
Quantified Propositional Calculus and a
Second-Order Theory forNC1

Stephen Cook Tsuyoshi Morioka

April 14, 2004

Abstract

Let H be a proof system for the quantified propositional calculus (QPC). We
define theΣq

j -witnessing problem forH to be: given a prenexΣq
j -formula A, an

H-proof of A, and a truth assignment to the free variables inA, find a witness
for the outermost existential quantifiers inA. We point out that theΣq

1 witnessing
problems for the systemsG�

1 andG1 are complete for polynomial time andPLS
(polynomial local search), respectively.

We introduce and study the systemsG�
0 andG0, in which cuts are restricted to

quantifier-free formulas, and prove that theΣq
1-witnessing problem for each is com-

plete forNC1. Our proof involves proving a polynomial time version of Gentzen’s
midsequent theorem forG�

0 and proving thatG0-proofs areTC0-recognizable. We
also introduce QPC systems forTC0 and prove witnessing theorems for them.

We introduce a finitely axiomatizable second-order systemVNC1 of bounded
arithmetic which we prove isomorphic to Arai’s first order theory AID + Σb

0-CA
for uniform NC1. We describe simple translations ofVNC1 proofs of all bounded
theorems to polynomial size families ofG�

0 proofs. From this and the above the-
orem we get alternative proofs of theNC1 witnessing theorems forVNC1 and
AID .

1 Introduction

Krajı́ček and Pudlák [27, 26] introduced the proof systemG for the quantified propo-
sitional calculus (QPC), together with the hierarchy of fragments

G�
1 �G1 �G�

2 �G2 � :::
HereGi is G restricted so that onlyΣq

i or Πq
i formulas can occur in proofs, where a

formula is inΣq
i if it has a prenex form with at mosti�1 alternations of quantifiers,

beginning with9, and dually forΠq
i . G�

i is Gi restricted to treelike proofs. The systems
are related to the polynomial hierarchy (PH) in that the decision problem for validity
of Σq

i sentences is complete for the levelΣp
i of PH, and similarly forΠq

i andΠp
i .

The systemsGi andG�
i are also closely related to Buss’s hierarchy of theories

S1
2 � T1

2 � S2
2 � T2

2 � :::
1

of bounded arithmetic. In particular,Gi simulates proofs ofΣb
i formulas inT i

2 [27] and
G�

i simulates proofs ofΣb
i formulas inSi

2 [26].
We modify the definitions ofGi andG�

i by allowing arbitrary QPC formulas in
proofs, but restricting cut formulas to beΣq

i and restricting the target formulas in9-
right and8-left rules to be quantifier-free. We prove that the modified systems are
polynomially equivalent to the original for provingΣq

i [Πq
i formulas. Their advan-

tages are that they are complete systems for proving all valid QPC formulas, and the
quantifier introduction rules always increase quantifier complexity. As a result of the
modification, we obtainG0 andG�

0 as new and interesting QPC systems, which are
polynomially equivalent to Frege systems when proving quantifier-free theorems.

For j � 1, we define theΣq
j -witnessing problem for a QPC systemH to be: given a

prenexΣq
j -formulaA, anH-proof ofA, and a truth assignment to the free variables ofA,

find a witness for the outermost existential quantifiers inA. We point out that results of
Krajı́ček and Pudlák on the provability of the reflection principles for the QPC systems
[27] and witnessing theorems for bounded arithmetic [26] show that, fori � 1, theΣq

i -

witnessing problems forG�
i andGi are complete forFPΣp

i�1 andPLSΣp
i�1, respectively,

whereFP is the class of polytime functions andPLS (Polynomial Local Search) is
essentially the class of optimization problems solvable bylocal search algorithms. [23].

Our main interest is in the systemsG0 andG�
0, and their relationship to the the

second-order theoryVNC1 introduced here. In particular, we show that theΣq
1-witnessing

problems for bothG�
0 andG0 are complete for the classFNC1 of NC1-functions. (In

this paper we useNC1 to meanDlogtime-uniform NC1, which is the same as the class
Alogtime of problems accepted in timeO(logn) on an alternating Turing machine.)
Our proof uses Buss’sNC1 algorithm for the Boolean Formula Value Problem, and
involves showing thatG-proofs are recognizable in uniformTC0.

We show how to extract a propositional “Herbrand disjunction” from a G0 proofπ
of a prenex formula, and show that this disjunction has Fregeproofs of size polynomial
in jπj. This result is used in the above witnessing theorem, and also in proving a poly-
nomial time version of Gentzen’s midsequent theorem forG�

0. We use these techniques
to prove thatG�

0 p-simulatesG0 for Σq
1 formulas, something that does not hold forG�

1
versusG1, unlessPLS is contained inFP.

We consider propositional systems which allow threshold gates, and extend them
to systems with propositional quantifiers. In particular wedefine ford = 1;2; ::: the
systemTG0(d), which allows cuts only on quantifier-free formulas, and in which all
quantifier-free formulas in a proof have depth� d. We prove that theTΣq

1-witnessing
problem forTG0(d) can be solved by aTC0-function, and conversely everyTC0-
function is reducible to such a witnessing problem for somed.

We introduce a second-order systemVNC1 of bounded arithmetic which is inspired
by Arai’s [1] first-order theoryAID for Alogtime. Our second-order treatment results
in a substantial simplification of both the description of the theory and the proofs of
the main theorems.VNC1 is obtained by extending the theoryV0 (essentiallyIΣ1;b

0) of
AC0 reasoning by adding a schemeΣB

0-TreeRecfor tree recursion, based on the heap
data structure. We prove that theΣB

1-definable functions inVNC1 are precisely those in
FNC1, and then prove thatVNC1 is RSUV isomorphic toAID + Σb

0-CA, whereΣb
0-CA

is the comprehension scheme for sharply-bounded formulas.As a corollary, we obtain

2

that Arai’s theoryΣb
0-RD is equivalent toAID + Σb

0-CA, a result not mentioned in [1].
We go on to describe translations ofVNC1 proofs of all bounded theorems (not just

ΣB
0 theorems) to polynomial size families ofG�

0 proofs. This translation generalizes and
is much simpler than the translation ofΣb

0-theorems ofAID to polynomial size Frege
proofs given in [1]. From this and the above main theorem (witnessing forG�

0) we get
alternative proofs of theFNC1 witnessing theorems forVNC1 andAID .

1.1 Organization

This paper is organized as follows. Section 2 introducesQPC systemsGi and G�
i

and other basic definitions. In Section 3 we define the notionsof π-prototypes and
the Herbrandπ-disjunction for aG0-proof π, and we prove a polynomial-time version
of Gentzen’s midsequent theorem forG�

0. In Section 4 we describe our propositional
witnessing problem and prove that theΣq

1-witnessing problems for bothG0 andG�
0 are

complete for the class ofNC1-functions. In Section 5 we extend a sequent calculus for
propositional threshold logic into quantified threshold calculi for TC0 and show that the
witnessing problems for these systems characterizeTC0. Section 6 is an exposition on
the syntax and semantics of second-order theories and complexity classes. In Section
7 we describe the theoryVNC1 and its relationship toNC1 and the first-order theory
AID . Section 8 contains the propositional translations fromVNC1 to G�

0. Section 9
concludes with remarks on relevant issues and open problems.

2 Quantified Propositional Calculus

Let T andF denote the truth valuestrue and f alse, respectively. Quantified Proposi-
tional Calculus (QPC) is obtained by introducing quantifiers into propositional calcu-
lus, where(9x)A(x) is equivalent toA(T)_A(F) and(8x)A(x) is equivalent toA(T)^
A(F).

Let fpi : i 2 Ng andfxi : i 2 Ng be the sets ofp-variables andx-variables, respec-
tively. We use thep-variables to denote free variables and thex-variables to denote
bound variables: see Definition 2 below.

Definition 1. Formulasand theirouter connectivesare defined inductively as follows.
(1) The atomic formulas are(T), (F), and(pi) and (xi) for every i2 N. (2) If φ and
ψ are formulas, then so are(φ^ψ), (φ_ψ), and(:φ). The outer connective of these
formulas arê , _, and:, respectively. (3) Ifφ is a formula, then for every i2 N, both(9xiφ) and (8xiφ) are formulas. The outer connective of these formulas are9xi and8xi, respectively.

Often we do not write all the parentheses. Note that we parenthesize the atomic
formulas since it somewhat simplifies parsing operations for QPC in Section 4.3.

Definition 2. A formula A is said to beproperand called aQPC formulaiff every
occurrence of an x-variable in A is bound. A formula that is proper and quantifier-free
is calledpropositional.

3

The validity of QPC formulas is defined in an obvious way.
Both Σq

0 and Πq
0 denote the set of propositional formulas. Fori � 1, Σq

i is the
set of QPC formulas that has a prenex form with at mosti�1 quantifier alternations
beginning with9, andΠq

i is the dual ofΣq
i . Note thatΣq

i�1 �Πq
i andΠq

i�1 � Σq
i for all

i � 1.
The following definitions are from [27], which generalize those of [20] for propo-

sitional proof complexity. LetV be some set of valid QPC formulas. A polytime
computable functionQ that mapsf0;1g� ontoV is called aquantified proof system for
V, and we say thatπ is aQ-proof of Q(π). The following is an easy generalization of
a fundamental theorem of propositional proof complexity byCook and Reckhow [20],
connecting the question of proof lengths to open problems ofcomplexity theory:

Theorem 1. (i) There exists a proof system Q in which every valid QPC formula A has
a proof of size polynomial injAj iff NP= PSPACE. (ii) For every i� 0, there exists a
proof system Q in which every validΣq

i -formula A has a proof of size polynomial injAj
iff NP= Πp

i+1.

Let Q1 andQ2 be quantified proof systems. We say thatQ2 p-simulates Q1 iff there
exists a polytime functionf that, if π1 is aQ1-proof of A, then f (π1) is aQ2-proof of
A. We say thatQ1 andQ2 are p-equivalent if they p-simulate each other.

Let PK denote the Gentzen-style sequent calculus for propositional logic of [9, 16].
The initial sequents ofPK areF! and! T andA! A for any propositional formula
A. It has structural rules (weakening, contraction, exchange), the cut rule which derives
Γ!∆ from two sequentsA;Γ!∆ andΓ!∆;A, and propositional rules that introduce
new connectives into the sequents. For example, the^-left rule derivesA^B;Γ ! ∆
from A;B;Γ! ∆, and thê -right rule takes two upper sequentsΓ! ∆;A andΓ! ∆;B
and derivesΓ ! ∆;A^B. The rules that take two upper sequents, i.e., cut,_-left, and^-right, are calledbinary inference rules; all the other rules are calledunary inference
rules. For each inference rule, theprincipal formulasare the formulas in the lower
sequent to which the rule is applied. For example, the principal formula of^-right
above isA^B. The exchange rules are the only rules with two principal formulas, and
cut has no principal formula. Theauxiliary formulasof a rule are the formulas in the
upper sequents to which the rule is applied. For example, Theauxiliary formulas of^-right areA andB. The weakening rules do not have any auxiliary formula.

A PK-proof is a sequenceS1; : : : ;Sk such that each sequentSi is either an initial
sequent or is derived from at most two preceding sequents.Sk is called theendsequent
and a formula inSk is referred to as anendformula. Tree-likePK is PK with the
restriction that, in a proof, each sequent occurs as an uppersequent of an inference step
at most once. We writejπj to denote thesizeof proof π, which is the total number
of symbols inπ. We say that a family of sequents has polynomial-sizePK-proofs if
there exists a polynomialp such that, for every formulaA in the family, there exists a
PK-proof of A whose size is at mostp(jAj).

In [27], Krajı́ček and Pudlák introduced Gentzen-style sequent calculus systems for
QPC which we callKPG, KPGi , andKPG�

i , for i � 1. KPG is obtained by augmenting
PK with the following new inference rules:9-left :

A(b);Γ! ∆9xA(x);Γ ! ∆
9-right :

Γ ! ∆;A(B)
Γ ! ∆;9xA(x)

4

8-left :
A(B);Γ ! ∆8xA(x);Γ ! ∆

8-right :
Γ! ∆;A(b)

Γ ! ∆;8xA(x)
whereb is an eigenvariable not occurring in the bottom sequent andB is any proper
formula. We callB the targetof the corresponding9-right or 8-left step. For each of
the above quantifier rules, the auxiliary formula is the formula that occurs only in the
upper sequent (i.e., eitherA(B) or A(b)) and the principal formula is the formula that
appears only in the lower sequent (i.e., either8xA(x) or 9xA(x)). Finally, the sequent
A! A for any QPC formulaA is allowed as an initial sequent.

For i � 1, KPGi is obtained by requiring that all formulas in aKPGi-proof be
Σq

i [Πq
i . KPG�

i is KPGi restricted to treelike proofs.
The restriction thatKPGi and KPG�

i can only reason aboutΣq
i -formulas seems

artificial. Moreover, the known correspondences betweenT i
2 andKPGi and between

Si
2 andKPG�

i (Theorem 2 below) are not optimal;T i
2 can reason about formulas with

more thani � 1 quantifier alternations whileT i
2-proofs of such formulas cannot, by

definition, be translated into polysizeKPGi-proofs.
We remedy this shortcoming by modifying the definition ofKPGi andKPG�

i to
obtain the systems which we callGi andG�

i .

Definition 3. G is obtained by augmenting PK with the four quantifier-introduction
rules, with the additional restriction that the target of every8-left and9-right step be
quantifier-free.

Definition 4. For i � 0, Gi is G with cuts restricted toΣq
i [Πq

i -formulas. G�i is the
tree-like version of Gi .

The restriction that the target of8-left and9-right rules ofG be quantifier-free
means that all quantifier-introduction rules increase the quantifier complexity of the
auxiliary formula, as opposed to those rules ofKPGwhich can result in a decrease of
the quantifier complexity. The definition ofGi andG�

i by restricting the complexity of
cut formulas is in the spirit of traditional proof theory, and it is motivated by the way
Pitassi defines the bounded-depth propositional PK system by restricting the depth of
cut formulas [29].

Lemma 1 below shows that our systems are natural extensions of Krajı́ček and
Pudlák’s systems. The advantages of our systems are that they are complete proof
systems for the whole QPC.

Lemma 1. G and KPG are p-equivalent. Moreover, for every i� 1, KPGi and KPG�i
are p-equivalent to Gi and G�

i , respectively, for proving validΣq
i [Πq

i -formulas.

Proof. We prove thatKPGi and Gi are p-equivalent for everyi � 0. The proof is
identical forKPG�

i versusG�
i andKPGversusG.

KPGi obviously p-simulatesGi with respect to proving validΣq
i [Πq

i -formulas. For
the other direction, it suffices show thatGi can simulate9-right and8-left steps inKPGi

with quantified targets. For the9-right case, letSbe the sequentΓ!∆;9xA(x) which is
derived fromΓ! ∆;A(B) with B quantified.Gi can deriveSfrom A(B)!9xA(x) and
Γ ! ∆;A(B) by weakening and cut onA(B). Gi can cutA(B) since, by the definition
of KPGi , A(B) is Σq

i [Πq
i . It remains to show thatA(B)! 9xA(x) has short proofs in

5

Gi . This sequent is derived fromB;A(B)! 9xA(x) andA(B)! 9xA(x);B by cut on
B, and these sequents in turn follow from (T1) and (T2) of Lemma2 below by9-right
with atomic targets.

The simulation of8-left inference ofKPGi by Gi follows in an analogous way from
(T3) and (T4) of Lemma 2 below.

Lemma 2. Let9xA(x) and B be QPC formulas and A(B) be the result of substituting
B for all occurrences of x in A(x). The following four sequents have cut-free G�

0-proofs
of size O(jA(B)j2):
(T1): B;A(B)! A(T),
(T2): A(B)! A(F);B,
(T3): B;A(T)! A(B), and
(T4): A(F)! B;A(B).
Proof. Simultaneous induction on the structure ofA(x).

Let π be aG-proof. Free variables ofπ that occur in the endsequent are called
parameter variables. Buss introduced in [3, 9] the following normal form for tree-like
proofs.

Definition 5. Letπ be a tree-like G-proof. We say thatπ is in free variable normal form
if the following conditions are met: (i) no parameter variable is used as an eigenvari-
able; and (ii) every nonparameter variable is used as an eigenvariable exactly once in
π.

If π is a tree-like proof in free variable normal form, it followsthat, for every
nonparameter variableb, the sequents containing an occurrence ofb form a subtree ofπ
whose root is the upper sequent of the inference in whichb is used as the eigenvariable.
Any tree-like proof can be converted into free variable normal form by renaming bound
variables and replacing nonparameter variablesb with the logical constantT if b is
never used as an eigenvariable. Throughout this paper, we assume that all tree-like
QPC proofs are in free variable normal form.

Krajı́ček and Pudlák in [27] define a translation of a bounded formulaA of first-
order bounded arithmetic into a polynomial size familyfkAkngn2N of QPC formulas
and prove the following:

Theorem 2. ([27, 26]) For i � 1, if A is a Σb
i theorem of Ti2 then the corresponding

familyfkAkngn2N of valid QPC formulas has polynomial-size Gi -proofs which can be
constructed in time polynomial in n. Similarly for Si

2 and G�
i .

The above result is tight with respect to the quantifier complexity of A, since its
proof does not work for bounded theorems ofT i

2 or Si
2 that are notΣq

i .
Nonetheless, any bounded theorem ofT i

2 (or Si
2) can be translated into the corre-

sponding valid QPC formulas with polysize proofs using the second-order translations
described in Section 8.

Theorem 3. Theorem 2 continues to hold when A is aΣb
j theorem of Ti2 (respectively

Si
2) for any j� 0.

Proof. (Sketch) Theorem 23 states this result for the second-orderisomorphic images
TV i andV i of T i

2 andSi
2, respectively.

6

3 The Polynomial-time Midsequent Theorem forG�
0 and

G0

Note thatKPG0 andKPG�
0 are quantifier-free propositional proof systems (PK and

tree-likePK, respectively), and thus ourG0 andG�
0 are new quantified proof systems for

the whole QPC that have never been studied. Since the cut formulas ofG0 andG�
0 are

quantifier-free, they are similar to first-order theoriesT axiomatized by purely universal
formulas, all of whose theorems haveLK derivations with all cuts on quantifier-free
formulas [9], and therefore it is reasonable to attempt to obtain for G0 and G�

0 the
counterparts of the proof-theoretic statements regardingsuch theoriesT. Of course, a
major difference between the proof theory forT and the study ofG0 andG�

0 is that the
former is concerned with the existence of proofs and variousnormal forms for proofs
without much interest in the size of proofs or the complexityof converting proofs into
normal forms, while forG0 andG�

0 the size and complexity are the major concern.
Gentzen’s Midsequent theorem for first-orderLK states that, ifS is a valid sequent

consisting of prenex formulas only, thenS has a tree-like cut-freeLK-derivation with
a ‘midsequent’S0 such that all quantifier inferences occur belowS0 and all proposi-
tional inferences take place aboveS0. Krajı́ček has a similar statement forG [26]. We
prove below the Midsequent Theorem forG�

0 that makes explicit its value for proof
complexity.

Definition 6. Suppose thatπ is a G0-proof with endsequent! A, where A is a quanti-
fied QPC formula in prenex form. Then any quantifier-free formula A0 in π that occurs
as the auxiliary formula of a quantifier-introduction step is called aπ-prototypeof A.
We define theHerbrandπ-disjunctionto be the sequent! A1; : : : ;Am

where A1; : : : ;Am are all theπ-prototypes of A.

Assume thatπ is aG0-proof of the sequent! A whereA is of the form

Q1x1 : : :QkxkF(~p;x1; : : : ;xk) (1)

with Qi 2 f9;8g for eachi 2 [1;k℄. Then there exists a unique sequenceB1; : : : ;Bk of
propositional formulas such that

A0 =synF(~p;B1; : : : ;Bk):
Intuitively, eachBi is either the target of the9-right step or the eigenvariable of the8-right step that introduces the bound variablexi into A0.
Definition 7. Let π, A, A0, and B1; : : : ;Bk be as in the preceding paragraph. For each
i 2 [1;k℄, Bi is called the ith component of A0.

The following is similar to a general form of Herbrand’s theorem for first-order
logic by Buss [9]. However, since our claim is simpler, so is the proof.

7

Lemma 3. Let π be a G0-proof of a sequent! A with A a quantified QPC formula in
prenex form. Then the Herbrandπ-disjunction is valid, and it has a PK-proof of size
polynomial injπj.
Proof. Assume thatπ is the sequenceS1; : : : ;Sk of sequents, whereSk is!A. For every
i 2 [1;k℄, if sequentSi is Γi ! ∆i , then defineS0i to beΓi ! ∆0

i , where∆0
i is obtained

from ∆ by removing all quantified formulas and adding allπ-prototypesA1; : : : ;Am.
Note thatΓi contains no quantified formula, andS0k is the Herbrandπ-disjunction.

We argue that everyS0i has a PK-proof of size polynomial injπj by induction on
i. If Si contains no quantified formula, thenSi =syn S0i and there is nothing to prove.
Assume thatSi contains a quantified formula. The only nontrivial case is whenSi is
derived fromSj which does not contain a quantified formula, and this happensonly in
weakening or quantifier introduction. In either case,S0i follows from S0j by introducing
A1; : : : ;Am by weakening.

Below we state and prove a polynomial-time version of the Midsequent Theorem
for G�

0.

Theorem 4. (The Polynomial-time Midsequent Theorem for G�
0) Letπ be a G�0-proof of

sequent S of the form! A with quantified prenex formula A. Then there exists another
G�

0-proofπ0 of S such that:
(i) π0 contains the Herbrandπ-disjunction Sπ; and
(ii) only contraction, exchange,8-right, and9-right inference steps occur between Sπ
and the endsequent.

In fact, there is a polynomial-time algorithm that convertsπ into suchπ0.
After obtaining the proof of Theorem 4 we became aware that Gentzen’s original

proof of theLK Midsequent Theorem can also be used to prove our version via elimina-
tion of cuts on quantifier-freeB by introducingB_:B in the antecedent. However, our
proof below is simpler and shows clearly that the midsequentproof π0 is polynomial-
time computable.

Proof. (of Theorem 4) LetA be of the form

Q1x1 : : :QkxkF(~p;x1; : : : ;xk)
with F quantifier-free andQi 2 f9;8g for eachi 2 [1;k℄. Let A1; : : : ;Am be all the
π-prototypes. By Lemma 3, the Herbrandπ-disjunction

Sπ =syn ! A1; : : : ;Am

has a shortPK-proof. It suffices to derive! A from Sπ using contraction, exchange,8-right and9-right rules only.
By the properties ofπ-prototypes, for eachj 2 [1;m℄, π-prototypeA j is of the form

A j =synF(~p;B j
1; : : : ;B j

k);
whereB j

1; : : : ;B j
k are the components ofA j . For eachB j

i , we define itselimination step
in π to be the quantifier-introduction step that introducesQixi into a descendant ofA j .

8

It is possible for one elimination step to be associated withc componentsB j1
i1
; : : : ;B jc

ic .
This happens iffi1 = i2 = : : := ic and the descendants ofA j1; : : : ;A jc are contracted in
π at some point before the elimination inference occurs.

Let s andt be inference steps inπ. We say that an inference steps precedes t inπ
if s occurs in the subproof ofπ ending witht. We first try to derive! A from Sπ by
introducing quantifiers into theπ-prototypes consistently with the way the quantifier-
introduction steps occur inπ so that eachπ-prototype is transformed into a copy of
A. More specifically, we execute a quantifier-introduction step only after executing all
quantifier-introduction steps that precede it inπ. This procedure works except for the
cases in which there is a8-right inference that is associated with two componentsb j

i and
bv

i , both of which are an eigenvariableb. Sinceb occurs in two distinct formulas in the
current sequent,8-right rule is applicable neither to the formula containingb j

i nor the
one containingbv

i . Becauseπ is in free variable normal form, bothb j
i andbv

i have the
same eliminating inference, and we know that this happens only when the descendants
of A j andAv are contracted inπ before the elimination inference occurs. Thus, if we
not only introduce the quantifiers but also contract quantified formulas consistently
with the way these steps occur inπ, we will be able to derive! A from Sπ. Thus,
we modify the above procedure in as follows. Define aQ-inference to be a quantifier-
introduction step or a contraction step of two quantified formulas. Starting withSπ, we
execute eachQ-inferencesof π (interleaved with exchange steps as needed) only after
all theQ-inferences that precedesare executed.

Obviously such a sequence ofQ-inferences exists becauseπ exists. It suffices to
show that the eigenvariable condition for8-right is never violated. Assume, for the sake
of contradiction, that the eigenvariable condition is violated when we apply8-right rule
on b j

i =syn b. This violation is becauseb occurs as somebu
v in another formula of the

sequent. It follows that the elimination inference ofbv
u does not precede that ofb j

i in
π, and hence the8-right step onbu

v occurs outside the subproof rooted at the8-right on
b j

i . But this violates the conditions of free variable normal form.

Our proof above does not work ifπ is not tree-like, since in suchπ there can be two8-right stepss andt on two formulasB andB0 with the same eigenvariableb such that
neither precedes the other inπ. OnceB andB0 are in the same sequent, which will be
the case if we try to derive!A from the Herbrandπ-disjunction, the8-right inferences
onb is applicable to neitherB norB0. However, if all quantifier-introduction steps inπ
are9-right, then this problem never arises, and thus we can provethe following weaker
statement forG0:

Theorem 5. Theorem 4 holds for G0 if the endformula A is prenexΣq
1.

Proof. Since the endformula isΣq
1, all quantifier-introduction steps inπ are9-right.

From the Herbrandπ-disjunction! A1; : : : ;Am we can easily derive a sequent contain-
ing mcopies ofA by repeated applications of9-right rule.

It is shown by Krajı́ček that tree-likePK p-simulates dag-likePK [26], and there-
fore G�

0 p-simulatesG0 for propositional tautologies. Based on this and the above
results, we obtain a stronger p-simulation forG�

0 andG0.

9

Theorem 6. G�
0 p-simulates G0 for proving prenexΣq

1-formulas.

Proof. Let π be aG0-proof of a sequentS containing one prenexΣq
1-formula. Apply

Theorem 5 to obtainπ0 that provesS from the Herbrandπ-disjunctionSπ. Since the
subproofπ1 of π0 rooted atSπ is aPK-proof, and tree-likePK p-simulatesPK [26], we
can convertπ1 into a tree-likePK-proofπ2 with only polynomial size increase. Finally,
replaceπ1 in π0 with π2; the result is aG�

0-proof of S.

Theorem 6 is interesting because we later show that a similarp-simulation forG1

andG�
1 implies PLS = FP (see Theorem 7), which is not believed to be true. It is

open whether Theorem 6 can be generalized to a p-simulation of G0 by G�
0 for proving

prenex formulas. Since we are not able to prove Theorem 4 forG0, the above argument
does not work for this general case.

4 The Witnessing Problems for QPC

Let i � 0 and letH be eitherGi or G�
i . For j � 1, define theΣq

j -witnessing problem for
H, writtenWitness[H;Σq

j ℄, as follows. The input is(π;~v), whereπ is anH-proof of a
Σq

j -formulaA(~p) of the form

A(~p) =syn9x1 : : :9xkF(~p;x1; : : : ;xk) (2)

with F prenexΠq
j�1, and~v is a truth assignment to the free variables~p. A solution for

the problem is a witness forA(~v), i.e., a sequence~u of T;F such thatF(~v;~u) holds.
The complexity ofΣq

i -witnessing problems forGi andG�
i follow from the existing

results in bounded arithmetic.

Theorem 7. Witness[G�
1;Σq

1℄ and Witness[G1;Σq
1℄ are complete forFP and PLS, re-

spectively. More generally, for i� 1, Witness[G�
i ;Σq

i ℄ and Witness[Gi ;Σq
i ℄ are complete

for FPΣp
i�1 andPLSΣp

i�1, respectively.

Proof. We first prove thatWitness[G�
i ;Σq

i ℄ is in FPΣq
i�1. Krajicek [26] shows thatSi

2
proves thei-reflection principlefor G�

i :8~v8π8A(~p)[(A(~p) 2 Σq
i ^π : G�

i ` A(~p))� A(~v) is a trueΣq
i -sentence], (3)

where~v;π;A(~p) are actually numbers that encode the corresponding truth assignment,
proof, and formula, respectively. ‘A(~v) is a trueΣq

i -sentence’ is expressed by aΣb
i -

formula stating that there exists a witness to the outermostexistential quantifiers of
A(~v). Thus thei-reflection principle is a8Σb

i -sentence. TheWitness[G�
i ;Σq

i ℄ is exactly

the problem of witnessing (3), which is inFPΣp
i�1 by Buss’s witnessing theorem [3]

(also in [26, 8]).
ThatWitness[Gi;Σq

i ℄ 2 PLSΣp
i�1 is proven analogously from the facts thatT i

2 proves

i-reflection principle forGi [27, 26] and that witnessingΣb
i -theorems ofT i

2 is in PLSΣb
i�1

[12] (also see [13]).

10

It is shown by Buss in [3] that everyf 2 FPΣp
i�1 is Σb

i -definable inSi
2; that is,

there existsφ 2 Σb
i such thatN j= 8xφ(x; f (x)) and Si

2 ` 8x9y� t(x)φ(x;y). Let A
denote9y � t(a)φ(a;y) with one free variablea. We describe a reduction off to
Witness[G�

i ;Σq
i ℄. Givena2 N with jaj= n, theΣq

i -formula jjAjj[n℄ corresponding toA
and aG�

i -proof π of it can be constructed in time polynomial inn by Theorem 2. Let
Aq denotejjAjj[n℄ and letA+ 2 Σq

i be a prenex form ofAq such that

Aq ! A+
has short, cut-freeG�

0-proofs. By a cut onAq we construct fromπ anotherG�
i -proofπ0

with endformulaA+. Finally, by letting~v the truth assignment encoding the bits ofa, a
solution forWitness[G�

i ;Σq
i ℄ on the instance(π0;~v) gives the value off (a). Thus, f is

many-one reducible toWitness[G�
i ;Σq

i ℄.
The hardness ofWitness[Gi;Σq

i ℄ for PLSΣp
i�1 is proven in a way completely analo-

gous to theG�
i case above.

It follows from Theorem 7 that, ifG�
1 p-simulatesG1, thenFP = PLS, which is

believed to be false. More generally, a p-equivalence between any two quantified se-
quent calculi discussed in this paper implies a collapse of the corresponding complexity
classes.

The Σb
j -definable search problems (i.e., multifunctions) inT i

2 and Si
2 for all j >

i have been known to coincide with natural complexity classes[5, 25, 30], and we
conjecture thatWitness[Gi;Σq

j ℄ andWitness[G�
i ;Σq

j ℄ are complete for these complexity
classes. This conjecture is also related to the question whether T i

2 andSi
2 prove the

j-reflection principles forGi andG�
i for j > i, respectively.

Cook [16] and Skelley [32] have more direct proofs ofWitness[G�
i ;Σq

i ℄ 2 FPΣp
i�1

andWitness[Gi;Σq
i ℄ 2 PLSΣp

i�1, respectively, which do not go though the provability of
the reflection principles in bounded arithmetic.

4.1 TheΣq
1-Witnessing Problem forG0: Witness Formulas

SinceG0 andG�
0 are new proof systems forQPC, the complexity of their witnessing

problems have never been studied. In this and the next few subsections we study the
complexity ofWitness[G0;Σq

1℄.
Let π be the inputG0-proof of A(~p) of the form (2) withF quantifier-free, and let

A1; : : : ;Am be a sequence of allπ-prototypes. Note that the sequent! A1; : : : ;Am is
valid by Lemma 3. For eachj 2 [1;m℄, define a formulaE j which states thatA j is the
first in the sequenceA1; : : : ;Am that is satisfied, i.e.,

E j =syn(:A1^:A2^ : : :^:A j�1)^A j :
Thus, any truth assignment~v satisfiesEl for exactly one valuel 2 [1;m℄.
Definition 8. For all i 2 [1;k℄, define

φi =syn

m_
j=1

(E j ^B j
i);

11

where Bj
i is the ith component of Aj . We callφi the ithπ-witness formula.

We prove that theπ-witness formulas compute a solution for theΣq
1-witnessing

problem forG0 and that this fact has shortPK proofs.

Theorem 8. Letπ be a G0-proof of a prenexΣq
1-formula A of the form9x1 : : :9xkF(~p;x1; : : : ;xk), where F is quantifier-free. Letφ1; : : : ;φk be theπ-witness

formulas. Then F(~p;φ1; : : : ;φk) is a tautology and it has a PK-proof of size polynomial
in jπj.
Proof. We writeF to denoteF(~p;x1; : : : ;xk). F[~x=~φ℄ denotes the result of substituting
φi for xi , i 2 [1;k℄. Our goal is to show thatF [~x=~φ℄ hasPK-proofs of size polynomial injπj.

Let A1; : : : ;Am be theπ-prototypes ofA. For eachj 2 [1;m℄, define sequentsSj and
Tj as

Sj =syn ! F [~x=~φ℄;A1; : : : ;A j

Tj =synA j ! F [~x=~φ℄;A1; : : : ;A j�1

Sm is derived by weakening the Herbrand disjunction! A1; : : : ;Am which, by
Lemma 3, has aPK-proof of size polynomial injπj. For eachj 2 [1;m� 1℄, Sj is
derived fromSj+1 andTj+1 by cut, and finallyF [~x=~φ℄ is derived fromS1 andT1 by
cut. Thus it suffices to prove that, for eachj 2 [1;m℄, the sequentTj has a polysize
PK-proof.

Fix j 2 [1;m℄. Let C be a subformula ofF , and letC[~x=~B j ℄ be the result of sub-

stituting, for everyi 2 [1;k℄, B j
i for xi in C. Note thatC[~x=~B j ℄ is a subformula ofA j .

Define two sequentsUC
1 andUC

2 as follows:

UC
1 : C[~x=~B j ℄;A j !C[~x=~φ℄;A1; : : : ;A j�1

UC
2 : C[~x=~φ℄;A j !C[~x=~B j ℄;A1; : : : ;A j�1

It is clear thatTj follows fromUC
1 for C =synF by contraction. We prove that, for any

subformulaC of F , bothUC
1 andUC

2 havePK-proofs of size polynomial injπj.
We proceed by structural induction onC. If C does not contain any occurrence of

an x-variable, thenC[~x=~φ℄ andC[~x=~B j ℄ are identical, and therefore bothUC
1 andUC

2
follow from initial sequents by weakening.

For the other base case, suppose thatC is an atom(xi) for i 2 [1;k℄. ThenC[~x=~φ℄ is
φi andC[~x=~B j ℄ is B j

i , and hence we need to show that the following two sequents have
polysizePK-proofs:

UB
1 : B j

i ;A j ! m_
l=1

(El ^Bl
i);A1; : : : ;A j�1 (4)

UB
2 :

m_
l=1

(El ^Bl
i);A j ;! B j

i ;A1; : : : ;A j�1 (5)

The sequent (4) is derived by weakening and_-right from

B j
i ;A j ! (E j ^B j

i);A1; : : : ;A j�1

12

which follows from the two sequentsB j
i ! B j

i andA j ! E j ;A1; : : : ;A j�1. By the defi-
nition of E j , the latter sequent has short proofs.

The sequent (5) is derived bym applications of_-left from the sequents(El ^Bl
i);A j ;! B j

i ;A1; : : : ;A j�1 (6)

for eachl 2 [1;m℄. We claim that all of the sequent of the form (6) have shortPK
proofs. If l < j, then the sequent containsAl in both sides of ‘!’. If l = j, thenB j

i
appears in both sides. Finally, ifl > j, then the antecedent of the sequent contains both
A j and:A j . This concludes the case whereB=syn(xi) for somei 2 [1;k℄.

The inductive step is straightforward. IfC is (C1_C2), (C1^C2), or (:C1), then
the sequentsUC

1 andUC
2 have shortPK-proofs fromUC1

1 , UC1
2 , UC2

1 , andUC2
2 , all of

which have shortPK-proofs.

4.2 TheΣq
1-Witnessing Problem forG0: An NC1-algorithm

NC1 is the class of languages accepted by families of bounded fan-in boolean circuits
of logarithmic depth and polynomial size. Throughout this paper we writeNC1 to
meanDlogtime-uniformNC1, which is equivalent to the classAlogtime of languages
accepted by an alternating Turing machine inO(logn) time. See [22] for more in-
formation onNC1. Let Σ = f0;1g. A function f : Σ� 7! Σ� is anNC1-function iffj f (x)j 2 jxjO(1) and its bit graph

Rf (x; i;c) � the ith bit of f (x) is c

is in NC1, wherei is presented in unary.NC1-functions over an arbitrary finite alphabet
Σ is defined similarly by encoding each symbol ofΣ ask-bit strings, wherek depends
only onjΣj. FNC1 is the class ofNC1-functions (also see Section 6.2).

AC0 is the class of predicates decidable by families of constant-depth, polynomial-
size circuits withAND, OR, andNOT gates of arbitrary fan-in, andTC0 is obtained by
allowing threshold gates, which output 1 iff the number of 1’s in its inputs is at least
some threshold [22]. Again we only work withDlogtime-uniform versions of these
classes.

In this subsection we prove that there exists anNC1-function that outputs a solution
for Witness[G0;Σq

1℄. By Theorem 8, it suffice to show that, given an instance(π;~v)
of Witness[G0;Σq

1℄, π-witness formulasφi for any i can be evaluated inNC1. Since
Buss shows in [4] that the Boolean Formula Value Problem of evaluating the input
propositional formula under the given truth assignment is in NC1, we only need to
show that the parsing operations necessary for recognizingoccurrences ofφi ’s in π are
in NC1.

Fix the alphabetΣQPC such that the inputs toWitness[G0;Σq
1℄ are represented as

finite strings over it:

ΣQPC= fT;F; p;x;0;1;(;);^;_;:;9;8;!;comma;#g;
wherecommadenotes the comma. The symbols 0 and 1 are used to denote the indices
of variables. A variablepi is written asp_i with i 2 f0;1g+, and similarly forxi .

13

Formulas and sequents are encoded as strings overΣQPC without the sharp symbol (#).
A G0-proof is representable asS1#S2#: : :#Sm, that is, a sequence of sequents separated
by the sharp (#) symbol such that everySi is either an initial sequent or derived from at
most two preceding sequents by an appropriate inference rule. We also fix an encoding
scheme for truth assignments.

From now on,Z will always denote a finite string overΣQPC and n = jZj. For
1� i � n, αi is theith symbol ofZ, i.e.,

Z =synα1α2 : : :αn:
For 1� i � j � n, we writeZ[i; j℄ to denote the substringαi : : :α j of Z. If j < i then
Z[i; j℄ is empty.

Theorem 9. TheΣq
1-witnessing problem for G0 is solvable by anNC1-function.

Proof. It suffices to describe anAlogtime Turing machineM for computing theπ-
witness formulas. The input toM is a tuple(Z; i;c), andM accepts iff theith wit-
ness formula evaluates toc 2 fT;Fg. In Lemmas 4, 5, and 8 below, we prove that
formulas, G0-proofs, andπ-prototypes areTC0-recognizable. Fix an ordering on
the π-prototypes to be the order in which they appear inZ. Then recognizing the
kth component of thel th π-prototype is also inTC0 by Lemma 8. Note that, since
TC0 � Alogtime, M can evaluate anyTC0 predicates.

Given a stringZ as input,M accepts iff there existsr 2 [1;n℄ such that all of the
following hold: (i) Z[1; r℄ encodes aG0-proofπ of A of the form (2) withF quantifier-
free; (ii) Z[r +1;n℄ encodes a truth assignment~v to the parameter variables ofπ; and
(iii) the ith π-witness formulaφi evaluates toc under~v. The first two conditions involve
TC0 predicates only.

It remains to describe howM can evaluateφi . M existentially guessesj and verifies
that j �m. Sinceπ-prototypes areTC0-recognizable, computingm is aTC0-function
and thereforeM can computem. ThenM universally verifies thatB j

i , A j , and:Al for
everyl < j are true under~v. The Boolean Formula Value Problem is inAlogtime [4, 7],
and thereforeM can evaluate all these formulas. Finally, note that in everycomputation
pathM only needs to guess indices ofZ, each of which has onlydlogne bits. ThusM
runs in alternating timeO(logn).

The next subsection is devoted to proving that the predicates for parsing that are
used in the above proof are indeedTC0.

4.3 Parsing Operations forQPCare in TC0

Let R� Σ�
QPC� (N)k for k� 0. R is in AC0 iff R is representable by a first-order (FO)

formula [2, 21], whereFO is defined as follows. The terms ofFO are constructed from
constants for the natural numbers,n (which denotes the length of the string input) and
variables using addition and multiplication. The predicate symbols ofFO are=, <,
andSynσ(i) for eachσ 2 ΣQPC. Variables denote indices of the input string of length
n, and therefore they range overf0; : : : ;ng. First-order logic with majority quantifier
(FOM) is obtained by allowing a special quantifierM such thatMxφ(x) means that

14

φ(x) is true for more than half of the possiblex’s. R is in TC0 iff it is representable
by anFOM-formula [2, 21]. The following is an easy and useful fact: ifφ(a) is an
FOM-formula with one free variablea, then there exists anotherFOM-formulaψ(b)
such that, for everyk, the sentenceψ(k) holds iff there arek values ofx such thatφ(x)
holds.

Buss in [6] shows thatNC1 can parse propositional formulas and also recognize
Frege proofs. His proofs actually show that these can be donein TC0. Using the same
idea, we can prove the following Lemma.

Lemma 4. The following predicates are inTC0:
(1) Formula(Z; i; j)� Z[i; j℄ is a formula;
(2) QPCF(Z; i; j) � Z[i; j℄ is a QPC formula; and
(3) Sequent(Z; i; j)� Z[i; j℄ is a sequent.

Proof. (Sketch) For (1), it suffices to ensure that (1A)Z[i; j℄ is correctly parenthesized
and that (1B) there is no substring ofZ[i; j℄ of length 2 that is impossible in a formula.
Examples of impossible substrings arepx, x), :9, etc. Condition (1A) holds iff (a)
Z[i; j℄ contains an equal number of occurrences of ‘(’ and ‘)’; and (b) for all u2 [i; j�1℄,
Z[i;u℄ contains more ‘(’ than ‘)’. It is easy to see that both (1A) and(1B) areFOM-
expressible.

For (2), we only need to check thatZ[i; j℄ is a formula and that for every occurrence
of anx-variablexk in Z[i; j℄ there is a subformula ofZ[i; j℄ containing the occurrence
of xi and whose outer connective is either9xk or 8xk. This isFOM-expressible.

We omit a proof for (3), which is easily seen to beFOM-expressible.

DefineIn f1(Si ;Sj) to be true iff sequentSi is derivable from sequentSj by a unary
inference rule, whereSi ;Sj are given as strings overΣQPC. Similarly, In f2(Si ;Sj ;Sk) is
true iff Si is derivable from two sequentsSj andSk by a binary inference rule.

Lemma 5. Both In f1 and In f2 are FOM-expressible.

Proof. For In f2, we need to express thatSi follows from the hypothesesSj andSk by
cut,^-right, or_-left. The case for̂ -right is handled by verifying that (i) the three
sequents involved are identical except for the rightmost formulas; and (ii) the principal
formula ofSi is identical to the disjunction of the auxiliary formulas ofSj andSk, and
clearly this is expressible inFOM. The case for_-left is handled in an analogous
manner, and the case for cut is also easily expressible inFOM.

For In f1, it is easy to see that there is anFOM formula expressing thatSi is derived
from Sj by structural rules or unary propositional rules. Finally,By Lemma 7 below,
the property ‘Si follows fromSj by a quantifier rule’ isFOM-expressible.

In order to prove Lemma 7 on which the truth of Lemma 5 depends,we introduce
the notion ofidentifier of a subformula. LetA be a formula. For each subformulaB
of A, we define its identifier (ID) as the string overf1;2g that uniquely determines its
location withinA as a path from the root ofA to the root ofB, thinking ofA as a tree.

Definition 9. Let A be a formula. For every subformula B of A, IDA(B) is defined
inductively as follows. (1) IDA(A) is the empty stringε; (2) if B is (B1�B2) with

15

� 2 f^;_g, then IDA(B1) is IDA(B)_1 and IDA(B2) is IDA(B)_2; and (3) if B is
either(:B1) or (QxB1), then ID(B1) is IDA(B)_1.

For example, ifA is (9x1(B_ (:C))), thenIDA(B) = 11 andIDA(C) = 121.

Lemma 6. The following is aTC0-function: given Z; i; j;a;b such that i� a< b� j
and Z[i; j℄ and Z[a;b℄ encode formulas A and B, respectively, output IDA(B).
Proof. It suffices to show that the bit graph ofIDA(B) is in TC0. First, theith symbol
of IDA(B) is nonempty iff there existsl ;msatisfying (i)Z[l ;m℄ is a subformula ofA; (ii)
B is a subformula ofZ[l ;m℄; and (iii) the number of ‘(’ inZ[i; l �1℄ minus the number
of ‘)’ in Z[i; l �1℄ is equal toi.

Suppose that theith bit of IDA(B) is nonempty. Then theith bit is ‘2’ iff αl�1 2f^;_g.

Lemma 7. Define the following predicates to be true iff Si can be derived from Sj by
the corresponding quantifier rule:
(1) ExistsLe f t(Si ;Sj);
(2) ExistsRight(Si;Sj);
(3) ForAllLe f t(Si ;Sj); and
(4) ForAllRight(Si;Sj).
These predicates are FOM-expressible:

Proof. We informally describe anFOM formula φ expressingExistsRight. φ is the
conjunctionφ1^φ2^φ3 of threeFOM formulas.φ1 expresses thatSi andSj are iden-
tical except for their rightmost formulas, andφ2 is true iff the outer connective of the
rightmost formula ofSi is 9xk for somek. Let P andA be the rightmost formulas of
Si andSj , respectively (P andA stand for ‘principal’ and ‘auxiliary’).φ3 expresses the
following: there exist a propositional subformulaB of A and anx-variablexk such that
A=synC[xk=B℄ andP=syn(9xkC). This is true iff, for every subformulaψ0 of C, there
exists a subformulaψ of A with IDC(ψ0) = IDA(ψ) such that:
- if ψ0 is the atomic formula(xk), thenψ is B;
- if ψ0 is atomic but not(xk), thenψ andψ0 are identical; and
- if ψ0 is not atomic, thenψ andψ0 have the same outer connective.
Note that the above conditions are expressible inFOM.

An FOM formula for ForAllLe f t is constructed similarly. ForExistsLe f tand
ForAllRight, we constructFOM formulas in an analogous manner with an additional
condition that the subformulaB of A be the atomic formula(pk) such that the free
variablepk does not appear inSi , which is easily expressible inFOM.

Finally we are able to show thatG0-proofs are recognizable inTC0. Define the
predicateProo fG0(Z; i; j) to be true iff the following three conditions hold: (A)Z[i; j℄
is of the formS1#: : :#Sm, where eachSi is a sequent; (B) for each sequentSk, either
Sk is an initial sequent or it is derived from at most two sequents that precedeSk; and
(C) for each sequentSk there existsSk0 with k < k0 that can be derived usingSk as an
upper sequent. The condition (C) is not strictly necessary,but we add it to ensure that
the proof does not contain sequents that are not used in proving the endsequent.

16

Lemma 8. The following predicates are FOM-expressible:
(1) Proo fG0(Z; i; j);
(2) Prototype(Z; i; j;u;v), which holds iff Z[i; j℄ is a G0-proof π of a prenex QPC for-
mula and Z[u;v℄ is a π-prototype; and
(3) Component(Z; i; j;k; l), which is true iff Z[i; j℄ is the kth component of the lthπ-
prototype Al .

Proof. (Sketch) ThatProo fG0 is FOM-expressible readily follows from the fact that
In f1 andIn f2 areFOM-expressible (Lemma 5). BothPrototypeandComponentare
expressible usingProogG0 andExistsRightandForAllRight.

We have proven thatG0-proofs areTC0-recognizable. In fact, this is easily ex-
tended to the recognizability of any QPC sequent calculus proofs:

Theorem 10. Let H be any of G, Gi , or G�
i for some i� 0. Then H-proofs areTC0-

recognizable.

Proof. The only difference betweenG-proofs andG0-proofs is that cuts on any QPC
formulas are allowed inG, and thus modifyingIn f2 yields theTC0-recognizability
of G-proofs. Similarly, for anyi � 1, Gi-proofs areTC0-recognizable sinceΣq

i [Πq
i -

formulas areTC0-recognizable.
The tree-like proofs areTC0-recognizable if we modify the encoding scheme in

the following way. IfS1; : : : ;Sk is aG�
i -proof, then it is encoded as(S1;w1)#(S2;w2)#: : :#(Sk;wk), where eachwi indicates the upper sequents that are

used to deriveSi if Si is not an initial sequent.

Our proof easily generalizes to theTC0-recognizability of first-order sequent cal-
culus proofs whose underlying language and nonlogical axioms areTC0-recognizable.
This fact has been known to Buss and possibly a few others [10], but, as far as we
know, it has not explicitly stated in print.

TC0 is widely believed to be the smallest complexity class in which counting is
possible. Since parsing operations requires counting in general, apparentlyTC0 is the
smallest class containing those parsing operations.

4.4 Hardness of theΣq
1-Witnessing Problem forG�

0

Let F andG be two functions. We say thatF is many-oneAC0-reducible toG if there
exist twoAC0-functiong;h such that (i) for some polynomialp, jh(x)j � p(jxj); and
(ii) F(x) = g(G(h(x))). It is easy to generalize this definition to the case in which one
or both ofF andG are total multifunctions.

An NC1-functionF is said to behard for FNC1 under many-oneAC0-reductions
iff every NC1-function is many-oneAC0-reducible to it.F is complete forFNC1 if F
itself is inFNC1.

Theorem 11. Witness[G�
0;Σq

1℄ is hard forFNC1 under many-oneAC0-reductions.

Proof. Let f be an arbitraryNC1-function, and assume without loss of generality that
there is a polynomialp such thatf : f0;1gn 7! f0;1gp(n) for everyn. Since the bit

17

graphRf (x; i;c) is in NC1, and since everyNC1-predicate is computed by aDlogtime-
uniform family of polynomial-size propositional formulas[2], there exists aDlogtime-
uniform family fAngn of polynomial-size propositional formulas such that, for each
n = jxj, An(x; i) is true if theith bit of f (x) is 1 andAn(x; i) is false otherwise, where
x andi are represented inAn by sequences~p and~q of propositional variables, respec-
tively.

Let m= p(n) and, for eachi 2 [1;m℄, let~i denote the truth assignment to~q repre-
sentingi in unary. Define sequentSn as follows:! (9y1) : : : (9ym)[(y1 $ An(~p;~1))^ : : :^ (ym$ An(~p;~m))℄
where ‘yi $ An(~p;~i)’ abbreviates(yi ^An(~p;~i))_ (:yi ^:An(~p;~i)). Suppose thatπn

is a G�
0-proof of Sn and that~v is a truth assignment to~p encodingx 2 f0;1gn. It is

easy to see that there is anAC0 function that computesf (x) given the solution for
Witness[G�

0;Σq
1℄ on (πn;~v). Thus, it suffices to show the existence of anAC0-function

g such thatg(x) is aG�
0-proofπjxj of Sjxj of size polynomial injxj.

Below we give an informal description of the proofπn. The sequentSn is derived
by mapplications of9-right from! (An(~p;~1)$ An(~p;~1))^ : : :^ (An(~p;~m)$ An(~p;~m))
which follows by applications of̂ -right from the sequents! (An(~p;~i)$ An(~p;~i)) (7)

for eachi 2 [1;m℄. It is easy to see that every sequent of the form (7) has aG�
0-proof

with a constant number of sequents, and this completes the description ofπn. Finally,
anAC0-function can outputπn because each line ofπn has a highly uniform structure
and it is easy to determine what thejth sequent ofπn should look like for anyj.

From Theorems 9 and 11 we conclude the following:

Theorem 12. Both Witness[G0;Σq
1℄ and Witness[G�

0;Σq
1℄ are complete forFNC1 under

many-oneAC0-reduction.

5 Quantified Propositional Calculi for TC0

In this section we sketch sequent calculus systems forTC0. By taking advantage of the
fact that many parsing operations are inTC0, we obtain a witnessing theorem for these
TC0 sequent calculi similar to Theorem 9 forG0.

We describe below the sequent calculus systemPTK for propositional threshold
logic by Buss and Clote [11] with minor modifications. The connectives ofPTK are
the negation: and the unbounded fan-in threshold connectivesThk for k� 0. Here
Thk(A1; : : : ;An) holds iff the number of true inputs is at leastk. Note thatThk(A1; : : : ;An)
for k= 1 andk= n are the

Wn
i=1Ai and

Vn
i=1Ai , respectively.

The initial sequents ofPTK are:
(i) ! T andF! andA! A for any formulaA;

18

(ii) Thk()! for k� 1; and
(iii) ! Th0(A1; : : : ;An) for n� 1.

The structural rules ofPTK are: weakening, contraction, exchange, and permuta-
tion of the arguments of any connective in a formula.PTK has cut,:-left, :-right, and
the following introduction rules forThk with k� 1:

Thk-left:Thk(A2; : : : ;An);Γ ! ∆ A1;Thk�1(A2; : : : ;An);Γ ! ∆
Thk(A1; : : : ;An);Γ ! ∆

Thk-right:
Γ ! ∆;A1;Thk(A2; : : : ;An) Γ! ∆;Thk�1(A2; : : : ;An)

Γ! ∆;Thk(A1; : : : ;An)
Let A be a formula ofPTK. Thedepthof A is the maximum number of nestings of

connectives inA.
Quantified Threshold Calculus(QTC) is obtained by introducing quantifiers in

PTK, with the convention that thex-variables are used for bound variables and the
p-variables denote free variables. Fori � 0, defineTΣq

i to be the class ofΣq
i -formulas

over the connectives: andThk for k� 0.

Definition 10. TG is obtained by augmenting PTK with the quantifier-introduction
rules. We require that the target of a9-right and a8-left be quantifier-free. TG0 is TG
with cuts only on quantifier-free formulas. For d� 1, TG0(d) is TG0 with a restriction
that all quantifier-free formulas in a proof be of depth� d.

TheTΣq
1-witnessing problem forTG0(d), writtenWitness[TG0(d);TΣq

1℄, is defined
similarly toWitness[G0;Σq

1℄.
Theorem 13.For every d� 1, Witness[TG0(d);TΣq

1℄ is solved by someTC0� f unction.

Proof. Fix d� 1. We can defineπ-prototypes, Herbrandπ-disjunction, and the witness
formulas forTG0(d) andWitness[TG0(d);TΣq

1℄ analogously to those forG0.
Let True(A;~v) be theNC1 predicate which holds iff the propositional formulaA

evaluates toT under the truth assignment~v. Note that the proof of Theorem 9 actu-
ally shows that there is anFOM formula Φ for evaluating theith π-witness formula
provided thatTrue(A;~v) is allowed to appear as atomic formulas.

By making the following two modifications toΦ, we can construct anFOM for-
mula Φ0 (with no additionalNC1 predicate) evaluating theith π-witness formula for
Witness[TG0(d);TΣq

1℄.
The first modification is that we replace the predicateTrue in Φ with anFOM for-

mulaTruePTK
d , which holds iff the input formulaA is a (quantifier-free)PTK-formula

of depth at mostd andA evaluates toT under the given assignment~v. Using the meth-
ods in [2], we can prove that, for eachd 2 N, evaluating aPTK-formula of depth� d
is in TC0, and the existence ofTruePTK

d follows.
Second, the definition ofIDA(B) should be modified as follows. Letm= dlogjAje

and letIDA(A) = ε. If B =syn:C, then IDA(C) = IDA(B)_δ with δ 2 f0;1gm is 1
in binary. If B =syn Thk(C1; : : : ;Cn), thenIDA(Cj) for j 2 [1;k℄ is IDA(B)_γ, where
γ 2 f0;1gm representsk in binary. It is clear thatIDA under this definition is stillTC0-
computable. The rest of the construction ofΦ0 goes through.

19

Theorem 14. EveryTC0-function is reducible to Witness[TG0(d);TΣq
1℄ for some d

under many-oneAC0-reduction.

Proof. This is proven analogously to Theorem 11, using the fact thateveryTC0 pred-
icate is computed by aDlogtime-uniform family fTngn of polynomial-sizePTK for-
mulas [2].

6 Second order theories

6.1 Syntax and semantics

Our “second order” theories are really two-sorted first order predicate calculus theories,
and are based on the elegant syntax of Zambella [34]. The underlying languageL2

A has
variablesx;y;z; ::: for the first sort, callednumber variables, and variablesX;Y;Z; :::
of the second sort, calledstring variables. The number variables are intended to range
overN, and the string variables are intended to range over finite sets of natural numbers
(which represent binary strings).

The languageL2
A extends the language of Peano Arithmetic, and consists of the

function and predicate symbols 0;1;+; �; j j;2;�;=1;=2. Here 0;1;+; � are function
symbols for numbers, and are intended to have their usual interpretation onN. The
function symboljXj denotes 1 plus the largest element inX, or 0 if X is empty (roughly
the length of the corresponding string).t 2 X denotes set membership, but we usually
use the notationX(t) for t 2 X, since we think ofX(t) as thet-th bit of the stringX.
Finally =1 and=2 denote equality on numbers and strings, respectively, but we will
drop the subscripts, since they will be clear from context.

Number termsare built from the constants 0,1, variablesx;y;z; :::, and length termsjXj using+ and �. The onlystring termsare string variablesX;Y;Z; :::. The atomic
formulas aret = u, X = Y, t � u, t 2 X for any number termst;u and string variables
X;Y. Formulas are built from atomic formulas usinĝ;_;: and both number and
string quantifiers9x;9X;8x;8X. Bounded number quantifiers are defined as usual, and
the bounded string quantifier9X � t φ stands for9X(jXj � t ^φ) and8X � t φ stands
for 8X(jXj � t � φ), whereX does not occur in the termt.

ΣB
0 = ΠB

0 is the set of all formulas inL2
A such that all number quantifiers are

bounded, and there are no string quantifiers. (There may be free string variables.)
For i > 0, ΣB

i is defined recursively to be the set of all formulas beginningwith a block
of zero or more bounded existential string quantifiers followed by aΠB

i�1 formula, and
ΠB

i is defined dually. Note that fori > 1 ourΣB
i andΠB

i formulas correspond tostrict

versions of the formula classesΣ1;b
i andΠ1;b

i defined in standard treatments because
we require that all string quantifiers are in front.

6.2 Second order complexity classes

Our basic complexity classes are classes of relationsR(~x;~Y), where eachxi in the list~x
ranges overN and eachYi in the list~Y ranges over finite subsets ofN. When the com-
plexity class is defined in terms of machines or circuits, we assume that each number
input is presented in unary notation, and each finite subset input is presented by the

20

corresponding bit string. ThusP is the class of such relations accepted in polynomial
time on a Turing machine. ByNC1 we mean uniformNC1 or Alogtime (alternating
log time). ByAC0 we mean uniformAC0, orLH (the log time hierarchy). The follow-
ing result ([21] and [16] pp 54–55) nicely connectsAC0 and our second order language
L2

A.

Lemma 9. A relation R(~x;~X) is in AC0 iff it is represented by someΣB
0-formulaφ(~x;~X).

Associated with each second order complexity classC of relations is a second order
function classFC. Second order functions are eithernumber functionsor string func-
tions. A number functionf (~x;~Y) takes values inN, and a string functionF(~x;~Y) takes
finite subsets ofN as values. A functionf or F is polynomially bounded(orp-bounded)
if there is a polynomialp(~x;~y) such thatf (~x;~Y)� p(~x; j~Yj) or jF(~x;~Y)j � p(~x; j~Yj). All
complexity classesFC we consider here contain only p-bounded functions.

Definition 11. Thebit graphBF of a string function F is defined by

BF(i;~x;~Y)$ F(~x;~Y)(i)
If C is a second order complexity class of relations, then the corresponding functions
classFC consists of all p-bounded number functions whose graphs arein C, together
with all p-bounded string functions whose bit graphs are inC.

6.3 The theory V0

The base theoryV0 [18, 16] (calledSigmap0-compin [34]) is associated with the com-
plexity classAC0, and all second order theories considered in this paper are extensions
of V0. The language ofV0 isL2

A. The axioms ofV0 consist of the universal closures of
theΣB

0 formulas 2-BASICtogether with theΣB
0 comprehension scheme below. 2-BASIC

consists of

B1. x+1 6= 0 B8. (x� y^y� x)� x= y
B2. x+1= y+1� x= y B9. 0+1= 1
B3. x+0= x B10. 0� x
B4. x+(y+1) = (x+y)+1 B11. x� y^y� z� x� z
B5. x �0= 0 B12. x� y_y� x
B6. x � (y+1) = (x �y)+x B13. x� y$ x< y+1
B7. x� x+y B14. x 6= 0� 9y� x(y+1= x)
L1. X(y)� y< jXj L2. y+1= jXj � X(y)
SE.X =Y $ [jXj= jYj ^8i < jXj(X(i)$Y(i))℄

TheΣB
0 comprehension scheme is

ΣB
0-COMP: 9X � y8z< y(X(z)$ φ(z;~x;~Y)) (8)

whereφ(z;~x;~Y) is anyΣB
0 formula not containingX.

A result in [18] shows thatV0 is finitely axiomatizable.

21

AlthoughV0 does not have an explicit induction scheme, axioms L1 and L2 tell
us that ifX is nonempty then it has a largest element, and thus we can showthatV0

proves a minimization scheme, and the induction formula[X(0)^8y< z(X(y)� X(y+1))℄� X(z) (9)

(See [18] or [16] for details.) From this andΣB
0-COMP we have

Theorem 15. V0 proves the scheme

ΣB
0-IND: [φ(0)^8x(φ(x)� φ(x+1))℄� 8zφ(z)

whereφ(x) is anyΣB
0-formula (possibly containing free variables other than x).

It is not hard to show thatV0 is a conservative extension of the single-sorted theory
I∆0 (Peano Arithmetic with induction restricted to bounded formulas, see [8]). That
V0 is an extension ofI∆0 is immediate from the 2-BASICaxioms and Theorem 15.
Conservativity follows from the fact that every model ofI∆0 can be expanded to a
model of V0 (the string universe consists of all∆0-definable sets from the number
universe) [16].

We use as a pairing function the termhx;yi=de f (x+y)(x+y+1)+2y (10)

ThenV0 proves that the map(x;y) 7! hx;yi is a one-one map fromN�N toN. We use
this idea to define a binary arrayX using the definitionX(x;y) = X(hx;yi). By iterating
the pairing function we can define a multidimensional arrayX(~x). It is easy to see that
V0 proves the analog ofΣB

0-COMP (8) for multidimensional arrays.
If we think of Z as a two-dimensional array, then we can represent rowx in this

array byZ[x℄ [34], whereG(x;Z) = Z[x℄ is theFAC0 string function with bit-defining
axiom

Z[x℄(i)$ i < jZj ^Z(x; i) (11)

We can add this string functionZ[x℄ together with its defining equation (11) to form a
conservative extension ofV0.

Definition 12. Let T be a theory extendingV0. A string function F(~x;~X) is ΣB
1-

definablein T if there is aΣB
1-formulaφ such that

Y = F(~x;~X)$ φ(~x;~X;Y) and
T ` 8~x8~X9!Yφ(~x;~X;Y)

TheΣB
1-definability for a number function f(~x;~X) is defined similarly.

Theorem 16. A function (string or number) isΣB
1-definable inV0 iff it is in FAC0.

Proof. That every function inFAC0 is ΣB
1-definable inV0 follows from Lemma 9 and

Definition 11 ofFAC0, using the axiom schemeΣB
0-COMP (8). The converse follows

from Theorem 17 below, whereT is the conservative extension ofV0 resulting from
introducing for eachΣB

0-formulaφ(i;~x;~X) and termt(~x;~X) a functionF with defining
axiom (12).

22

Definition 13. (Witnessing) Let T be a theory over a languageL which includesL2
A

and let9~Y �~tφ(~x;~X;~Y) be aΣB
1(L)-formula. Then Twitnessesthe formula if there

are function symbols~F in L such that

T ` ~F(~x;~X)�~t ^φ(~x;~X;~F(~x;~X))
Theorem 17. (Witnessing) Suppose T is a theory which extendsV0, and is defined over
a languageL and suppose that for everyΣB

0(L)-formulaφ(i;~x;~X) and term t(~x;~X) of
L2

A there is a function symbol F inL such that T proves

F(~x;~X)(i)$ i < t ^φ(i;~x;~X) (12)

Suppose further that each axiom of T isΣB
1 and witnessed by T. Then everyΣB

1(L)
theorem of T is witnessed by T .

Proof. (sketch) By cut elimination, everyΣB
1 theorem ofT has a normal form LK

proof from the axioms ofT (an “anchored” proof [8]) in which every formula isΣB
1 .

By induction on the length of such proofs it follows that the formulas in each line of
the proof can be witnessed inT (in a suitable sense). [8, 16].

7 The theory VNC1

We define the systemVNC1 by adding a tree recursion axiom schemeΣB
0-TreeRecto

V0. This scheme is intended to take the place of the predicatesA`;B;D;I and their defin-
ing axioms in Arai’s theoryAID [1], which captures reasoning inAlogtime (uniform
NC1). Our scheme is a simplified second order version of Arai’sΣb

0-RD ([1] Definition
7.1), using the idea of the heap data structure.

TheΣB
0-TreeRecscheme is9Z� 2a8i < a[(Z(i +a)$ ψ(i))^

0< i � (Z(i)$ φ(i)[Z(2i);Z(2i +1)℄)℄ (13)

whereφ(i)[p;q℄ andψ(i) areΣB
0 formulas (which do not containZ but may contain

other parameters) andφ contains atomsp;q to be replaced in the axiom byZ(2i);Z(2i+
1).

The idea is that the vectorZ assigns truth values to the nodes of a binary tree,
where the nodes are indexed by the variablei;0< i � 2a�1. The leaves of the tree are
indexed by anyi such thata� i � 2a�1 and leaf numberi is assigned valueψ(i). The
internal nodes of the tree are indexed by anyi such that 1� i � a�1, and the valueZ(i)
of nodei is determined by the valuesZ(2i);Z(2i+1) of its two children by the formula
φ. The root of the tree is indexed byi = 1, soZ(1) is the output of the recursion.

For ΣB
0 formulasφ(i;~x;~X)[p;q℄ andψ(i;~x;~X) in the ΣB

0-TreeRecscheme (13) we
define theΣB

0 formulaBφ;ψ(a;~x;~X;Z) to be the part of (13) which comes after9Z� 2a.
That is,

Bφ;ψ(a;~x;~X;Z) � 8i < a[(Z(i +a)$ ψ(i))^
0< i � (Z(i)$ φ(i)[Z(2i);Z(2i +1)℄)℄ (14)

23

Lemma 10. For all ΣB
0 formulasφ;ψ

VNC1 ` 9Z! � 2aBφ;ψ(a;~x;~X;Z) (15)

Proof. Existence ofZ follows from (13). Uniqueness can be proved inV0 usingΣB
0 �

IND.

7.1 Defining NC1 relations and functions in VNC1

As usual, we define a uniformNC1 relation to be one inAlogtime. HereNC1 always
refers to uniformNC1.

We start by showing how to defineNC1 relations inVNC1. Every formulaBφ;ψ
(14) defines a relationRφ;ψ (computed by the recursion scheme (13)) with defining
axiom

Rφ;ψ(a; i;~x;~X)$9Z� 2a(Bφ;ψ(a;~x;~X;Z)^Z(i)) (16)

Lemma 11. The relation Rφ;ψ is in NC1, for each pairφ[p;q℄;ψ of ΣB
0 formulas.

Proof. By Lemma 9, eachΣB
0-formula represents anAC0 relation, which is therefore

in Alogtime. To prove the lemma, it suffices to show there exists an indexed alternating
Turing machineM with inputs(a; i;~x;~X) (where number inputs are presented in unary
notation) which computesRφ;ψ in timeO(logn), wheren is the length of the input.

The machineM starts by guessing the binary notation for the inputi, and verifying
its guess in timeO(logn) using its indexed access to the input tape. It then guesses
thatZ(i) is true, and verifies its guess by recursively guessing and verifying Z(j) for
various values ofj. In general,M verifies its guess forZ(j) as follows: First it guesses
whether j < a or j � a. If the guess isj � a, then it verifies the guess, and verifies
Z(j) $ ψ(j �a;~x;~X), all in time O(logn). If the guess isj < a it branches univer-
sally, verifying the guess on one branch and guessingZ(2 j);Z(2 j + 1) on the other
branch. After the second branch it next does a three-way universal branch: (i) ver-
ify Z(j) $ φ(j;~x;~X)[Z(2 j);Z(2 j + 1)℄, (ii) verify Z(2 j) recursively, and (iii) verify
Z(2 j +1) recursively.

Note that the depth of the recursion is proportional to the depth of the tree recursion
defined by (13), which isO(loga) = O(logn).

We now expand the languageL2
A to LTreeRecby putting in a predicate symbolRφ;ψ

for each relationRφ;ψ defined in (16). ThenΣB
0(LTreeRec) denotes the class of formulas

in this language with no string quantifiers, and all number quantifiers bounded.

Lemma 12. The class ofΣB
0(LTreeRec) formulas represents precisely theNC1 relations.

Proof. Every such formula represents anNC1 relation, by the previous lemma, and the
easy fact that theNC1 relations are closed under bounded number quantification and
the Boolean operations.

Conversely, we appeal to Theorem 3.1 of [1], which states that everyNC1 relation
is Σb

0(LAID)-definable inAID . We argue in the proof of Theorem 20 (RSUV isomor-
phism) that theΣb

0(LAID) formulas correspond to theΣB
0(LTreeRec) formulas.

24

We denote byVNC1(LTreeRec) the theory whose language isLTreeRecand whose ax-
ioms are those ofVNC1 together with the defining axioms (16). ClearlyVNC1(LTreeRec)
is a conservative extension ofVNC1. By ΣB

0(LTreeRec)-COMP we mean the scheme (8),
whereφ is anyΣB

0(LTreeRec) formula.

Lemma 13. VNC1(LTreeRec) proves theΣB
0(LTreeRec)-COMP scheme.

Proof. First note thatVNC1 ∆B
1-defines each relationRφ;ψ, since theΣB

1 formula rep-
resentingRφ;ψ in (16) is provably equivalent to aΠB

1 formula. That is, from (15) it
follows thatVNC1 proves9Z� 2a(Bφ;ψ(a;~x;~X;Z)^Z(i)) $ 8Z� 2a((Bφ;ψ(a;~x;~X;Z)� Z(i))
The lemma would follow easily from this and theΣB

0-COMP axioms ifVNC1 proves
theΣB

0-replacement scheme, but results in [19] suggest that this is unlikely. Instead we
show thatVNC1(LTreeRec) proves (8) for eachΣB

0(LTreeRec)-formula φ, by structural
induction onφ. The induction step, whenφ is built from simpler formulas from the
Boolean operations or bounded number quantification, is straightforward. For example,
if φ(z) is 9x� tψ(x;z), then using the pairing function (10) we have by the induction
hypothesis

VNC1(LTreeRec) ` 9X8x� t8z< y(X(x;z)$ ψ(x;z))
Now by ΣB

0-COMP,

V0 ` 9X0 � y8z< y(X0(z)$9x� t X(x;z))
ThusVNC1(LTreeRec) proves comprehension forφ.

The base case of the induction is straightforward except forthe case of one of the
new relation symbolsRφ;ψ. Here it suffices to showVNC1(LTreeRec) proves (8) where
φ(z;~x;~Y) is replaced byRφ;ψ(a; i;~x;~X) whenz is one of the number variablesa; i;~x.
The case in whichz is i follows from (15). Now consider the case in whichz is in~x.
(The case is whichz is a is similar.) To simplify notation, we assumex is~x. By (16) it
suffices to show

VNC1 ` 9W8x< y[W(x)$9Z� 2a(Bφ;ψ(a;x;~X;Z)^Z(i))℄ (17)

The RHS of this definesW in terms of treesZx for x= 0;1; :::;y�1. In order to show
that the existence ofW follows from theΣB

0-TreeRecscheme (13) we collect all of
these trees into one large treeU which has them attached toy leaves of the top part of
U .

To describe inVNC1 these tree embeddings we use the fact that the first order
theory I ℄Delta0, and henceVNC1, defines functions such asjxj (the length ofx in
binary) and 2jxj and proves their basic properties (see for example [8, 16]).

TreeZx is represented inU by the subtree ofU rooted at noderoot(x) = 2jyj+ x.
Note that thesey root nodes are consecutive nodes at leveljyj in the treeU (where the
root ofU is at level 0). In general, nodei of treeZx is at levellevel(i) = jij�1 in Zx

and hence at levellevel(i)+ jyj in U . In fact, nodei in treeZx is represented by node

node(i;x) = root(x) �2level(i)+(i�2level(i))
25

in U . Note that the leaves ofZx are at levelja�1j in Zx, except some may be at levelja�1j�1. The leaves of interest inU are the deeper leaves of the embedded treesZx,
and these have levelja�1j+ jyj.

The functionnode(i;x) is injective for pairsi;x such that 1� i and 0� x< y, and its
inversesicomp(j) andxcomp(j) are definable inI∆0, andI∆0 proves fori;x satisfying
these conditions, that ifj = node(i;x), theni = icomp(j) andx= xcomp(j).

The formulasφ(i;x;~X)[p;q℄;ψ(i;x;~X) used to define the treeZx determineφ0(j;y;a;~X)[p;q℄;ψ0(j;y;a;~X)
to define the treeU , where

φ0(j;y;a;~X)[p;q℄ � icomp(j)< a^φ(icomp(j); xcomp(j);~X)[p;q℄ _
icomp(j)� a^ψ(icomp(j) : a; xcomp(j);~X)

ψ0(j;y;a;~X)� ψ(icomp(j +a0) : a; xcomp(j +a0);~X)
wherea0 is defined below. By (13) we have

VNC1 ` 9U � 2a0 Bφ0;ψ0(a0;y;a;~X;U) (18)

wherea0 = 2ja : 1j+jyj. The reason for this value ofa0 is that all leaves of the treeU are
at levelja�1j+ jyj, as noted above.

Finally VNC1 proves the existence ofW in (17) usingΣB
0-COMP and the definition

W(x)$U(node(i;x))
whereU is obtained from (18). In order to prove thatW defined in this way satisfies
(17),VNC1 proves each treeZx is embedded as claimed inU ; that is

0< i < 2a^x< y^Bφ;ψ(a;x;~X;Z)^Bφ0;ψ0(a0;y;a;~X;U) �(Z(i)$U(node(i;x))
This can be done usingΣB

0-IND on (2a : i).
Recall from Definition 11 that a string functionF(~x;~X) is in FNC1 iff it is p-

bounded and its bit graph is inNC1. It is easy to check that a number functionf (~x;~X)
is in FNC1 iff it satisfies f (~x;~X) = jF(~x;~X)j for some string functionF in FNC1.

Let VNC1(FNC1) be the extension of ofVNC1(LTreeRec) obtained by adding to
the languageLTreeRec, for everyΣB

0(LTreeRec) formulaφ(i;~x;~X) and termt(~x;~X) of L2
A,

a function symbolF and its bit-graph defining axiom (12). By Lemma 12 and the
definition of FNC1 it is clear that the functions symbols inVNC1(FNC1) represent
precisely the functions inFNC1.

Theorem 18. VNC1(FNC1) is a conservative extension ofVNC1. EveryΣB
1(FNC1)

theorem ofVNC1(FNC1) is witnessed inVNC1(FNC1). TheΣB
1-definable functions

in VNC1 are precisely those inFNC1.

Proof. To prove the first sentence it suffices to show thatVNC1(FNC1) is conserva-
tive overVNC1(LTreeRec). To do this it suffices to show that each new functionF intro-
duced by its bit-graph defining axiom (12) isΣB

1(LTreeRec)-definable inVNC1(LTreeRec).
This in turn follows from Lemma 13.

The second sentence follows from Theorem 17. The third sentence follows from
the first two, and the fact that every relationRφ;ψ can be∆B

1-defined inVNC1.

26

7.2 VNC1 is finitely axiomatizable

Theorem 19. VNC1 is finitely axiomatizable.

Proof. (Sketch) By a result in [18],V0 is finitely axiomatizable. Hence to show that
VNC1 is finitely axiomatizable it suffices to show that one particular instance of the
ΣB

0-TreeRecscheme (13) implies them all. That instance is based on Clote’s function
tree(x), which evaluates an and-or tree whose inputs are the bits ofx. This function is
complete forNC1, and is used in [15] to define an algebra forNC1 functions and in
[14] to define the equational theoryALV for NC1.

We call TE the particular instance of (13) withφ � φTE and ψ � ψTE , where
ψTE(i;X)� X(i) and

φTE(i)[p;q℄ � ((p_q)^ parity(jij))_ (p^q)^:parity(jij))
whereparity(x) holds iff x is odd. Then

TE � 8a8X9Z� 2aBφTE ;ψTE (a;X;Z)
We claim thatV0 can prove any instance of (13) fromTE:

V0 ` TE � 9Z� 2aBφ;ψ(a;~x;~X;Z)
The idea is to useTE to construct a large treeZ0 from which the required treeZ can be
extracted usingΣB

0-COMP. There are 16 binary Boolean functionsβ0(p;q); :::;β15(p;q).
Eachβk can be computed by an and-or tree of depth 3 with inputs among 0;1; p;q;:p;:q.
These 16 trees can be combined into an and-or treeT of depth 12 with inputsv0; :::;v15;0;1; p;q;:p;:q
whose output isβk(p;q) when the inputs satisfyvk = 1 andvi = 0 for i 6= k.

The treeZ0 has two copiesTi andT 0
i of T for each internal nodei in Z. These

are arranged so that the output ofTi is Z(i) and the output ofT 0
i is :Z(i). The inputs

p;q;:p;:q of bothTi andT 0
i are attached to the outputs ofT2i ;T2i+1;T 0

2i ;T 0
2i+1, respec-

tively. The other inputsv0; :::;v15;0;1 are channeled up from the leaves ofZ0. These
leaves take values determined byX in ψTE(i;X), andX can be defined appropriately
from φ;ψ usingΣB

0-COMP.

Details of the above argument appear in [28], and a similar construction for the
theoryAID (see below) appears in section 9 of [1]. In fact [1] shows thatthere are
Σb

1-faithful interpretations betweenAID + Σb
0-CA andQALV, a quantified version of

Clote’s equational theoryALV. Thus by the RSUV results below there are similar
interpretations betweenVNC1 andQALV.

7.3 AID and RSUV isomorphism

AID [1] is a first-order theory of bounded arithmetic defined overa base language
LBA consisting of the function symbols 0;1;+;bx=2
; jxj;x#y;x � 2jyj;x : y;x[i; j). The
Σb

0 formulas ofAID are the sharply bounded formulas in this language. It important to
note thatLBA doesnot contain integer multiplicationx � y, but i � j is Σb

0 definable for
small valuesi; j � jxj, givenx.

27

The axioms forAID iinclude a set BASIC ofΣb
0 axioms defining the properties of

the functions inLBA.
In addition toLBA, the languageLAID of AID iincludes ann+1-ary predicate sym-

bolA`;B;D;I for each̀ ;B;D; I , wherè is a linear form inkx1k; :::;kxnk, andB(x; p);D1(x; p); :::;Dm(x; p)
areΣb

0 formulas andI is a propositional formula in the atoms(d1; :::;dm; p0; p1). These

predicate symbolsA`;B;D;I are intended to represent theAlogtime predicates. Each
such symbol has the following defining axioms, which define itinductively over a bi-
nary tree.
(A.0) A(x; p)� 0 6= jpj � `kxk,
(A.1) 0 6= jpj= `kxk � [A(x; p)$ B(x; p)℄,
(A.2) 0 6= jpj< `kxk � [A(x; p)$ I(D(x; p);A(x;2p);A(x;2p+1))℄.

Finally AID contains theΣb
0(LAID)-LIND scheme

A(0)^8y< jxj(A(y)� A(y+1))� A(jxj)
whereLAID is the language ofAID .

AID doesnotcontain the following comprehension scheme:

Σb
0-CA: 9jyj � pjxj8i < pjxj(bit(i;y)$ B(i;x)) (19)

wherepjxj is a polynomial andbit(i;y) holds iff bit i in the binary notation fory is 1.
HoweverAID + Σb

0-CA is Σb
0-conservative overAID (Lemma 8.1 in [1]).

Theorem 20. VNC1 is RSUV isomorphic toAID + Σb
0-CA.

Proof. Let us abbreviateAID + Σb
0-CA by AID +. In the present context, an “RSUV

isomorphism” [24, 31, 33, 26] is a bijection between (isomorphism types of) models
of AID + and models ofVNC1. Each modelM1 of AID + determines a modelM2 of
VNC1 whose string universe is the universeM1 ofM1 and whose number universe is
the subset log(M1) = fjuj : u 2 M1g of M1. Each modelM2 of VNC1 determines a
modelM1 of AID + whose universe is the string universeM2 of M2. The maps have
the property that if we go fromM1 toM2 and back toM 0

1, thenM1 is isomorphic to
M 0

1. Similarly, if we go fromM2 toM1 and then back toM 0
2, thenM2 is isomorphic

toM 0
2.

If N andSare the number and string universes for a model ofVNC1 (or of V0) then
we may assume by the extensionality axiom SE that each element of S is a subset ofN.
Further there is a natural injection ofN into S, where an elementx of N is sent to the
setX = fi j bit(i;x)g. The predicatebit is ΣB

0-definable inV0 because it has a bounded
definition in I∆0 [8, 16]. Thus the setX exists inSby ΣB

0-COMP, and furtherjXj= jxj,
wherejxj is the length of the binary notation ofx, which is definable inV0. The image
of N in S corresponds to log(M1) in a modelM1 of AID +, since byΣB

0-COMP,N is
precisely the set of lengths of strings inS.

LetM1 andM2 be corresponding models of AID+ andVNC1 as described above.
Then we have a bijection between the universeM1 of M1 and the string universeM2

of M2, whose restriction gives us a bijection between log(M1) and the number part
num(M2) of M2. This bijection sends every function and predicate ofM1 to a cor-
responding function or predicate inM2, andvice versa. To complete the RSUV iso-
morphism we must show that each function and relation in the language of one model

28

can be defined in the other model in such a way that the axioms inthe first theory are
satisfied.

Let M1 be a model ofAID + with universeM1. Let M2 be the corresponding
model ofVNC1 as described above, so the string universe isM1 and the number uni-
verse is log(M1). To complete the definition ofM2 we need to define the functions
0;1;+; �; jXj;2 and the relation�. We define 0;1 and+ to be the the restrictions to
log(M1) of these operations inM1. The function� is not in the language ofAID but
it can be defined suitably inAID for “small numbers” (i.e. numbers of the formjuj)
[1]. We definejXj according to the binary length functionjuj in AID , and we define2 by juj 2 v iff bit(juj;v) holds inM1. We define� in M2 by restricting� in M1 to
log(M1).

It is easy to check thatM2 satisfies all of the axioms ofV0, because all axioms
correspond to easy theorems ofAID +. In particular,ΣB

0-COMP corresponds toΣb
0-CA.

We argue below that theΣB
0-TreeRecscheme holds inM2.

Conversely, given a modelM2 of VNC1 we describe below how each of the func-
tions and predicates in the languageLAID can be interpreted inM2 so that these in-
terpretations give definitions for them in the corresponding modelM1, and these defi-
nitions will satisfy the axioms ofAID +.

7.4 Syntactic Interpretations between AID+ and VNC1

It is not hard to giveΣB
0 definitions inVNC1 for each of the functions 0;1;+,bx=2
,jxj,x#y;x �2jyj;x : y;x[i; j) of AID , because each of these is anAC0 function on binary

numbers. ThenV0 proves the BASIC axioms ofAID involving these functions. Further
theseΣB

0 definitions allow us to translate everyΣb
0 formulaC(x) of AID to an equivalent

ΣB
0 formulaC℄(~X) of V0 by translating every variablexof AID to a corresponding string

variableX of V0. Note that theΣb
0-CA axioms translate to formulas which follow from

ΣB
0-COMP axioms ofV0.

In the other direction, using the interpretations discussed above of 0;1;+; �; jXj;2;�, everyΣB
0 formula ψ(~x;~Y) can be translated to an equivalentΣb

0 formula ψ[(x;y)
(the℄ and[notation is from [31].)

In order to show that theΣB
0-TreeRecscheme (13) holds inM2 we use the fact that

the predicatesA`;B;D;I are defined inM1. SinceM2 satisfiesΣB
0-COMP, it suffices to

define suitablè;B;D; I such that8i < 2a�1 (Z(i)$ A`;B;D;I (b; i))
wherea inM2 corresponds tojbj inM1.

Referring to (13), we have for the base case of the tree recursion

Z(i)$ ψ(i�a);a� i � 2a�1

Since the predicatesA in AID are defined by tree recursion only for a complete binary
tree, we need to fill out the tree so that its leaves are numbered only for thosep such
thatjpj= `kxk. We choose `kbk= kbk+1= jaj+1

29

sojpj= ` iff 2 jaj � p� 2jaj+1�1. Then we want the leaf valueB(b;y; p) to beψ(p�a)
if a� p� 2a�1 andB(b;y; p) is ψ(i�a) if 2a� p, wherea= jbj andi is the parent
node of nodep. Thus we define theΣb

0 formulaB by

B(b;y; p)�� ψ(p�jbj) if p� 2jbj�1
ψ(bp=2
� jbj) if 2jbj � p

Each internal nodep of the recursion tree forA computes its value from the values
p0; p1 of its two children, using one of the 16 possible binary truthfunctions. We define
d jk, where j;k2 f0;1g, to be the value of this function on inputsj;k, where 0 = False
and 1 = True. Then we define the propositional formulaI(d00;d01;d10;d11; p0; p1) to
specify this function. Thus

I(d00;d01;d10;d11; p0; p1)�
d00p̄0p̄1_d01p̄0p1_d10p0p̄1_d11p0p1

We define theΣb
0 formulasD jk to specifyd jk, which according to (13) depend onφ as

follows:

D jk(b;y; p)�� φ(p)[j;k℄ if p< jbj
j if jbj � p

The reason for the casejbj � p is that thenp is not an internal node of the recursion
tree of (13), so we wantp to take on the value of one of its children.

To complete the interpretation ofAID + in VNC1 we argue that each predicate
A`;B;D;I is definable inVNC1. Thus giveǹ ;B;D; I let~X interpret inVNC1 the variables
x in AID , and using the translationC;C℄ of Σb

0 to ΣB
0 formulas we define

a = 2`kX̄k�1

ψ(i;~X) � B℄(~X; i +a)
φ(i;~X)[p;q℄ � I(D℄(~X; i); p;q)

Then the translations ofA`;B;D;I (x; p) isRφ;ψ(2`kX̄k�1; p;~X) (see (16)), andVNC1 proves
the translations of the axioms A.0, A.1, A.2.

Finally we need to verify that the translations of theΣb
0(LAID)-LIND axioms ofAID

are provable inVNC1. TheΣb
0(LAID) formulas translate intoΣB

0(LTreeRec) formulas. By
Lemma 13,VNC1(LTreeRec) proves the comprehension scheme for these formulas and
hence by (9) it provesVNC1(LTreeRec)-IND. This suffices. (Theorem 20)

By the proof of the above theorem we can obtain a strengthening of Lemma 7.2 of
[1]. The isomorphism given in the proof actually describes an isomorphism between
the theoryΣb

0-RD described in [1] andVNC1. Therefore we obtain the following result,
not mentioned in [1].

Theorem 21. Σb
0-RD is equivalent toAID + ΣB

0-CA.

30

8 Propositional translations

Here we give a complete definition of the translation of bounded formulas overL2
A

to quantified propositional formulas. This translation is “RSUV equivalent” to the
translation of the first-order language of bounded arithmetic (see [26] sec 9.2), which
is the one used by [1] to translateAID , but our second-order setting allows a much
simpler translation [16].

We translate each bounded predicate calculus formulaφ(~X) overL2
A to a polyno-

mial size familykφ(~X)k[~n℄ of formulas of the quantified propositional calculus. For
each string variableX we associate the propositional variablespX

0 ; pX
1 ; ::: wherepX

i is
intended to meanX(i). We assume thatφ(~X) has no free number variables, since we
will replace all such variables by number constants. The translation has the property
that for eachn 2 N, kφ(X)k[n℄ is valid iff the formula8X(jXj = n� φ(X)) is true in
the standard model. More generally, there is a one-one correspondence between truth
assignments satisfyingkφ(~X)k[~n℄ and tuples of strings~X, with jXi j = ni, satisfying
φ(~X).

We use the notationval(t) for the numerical value of a termt, wheret may have
numerical constants substituted for variables.

The first step in definingkA(~X)k[~n℄ is to replace every atomic formula of the form
X =Y by itsΣB

0 definition, given by the RHS of the extensionality axiom SE. After this
is done, we definekA(~X)k[~n℄ by structural induction on the resulting formulaφ(~X). The
base case is whenφ(~X) is atomic. Ifφ(~X) is 1 or 0 thenkA(~X)k[~n℄ = φ(~X). If φ(~X)
is t(j~Xj) = u(j~Xj), thenkA(~X)k[~n℄ = 1 if val(t(~n)) = val(u(~n)) andkA(~X)k[~n℄ = 0
otherwise. Similarly ifφ(~X) is t(j~Xj)� u(j~Xj).

If φ(~X) is Xi(t(j~Xj)), then we setj = val(t(~n) andkA(~X)k[~n℄ =8<: pXi
j if j < ni �1

1 if j = ni �1
0 if j > ni �1

For the induction step,φ(~X) is built from smaller formulas using a propositional con-
nective^;_;:, or a bounded quantifier. For̂;_;: we make the obvious definition;
for example kψ(~X)^η(~X)k[~n℄ = (kψ(~X)k[~n℄^kη(~X)k[~n℄)
For the case of bounded number quantifiers, we definek9y� t(j~Xj)ψ(y;~X)k[~n℄ = m_

i=0

kψ(i;~X)k[~n℄k8y� t(j~Xj)ψ(y;~X)k[~n℄ = m̂

i=0

kψ(i;~X)k[~n℄
wherem= val(t(~n)).

31

Finally, for the case of bounded string quantifiers, we definek9Y � t(j~Xj)ψ(Y;~X)k[~n℄ =9pY
0 :::9pY

m�2
Wm

i=0kψ(Y;~X)k[i;~n℄k8Y � t(j~Xj)ψ(Y;~X)k[~n℄ =8pY
0 :::8pY

m�2
Vm

i=0kψ(Y;~X)k[i;~n℄
where againm= val(t(~n)). (To meet our free-bound variable convention, each quanti-
fied variablepY

i above should be replaced by a “bound” variablexY
i .)

This completes the definition of the translationkφ(~X)k[~n℄ of φ(~X). Notice thatΣB
i

formulas translate to families ofΣq
i formulas.

We handle free number variables inφ by substituting numerical constants (numer-
als) for them. Given any formulaφ(~x;~X) over the languageL2

A there is a polynomial
p(~x;~y) such that the QPC formulakφ(~r;~X)k[~n℄ is bounded in size byp(~r ;~n). Further, if
φ(~x;~X) is ΣB

0 , then thê - _ alternation depth ofkφ(~r;~X)k[~n℄ is bounded, independent
of~r;~n.

This translation allows us to state a number of results, which can be inferred from
the literature [27, 26, 16, 17], connecting a theoryT overL2

A with a corresponding
QPC proof system. For example, aΣB

0-theorem ofV0 translates to a tautology family
with polynomial size bounded-depth Frege proofs. Second-order analogs of theGi

simulation theorems forSi
2 andT i

2 are presented as Theorem 23 below.
The next result shows thatVNC1 proofs of bounded formulas translate into poly-

nomial size families ofG�
0 proofs. This is analogous to Arai’s [1] theorem showing that

AID proofs ofΣb
0 formulas translate into polynomial size families of Frege proofs. Our

result is more general, because it applies to all bounded theorems and not just those in
ΣB

0 , and simpler, because of our second-order setting.

Theorem 22. VNC1 Simulation: If φ(~x;~X) is a bounded theorem ofVNC1, then the
family kφ(~r;~X)k[~n℄ has G�0 proofs of size polynomial in~r;~n, and can be computed by
anNC1 function of~r;~n.

Proof. Let π be an anchored treelike LK proof of a bounded formulaφ(~x;~X) from
the axioms ofVNC1. Thus all cut formulas ofπ are substitution instances ofVNC1

axioms, and hence areΣB
1 , and therefore all formulas inπ are bounded. Given(~r;~n),

each sequentS(~x;~X) of π can be transformed to a sequentS0(~r;~n) of QPC formulas by
transforming each formulaψ(~x;~X) to kψ(~r;~X)k[~n℄. Thus by induction on the length
of π, it is straightforward to find aG�

1 derivationπ[~r;~n℄ of kφ(~r;~X)k[~n℄, where each
nonlogical axiom and each non-Σq

0 cut formula ofπ[~r;~n℄ is a translationD of some
substitution instance of an axiom ofVNC1. (See [16], pp 103-105, for details.) It
remains to transformπ[~r;~n℄ to aG�

0 proof with no nonlogical axioms.
All axioms of VNC1 areΣB

0 exceptΣB
0-COMP andΣB

0 �TreeRec. Each of theΣB
0

axioms either translates to 1, or translates to a validΣq
0-formula with a trivialG�

0 proof.
Each of theΣB

1 axioms ofVNC1 has the form9Y�~tψ(~x;~X;Y), whereψ is ΣB
0 . Further,

given~r;~n it is easy find quantifier-free formulasC0; :::;Cm�2 witnessing the existential
quantifiers9xY

0 :::9xY
m�2 in its translation

D � k9Y � tψ(~r;~X;Y)k[~n℄ (20)

32

wherem= val(t). In fact, if these existential quantifiers are removed fromD and each
variablexY

i is replaced byCi , the result is a validΣq
0 formulaD0 with aG�

0 proof of size
polynomial in~r;~n.

Now consider an uppermost instance of the cut rule inπ[~r;~n℄, with cut formulaD
from (20). We change this instance to an instance in which thecut formula isD0 instead
of D, but the conclusion is the same. The right hypothesis of the original instance has
D in the consequent: just replaceD by D0 after derivingD0 with a G�

0 proof. The left
hypothesis hasD in the antecedent: modify the derivation of this sequent by replacing
every eigenvariablepY

i in an exists-left rule byCi throughout the derivation, and remove
all 9� le f t rules used to deriveD. The result is aG�

0 derivation of the same sequent,
with D0 replacingD.

Continue replacing eachΣq
1 cut formula in the proofπ[~r;~n℄ by aΣq

0 cut formula, in
the same way.

Since aG0 proof of a quantifier-free formula is a Frege proof, we obtain

Corollary 1. If φ(~x;~X) is aΣB
0-theorem ofVNC1, then the familykφ(~r;~X)[~n℄ has Frege

proofs of size polynomial in~r;~n, and these can be computed inFNC1.

We point out that Theorem 22 together with theG0 witnessing theorem 9 give an
alternative proof that theΣB

1 theorems ofVNC1 can be witnessed byFNC1 functions.
Thus given values~r ;~P;~n for the free variables~x;~X (where~n gives the lengths of the
strings~P) in a theorem9Yφ(~x;~X;Y) of VNC1 we compute a witnessing value forY by
first computing aG�

0 proof of k9Yφ(~r ;~X)k[~n℄ and then useG0 witnessing to compute
the bitspY

0 ; pY
1 ; ::: of Y, after using~P to evaluate the propositional variables for~X.

The simulation theorem 22 has versions for many theories over the languageL2
A

[17], and in particular the first-order simulation theoremsfor theSi
2 andT i

2 hierarchies
[27] have nice second-order settings. The theoryV0 (section 6.3) generalizes to the
theoryV i over the same language replacing the comprehension schemeΣB

0-COMP by
ΣB

i -COMP. Fori � 1, V i is essentially the theoryV i
1, and is RSUV isomorphic toSi

2.
Similarly the theoryTV i is obtained fromV0 by adding theΣB

i -String-IND scheme,
which provides string induction forΣB

i formulas when stringsX are treated as binary
numbers. ThenTV 0 is a second-order version of the polynomial time theoryPV1, and
for i � 1, TV i is RSUV isomorphic toT i

2.
The following result gives a second-order setting to the Krajı́ček -Pudlák [27] result

showingGi simulatesT i
2, and to the Krajı́ček result [26] showingG�

i simulatesSi
2. Our

modified definitions ofGi andG�
i allow us to state the result for arbitrary bounded

theorems ofTV i andV i , as opposed to justΣB
i theorems.

Theorem 23.For i� 1 if φ(~x;~X) is a bounded theorem ofV i , then the familykφ(~r ;~X)k[~n℄
has G�i proofs which can be computed in time polynomial in~r;~n. The same is true for
TV i and Gi .

Proof. (sketch) The theoriesVi andTV i can be formulated as LK systems with the
2�BASICaxioms andΣB

0-COMP formulated as aΣB
1 scheme, together with suitable

ΣB
i induction rules. Then all cut formulas in an anchored (i.e. free-cut-free) proof of

a bounded formula areΣB
i . In the case ofV i theG�

i proofs are formed as in the proof

33

of Theorem 22. However each use of theΣB
i induction rule must be translated into a

polynomial size sequence of cuts in theG�
i proof, with Σq

i cut formulas. In the case of
TV i , a straightforward translation of the induction rule wouldresult in exponentially
many cuts, so instead we use a doubling chain of implicationswhose intuitive meaning
is kψ(X)k ! kψ(X + 2i)k, where here+ is binary addition. ThisGi proof is not
treelike, and uses the fact that fori � 1 a substitution rule forΣq

i formulas can be added
to Gi with only a polynomial increase in power. For more details, see [16, 26] in the
caseV i , and [27, 26] in the caseTV i .

9 Concluding Remarks and Open Problems

Let i; j � 1. It is known that ifj � i the j-reflection principles forGi andG�
i (soundness

of Gi andG�
i for provingΣq

j theorems) are provable inT i
2 andSi

2, respectively [27, 26],

and thatS1
2 plus thej-reflection principle forGi or G�

i axiomatize theΣb
j -consequences

of the corresponding theory [26]. Now that we have modified the definitions ofGi and
G�

i it is natural to ask whether these same relationships hold for j > i. As we remarked
after Theorem 7, the provability of thej-reflection principles in the corresponding the-
ories for suchj imply upper bounds on the complexity of theΣq

j -witnessing in the same
way the similar upper bounds are obtained in the proof.

For i = 0, the 0-reflection principle forG0 is provable inVNC1. This is true because
Arai [1] shows thatAID proves the soundness of Frege systems, and we have shown
thatAID is RSUV isomorphic toVNC1. It seems likely that the 1-reflection principle
for G0 is also provable inVNC1, since our proof of Theorem 9 (Σq

1-witnessing forG0)
should be formalizable inVNC1. By Theorem 12 theΣq

1 witnessing problem forG0

andG�
0 are complete forNC1. For j � 2, the complexity of theΣq

j witnessing problems

for G0 andG�
0 are open, and are related to the (unknown) complexity of witnessingΣB

j

theorems ofVNC1.

References

[1] T. Arai. A bounded arithmeticAID for Frege systems.Annals of Pure and Applied
Logic, 103:155–199, 2000.

[2] D. A. M. Barrington, N. Immerman, and H. Straubing. On Uniformity within
NC1. Journal of Computer and System Sciences, 41:274–306, 1990.

[3] S. Buss.Bounded Arithmetic. Bibliopolis, 1986.

[4] S. Buss. The Boolean formula value problem is in ALOGTIME. Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC’87), pages
123–131, 1987.

[5] S. Buss. Axiomatizations and conservation results for fragments of bounded arith-
metic. InLogic and Computation, Proceedings of a Workshop held at Carnegie
Mellon University, pages 57–84. AMS, 1990.

34

[6] S. Buss. Propositional consistency proofs.Annals of Pure and Applied Logic,
52:3–29, 1991.

[7] S. Buss. Algorithms for Boolean formula evaluation and for tree-contraction. In
P. Clote and J. Krajicek, editors,Proof Theory, Complexity, and Arithmetic, pages
95–115. Oxford University Press, 1993.

[8] S. Buss. First-order proof theory of arithmetic. In S. Buss, editor,Hand-
book of Proof Theory, pages 79–147. Elsevier, 1998. Available on line atwww.math.u
sd.edu/~sbuss/Resear
hWeb/.

[9] S. Buss. An introduction to proof theory. In S. Buss, editor, Hand-
book of Proof Theory, pages 1–78. Elsevier, 1998. Available on line atwww.math.u
sd.edu/~sbuss/Resear
hWeb/.

[10] S. Buss, 2003. Personnal communication.

[11] S. Buss and P. Clote. Cutting planes, connectivity, andthreshold logic.Archives
for Mathematical Logic, 35:33–62, 1996.

[12] S. Buss and J. Krajicek. An application of Boolean complexity to separation
problems in bounded arithmetic.The Proceedings of the London Mathematical
Society, 60(3):1–21, 1994.

[13] M. Chiari and J. Krajicek. Witnessing functions in bounded arithmetic and search
problems.The Journal of Symbolic Logic, 63:1095–1115, 1998.

[14] P. Clote. ALOGTIME and a conjecture of S.A. Cook.Ann. Math. Art. Intell.,
6:57–106, 1990. extended abstract in Proc. 13th IEEE Symposium on Logic in
Computer Science, 1990.

[15] P. Clote. Sequential, machine-independent characterizations of the parallel com-
plexity classesAlogTIME;ACk;NCk andNC. In S. Buss and P. Scott, editors,
Feasible Mathematics, pages 49–69. Birkhauser, 1990.

[16] S. Cook. Csc 2429 course notes: Proof complexity and bounded arithmetic, 2002.
Available from the web atwww.
s.toronto.edu/~sa
ook/
s
2429h/.

[17] S. Cook. Theories for complexity classes and their propositional translations.
submitted, pages 1–36, 2004.

[18] S. Cook and A. Kolokolova. A second-order system for polytime reasoning based
on Grädel’s theorem.Annals of Pure and Applied Logic, 124:193–231, 2003.

[19] S. Cook and N. Thapen. The strength of replacement in weak arithmetic.
manuscript, pages 1–19, 2003.

[20] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems.Journal of Symbolic Logic, 44(1):36–50, 1977.

[21] N. Immerman.Descriptive Complexity. Springer, 1999.

35

[22] D. S. Johnson. A catalog of complexity classes. In J. vanLeewen, editor,Hand-
book of Theoretical Computer Science, pages 67–161. Elsevier Science Publish-
ers, 1990.

[23] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local
search?Journal of Computer and System Sciences, 37:79–100, 1988.

[24] J. Krajı́ček. Exponentiation and second-order bounded arithmetic.Annals of Pure
and Applied Logic, 48:261–276, 1990.

[25] J. Krajicek. Fragments of Bounded Arithmetic and Bounded Query Classes.
Transactions of the American Mathematical Society, 338(2):587–598, 1993.

[26] J. Krajı́ček.Bounded Arithmetic, Propositional Logic and Computational Com-
plexity. Cambridge University Press, 1995.

[27] J. Krajı́ček and P. Pudlák. Quantified propositionalcalculi and fragments of
bounded arithmetic.Zeitschrift f. Mathematkal Logik u. Grundlagen d. Mathe-
matik, 36:29–46, 1990.

[28] P. Nguyen. Proving thatVNC1 is finitely axiomatizable. unpublished note, 2004.

[29] T. Pitassi. Using hardness to prove Frege lower bounds,2002. A seminar at the
Fields Institute for Research in Mathematical Sciences, Toronto, Canada.

[30] C. Pollet. Structure and Definability in General Bounded Arithmetic Theories.
Annals of Pure and Applied Logic, 100:189–245, 1999.

[31] A. A. Razborov. An equivalence between second order bounded domain bounded
arithmetic and first order bounded arithmetic. In P. Clote and J. Krajicek, editors,
Arithmetic, Proof Theory and Computational Complexity, pages 247–77. Oxford
University Press, 1993.

[32] A. Skelley. Personal communication., 2002.

[33] G. Takeuti. RSUV isomorphism. In P. Clote and J. Krajicek, editors,Arithmetic,
Proof Theory and Computational Complexity, pages 364–86. Oxford University
Press, 1993.

[34] D. Zambella. Notes on polynomially bounded arithmetic. Journal of Symbolic
Logic, 61(3):942–966, 1996.

36

