the atomic mechanisms of
their motion. A zigzag GB structure can be considered as
being split into two layers formed by the structural units,
as illustrated in Fig. 14. Such boundaries always move in
the Æ110æ mode by translating one layer of structural units
at a time. Although the layer moves by the full Burgers vec-
tor b, the GB plane (which can be identified as a median
plane between the two layers) only translates by b/2. By
contrast, during the Æ110æ motion of flat GBs all structural
units translate by b simultaneously (see example in
Fig. 15(a)).

The R5(310) GB presents a special case. By analogy
with other flat GBs one could expected it to move by A 0–
B 0 unit transformations as indicated in Fig. 15(b). This
would lead to H and S values consistent with Eqs. (14)
and (15). However, the actual motion of this GB involves
the lattice unit B situated one (310) layer closer to the
GB plane, resulting in H and S which are twice as small.

It is interesting to note that all boundaries lying on the
lower sub-branch (dash-dotted line in Fig. 11) belong to
the class of centered GBs [37] with h2 + k2 = 2R (both h
and k are odd), whereas the higher sub-branch is populated
by non-centered GBs (h2 + k2 = R). Because in any small
vicinity of a centered misorientation there are non-centered
ones and vise versa, the functions H(h) and S(h) corre-
sponding to the Æ110æ mode of coupling are not only mul-
tivalued but also non-analytical.

9.5. Disconnections at grain boundaries

As discussed in Section 7, the motion of a planar GB
under an applied shear stress is unlikely to happen uni-
formly over a large area. Rather, an area of a critical
nucleus size should first undergo a normal displacement
and expand by spreading sidewise in a manner similar to
the nucleation and growth of a new ‘‘phase’’. The shear
stress provides the driving force of this process and plays
a role similar to the undercooling in a first-order phase
transformation. The critical nucleation size is dictated by
a balance between the elastic strain energy released due



4970 J.W. Cahn et al. / Acta Materialia 54 (2006) 4953–4975
to the local grain translation and the excess energy associ-
ated with the line defect surrounding the displaced GB
region.

Due to the coupling effect, the lattice regions separated
by this line defect are in different translational states paral-
lel to the boundary plane. Hence, there is a dislocation con-
tent associated with this line defect, with a Burgers vector S

lying parallel to the GB plane. For tilt GBs, the Burgers
vector must be normal to the tilt axis. On the other hand,
the defect separates GB regions that have identical atomic
structures but lie in different (but parallel) planes. This
makes this defect similar to a GB step. An interfacial defect
possessing a combined step and dislocation character is
classified as a disconnection [42] and is commonly observed
at the growth front of massive transformations [42–44].
Thus, the step height of the disconnection is H and the
magnitude of the Burgers vector is S which were intro-
duced in Section 9.2.

For the particular cases of CSL GBs, the disconnection
characteristics S and H can be associated with appropriate
vectors of the displacement shift complete (DSC) lattice of
the bicrystal. This was pointed out by King and Smith [52]
who did not use the term disconnection but did show that
step vectors associated with extrinsic GB dislocations must
belong to the DSC.

As an example, Fig. 23 displays a [001] projection of the
three-dimensional dichromatic pattern corresponding to
the R5 misorientation of black and white fcc lattices,
together with the CSL and DSC lattices that arise. A
R5(210) GB lying in the plane ABC can be obtained by
discarding all black atoms above this plane and all white
atoms below it. Suppose all white atoms whose ordinate
is positive and abscissa is the same as for point D or smaller
A B

A' D' D

E E'
C

dDSC [210]
[120]

Fig. 23. Dichromatic pattern for the R5 misorientation of two (black and
white) fcc lattices. The large and small symbols designate atomic positions
in alternating (002) planes parallel to the page. The initial plane of a
R5(210) GB is ABC, with white atoms occupying the upper grain and
black atoms occupying the lower grain. After a translation of the left half
of the white lattice by vector DD 0 to the left, the GB plane develops a step
BD 0 and becomes A 0D 0BC. This step is associated with a Burgers vector
DD 0 and represents a disconnection. A propagation of the disconnection
to the right constitutes a mechanism of GB motion in the Æ110æ coupling
mode. The Æ100æ coupling mode could be implemented through the
motion of another disconnection with the Burgers vector EE 0. To avoid
overloading the plot, the DSC grid is only outlined in the top right corner.
are shifted by the vector DD 0, while all atoms on the right
of D remain intact. Since vector DD 0 belongs to the DSC
lattice, this shift destroys the initial CSL on the left of point
D but recreates it in a new position. Because point D 0 now
becomes a coincident site, the new CSL position can be
considered as shifted relative to the initial one by vector
BD 0. As a result of this shift, the GB part AB moves to a
new position A 0D 0 and the GB plane becomes A 0D 0BC
with a step BD 0. The height of this step equals H = 3dDSC,
where dDSC ¼ a

ffiffiffi
5
p

=10 is the DSC lattice spacing. The mag-
nitude of the Burgers vector DD 0 associated with this step
is S = 2dDSC. For the coupling factor, we immediately
obtain b = �S/H = �2/3. These values of H, S and b
match our geometric model of coupling for the Æ1 10æ mode
(Sections 9.2 and 9.3) and results of MD simulations.

A disconnection corresponding to the Æ100æ mode of
coupling can be obtained by displacing the white crystal
to the right by the DSC vector EE 0 and terminating this
displacement at point E 0. The magnitude of the Burgers
vector remains the same (S = 2dDSC) but the step height
becomes H = 2dDSC, resulting in b = 1. These values of
H, S and b are again consistent with our geometric model
for the Æ100æ mode.

Coupling characteristics of all other GBs, with both
low- and high-angle misorientations, can be also expressed
in terms of suitable DSC vectors. The two branches of b
arise in this analysis from choosing shifts of the white lat-
tice either to the right or to the left.

We emphasize that this analysis in purely geometric and
its capability to predict the disconnection properties and
thus b is limited. In the example shown in Fig. 23, the grain
translations DD 0 and EE 0 were correctly selected out of
many possible choices because they gave the smallest mag-
nitudes of H and/or S. But these are not well-defined or
physically justified criteria. They are not followed in all
cases, as shown by the examples in Fig. 11. The actually
observed disconnection step vector (H,S) is the one which
gives the lowest critical resolved stress. It can only be estab-
lished by atomistic modeling or experiment. The utility of
this geometric analysis is in its ability to identify a few
DSC vectors which are reasonable candidates for the actual
step vector. This can be readily done for both low- and
high-angle GBs.

10. Critical stresses for boundary motion

Within the dislocation model, the critical stress for GB
motion at low temperatures is related to the Peierls–Nab-
arro stress for the GB dislocation glide. Qualitatively, Pei-
erls–Nabarro stresses of different dislocations can be
compared by examining sections of gamma surfaces corre-
sponding to relevant slip planes and slip directions. A
gamma surface represents the excess energy function c(t)
of a generalized stacking fault obtained by relative transla-
tion of two half-crystals by a vector t parallel to a chosen
crystallographic plane [53]. This energy is calculated by
allowing atomic relaxations normal to the fault plane but



J.W. Cahn et al. / Acta Materialia 54 (2006) 4953–4975 4971
prohibiting atomic movements in parallel directions. Bur-
gers vectors of perfect dislocations correspond to transla-
tion vectors t connecting nearby global minima on the
gamma surface. The energy c(t) along a Burgers vector,
together with the relevant elastic constants, provide input
to the Peierls–Nabarro model of a planar-core dislocation
[54,55]. A higher energy barrier on c(t) leads to a more
compact dislocation core and thus a larger Peierls–Nab-
arro stress.

Applying this approach, the gamma surfaces shown in
Fig. 24 indicate that the {100}Æ100æ slip responsible for
the Æ100æ mode of coupling must be much more difficult
than the {110}Æ11 0æ slip corresponding to the Æ110æ mode.
As was established by the MD simulations (Section 7), the
[100] dislocations behave as if dissociated in the (010) slip
plane in two 1/2Æ11 0æ dislocations according to the reac-
tion (6). They glide by a vector 1/2Æ110æ at a time. This slip
behavior can now be understood by noting that the energy
maximum on the gamma surface for the {10 0}Æ110æ slip is
much lower than for the purely cubic {100}Æ10 0æ slip.

Furthermore, the {100}Æ11 0æ energy maximum is still
higher than for the {110}Æ110æ slip. This suggests that
the critical resolved shear stress required for activating
the Æ100æ mode of coupling must be larger than for the
Æ110æ mode. Of course, this prediction should be taken
with caution since the slip of [100] dislocations involves
complex atomic movements in both the edge and screw
directions and may not closely follow the one-dimensional
Peierls–Nabarro model. In addition, elastic interactions
between the GB dislocations can modify the Peierls–
Nabarro stress relative to that for an isolated dislocation.
Nevertheless, the prediction of the relative easiness of the
Æ110æ coupling mode is consistent with the observation
that the switch between the modes occurs at h < 45�
(Fig. 7).

Note that pre-existing GB disconnections and other
extrinsic defects, as well as various stress concentrators in
the material, can significantly reduce the critical stress of
coupled GB motion.
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Fig. 24. Sections of gamma surfaces of Cu calculated with the embedded-
atom potential used in this work, showing that the {100}Æ100æ slip for
low-angle GB motion is very difficult.
11. Discussion and outlook

11.1. Summary

That shear stresses can trigger the motion of high-angle
GBs, and that conversely, the volume swept by a GB
undergoes a shear b, has been found only recently [3–5].
Our atomistic simulations of this coupled GB motion show
that both effects occur and follow our geometric predic-
tions with high accuracy for all misorientation angles h at
temperatures below �0.7Tm and for most low-angle GBs
at almost all temperatures. Our geometric model of cou-
pling predicts that, in the range 0 < h < 90� for a positive
shear stress, there is a positive and a negative branch
(mode) of coupling, on which the GB dislocation content
B, the coupling factor b and the normal GB velocity vn

are all, respectively, positive and negative. Each branch
connects smoothly, and without change of sign, to the
respective low-angle limit where individual GB dislocations
are resolved. We find the dislocation Burgers vector b =
Æ1 00æ and b � h when h is small, and b = �(1/2)Æ110æ
and b � �(p/2 � h) when h approaches 90�.

Our simulations of copper GBs reveal an abrupt tran-
sition between the positive and negative branches of cou-
pling at h � 35� for temperatures between 500 and 800 K.
At lower temperatures, the negative Æ110æ branch contin-
ues to very small h values. There is a range of tempera-
tures and angles, where dual behavior is seen: GB motion
begins with negative behavior and is replaced by positive
after a short time. All boundaries studied are able to
move in either mode of coupling. The selection of the
mode depends on the critical stresses and Schmid factors,
as well as on symmetry-breaking imperfections in the GB
structure.

The details of atomic movements in the two modes of
coupling have been studied and the mechanism of motion
has been found for each mode. All GBs move by deforma-
tion of their structural units, accompanied by relatively
small and highly correlated (‘‘military’’) displacements of
the atomic sites. During the passage of the GB, atoms
can diffuse but must eventually settle on geometrically pre-
scribed sites once the GB has passed. Thus, perfect cou-
pling does not require diffusion, but diffusion can occur
without affecting perfect coupling.

In the low-angle regimes of the two coupling modes, the
correlated atomic movements are localized in the neigh-
borhood of the dislocation cores and represent atomic
mechanisms of dislocation glide. When h is near 90�, the
low-temperature stress required to move the GB
approaches the Peierls–Nabarro stress of the usual �1/
2[110] dislocations gliding on unusual ð1�10Þ slip plane.
As h decreases, interactions between the dislocations
change this stress and make it a function of h that is sensi-
tive to whether the GB is flat or zigzag.

At high temperatures, coupled motion of high-angle
GBs begins to be interrupted by individual sliding events,
whose frequency grows with temperature. The mechanism
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of the sliding events can be associated with stress-induced
GB premelting. In our simulations, the stress drops after
each sliding event and the GB resolidifies. The next event
can be coupling in one of the modes or sliding. The exis-
tence of this crossover regime at high temperatures clearly
indicates that coupling and sliding can coexist in the same
boundary. As the temperature is increased further, cou-
pling disappears and the GB response to shear changes
entirely to rigid sliding. Low-angle GBs remain coupled
up to almost the melting point. The diagram of mechanical
responses of the GBs (Fig. 8) shows domains of coupling,
sliding and dual behavior in the temperature–angle coordi-
nates. We suggest that such diagrams can be useful for the
interpretation and prediction of mechanical behavior of
GBs.

The coupling provides a low-temperature, stress-
induced mechanism for GB motion and for additional plas-
ticity of the material down to 0 K. GB sliding is another
plasticity mechanism, which replaces coupled GB motion
at high temperatures.

11.2. Implications of this work

GB and heterophase-interface motion are part of many
processes in materials, including grain growth, recrystalli-
zation, plasticity, phase transformations and diffusion-
induced GB migration (DIGM) [56]. The discovery of the
coupling effect suggests a need for a major re-examination
of our understanding of these and many other phenomena
in materials science, in which coupled interface motion
might play a significant role. Such phenomena include
the following:

1. It was thought for a long time that motion of high-
angle GBs occurs by random diffusive jumps of atoms
across the GB [57]. The only known exception was
the motion of twin boundaries, which produces shear
deformation and does not involve any diffusion. Our
work amends this picture in two ways. Firstly, there
is a large class of high-angle GBs that can move in a
coupled manner similar to twin boundaries. Secondly,
we have shown that diffusion and coupled GB motion
do not exclude each other.

2. Grain rotation is a likely result of coupled motion of
curved interfaces. This effect was studied in simulations
of included grains [3,6], but the process becomes more
complicated when the grain is bounded by junctions
of GBs.

3. As grains grow, the coupling will produce inhomoge-
neous shear deformation, incompatibilities and stresses
which can affect the kinetics and morphology of grain
growth. Grain growth should produce upheavals on
the free surface which are different from thermal
grooving.

4. The 6 � n ‘‘law’’ of grain growth in two dimensions [58]
is derived by assuming motion by curvature and p/3
corners. The parabolic ‘‘law’’ of grain growth is derived
from self-similarity and scaling. Both ‘‘laws’’ assume
uniform isotropic GBs and thus are rarely expected to
hold in experiment. Coupling should lead to additional
deviations from these ‘‘laws’’.

5. Recrystallization on heating after cold deformation is
probably triggered by the existence of dislocation-free
volumes swept by coupled GB motion during later
stages of the cold work. Such volumes are able to grow
without a nucleation barrier at high temperatures, dri-
ven by the stored cold work in their surroundings. The
textures found in many recrystallized structures may
originate from the dislocation-free volumes formed
along cold-worked GBs moved by coupling.

6. Dynamic recrystallization occurs during high-tempera-
ture deformation. The current understanding of this
process is based on apparent continual nucleation of
new grains, their growth and subsequent deformation.
This view may change if coupled GB motion induced
by the deformation leads to a continual formation of
volumes large enough to continue to grow. Grain rota-
tion can contribute an additional driving force for the
GB motion.

7. Stress-induced GB migration can produce grain shape
changes and rotation, and thus plastic deformation of
polycrystalline materials without diffusion or slip in
the grains. This is another deformation mechanism,
besides diffusional creep and slip, which is characterized
by a different grain-size and temperature dependencies
of the deformation rate. This mechanism is especially
important in deformation behavior of nanocrystalline
materials.

8. Stress-induced GB displacements have been found to
trigger grain growth during tensile tests at room tem-
perature [26,27] and the more extensive grain growth
at cryogenic temperatures than at room temperature
during indentation creep tests of nanostructured mate-
rials [28].

9. The moving GBs in DIGM and discontinuous precipi-
tation are thought to be driven by strains from compo-
sitional inhomogeneities. The nucleation during these
processes has long been a mystery. It too could be trig-
gered by coupling to the coherency stress. This could be
verified by studying the effect of applied stresses on
these processes.

10. Coupled motion of interfaces can occur during phase
transformations The well-known example is offered by
martensitic transformations, in which there is a geomet-
ric relation between the phases and a habit plane deriv-
able from the transformation shear. Closely related is
another class of transformations, which are controlled
by long-range diffusion but display a morphology of
shear transformations. This coexistence of shear and
diffusion was the subject of a long-standing polemic in
the literature [59,60]. The new phase grows in the form
of plates with a strict orientation relationship and a
habit plane derivable from martensite theory. But,
because the new phase is required by thermodynamics
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to have a chemical composition different from the
matrix composition, long-range diffusion must occur
[61]. This process has a certain similarity with coupled
GB motion, which we have found to coexist with diffu-
sion (Section 4). It is the lattice that is sheared during
both processes, while individual atoms can diffuse
between the lattice sites.

This list could be continued to other topics, such as
deformation of thin films and nanowires, superplasticity,
etc.

11.3. Existing challenges and future work

Planar grain boundaries are characterized by five
angles and the direction of the shear in the GB plane,
which adds another angle. We have explored this six-
dimensional configuration space by studying only a set
of [001] symmetrical tilt GBs with the shear applied in
the direction normal to the tilt axis. These GBs sample
a trajectory in this space on which five angles are fixed
and only the tilt angle h is varied. We intend to explore
other simple one- or two-angle trajectories: changing the
tilt axis to produce other sets of CSLs, varying the GB
plane to produce asymmetrical tilt boundaries or to follow
a trajectory from tilt to twist GBs, or rotating the direc-
tion of vi. Preliminary simulations reveal that asymmetri-
cal tilt GBs do couple with shear stresses and produce
shear deformation of the lattice. This work would greatly
benefit from concurrent experimental measurements of
coupling in precisely oriented bicrystals [62]. The geomet-
ric model of coupling introduced in Section 9.3 must be
extended to general angles and its predictions tested by
MD simulations.

Because GBs have atomic structure and are usually not
isotropic about their normals, coupling should be a general
phenomenon, but it is forbidden for special symmetries of
the GBs and of the shear direction. For example, coupling
should not be seen for pure twist GBs or for a strain applied
parallel to the tilt axis. All such symmetries can be formu-
lated as specific equations among the angles. One such
equation defines a hypersurface in the six-dimensional
space, several equations define lower-dimensional features,
but all of them together occupy a very small portion of this
space, specifically with no six-dimensional volume. Thus,
almost every ‘‘general’’ point in the six-dimensional space
represents a GB that can move by coupling, including the
points representing the symmetric tilt CSL GBs that we
have studied, which are often called ‘‘special’’ by a different
criterion.

Junctions of GBs provide another complication for cou-
pling, easily seen for small-angle GBs. While the disloca-
tions in the GB of an included grain are conserved and
increase in density as the grain shrinks [6], those in the
GBs bounding a grain with more than one neighbor can
leak from one GB into another at the triple junctions. For-
mulating this complication is a formidable task, with con-
siderable history in the study of polygonization [63]. There
is also a problem of compatibility among coupled move-
ments of GBs meeting at multiple junctions.

We cannot describe our results by the concept of GB
mobility [57]. The dynamics of coupled GB motion can
be diverse, ranging from stick–slip behavior to stochastic
motion. In our simulations the stress continues to rise until
the GB yields. At 0 K, the GB moves only when a critical
stress is reached. As the temperature increases, the peak
stress is reduced, presumably by several quite different,
thermally activated mechanisms, which need to be studied.
Our simulations show that at relatively high temperatures
with the free boundary condition, GB motion is stochastic
with zero average velocity. The effect of a very small vi
(down to 10�4 m/s) imposed by the fixed boundary condi-
tion is currently being studied. It is expected that such
small velocities should impose a net normal GB motion
without changing its stochastic character. In this limit, a
linear relation between the average vn and stress is expected
and the concept of mobility will be plausible.

Our simulation geometry is that of a soft machine, in
which a large amount of strain is accumulated in the grains
and is reduced by S/L at each step of the grain translation
S along the GB, where L is the grain size in the normal
direction. This results in the saw-tooth behavior of the
stress. This behavior should be observable experimentally,
although it becomes too small if L is large. It manifests
itself in a stop–go (jerky) GB motion, sometimes seen in
experiments, including in situ high-resolution electron
microscopy observations [38]. The stick–slip behavior is
very similar to sliding friction [39,40]. Some of the ideas
and models developed in that area should be adapted for
describing the temperature dependence of the velocity–
stress relations for GBs.

We have demonstrated that coupling ceases to exist at
high temperatures for our high-angle tilt GBs. The transi-
tion from coupling to sliding seems to occur by stress-
assisted melting fluctuations at the GB at temperatures
below the GB premelting temperature without stress. Such
fluctuations were introduced by Frenkel [64] and postu-
lated as the activated process in GB motion by Mott [65].
We believe that the increase in the GB free energy caused
by the stress facilitates such fluctuations. A liquid region
slides easily, which puts more mechanical load on the
unmelted portion of the boundary. This load, in turn,
increases the probability of premelting in other regions
and they also begin to slide. As a result, the sliding quickly
propagates over a large GB area until the stress drops and
the premelted regions resolidify.

The multiplicity of coupling modes endows high-angle
GBs with much flexibility in responding to applied stresses
or other driving forces. This flexibility is important for
many processes involving GB motion, in particular for
accommodating the incompatibility in the movements of
adjacent GBs or parts of a curved one [66]. Consider a pro-
cess in which a GB moves up and down by switching
between one mode with b1 > 0 and another with b2 < 0.
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If the grains are forced to translate relative to each other
with a velocity vi > 0, the GB velocity can switch back
and forth between vn1 = vi/b1 > 0 and vn2 = vi/b2 < 0. The
durations of the two modes can be adjusted to give any
average between vn1 and vn2, including Ævnæ = 0, for which
the boundary will appear to be stationary and the process
will look like GB sliding. As indicated in Fig. 8, switches
between coupling modes are most probable at high misori-
entation angles; low-angle boundaries are unlikely to
‘‘slide’’ by this mechanism. Although it is conceptually
plausible, some evidence for this mechanism has only been
obtained in the range of dual behavior (Fig. 10).

Note that coupled GB motion can also occur without
producing net shear deformation of the bulk. Suppose a
driving force induces normal GB motion with a constant
velocity vn > 0. If this motion is coupled but there are con-
straints imposed on grain translations, the GB can move by
switching back and forth between two modes. The lattice
regions adjacent to the boundary will then experience rela-
tive translations with alternate velocities vi1 = b1vn > 0 and
vi2 = b2vn < 0. The switching times between the modes can
be adjusted to give a range of Æviæ values, including Æviæ = 0.

In conclusion, we believe that the consideration of
the coupling effect might lead to solution of many long-
standing puzzles, and offer new and deeper understanding
of the complexity of GBs.
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Appendix A

To derive the relation

Rbg � bg ¼ Bbp ð25Þ
appearing in Section 9.3 we first use Eq. (19) with B substi-
tuted from Eq. (18). We have

X � RB� B ¼ bp � Rbp � ðR�1bp � bpÞ ¼ 2bp � Rbp � R�1bp:
Since the second and third terms in the right-hand side of
this equation are obtained by rotations of bp in opposite
directions, X is parallel to bp. Therefore, the length of vector
X equals

X ¼ Xbp ¼ ð2bp � Rbp � R�1bpÞbp ¼ 2bpðbp � R�1bpÞ; ð26Þ
where we used the fact that ðRbpÞbp ¼ ðR�1bpÞbp (vectors ob-
tained by opposite rotations of bp have identical projections
on bp). Using Eq. (18) we can rewrite (26) as

X ¼ �2Bbp: ð27Þ
On the other hand, since rotations preserve length, we have
ðR�1bpÞðR�1bpÞ ¼ 1, or by Eq. (18),
ðBþ bpÞ2 ¼ B2 þ 2Bbp þ 1 ¼ 1

and thus

B2 ¼ �2Bbp: ð28Þ
Comparing Eqs. (27) and (28) we conclude that X = B2, or
multiplying this relation by bp,

Xbp ¼ X ¼ RB� B ¼ B2bp:
Finally, dividing the latter relation by B we arrive at Eq.
(25) with bg � B=B.
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