Quantified Propositional Calculus and a
Second-Order Theory fodC*!

Stephen Cook Tsuyoshi Morioka
April 14, 2004
Abstract

Let H be a proof system for the quantified propositional calcu@BC). We
define thezY-witnessing problem foH to be: given a preneZ’-formula A, an
H-proof of A, and a truth assignment to the free variableA\jrfind a witness
for the outermost existential quantifiersAn We point out that thé:‘f witnessing
problems for the systems; andG, are complete for polynomial time ariRLS
(polynomial local search), respectively.

We introduce and study the syste@§ and G, in which cuts are restricted to
quantifier-free formulas, and prove that m%)witnessing problem for each is com-
plete forNC. Our proof involves proving a polynomial time version of Geen's
midsequent theorem f@j and proving thaGg-proofs areTCO-recognizable. We
also introduce QPC systems f6€° and prove witnessing theorems for them.

We introduce a finitely axiomatizable second-order sys#c? of bounded
arithmetic which we prove isomorphic to Arai’s first ordeetiry AID + Zg-CA
for uniform NC1. We describe simple translations\6NC? proofs of all bounded
theorems to polynomial size families G, proofs. From this and the above the-
orem we get alternative proofs of théC! witnessing theorems foyNC?! and
AID.

1 Introduction

Krajicek and Pudlak [27, 26] introduced the proof sys@rfor the quantified propo-
sitional calculus (QPC), together with the hierarchy ofjfreents

G;CGICGyCGyC ..

HereG; is G restricted so that onlg' or M formulas can occur in proofs, where a
formula is in Ziq if it has a prenex form with at most- 1 alternations of quantifiers,
beginning withd, and dually fon'liq. G/ is G; restricted to treelike proofs. The systems
are related to the polynomial hierarchy (PH) in that the sieci problem for validity
of = sentences is complete for the le¥ of PH, and similarly for1? andrP.

The systemss; andG; are also closely related to Buss's hierarchy of theories

SSCTHCSCTiC..

of bounded arithmetic. In particula®; simulates proofs oIib formulas inT2i [27] and
G; simulates proofs ofP formulas inS, [26].

We modify the definitions of5; and G by allowing arbitrary QPC formulas in
proofs, but restricting cut formulas to kfé and restricting the target formulas #
right andV-left rules to be quantifier-free. We prove that the modifigdtems are
polynomially equivalent to the original for provini;q U I'qu formulas. Their advan-
tages are that they are complete systems for proving ali @RC formulas, and the
quantifier introduction rules always increase quantifienptexity. As a result of the
modification, we obtairGy and Gj as new and interesting QPC systems, which are
polynomially equivalent to Frege systems when proving djfianfree theorems.

Forj > 1, we define thé(j‘—witnessing problem for a QPC systéiinto be: given a
prenexZ?—formuIaA, anH-proof of A, and a truth assignment to the free variables,of
find a witness for the outermost existential quantifier8.ive point out that results of
Krajicek and Pudlak on the provability of the reflectiaimgiples for the QPC systems
[27] and witnessing theorems for bounded arithmetic [2@8sthat, fori > 1, theZiq-

witnessing problems foB; andG; are complete foFP 1 andPLSE 1, respectively,
whereFP is the class of polytime functions arRLS (Polynomial Local Search) is
essentially the class of optimization problems solvablbgl search algorithms. [23].

Our main interest is in the systen@ and Gy, and their relationship to the the
second-ordertheolyNC? introduced here. In particular, we show that E@ewitnessing
problems for bottG; andGp are complete for the clagaNC? of NC -functions. (In
this paper we usBC? to mearDlogtime-uniform NC*, which is the same as the class
Alogtime of problems accepted in tim®(logn) on an alternating Turing machine.)
Our proof uses Buss8IC! algorithm for the Boolean Formula Value Problem, and
involves showing thaG-proofs are recognizable in uniforrCP.

We show how to extract a propositional “Herbrand disjunttifvom a Gy prooft
of a prenex formula, and show that this disjunction has Fpegefs of size polynomial
in |10. This result is used in the above witnessing theorem, aradilgroving a poly-
nomial time version of Gentzen's midsequent theorenGifrwe use these techniques
to prove thaiGj p-simulatesGy for Z‘i formulas, something that does not hold &f
versusGy, unlessPLS is contained ir-P.

We consider propositional systems which allow threshol@ggjaand extend them
to systems with propositional quantifiers. In particular define ford = 1,2,... the
systemT Go(d), which allows cuts only on quantifier-free formulas, and inieh all
quantifier-free formulas in a proof have depthd. We prove that thé‘Z?-witnessing
problem for T Go(d) can be solved by &C°-function, and conversely eveyC°-
function is reducible to such a witnessing problem for samne

We introduce a second-order systeiiC* of bounded arithmetic which is inspired
by Arai’s [1] first-order theoryAID for Alogtime. Our second-order treatment results
in a substantial simplification of both the description of theory and the proofs of
the main theoremd/NC? is obtained by extending the thedwy (essentiallyl Zé’b) of
ACP reasoning by adding a schergg-TreeRedor tree recursion, based on the heap
data structure. We prove that tB8-definable functions iWNC? are precisely those in
FNC?, and then prove thatNC? is RSUV isomorphic t&AID + 38-CA, wherez5-CA
is the comprehension scheme for sharply-bounded formAkas. corollary, we obtain

that Arai’s theoryZB—RD is equivalent tAID + ZB—CA, a result not mentioned in [1].

We go on to describe translations\éifiC* proofs of all bounded theorems (not just
Z(E,‘ theorems) to polynomial size families G, proofs. This translation generalizes and
is much simpler than the translation Eg—theorems ofAID to polynomial size Frege
proofs given in [1]. From this and the above main theoremr(esting foiG) we get
alternative proofs of thENC?! witnessing theorems fafNC* andAID .

1.1 Organization

This paper is organized as follows. Section 2 introduQEC systemsG; and G/
and other basic definitions. In Section 3 we define the notadrsprototypes and
the Herbrandtdisjunction for aGg-proof 1, and we prove a polynomial-time version
of Gentzen’s midsequent theorem 18f. In Section 4 we describe our propositional
witnessing problem and prove that thg-witnessing problems for botGo andGj are
complete for the class MC*-functions. In Section 5 we extend a sequent calculus for
propositional threshold logic into quantified thresholttadi for TC® and show that the
witnessing problems for these systems charactdi@® Section 6 is an exposition on
the syntax and semantics of second-order theories and eaityptlasses. In Section
7 we describe the theolyNC? and its relationship ttNC* and the first-order theory
AID. Section 8 contains the propositional translations f\NC? to Gg. Section 9
concludes with remarks on relevant issues and open problems

2 Quantified Propositional Calculus

Let T andF denote the truth valudasue and false respectively. Quantified Proposi-
tional Calculus (QPC) is obtained by introducing quantiito propositional calcu-
lus, where(3x)A(x) is equivalent toA(T) V A(F) and(Yx)A(x) is equivalent toA(T) A
A(F).

Let {p;i :i € N} and{x; : i € N} be the sets op-variables anc-variables, respec-
tively. We use thep-variables to denote free variables and #eariables to denote
bound variables: see Definition 2 below.

Definition 1. Formulasand theirouter connectiveare defined inductively as follows.
(1) The atomic formulas ar€T), (F), and(p;) and (x;) for every ie N. (2) If p and

Y are formulas, then so argpA W), (@V), and(—@). The outer connective of these
formulas aren, v, and—, respectively. (3) lfpis a formula, then for everyd N, both
(Ix¢) and (Vx;@) are formulas. The outer connective of these formulas3xreand
VX, respectively.

Often we do not write all the parentheses. Note that we phesite the atomic
formulas since it somewhat simplifies parsing operation€X8C in Section 4.3.

Definition 2. A formula A is said to beroperand called aQPC formulaiff every
occurrence of an x-variable in A is bound. A formula that isger and quantifier-free
is calledpropositional

The validity of QPC formulas is defined in an obvious way.

Both 33 and Mg denote the set of propositional formulas. For 1, = is the
set of QPC formulas that has a prenex form with at mesi quantifier alternations
beginning with3, andr{ is the dual ofz}. Note that= ; € N andn? ; C = for all
i>1.

The following definitions are from [27], which generalizeotie of [20] for propo-
sitional proof complexity. Le¥ be some set of valid QPC formulas. A polytime
computable functio® that map<0,1}* ontoV is called aguantified proof system for
V, and we say that is aQ-proof of Q(1). The following is an easy generalization of
a fundamental theorem of propositional proof complexitydnok and Reckhow [20],
connecting the question of proof lengths to open problent®ofplexity theory:

Theorem 1. (i) There exists a proof system Q in which every valid QPC tdarA has
a proof of size polynomial ifA\| iff NP = PSPACE (i) For every i> 0, there exists a
proof system Q in which every vaII(ﬂ‘-formuIaA has a proof of size polynomial|ify

iff NP=1F ;.

Let Q; andQ; be quantified proof systems. We say tQatp-simulates Qiff there
exists a polytime functiori that, if Ty is aQq-proof of A, thenf (1) is aQy-proof of
A. We say thaQ); andQ; are p-equivalent if they p-simulate each other.

Let PK denote the Gentzen-style sequent calculus for propoaitiogic of [9, 16].
The initial sequents dPK areF — and— T andA — A for any propositional formula
A. It has structural rules (weakening, contraction, excledte cut rule which derives
Ir — Afromtwo sequentd, T — Aandll — A, A, and propositional rules that introduce
new connectives into the sequents. For examplepthest rule derivesAAB,IT — A
fromA,B,I" — A, and theA-right rule takes two upper sequefits+ A,Aandll — A,B
and derive$s” — A,AAB. The rules that take two upper sequents, i.e., ¢tgft, and
A-right, are calledinary inference rulesall the other rules are callaghary inference
rules For each inference rule, thgrincipal formulasare the formulas in the lower
sequent to which the rule is applied. For example, the peaiddiormula of A-right
above isAA B. The exchange rules are the only rules with two principaifolas, and
cut has no principal formula. Thaeuxiliary formulasof a rule are the formulas in the
upper sequents to which the rule is applied. For example,alixdiary formulas of
A-right areA andB. The weakening rules do not have any auxiliary formula.

A PK-proof is a sequencg, ..., S such that each sequeStis either an initial
sequent or is derived from at most two preceding sequé&atis.called theendsequent
and a formula inS is referred to as aendformula Tree-like PK is PK with the
restriction that, in a proof, each sequent occurs as an ggggrent of an inference step
at most once. We writér] to denote thesize of proof i, which is the total number
of symbols inTt. We say that a family of sequents has polynomial-$ikeproofs if
there exists a polynomiad such that, for every formula in the family, there exists a
PK-proof of Awhose size is at most(|A|).

In [27], Krajicek and Pudlak introduced Gentzen-stg@gquent calculus systems for
QPC which we calKPG, KPG, andKPG/, fori > 1. KPGis obtained by augmenting
PK with the following new inference rules:

Ab),T = A Sright: L= AAB)

Tleft: 2l 23 Z 2 &A0)
M Ax. T S M 4, 3xAX)

V-left : A(B),T = A V-right : I_r = &, AD)

VXA(X),I — A — A VXA(X)

whereb is an eigenvariable not occurring in the bottom sequentBislany proper
formula. We callB thetarget of the corresponding-right or V-left step. For each of
the above quantifier rules, the auxiliary formula is the fatathat occurs only in the
upper sequent (i.e., eith&(B) or A(b)) and the principal formula is the formula that
appears only in the lower sequent (i.e., eitdeA(x) or 3xA(x)). Finally, the sequent
A — Aforany QPC formul& is allowed as an initial sequent.

Fori > 1, KPG is obtained by requiring that all formulas inKlPG-proof be
slund. KPG' is KPG restricted to treelike proofs.

The restriction thaKPG andKPG' can only reason abOlItiq-formuIas seems
artificial. Moreover, the known correspondences betwBeandKPG and between
S, andKPG' (Theorem 2 below) are not optimal; can reason about formulas with
more thani — 1 quantifier alternations whil&;-proofs of such formulas cannot, by
definition, be translated into polysixePG-proofs.

We remedy this shortcoming by modifying the definitionkoPG andKPG' to
obtain the systems which we c@| andG/".

Definition 3. G is obtained by augmenting PK with the four quantifier-idtrotion
rules, with the additional restriction that the target ofegy V-left and3-right step be
quantifier-free.

Definition 4. Fori >0, G; is G with cuts restricted t&'u M -formulas. G is the
tree-like version of G

The restriction that the target &f-left and 3-right rules of G be quantifier-free
means that all quantifier-introduction rules increase thantfier complexity of the
auxiliary formula, as opposed to those ruleskd@¥G which can result in a decrease of
the quantifier complexity. The definition & andG; by restricting the complexity of
cut formulas is in the spirit of traditional proof theory,dit is motivated by the way
Pitassi defines the bounded-depth propositional PK systeradtricting the depth of
cut formulas [29].

Lemma 1 below shows that our systems are natural extensiolsagicek and
Pudlak’s systems. The advantages of our systems are thaiatle complete proof
systems for the whole QPC.

Lemma 1. G and KPG are p-equivalent. Moreover, for every L, KPG and KPG
are p-equivalent to Gand G, respectively, for proving valid? U I'I?-formulas.

Proof. We prove thatK PG and G; are p-equivalent for everiy> 0. The proof is
identical forKPG' versusG; andKPG versusG.

KPG obviously p-simulate&; with respect to proving validiq U I'liq—formulas. For
the other direction, it suffices show thatcan simulatél-right andv-left steps irKPG
with quantified targets. For th&right case, leBbe the sequerit — A, IxA(X) which is
derived froml" — A, A(B) with B quantified.G; can deriveSfrom A(B) — 3xA(x) and
I — A A(B) by weakening and cut 0A(B). G; can cutA(B) since, by the definition
of KPG;, A(B) is Z! UN{. It remains to show thak(B) — 3xA(x) has short proofs in

Gi. This sequent is derived frol, A(B) — 3xA(X) andA(B) — 3xA(X),B by cut on
B, and these sequents in turn follow from (T1) and (T2) of Lenelow by3-right
with atomic targets.

The simulation of/-left inference oKPG by G; follows in an analogous way from
(T3) and (T4) of Lemma 2 below. O

Lemma 2. Let3xA(x) and B be QPC formulas and(B) be the result of substituting
B for all occurrences of x in). The following four sequents have cut-freg Boofs
of size Q|A(B)|?):

(T1): BA(B) — A(T),

(T2): ABB) — A(F),B,

(T3): B,A(T) —» A(B), and

(T4): A(F) — B,A(B).

Proof. Simultaneous induction on the structureAgk). O

Let 1t be aG-proof. Free variables oft that occur in the endsequent are called
parameter variablesBuss introduced in [3, 9] the following normal form for teéike
proofs.

Definition 5. Letttbe atree-like G-proof. We say thmts in free variable normal form

if the following conditions are met: (i) no parameter varialis used as an eigenvari-
able; and (ii) every nonparameter variable is used as anmigeiable exactly once in

TL

If tis a tree-like proof in free variable normal form, it followtkat, for every
nonparameter variable the sequents containing an occurrencefoirm a subtree oft
whose root is the upper sequent of the inference in whishused as the eigenvariable.
Any tree-like proof can be converted into free variable nakform by renaming bound
variables and replacing nonparameter varialiegith the logical constant if b is
never used as an eigenvariable. Throughout this paper, stevasthat all tree-like
QPC proofs are in free variable normal form.

Krajicek and Pudlak in [27] define a translation of a boeshdormulaA of first-
order bounded arithmetic into a polynomial size fam{i[yA||n}nen Of QPC formulas
and prove the following:

Theorem 2. ([27, 26]) Fori > 1, if Ais azP theorem of jthen the corresponding
family {||Alln}nen of valid QPC formulas has polynomial-siz¢-@oofs which can be
constructed in time polynomial in n. Similarly foy &nd G'.

The above result is tight with respect to the quantifier caxipy of A, since its
proof does not work for bounded theoremsTgfor S, that are no&.

Nonetheless, any bounded theorenildf(or S,) can be translated into the corre-
sponding valid QPC formulas with polysize proofs using theamd-order translations
described in Section 8.

Theorem 3. Theorem 2 continues to hold when A ii?atheorem of] (respectively
S) forany j> 0.

Proof. (Sketch) Theorem 23 states this result for the second-asdarorphic images
TV'andV' of T; andS,, respectively. O

3 The Polynomial-time Midsequent Theorem forG; and
Go

Note thatKPGy andKPG; are quantifier-free propositional proof systenid(and
tree-likePK, respectively), and thus oy andGg are new quantified proof systems for
the whole QPC that have never been studied. Since the cutufasmfGy andGj are
quantifier-free, they are similar to first-order theorieaxiomatized by purely universal
formulas, all of whose theorems haki& derivations with all cuts on quantifier-free
formulas [9], and therefore it is reasonable to attempt ttiobfor Go and G the
counterparts of the proof-theoretic statements regarsiirngp theorie§ . Of course, a
major difference between the proof theory foland the study oG andGj is that the
former is concerned with the existence of proofs and variursnal forms for proofs
without much interest in the size of proofs or the compleritgonverting proofs into
normal forms, while foiGo andGj the size and complexity are the major concern.
Gentzen’s Midsequent theorem for first-ordiét states that, iSis a valid sequent
consisting of prenex formulas only, th&has a tree-like cut-freeK-derivation with
a ‘midsequentS such that all quantifier inferences occur bel8vand all proposi-
tional inferences take place abaSe Krajicek has a similar statement fGr[26]. We
prove below the Midsequent Theorem 18} that makes explicit its value for proof
complexity.

Definition 6. Suppose thatris a G-proof with endsequent A, where A is a quanti-
fied QPC formula in prenex form. Then any quantifier-free fden®\' in Ttthat occurs
as the auxiliary formula of a quantifier-introduction stepdalled are-prototypeof A.
We define thélerbrandredisjunctionto be the sequent

d Al, . ,Am
where A, ...,An are all thet-prototypes of A.

Assume thattis aGg-proof of the sequents AwhereA is of the form

lel---QkaF(ﬁaxly---axk) (1)

with Q; € {3,V} for eachi € [1,k]. Then there exists a unique sequeBge .., By of
propositional formulas such that

A, :SVHF(Q Bl:"'aBk)'

Intuitively, eachB; is either the target of thé-right step or the eigenvariable of the
V-right step that introduces the bound variaklento A'.

Definition 7. Letm, A, A, and B,...,By be as in the preceding paragraph. For each
i €[1,K], B is called the ith component of A

The following is similar to a general form of Herbrand’s tmein for first-order
logic by Buss [9]. However, since our claim is simpler, schis proof.

Lemma 3. Letttbe a G-proof of a sequent> A with A a quantified QPC formula in
prenex form. Then the Herbramddisjunction is valid, and it has a PK-proof of size
polynomial in|Tg.

Proof. Assume thattis the sequencsy, ..., S of sequents, wher® is — A. For every
i € [1,K], if sequentS is [; — A, then define§ to bel’; — A{, wherel is obtained
from A by removing all quantified formulas and adding slprototypesAy, ..., An.
Note thatl'; contains no quantified formula, aflis the Herbrandredisjunction.

We argue that ever has a PK-proof of size polynomial imj by induction on
i. If S contains no quantified formula, th&=syn § and there is nothing to prove.
Assume thaf§ contains a quantified formula. The only nontrivial case iew§ is
derived fromS; which does not contain a quantified formula, and this happafysin
weakening or quantifier introduction. In either caSefollows from SJ by introducing
A1, ...,An by weakening. O

Below we state and prove a polynomial-time version of the 9dglient Theorem
for Gj,.

Theorem 4. (The Polynomial-time Midsequent Theorem f@) Gettbe a Gy-proof of
sequent S of the forme A with quantified prenex formula A. Then there exists another
Gy-proof 1t of S such that:
(i) T contains the Herbrande-disjunction &; and
(i) only contraction, exchangé&;-right, and3-right inference steps occur between S
and the endsequent.

In fact, there is a polynomial-time algorithm that convemtimto suchrt.

After obtaining the proof of Theorem 4 we became aware thattZam’s original
proof of theLK Midsequent Theorem can also be used to prove our versiofliniaa-
tion of cuts on quantifier-freB by introducingB Vv —B in the antecedent. However, our
proof below is simpler and shows clearly that the midseqpemof 1 is polynomial-
time computable.

Proof. (of Theorem 4) LefA be of the form

QX .. QF (B, X1, -, %)

with F quantifier-free and); € {3,V} for eachi € [1,k]. Let Aq,...,An be all the
T-prototypes. By Lemma 3, the Herbraretlisjunction

St =syn — A1, Am

has a shorPK-proof. It suffices to derive> A from Sy using contraction, exchange,
V-right and3-right rules only.
By the properties oft-prototypes, for each € [1,m], TeprototypeA, is of the form
Aj :synF(ﬁ: B:JI_/ . 7B|J()/
whereB{, e BH(are the components &j. For eachij, we define itelimination step
in Ttto be the quantifier-introduction step that introdu@gs into a descendant d;.

It is possible for one elimination step to be associated wttbmponentﬁijll, e BiJCC.
This happensiiffy =i> = ... = ic and the descendantsAf, , ..., A, are contracted in
Tt at some point before the elimination inference occurs.

Let sandt be inference steps im. We say that an inference steprecedes t im
if soccurs in the subproof af ending witht. We first try to derive— A from S; by
introducing quantifiers into the-prototypes consistently with the way the quantifier-
introduction steps occur i so that eacheprototype is transformed into a copy of
A. More specifically, we execute a quantifier-introductiaepsbnly after executing all
quantifier-introduction steps that precede itinThis procedure works except for the
cases in which there iswaright inference that is associated with two componbhtmd
by, both of which are an eigenvariatide Sinceb occurs in two distinct formulas in the
current sequeny/-right rule is applicable neither to the formula containbﬂg]or the
one containing!. Becausatis in free variable normal form, bottf andb! have the
same eliminating inference, and we know that this happelyswamen the descendants
of Aj andAy are contracted imt before the elimination inference occurs. Thus, if we
not only introduce the quantifiers but also contract quatifiormulas consistently
with the way these steps occurin we will be able to derive» A from S;. Thus,
we modify the above procedure in as follows. Defin@-inference to be a quantifier-
introduction step or a contraction step of two quantifiedifolas. Starting wittsy, we
execute eacl-inferences of 1t (interleaved with exchange steps as needed) only after
all theQ-inferences that precedare executed.

Obviously such a sequence @finferences exists becauseexists. It suffices to
show that the eigenvariable condition féright is never violated. Assume, for the sake
of contradiction, that the eigenvariable condition is aield when we apply-right rule
on biJ =synb. This violation is becausk occurs as somby in another formula of the
sequent. It follows that the elimination inferenceliffdoes not precede that bf in
1, and hence thé-right step orby occurs outside the subproof rooted at Yheght on

b!. But this violates the conditions of free variable normahfo O

Our proof above does not workifis not tree-like, since in suahthere can be two
V-right stepss andt on two formulasB andB’ with the same eigenvariablesuch that
neither precedes the otherin OnceB andB’ are in the same sequent, which will be
the case if we try to derives Afrom the Herbrandtdisjunction, the/-right inferences
onbis applicable to neitheB nor B'. However, if all quantifier-introduction steps in
ared-right, then this problem never arises, and thus we can pgtevéollowing weaker
statement foGg:

Theorem 5. Theorem 4 holds for gif the endformula A is prenﬁ.

Proof. Since the endformula iig, all quantifier-introduction steps it are 3-right.
From the Herbrande=disjunction— Ay, ..., An we can easily derive a sequent contain-
ing m copies ofA by repeated applications &fright rule. O

It is shown by Krajicek that tree-likBK p-simulates dag-lik®K [26], and there-
fore Gy p-simulatesGo for propositional tautologies. Based on this and the above
results, we obtain a stronger p-simulation @&j andGo.

Theorem 6. Gj p-simulates @ for proving preneii—formulas.

Proof. Let 1tbe aGp-proof of a sequenE containing one prenex(l*—formula. Apply
Theorem 5 to obtaimt that provesS from the HerbrandtdisjunctionS;. Since the
subproofm of T rooted atSy is aPK-proof, and tree-likd’K p-simulateK [26], we
can convertry into a tree-likePK-proof T, with only polynomial size increase. Finally,
replacery in 10 with Tp; the result is &5;-proof of S. O

Theorem 6 is interesting because we later show that a sipitamulation forG,
andGj impliesPLS = FP (see Theorem 7), which is not believed to be true. It is
open whether Theorem 6 can be generalized to a p-simulatiGg by G for proving
prenex formulas. Since we are not able to prove Theorem &gpthe above argument
does not work for this general case.

4 The Witnessing Problems for QPC

Leti > 0 and letH be eithe!G; or G;". Forj > 1, define thé:?-witnessing problem for
H, WrittenWitnes{aH,Z?], as follows. The input i$T, V), wherertis anH-proof of a
s]-formulaA(p) of the form

A(P) =synIxX1... IF (P, X1, ..., Xk) (2)

with F prenexl'l?fl, andv is a truth assignment to the free variabfizsA solution for
the problem is a witness fd(V), i.e., a sequendgof T,F such thaf (V,0) holds.

The complexity ofziq—witnessing problems foB; andG;" follow from the existing
results in bounded arithmetic.

Theorem 7. Witnes§G;, 7] and Witnesi,, 7] are complete foFP and PLS, re-
spectively. More generally, fort 1, Witnes§G; , '] and WitnesisS;, =] are complete

for FPX 1 andPLS™ 1, respectively.

Proof. We first prove thaWitnesK;i*,Z?] is in FPZi-1, Krajicek [26] shows thaS'2
proves the-reflection principlefor G;':

YWIVA(P)[(A(P) € I AT G - A(P)) D A(V) is a trueZ-sentence], (3)

whereV, 11, A(pP) are actually numbers that encode the corresponding trgfgrasent,
proof, and formula, respectively.A(V) is a trueziq—sentence' is expressed byZ$—
formula stating that there exists a witness to the outerreristential quantifiers of
A(V). Thus the-reflection principle is &/3P-sentence. Th@/itnes§G;, > is exactly
the problem of witnessing (3), which is P 1 by Buss’s witnessing theorem [3]
(alsoin [26, 8]). .

ThatWitnesKsi,Ziq] € PLS%-1 is proven analogously from the facts tﬁ'étproves
i-reflection principle foiG; [27, 26] and that witnessirif’—theorems 01T2i is in PLSZ 1
[12] (also see [13]).

10

It is shown by Buss in [3] that every € FP™1 is zP-definable inS,; that is,
there existsp € =P such thatN = Vx@(x, f(x)) and S, - Vx3y < t(x)@(x,y). Let A
denotedy < t(a)@(a,y) with one free variablea. We describe a reduction df to
Witnes§G;, =]. Givena € N with |a| = n, theZ-formula||A||[n] corresponding t@\
and aG; -proof it of it can be constructed in time polynomialimby Theorem 2. Let
A9 denotd |A||[n] and letA* € = be a prenex form oY such that

Al AT

has short, cut-fre€;-proofs. By a cut orA? we construct fronmtanotherG; -proof 1t
with endformulaA™. Finally, by lettingV the truth assignment encoding the bitsapf
solution forWitnes§G;, =] on the instancér, V) gives the value of (a). Thus,f is
many-one reducible td/itnes§G;, 2.

The hardness cWitnesKsi,Ziq] for PLSZ1 is proven in a way completely analo-
gous to theG case above. O

It follows from Theorem 7 that, i3] p-simulatesG;, thenFP = PLS, which is
believed to be false. More generally, a p-equivalence betvaay two quantified se-
guent calculi discussed in this paper implies a collapske€brresponding complexity
classes.

The =?-definable search problems (i.e., multifunctions)Tihand S, for all j >
i have been known to coincide with natural complexity clagse<5, 30], and we
conjecture thaWitnesK;i,Z?] andWitnesgsi*,Z?] are complete for these complexity

classes. This conjecture is also related to the questiorllhsh@zi andSJi2 prove the
j-reflection principles foG; andG; for j > i, respectively.

Cook [16] and Skelley [32] have more direct proofsWﬁnesKsi*,Ziq] € FPY 1
andWitnesKsi,Ziq] € PLSzip—l, respectively, which do not go though the provability of
the reflection principles in bounded arithmetic.

4.1 TheZi‘-Witnessing Problem for Gg: Witness Formulas

SinceGp andG; are new proof systems f@PC, the complexity of their witnessing
problems have never been studied. In this and the next fesestibns we study the
complexity ofWitnes§Go, 1.

Let rtbe the inpuGo-proof of A(P) of the form (2) withF quantifier-free, and let
A1,...,An be a sequence of aft-prototypes. Note that the sequentAs,...,An is
valid by Lemma 3. For eache [1,m], define a formuld; which states thad; is the
first in the sequencAdy, ..., Ay that is satisfied, i.e.,

EJ' =syn (—‘Al/\ =AoA ... A —|Aj,1) /\Aj.
Thus, any truth assignmetisatisfiesE| for exactly one valué € [1,m].

Definition 8. Foralli € [1,K], define

m .
@ =syn \/(Ej ABl),
=1

11

where 3 is the ith component of AWe callg the ithTewitness formula.

We prove that thatrwitness formulas compute a solution for tﬁ%—witnessing
problem forGg and that this fact has shd?K proofs.

Theorem 8. Letttbe a G-proof of a prenei‘f-formula A of the form

Xy ... 3IKF (B, X1, - .-, %), Where F is quantifier-free. Lefy,...,¢ be thet-witness
formulas. Then Fp, @1,. .., @) is a tautology and it has a PK-proof of size polynomial
in |1g.

Proof. We write F to denotd= (B, x1, ..., X). FL)‘(/(H denotes the result of substituting
@ forxi, i € [1,k]. Our goal is to show that [X/ @] hasPK-proofs of size polynomial in
LLE
LetAy,...,Am be thert-prototypes ofA. For eachj € [1,m], define sequents; and
Tj as
Sj :Syn — F[X/CPLA]_, ,Aj
Tj :synAj — F[)_('/([)],Al, . ,Aj,l

Sn is derived by weakening the Herbrand disjunctienAq, ..., Ay which, by
Lemma 3, has &K-proof of size polynomial inm. For eachj € [1,m—1], S; is
derived fromS;j, 1 andTj;1 by cut, and finallyF [)‘(/cﬂ is derived fromS; and Ty by
cut. Thus it suffices to prove that, for eagle [1,m|, the sequenT; has a polysize
PK-proof.

Fix j € [1,m]. LetC be a subformula oF, and IetC[>‘<’/I§J] be the result of sub-
stituting, for everyi € [1,k], B for x; in C. Note thatC[X/éi] is a subformula ofy;.
Define two sequentd{ andUy as follows:

US: C[®/Bi],A; — C[%/@,As,...,Aj 1

-

US$: C[%/@,Aj = C[/Bi],Ar,...,Aj_1

It is clear thafT; follows from Uf for C =synF by contraction. We prove that, for any
subformuleC of F, botth ande havePK-proofs of size polynomial ifirt.

We proceed by structural induction @h If C does not contain any occurrence of
an x-variable, therC[%/q| andC[X/@'] are identical, and therefore both- andUS
follow from initial sequents by weakening.

For the other base case, suppose @histan atom(x) for i € [1,k]. ThenC[%/q] is
(0} andC[x’/E_;J'] is B!, and hence we need to show that the following two sequents hav
polysizePK-proofs:

) m
uf: BLA = \/(EAB)AL... A1 (4)
1=1
m .
u: \/(BAB)A,—BLAL... A1 (5)

=1

The sequent (4) is derived by weakening andght from

Bl,A; = (EjAB)), A1, Aj 1

3

12

which follows from the two sequen&f - Bij andAj — Ej,Aq,...,Aj_1. By the defi-
nition of Ej, the latter sequent has short proofs.
The sequent (5) is derived oy applications ofv-left from the sequents

(E ABl),Aj,— Bl AL, A 6)

for eachl € [1,m]. We claim that all of the sequent of the form (6) have shrift
proofs. Ifl < j, then the sequent contaiAs in both sides of ’. If | = j, thenBiJ
appears in both sides. Finallylit> j, then the antecedent of the sequent contains both
Aj and-A|. This concludes the case whde=gyn () for somei € [1,K].

The inductive step is straightforward. @is (Cy vV Cy), (C1 ACy), or (—=Cq), then
the sequent&)C andUS have shorPK-proofs fromUS?, U5, Us2, andUs?, all of
which have shorPK-proofs. O

4.2 TheZ]-Witnessing Problem for Go: An NC!-algorithm

NC! is the class of languages accepted by families of boundethfanolean circuits
of logarithmic depth and polynomial size. Throughout thier we writeNC?! to
meanDlogtime-uniform NC*, which is equivalent to the clagdogtime of languages
accepted by an alternating Turing machineQfiogn) time. See [22] for more in-
formation onNC!. Let ¥ = {0,1}. A function f : Z* s 2* is anNC*-function iff
|f(x)| € [x°Y and its bit graph

Rt (%,1,C) = theith bit of f(x) is ¢

isinNC?, wherei is presented in unarfNC*-functions over an arbitrary finite alphabet
> is defined similarly by encoding each symbolXask-bit strings, wheré depends
only on|Z]. FNC! is the class oNC!-functions (also see Section 6.2).

ACP is the class of predicates decidable by families of consiapth, polynomial-
size circuits withAND, OR, andN OT gates of arbitrary fan-in, anfiC® is obtained by
allowing threshold gateswhich output 1 iff the number of 1’s in its inputs is at least
some threshold [22]. Again we only work witBlogtime-uniform versions of these
classes.

In this subsection we prove that there exist$\&@1-function that outputs a solution
for Witnes§Go,2{]. By Theorem 8, it suffice to show that, given an instafmgy)
of Witnes@o,zg], m-witness formulasp for anyi can be evaluated iNC*. Since
Buss shows in [4] that the Boolean Formula Value Problem efuating the input
propositional formula under the given truth assignmenni®NC!, we only need to
show }hat the parsing operations necessary for recognigingrrences ofy’s in tare
in NC™.

Fix the alphabekgpc such that the inputs tWitnesgso,ZT] are represented as
finite strings over it:

zQPC = {TzF: p:x7 07 17 (7)7 /\: V7 _'a 35V7 _)a Comma#}a
wherecommadenotes the comma. The symbols 0 and 1 are used to denotelibesin

of variables. A variablep; is written asp™i with i € {0,1}*, and similarly forx.

13

Formulas and sequents are encoded as string=@ygywithout the sharp symbol (#).
A Gop-proofis representable &#S#. . . #Sy, that is, a sequence of sequents separated
by the sharp (#) symbol such that ev&ys either an initial sequent or derived from at
most two preceding sequents by an appropriate infereneeV# also fix an encoding
scheme for truth assignments.

From now on,Z will always denote a finite string oveéfgpc andn = |Z|. For
1<i < n, qj is theith symbol ofz, i.e.,

Z :synalaz e an.

For 1<i < j <n, we writeZ[i, j] to denote the substring;...a; of Z. If j <ithen
Z[i, j] is empty.

Theorem 9. Thezg-witnessing problem for @is solvable by atlNC?-function.

Proof. It suffices to describe aAlogtime Turing machineM for computing therw
witness formulas. The input th is a tuple(Z,i,c), andM accepts iff theith wit-
ness formula evaluates toe {T,F}. In Lemmas 4, 5, and 8 below, we prove that
formulas, Go-proofs, andr-prototypes areTCP-recognizable. Fix an ordering on
the Teprototypes to be the order in which they appea#Zin Then recognizing the
kth component of théth Teprototype is also inTC° by Lemma 8. Note that, since
TCO C Alogtime, M can evaluate anyC° predicates.

Given a stringZ as input,M accepts iff there exists € [1,n] such that all of the
following hold: (i) Z[1,r] encodes &g-prooftof A of the form (2) withF quantifier-
free; (ii) Z[r + 1,n] encodes a truth assignmento the parameter variables of and
(iii) the ith Trwitness formulag evaluates t@ underv. The first two conditions involve
TCO predicates only.

It remains to describe hoiW can evaluatgy. M existentially guessejsand verifies
thatj > m. Sincer-prototypes ard C°-recognizable, computing is aTCO-function
and thereforéM can computen. ThenM universally verifies thaB/, Aj, and—A for
everyl < j are true undev. The Boolean Formula Value Problem isAfogtime [4, 7],
and thereforé can evaluate all these formulas. Finally, note that in egergputation
pathM only needs to guess indices of each of which has onl{logn] bits. ThusM
runs in alternating tim®(logn). O

The next subsection is devoted to proving that the predidateparsing that are
used in the above proof are indee@®.

4.3 Parsing Operations forQPCare in TC®

LetRC Z5pc X (N)X fork > 0. Ris in ACC iff Ris representable by a first-ordd¥Q)
formula [2, 21], wherd-O is defined as follows. The terms B are constructed from
constants for the natural numbengjwhich denotes the length of the string input) and
variables using addition and multiplication. The predicaymbols ofFO are=, <,
andSyny(i) for eacho € Zgpc. Variables denote indices of the input string of length
n, and therefore they range ovg0,...,n}. First-order logic with majority quantifier
(FOM) is obtained by allowing a special quantifigr such thatMx@(x) means that

14

@(x) is true for more than half of the possibis. Ris in TCC iff it is representable
by anFOM-formula [2, 21]. The following is an easy and useful factif) is an
FOM-formula with one free variabla, then there exists anothEIOM-formulay(b)
such that, for everk, the sentencey(k) holds iff there arek values ofx such thatp(x)
holds.

Buss in [6] shows thalNC' can parse propositional formulas and also recognize
Frege proofs. His proofs actually show that these can be soR€®. Using the same
idea, we can prove the following Lemma.

Lemma 4. The following predicates are iC°:
(1) Formulgz,i, j) = Z][i, j] is a formula;

(2) QPCH2Z,i,j) = Z][i, j] is a QPC formula; and
(3) Sequentz,i, j) = Z]i, j] is a sequent.

Proof. (Sketch) For (1), it suffices to ensure that (1), j] is correctly parenthesized
and that (1B) there is no substring4fi, j] of length 2 that is impossible in a formula.
Examples of impossible substrings g® x), —3, etc. Condition (1A) holds iff (a)
Z[i, j] contains an equal number of occurrences of ‘(" and *)’; anddball u € [i, j — 1],
Z[i,u] contains more ‘(' than ‘)". Itis easy to see that both (1A) 448) areFOM-
expressible.

For (2), we only need to check thali, j] is a formula and that for every occurrence
of anx-variablex, in Z[i, j] there is a subformula d[i, j] containing the occurrence
of x; and whose outer connective is eithby or Vxk. This isF OM-expressible.

We omit a proof for (3), which is easily seen to BOM-expressible. O

Definelnfy(S,S;) to be true iff sequers is derivable from sequel8; by a unary
inference rule, wher§, S; are given as strings ovépc. Similarly, Inf2(S, Sj, &) is
true iff § is derivable from two sequeng andS, by a binary inference rule.

Lemma 5. Both Infy and Inf, are FOM-expressible.

Proof. ForInfy, we need to express th§tfollows from the hypotheseS; andS, by
cut, A-right, or v-left. The case fon-right is handled by verifying that (i) the three
sequents involved are identical except for the rightmashfdas; and (ii) the principal
formula of § is identical to the disjunction of the auxiliary formulasgfandS;, and
clearly this is expressible ifOM. The case fon-left is handled in an analogous
manner, and the case for cut is also easily expressiliein.

Forinfy, itis easy to see that there is BOM formula expressing th& is derived
from S by structural rules or unary propositional rules. FinaBy, Lemma 7 below,
the property § follows from §; by a quantifier rule’ if=OM-expressible. O

In order to prove Lemma 7 on which the truth of Lemma 5 depewdsntroduce
the notion ofidentifier of a subformula. Le® be a formula. For each subformuta
of A, we define its identifierlD) as the string ovef1,2} that uniquely determines its
location withinA as a path from the root & to the root ofB, thinking of A as a tree.

Definition 9. Let A be a formula. For every subformula B of A,AB) is defined
inductively as follows. (1) IRA) is the empty string; (2) if B is (B1 ® Bp) with

15

® € {A,V}, then IDa(B1) is IDA(B)™1 and IDa(B2) is IDA(B)™2; and (3) if B is
either(—Bj) or (QxBy), then ID(By) is IDA(B) ™ 1.

For example, ifAis (Ix1(BV (—=C))), thenIDa(B) = 11 andIDA(C) = 121.

Lemma 6. The following is arC°-function: given Zi, j,a,b such thatik a< b < j
and Zi, j] and Za,b] encode formulas A and B, respectively, outpui(B).

Proof. It suffices to show that the bit graph A (B) is in TCC. First, theith symbol
of IDa(B) is nonempty iff there exists msatisfying (i)Z[l, m| is a subformula o, (ii)

B is a subformula oZ[l, m|; and (iii) the number of ‘(" inZ[i,| — 1] minus the number
of)"in Z[i,| —1] is equal tai.

Suppose that thigh bit of IDA(B) is nonempty. Then thih bitis 2" iff a1 €
{A,V}. O

Lemma 7. Define the following predicates to be true iffc&n be derived from Sy
the corresponding quantifier rule:

(1) ExistsLeftS,S;);

(2) ExistsRightS, Sj);

(3) ForAllLeft(S,S;); and

(4) ForAllRight(S, S;).

These predicates are FOM-expressible:

Proof. We informally describe afrOM formula ¢ expressingexistsRight ¢ is the
conjunctiong, A ¢ A @z of threeF OM formulas. @ expresses th& andS; are iden-
tical except for their rightmost formulas, aiqd is true iff the outer connective of the
rightmost formula of5 is Ixk for somek. Let P andA be the rightmost formulas of
S ands;, respectively P andA stand for ‘principal’ and ‘auxiliary’).gs expresses the
following: there exist a propositional subformuBaof A and anx-variablexy such that
A =5ynC[x¢/B] andP =g¢yn (3xC). This is true iff, for every subformulay’ of C, there
exists a subformuley of Awith IDc(y/') = IDa(W) such that:

- if Y is the atomic formuldx), theny is B;

- if Y’ is atomic but notxy), theny andy’ are identical; and

- if Y’ is not atomic, thems andy)’ have the same outer connective.

Note that the above conditions are expressible@M.

An FOM formula for ForAllLe ft is constructed similarly. FoExistsLe ftand
ForAllRight, we construcE OM formulas in an analogous manner with an additional
condition that the subformulB of A be the atomic formuldpy) such that the free
variablepyx does not appear i§, which is easily expressible iROM. O

Finally we are able to show th&o-proofs are recognizable fiC®. Define the
predicateProofs,(Z,i, j) to be true iff the following three conditions hold: ()i, j]
is of the formS;#. .. #Sy, where eacl§ is a sequent; (B) for each sequéht either
S is an initial sequent or it is derived from at most two seqeehat preced&; and
(C) for each sequerg there existsS, with k < k' that can be derived usin§ as an
upper sequent. The condition (C) is not strictly necesdarnyywe add it to ensure that
the proof does not contain sequents that are not used inng¢vé endsequent.

16

Lemma 8. The following predicates are FOM-expressible:

(1) Proos, (Z.i. J);

(2) PrototypéZ,i, j,u,v), which holds iff 4, j] is a G-proof 1t of a prenex QPC for-
mula and Zu,V] is a T-prototype; and

(3) ComponentZ,i, j,k,1), which is true iff Zi, j] is the kth component of the Itk
prototype A

Proof. (Sketch) ThaProofg, is FOM-expressible readily follows from the fact that
Inf; andInf, are FOM-expressible (Lemma 5). BotfArototypeandComponentre
expressible usin@roogs, andExistsRightandForAllRight. O

We have proven thaBo-proofs areTC-recognizable. In fact, this is easily ex-
tended to the recognizability of any QPC sequent calculaefsr

Theorem 10. Let H be any of G, G or G/ for some i> 0. Then H-proofs argCO-
recognizable.

Proof. The only difference betweeB-proofs andGo-proofs is that cuts on any QPC
formulas are allowed irG, and thus modifyingnfs yields the TCC-recognizability
of G-proofs. Similarly, for anyi > 1, Gi-proofs areTC°-recognizable sinc&? U n{-
formulas areTC°-recognizable.

The tree-like proofs ar@C°-recognizable if we modify the encoding scheme in
the following way. IfSy, ..., S is aG/-proof, then it is encoded as

(S1,wWa)#(S, wo)#. . . #(S, Wk), where eachw; indicates the upper sequents that are
used to derivés if S is not an initial sequent. O

Our proof easily generalizes to tAe&C-recognizability of first-order sequent cal-
culus proofs whose underlying language and nonlogicarasiareTC°-recognizable.
This fact has been known to Buss and possibly a few others [LQ] as far as we
know, it has not explicitly stated in print.

TCY is widely believed to be the smallest complexity class inakhiounting is
possible. Since parsing operations requires counting regg, apparentlifC° is the
smallest class containing those parsing operations.

4.4 Hardness of thex]-Witnessing Problem for G},

Let F andG be two functions. We say th&tis many-oneACC-reducible toG if there
exist two ACO-functiong, h such that (i) for some polynomia, |h(x)| < p(|x|); and
(i) F(x) = g(G(h(x))). Itis easy to generalize this definition to the case in whigh o
or both ofF andG are total multifunctions.

An NC-functionF is said to benard for FNC! under many-on&CP-reductions
iff every NC -function is many-on&CP°-reducible to it.F is complete foFNC! if F
itself is in FNC?.

Theorem 11. Witnes§G;, 2]] is hard forFNC! under many-on&C°-reductions.
Proof. Let f be an arbitranfNC?-function, and assume without loss of generality that

there is a polynomiap such thatf : {0,1}" — {0,1}P™ for everyn. Since the bit

17

graphRs (x,i,c) is in NC!, and since everjC!-predicate is computed bylogtime-
uniform family of polynomial-size propositional formul§], there exists ®logtime-
uniform family {A,}n of polynomial-size propositional formulas such that, fack
n=|x|, An(x;i) is true if theith bit of f(x) is 1 andAn(x,i) is false otherwise, where
x andi are represented iA, by sequencep andd of propositional variables, respec-
tively.

Let m= p(n) and, for each € [1,m], let7 denote the truth assignmentdaepre-
senting in unary. Define seque®, as follows:

— (A1) ... Cym)[(Y1 © An(B, 1)) A .. A (Ym < An(B,)]

where Y; <> An(P,T)’ abbreviatesy; A An(B,1)) V (—yi A =An(B,1)). Suppose thatr,
is a Gg-proof of §, and thatv is a truth assignment tg encodingx € {0,1}". Itis
easy to see that there is &C° function that compute$(x) given the solution for
Witnes§G;, 27] on (T, V). Thus, it suffices to show the existence ofA®°-function
g such thag(x) is aGy-proof iy of Sy of size polynomial inx|.

Below we give an informal description of the promf. The sequen$, is derived
by mapplications ofi-right from

= (An(P. 1) & An(B, 1) A-.. A (An(B, M) ¢ An(B, M)

which follows by applications of-right from the sequents

= (An(B.D) > An(B.D)) (7)

for eachi € [1,m]. It is easy to see that every sequent of the form (7) h@g-aroof
with a constant number of sequents, and this completes #wigton of,. Finally,
anAC-function can outputt, because each line @f, has a highly uniform structure
and it is easy to determine what tlth sequent oft, should look like foranyj. O

From Theorems 9 and 11 we conclude the following:

Theorem 12. Both Witnes&S, Z{] and WitnesiG;, =7] are complete foFNC* under
many-oneACP-reduction.

5 Quantified Propositional Calculi for TC°

In this section we sketch sequent calculus system&@S: By taking advantage of the
fact that many parsing operations aréli@®, we obtain a witnessing theorem for these
TC° sequent calculi similar to Theorem 9 Gp.

We describe below the sequent calculus sysiBnK for propositional threshold
logic by Buss and Clote [11] with minor modifications. The nentives ofPTK are
the negation- and the unbounded fan-in threshold connectiég for k > 0. Here
The(Aq,...,An) holdsiff the number of true inputs is at le&stNote thafl h(Aq, ..., An)
for k=1 andk = nare the\/['_; Ai and\j"_; A, respectively.

The initial sequents dPTK are:

(i) — T andr — andA — A for any formulaA,;

18

(i) The() — fork > 1; and
(i) = Tho(Ag,...,An) forn> 1.

The structural rules oPTK are: weakening, contraction, exchange, and permuta-
tion of the arguments of any connective in a formd.K has cut;~-left, —-right, and
the following introduction rules for hy with k> 1:

Ao, . A)T A ALThei(Ao,....A)).T = A
ThaAL .. A)T >0

T AALTRA A) T oA Thea(Ao . A)
Theright: F = A ThiAL A

Let Abe a formula oPTK. Thedepthof A is the maximum number of nestings of
connectives irA.

Quantified Threshold Calculu®QTC) is obtained by introducing quantifiers in
PTK, with the convention that the-variables are used for bound variables and the
p-variables denote free variables. For 0, defineT = to be the class af{-formulas
over the connectives andT h, for k > 0.

T heleft: L

Definition 10. TG is obtained by augmenting PTK with the quantifier-intictitan
rules. We require that the target offaright and aVv-left be quantifier-free. Tgis TG
with cuts only on quantifier-free formulas. Foedl, T Go(d) is T Gy with a restriction
that all quantifier-free formulas in a proof be of depthd.

TheTZ]-witnessing problem fof Go(d), writtenWitnes$T Go(d), TZ{], is defined
similarly toWitnesgGo, 2]].

Theorem 13. For every d> 1, Witnes§T Go(d), TZ{] is solved by somigC® — function.

Proof. Fix d > 1. We can defing-prototypes, Herbrant-disjunction, and the witness
formulas forT Go(d) andWitnes§T Go(d),ng] analogously to those fdgg.

Let True(A,V) be theNC?! predicate which holds iff the propositional formuta
evaluates ta@’ under the truth assignmefit Note that the proof of Theorem 9 actu-
ally shows that there is aROM formula @ for evaluating thath Twitness formula
provided thafTrue(A, V) is allowed to appear as atomic formulas.

By making the following two modifications t®, we can construct aROM for-
mula®' (with no additionalNC? predicate) evaluating thi¢h Tewitness formula for
Witnes$§T Go(d), T=]].

The first modification is that we replace the predicbtaein ® with anFOM for-
mulaTrue]TK, which holds iff the input formuld is a (quantifier-freePT K-formula
of depth at mostl andA evaluates t@ under the given assignmenhtUsing the meth-
ods in [2], we can prove that, for eadhe N, evaluating & T K-formula of depth< d
is in TC?, and the existence dfrue} X follows.

Second, the definition dD a(B) should be modified as follows. Let = [log|A|]
and letIDA(A) = €. If B=gyn—C, thenIDA(C) = IDa(B)"0 with d € {0,1}Mis 1
in binary. If B=gynTh¢(Cy,...,Cn), thenlDa(C;) for j € [1,k] is IDA(B)"Y, where
ye {0,1}Mrepresent&in binary. It is clear thatD 5 under this definition is stilrcO-
computable. The rest of the constructiondfgoes through. O

19

Theorem 14. Every TC-function is reducible to Witnef&Go(d), TZ]] for some d
under many-on@C°-reduction.

Proof. This is proven analogously to Theorem 11, using the factetaty TC® pred-
icate is computed by Blogtime-uniform family {Tn}, of polynomial-sizePTK for-
mulas [2]. O

6 Second order theories

6.1 Syntax and semantics

Our “second order” theories are really two-sorted first opgledicate calculus theories,
and are based on the elegant syntax of Zambella [34]. TherlyhttplanguageL,i has
variablesx,y, z ... for the first sort, callechumber variablesand variablex,Y,Z, ...

of the second sort, callestring variables The number variables are intended to range
overN, and the string variables are intended to range over finiseafenatural numbers
(which represent binary strings).

The Ianguagea,f extends the language of Peano Arithmetic, and consistseof th
function and predicate symbolsD+,-,| |;€,<,=1,=2. Here Q1,4+, are function
symbols for numbers, and are intended to have their usualpretation orN. The
function symbolX| denotes 1 plus the largest elemenXiror 0 if X is empty (roughly
the length of the corresponding string)e X denotes set membership, but we usually
use the notatioiX(t) for t € X, since we think ofX(t) as thet-th bit of the stringX.
Finally =1 and=; denote equality on numbers and strings, respectively, leutvill
drop the subscripts, since they will be clear from context.

Number termsre built from the constants 0,1, variabley, z, ..., and length terms
|X| using+ and-. The onlystring termsare string variableX,Y,Z,.... The atomic
formulas ard = u, X =Y, t <u, t € X for any number terms,u and string variables
X,Y. Formulas are built from atomic formulas usingVv,— and both number and
string quantifiersix, 3X, ¥x, ¥X. Bounded number quantifiers are defined as usual, and
the bounded string quantifigiX <t @ stands foEX(|X| <tA @) andvX <t @stands
for VX(|X| <t D @), whereX does not occur in the terin

38 = N is the set of all formulas inc2 such that all number quantifiers are
bounded, and there are no string quantifiers. (There mayd®ediring variables.)
Fori > 0, 2B is defined recursively to be the set of all formulas beginmifty a block
of zero or more bounded existential string quantifiers fotd by arng ; formula, and
MB is defined dually. Note that far> 1 our =B andMP formulas correspond tstrict

versions of the formula class@%’b andl‘lil’b defined in standard treatments because
we require that all string quantifiers are in front.

6.2 Second order complexity classes

Our basic complexity classes are classes of relal§RsY), where eaclx; in the list%
ranges ovelN and eacly; in the listY ranges over finite subsets §f When the com-
plexity class is defined in terms of machines or circuits, w&uane that each number
input is presented in unary notation, and each finite sulmgettiis presented by the

20

corresponding bit string. ThuR is the class of such relations accepted in polynomial
time on a Turing machine. B)NC! we mean uniforrNC? or Alogtime (alternating
log time). ByAC® we mean unifornAC®, or LH (the log time hierarchy). The follow-
ing result ([21] and [16] pp 54-55) nicely conneéts® and our second order language
L2,

Lemma 9. A relation R, X) is in ACU iff it is represented by sonkES-formulag(x, X).

Associated with each second order complexity clasf relations is a second order
function clasg=C. Second order functions are eithmrmber functionsr string func-
tions A number functionf (%,Y) takes values ifN, and a string functio (%,Y) takes
finite subsets oN as values. A functior or F is polynomially boundefbr p-bounded
if there is a polynomiap(X,¥) such thatf (%,Y) < p(%,|¥|) or |[F(X,Y)| < p(X, Y. All
complexity classeBC we consider here contain only p-bounded functions.

Definition 11. Thebit graphBg of a string function F is defined by

If C is a second order complexity class of relations, then theesponding functions
classFC consists of all p-bounded number functions whose graphsate together
with all p-bounded string functions whose bit graphs ar€in

6.3 The theory \P

The base theory? [18, 16] (calIedSigm%’—com pin [34]) is associated with the com-
plexity classAC?, and all second order theories considered in this papexteesions
of V0. The language d¥° is £2. The axioms oi/° consist of the universal closures of
the=B formulas 2BASICtogether with th&§ comprehension scheme belowB2SIC
consists of

Bl.x+1+#0 B8. (x<yAy<Xx)Dx=Yy
B2.x+1=y+1Dx=Yy B9.0+1=1

B3.x+0=x B10.0< X
B4.x+ (y+1) = (x+y)+1 Bll.x<yAy<zDx<z
B5.x-0=0 B12.x<yvy<Xx
B6.x-(y+1)=(X-y) +x B13.x<y+ x<y+1
B7.x<x+y B1l4.x£0D>3y<x(y+1=x)
L1. X(y) Dy < [X] L2. y+1=|X] D X(y)

SE.X=Y & [[X][=[Y[AVI <|X|(X(i) < Y(i))]
The =B comprehension scheme is
58-COMP: IX < Wz<y(X(2) & @z %Y)) (8)

where@(z,%,Y) is any=E formula not containing.
A result in [18] shows tha¥? is finitely axiomatizable.

21

Although VV° does not have an explicit induction scheme, axioms L1 andell2 t
us that ifX is nonempty then it has a largest element, and thus we can ttaw°
proves a minimization scheme, and the induction formula

[X(0) AVy < z(X(y) D X(y+1))] O X(2) 9)
(See [18] or [16] for details.) From this arﬁg—COMP we have

Theorem 15. \P proves the scheme
SB-IND: [@(0) AVX(@(X) D o(x+ 1))] D Vz(2)
whereg(x) is any=E-formula (possibly containing free variables other than x)

It is not hard to show that® is a conservative extension of the single-sorted theory
IAg (Peano Arithmetic with induction restricted to boundednfiolas, see [8]). That
V@ is an extension ofAq is immediate from the BASICaxioms and Theorem 15.
Conservativity follows from the fact that every model Idf, can be expanded to a
model of VO (the string universe consists of dl-definable sets from the number
universe) [16].

We use as a pairing function the term

(X,Y) =def (X+Y)(X+y+1)+2y (10)

ThenV? proves that the mafx,y) — (x,y) is a one-one map froli x N toN. We use
this idea to define a binary arrausing the definitiorX (x,y) = X(({x,y)). By iterating
the pairing function we can define a multidimensional aX&y). It is easy to see that
VO proves the analog &B-COMP (8) for multidimensional arrays.

If we think of Z as a two-dimensional array, then we can representxdwthis
array byzM [34], whereG(x,Z) = z¥ is the FAC? string function with bit-defining
axiom

ZX(i) & i < |Z] A Z(x,0) (11)

We can add this string functiaf?® together with its defining equation (11) to form a
conservative extension &f°.

Definition 12. Let T be a theory extending®. A string function % X) is ZE‘—
definablein T if there is a>§-formulag such that

Y =F(%X) + X X,Y) and
T FVRVX3IY (X, X,Y)

ThezB-definability for a number function(g, X) is defined similarly.

Theorem 16. A function (string or number) ii?-definable invC iff it is in FACO.

Proof. That every function iFAC? is >§-definable inv® follows from Lemma 9 and
Definition 11 of FAC?, using the axiom schen’%—COMP (8). The converse follows
from Theorem 17 below, wherE is the conservative extension WP resulting from
introducing for eactig—formula(p(i,x,i) and termt(X, X) a functionF with defining
axiom (12). O

22

Definition 13. (Witnessing) Let T be a theory over a languagevhich incIudesL,f
and let3Y < Tg(x,X,Y) be azB(L)-formula. Then Twitnesseghe formula if there
are function symbolB in £ such that

THEEX) <TAQXX,F(X X))

Theorem 17. (Witnessing) Suppose T is a theory which extaffjsind is defined over
a languager and suppose that for eveB(£)-formulag(i,%,X) and term {x, X) of
L2 there is a function symbol F is such that T proves

FXX) (i) & i <tAgi,% X) (12)

Suppose further that each axiom of Tz% and witnessed by T. Then evi?(L)
theorem of T is withessed by T.

Proof. (sketch) By cut elimination, everi? theorem of T has a normal form LK
proof from the axioms off (an “anchored” proof [8]) in which every formula ﬁ
By induction on the length of such proofs it follows that tleerfiulas in each line of
the proof can be withessed Th(in a suitable sense). [8, 16]. O

7 The theory VNC!

We define the syste®NC? by adding a tree recursion axiom scheﬁ&TreeRedo

VO. This scheme is intended to take the place of the predi¢dt®8' and their defin-
ing axioms in Arai's theonAID [1], which captures reasoning ilogtime (uniform
NCY). Our scheme is a simplified second order version of A@’QD ([1] Definition
7.1), using the idea of the heap data structure.

ThezB-TreeRescheme is

3Z < 2aVi < a[(Z(i +a) <> W(i))A (13)
0<iD(Z(i)« oi)[Z(2),Z2(2i + 1)])]

where(i)[p,q] and (i) are =8 formulas (which do not contai but may contain
other parameters) amgkontains atoms, qto be replaced in the axiom t8(2i),Z(2i +

1).

The idea is that the vect& assigns truth values to the nodes of a binary tree,
where the nodes are indexed by the varialle< i < 2a— 1. The leaves of the tree are
indexed by any such thag < i < 2a— 1 and leaf numbeiris assigned valug(i). The
internal nodes of the tree are indexed by asych that K i <a— 1, and the valu& (i)
of nodei is determined by the valué&g2i),Z(2i + 1) of its two children by the formula
@. The root of the tree is indexed by= 1, soZ(1) is the output of the recursion.

For =8 formulasq(i,X, X)[p,q] andy(i,%,X) in the Z5-TreeRecscheme (13) we
define thezg formulaB®¥(a,x,)?,Z) to be the part of (13) which comes aft#f < 2a.
That is,

B®¥(a,%,X,Z) = Vi < a[(Z(i+a) + Y(i)A

0<i> (2(i) © oi)[Z(2),2(2i +1)])] (14)

23

Lemma 10. For all =§ formulase, ¢
VNC!F 37! < 2aB*¥(a,%. X,Z) (15)

Proof. Existence of follows from (13). Uniqueness can be provedifi usingzg‘ —
IND. O

7.1 Defining NC' relations and functions in VNC!

As usual, we define a unifortdC? relation to be one ilogtime. HereNC? always
refers to uniformNC?.

We start by showing how to defif¢C? relations inVNC?. Every formulaB®¥
(14) defines a relatioR®¥ (computed by the recursion scheme (13)) with defining
axiom

R*¥(a,i,%,X) <> 3Z < 2a(B®¥(a,%,X,Z) A Z(i)) (16)

Lemma 11. The relation RY is in NC?, for each pairg[p, g], of 3B formulas.

Proof. By Lemma 9, eactz§-formula represents aACP relation, which is therefore
in Alogtime. To prove the lemma, it suffices to show there exists an indlakernating
Turing machineM with inputs(a,i, %, X) (where number inputs are presented in unary
notation) which computeR®¥ in time O(logn), wheren is the length of the input.

The machineM starts by guessing the binary notation for the inipaind verifying
its guess in timeéO(logn) using its indexed access to the input tape. It then guesses
thatZ(i) is true, and verifies its guess by recursively guessing aniflyireg Z(j) for
various values of. In generalM verifies its guess foZ(j) as follows: First it guesses
whetherj < aor j > a. If the guess ig > a, then it verifies the guess, and verifies
Z(j) & w(j —a,x,X), all in time O(logn). If the guess ig < a it branches univer-
sally, verifying the guess on one branch and guesZif®j),Z(2j + 1) on the other
branch. After the second branch it next does a three-wayeusaV branch: (i) ver-
ify Z(j) « o(j,%X)[Z(2)),Z(2]j + 1)], (ii) verify Z(2j) recursively, and (iii) verify
Z(2j+ 1) recursively.

Note that the depth of the recursion is proportional to thatllef the tree recursion
defined by (13), which i©(loga) = O(logn). O

We now expand the Ianguag% to Lrreerechy putting in a predicate symb&P¥
for each relatiorR?¥ defined in (16). Theﬁg(LTreeRea denotes the class of formulas
in this language with no string quantifiers, and all numbeargifiers bounded.

Lemma 12. The class OZE(LTreeRe& formulas represents precisely tNe! relations.

Proof. Every such formula represents B relation, by the previous lemma, and the
easy fact that th&lC? relations are closed under bounded number quantificatidn an
the Boolean operations.

Conversely, we appeal to Theorem 3.1 of [1], which statesaharyNC?! relation
is ZS(LAlD)-definable inAID . We argue in the proof of Theorem 20 (RSUV isomor-
phism) that théig(LND) formulas correspond to tlﬁ(LTreeRea formulas. O

24

We denote by/Ncl(LTreeRea the theory whose languagefis cerec@nd whose ax-
ioms are those ofNC? together with the defining axioms (16). Clea¥iNC(Ltreered
is a conservative extension gNC?. By Zg(LTreeRea-COMP we mean the scheme (8),
whereg@is anyZE(LTreeRea formula.

Lemma 13. VNCY(Ltreere proves the&B (L1reered-COMP scheme.
0

Proof. First note thalVNC* AB-defines each relatioR?Y, since theZ® formula rep-
resentingR®¥ in (16) is provably equivalent to ? formula. That is, from (15) it
follows thatVNC* proves

37 < 2a(B®*¥(a,%,X,Z) AZ(i)) + VZ < 2a((B*(a,% X,Z) D Z(i))

The lemma would follow easily from this and tig-COMP axioms ifVNC? proves
the =8-replacement scheme, but results in [19] suggest thatghislikely. Instead we
show thatVNCl(LTreeRea proves (8) for eacrIE(LTreeRea-formula @, by structural
induction on@. The induction step, wheq is built from simpler formulas from the
Boolean operations or bounded number quantification,agggttforward. For example,
if @(2) is Ix < tY(x,2), then using the pairing function (10) we have by the inductio
hypothesis

VNCY(Lrreered F IXYX < tVZ < Y(X(X,2) <> P(X,2))

Now by 55-COMP,
VOR3IX < Wwz< y(X'(2) ¢ IX<tX(X,2)

ThusVNCl(LTreeRea proves comprehension fqr

The base case of the induction is straightforward excepthf®icase of one of the
new relation symbol&®¥. Here it suffices to shoWNCl(LTreeRea proves (8) where
P(z,%,Y) is replaced byR®¥(a,i,X, X) whenzis one of the number variablesi,X.
The case in whiclz is i follows from (15). Now consider the case in whizlis in X.
(The case is whichkis a is similar.) To simplify notation, we assunxas X. By (16) it
suffices to show

VNC! - 3Wvx < y[W(x) « 3Z < 2a(B*¥(a,x,X,Z) A Z(i))] (17)

The RHS of this defined/ in terms of treeZy for x=10,1,...,y— 1. In order to show
that the existence dV follows from theZS‘—TreeRecscheme (13) we collect all of
these trees into one large trdewhich has them attached ydeaves of the top part of
u.

To describe inVNC? these tree embeddings we use the fact that the first order
theory I]Deltay, and hence/NC?, defines functions such as| (the length ofx in
binary) and 2/ and proves their basic properties (see for example [8, 16]).

TreeZ, is represented it) by the subtree of) rooted at nodeoot(x) = 2 +x.
Note that thesg root nodes are consecutive nodes at léyeh the treeU (where the
root ofU is at level 0). In general, nodeof treeZy is at levellevel(i) = |i| — 1 in Z
and hence at levéével(i) + |y| in U. In fact, nodd in treeZy is represented by node

nodei, x) = root(x) - 2/l 4 (j — 2level))

25

in U. Note that the leaves & are at levela— 1] in Zy, except some may be at level
|a—1| — 1. The leaves of interest lt are the deeper leaves of the embedded trges
and these have leva — 1| +|y].
The functiomod€i, x) is injective for paird, x such that K i and 0< x < y, and its
inversescomp(j) andxcomg j) are definable inAg, andl Ag proves fori, x satisfying
these conditions, that if = nod€i, x), theni = icomp(j) andx = xcomgj).
The formulasp(i,x, X)[p,q], W(i,x, X) used to define the tré& determineg (j,y,a, X)[p,q], ' (j,y.a,X)
to define the tre&, where

d(i,v,aX)p.a] = icomp(j) <angicomp(j), xcomgj),X)[p,q] Vv
icomp(j) > aA(icompj)—a, xcomgj),X)

W' (j,y,a,X) = w(icompj + &) ~a, xcomgj + &), X)
whered' is defined below. By (13) we have
VNC!+ 3U < 22 B (d,y,a,X,U) (18)

wherea’ = 212°1+M, The reason for this value af is that all leaves of the trelé are
at levella— 1| + |y, as noted above.
Finally VNC? proves the existence & in (17) using=5-COMP and the definition

W(x) ¢ U (nodi,x))

whereU is obtained from (18). In order to prove that defined in this way satisfies
(17),VNC* proves each treg, is embedded as claimedl that is

0<i<2aAx<yAB®(ax X,Z)AB?¥ (ay,aX,U) D
(Z(i) < U (noddi.x))

This can be done usingE-IND on (2a-i). O

Recall from Definition 11 that a string functidR(%, X) is in FNC?! iff it is p-
bounded and its bit graph is MC. It is easy to check that a number functibfx, X)
is in FNC? iff it satisfies f (%, X) = |F (%, X)| for some string functiof in FNC?.

Let VNCY(FNC?) be the extension of 0¥NC(Ltreered Obtained by adding to
the languag&rrecree fOr eVeryZS(Lrreered formulag(i, %, X) and termt (%, X) of £2,
a function symboF and its bit-graph defining axiom (12). By Lemma 12 and the
definition of FNC! it is clear that the functions symbols WNC(FNC?) represent
precisely the functions iFNC?.

Theorem 18. VNC'(FNC?) is a conservative extension WNC?!. EverysB(FNC?!)
theorem ofVNC*(FNC?) is witnessed i/NC*(FNC?). ThezB-definable functions
in VNC* are precisely those ifNC™.

Proof. To prove the first sentence it suffices to show MAIC1(FNC?) is conserva-
tive overVNCl(LTreeRea. To do this it suffices to show that each new functioimtro-
duced by its bit-graph defining axiom (12)ﬁ§(LTreeRea-definabIe irVNCl(LTreeRea.
This in turn follows from Lemma 13.

The second sentence follows from Theorem 17. The third seatéollows from
the first two, and the fact that every relatiBf¥ can beAS-defined inVNC?. O

26

7.2 VNC!is finitely axiomatizable
Theorem 19. VNC! is finitely axiomatizable.

Proof. (Sketch) By a result in [18]y° is finitely axiomatizable. Hence to show that
VNC! is finitely axiomatizable it suffices to show that one patfictinstance of the
Zg-TreeRecscheme (13) implies them all. That instance is based on €ltection
tree(x), which evaluates an and-or tree whose inputs are the bitsTis function is
complete fortNC?, and is used in [15] to define an algebra ME* functions and in
[14] to define the equational theoALV for NC?.

We call TE the particular instance of (13) with= ¢'E andy = Q'F, where
(i, X) = X(i) and

o= (i)[p.q] = ((pVva)Aparity(]i)) v (pAd) A—parity(i]))
whereparity(x) holds iff x is odd. Then
TE = vavx3z < 2aB” ¥ (a,X,2)
We claim thatv® can prove any instance of (13) froft:
VO TE 537 < 2aB*Y(a,%,. X, Z)

The idea is to us&E to construct a large tre from which the required treg can be
extracted usingg—COM P. There are 16 binary Boolean functidh$p, q), ..., B1s(p, Q).
EachPy can be computed by an and-or tree of depth 3 with inputs amdh@@y, —p, —0.
These 16 trees can be combined into an and-offtre&depth 12 with inputs, ..., v15,0,1, p,q,—~p, —q
whose output ifi(p,q) when the inputs satisfyk = 1 andv; = 0 fori # k.

The treeZ' has two copied; andT/ of T for each internal nodein Z. These
are arranged so that the output®fis Z(i) and the output of;’ is —Z(i). The inputs
p,d,—p,—q of bothT; andT/ are attached to the outputs®f, Toi 11, Ty, Ty, 1, respec-
tively. The other inputsp, ...,v15,0,1 are channeled up from the leavesZdf These
leaves take values determined Xyin Y& (i, X), andX can be defined appropriately
from @, P using=§-COMP. O

Details of the above argument appear in [28], and a similastraction for the
theory AID (see below) appears in section 9 of [1]. In fact [1] shows thate are
>P-faithful interpretations betweeflD + 55-CA andQALV, a quantified version of
Clote’s equational theonALV. Thus by the RSUV results below there are similar
interpretations betweeiNC* andQALV.

7.3 AID and RSUV isomorphism

AID [1] is a first-order theory of bounded arithmetic defined oaebase language
Lpa consisting of the function symbols D+, [x/2], ||, x#y,x- 2Y x=y,X[i, j). The
ZB formulas ofAID are the sharply bounded formulas in this language. It ingmtitio
note thatLga doesnot contain integer multiplicatiox -y, buti - j is zg definable for
small values, j < |x|, givenx.

27

The axioms forAID iinclude a set BASIC oig axioms defining the properties of
the functions infga.
In addition toLga, the language&ap of AID iincludes am+ 1-ary predicate sym-

bol A“BD!! for each?, B, D, |, where/ is a linear form ini| x|, ... || Xn||, andB(X, p), D1(X, p), -.., Dm(X, p)

arezg formulas and is a propositional formula in the atonid;, ..., dm, po, p1). These

predicate symbol#\“BP! are intended to represent tiidogtime predicates. Each
such symbol has the following defining axioms, which definaductively over a bi-
nary tree.
(A.0) A%, p) D0 # [p| < (|IXI,
(A.1) 0 [p| = (|[%I| > [A%.p) ¢ B(X. p)],
(A.2) 0 [pl < (][%I| > [A(%.p) ¢ 1 (D(X.), A(%,2p), A(%. 2p+ 1))].

Finally AID contains theig(LND)—LIND scheme

A0) AVy < [XI(A(y) D Aly+1)) D A(Ix])

wherelLp is the language oAID .
AID doesnotcontain the following comprehension scheme:

58-CA: 3y < plR|Vi < p|X|(bit(i,y) <> B(i,X)) (19)

wherepl|x| is a polynomial andit(i,y) holds iff biti in the binary notation foy is 1.
HoweverAID + 35-CA is 8-conservative oveAID (Lemma 8.1 in [1]).

Theorem 20. VNC! is RSUV isomorphic tAlD + Z5-CA.

Proof. Let us abbreviat&lD + ZB-CA by AID +. In the present context, an “RSUV
isomorphism” [24, 31, 33, 26] is a bijection between (isopfosm types of) models
of AID + and models of/NC'. Each model; of AID + determines a modeis, of
VNC! whose string universe is the univensie of 4; and whose number universe is
the subset logM1) = {|u| : u € M1} of M. Each model, of VNC! determines a
model M; of AID + whose universe is the string universle of 4. The maps have
the property that if we go from; to M and back ta], then4; is isomorphic to
M. Similarly, if we go from94 to M; and then back té\;, thens is isomorphic
to M.

IfZN andSare the number and string universes for a mod&INE?! (or of V°) then
we may assume by the extensionality axiom SE that each eteh8is a subset oN.
Further there is a natural injection bf into S, where an elementof N is sent to the
setX = {i | bit(i,x)}. The predicat®it is =5-definable inv® because it has a bounded
definition in 1Aq [8, 16]. Thus the seX exists inSby 38-COMP, and furtherX| = |x],
where|x| is the length of the binary notation &f which is definable iV, The image
of N in Scorresponds to lggM1) in a modelM; of AID +, since byZS‘—COMP,N is
precisely the set of lengths of strings$n

Let M7 and 2 be corresponding models of AID+ amNC! as described above.
Then we have a bijection between the univevieof M, and the string universkl,
of Mo, whose restriction gives us a bijection between(Mg) and the number part
numMy) of M. This bijection sends every function and predicateMf to a cor-
responding function or predicate i, andvice versa To complete the RSUV iso-
morphism we must show that each function and relation inahguage of one model

28

can be defined in the other model in such a way that the axiorttifirst theory are
satisfied.

Let 44 be a model ofAID + with universeM;. Let M, be the corresponding
model of VNC! as described above, so the string univerddisand the number uni-
verse is logM1). To complete the definition o, we need to define the functions
0,1,+,-,|X|, € and the relatior<. We define 01 and+ to be the the restrictions to
log(M;) of these operations ifif;. The function- is not in the language d&ID but
it can be defined suitably IAID for “small numbers” (i.e. numbers of the forfu|)
[1]. We define|X| according to the binary length function| in AID, and we define
€ by |u| € viff bit(Jul,v) holds in;. We define< in 9 by restricting< in 24 to
log(M2).

It is easy to check thabs, satisfies all of the axioms 6f°, because all axioms
correspond to easy theoremsAdD +. In particularzE—COMP corresponds tES—CA.
We argue below that thég-TreeRetscheme holds ifv.

Conversely, given a modék; of VNC* we describe below how each of the func-
tions and predicates in the languagg|p can be interpreted i so that these in-
terpretations give definitions for them in the correspogdimodel4;, and these defi-
nitions will satisfy the axioms oAID +.

7.4 Syntactic Interpretations between AID+ and VNC

It is not hard to giveZ§ definitions inVNC*? for each of the functions,@, +,|x/2),
x| x#y, x - 2Y x=y, x[i, j) of AID, because each of these is A8° function on binary
numbers. Thel° proves the BASIC axioms &ID involving these functions. Further
these§ definitions allow us to translate evexy formulaC(x) of AID to an equivalent
5B formulaC? ()_() of V9 by translating every variableof AID to a corresponding string
variableX of V. Note that th&§-CA axioms translate to formulas which follow from
>8-COMP axioms of/°.

In the other direction, using the interpretations discdssgove of 01, +, -, |X|, €
,<, every38 formulay(%,Y) can be translated to an equivaleigtformulawb(xy)
(thet andb notation is from [31].)

In order to show that thES-TreeRescheme (13) holds iff; we use the fact that
the predicateg\BP! are defined imM;. Since, satisfiess8-COMP, it suffices to
define suitablé, B, D, | such that

Vi < 2a—1(Z(i) ¢ ALBDI (i)

wherea in M, corresponds t¢b| in 2.
Referring to (13), we have for the base case of the tree riecurs

Z(i)y o Y(i—a),a<i<za-1

Since the predicatesin AID are defined by tree recursion only for a complete binary
tree, we need to fill out the tree so that its leaves are nundbmly for thosep such
that|p| = ¢||X||. We choose

¢l = [Ibll +1=Jaj + 1

29

so|p| = (iff 213 < p< 2[@+1 _ 1, Then we want the leaf vallb, y, p) to bey(p—a)
if a< p<2a-1andB(b,y,p)is W(i—a) if 2a < p, wherea = |b| andi is the parent
node of nodep. Thus we define thEB formulaB by

_ [Wlp=Jo) ifp<2b/-1
Bmmm—{wuwa_m)HZMSp

Each internal node of the recursion tree foA computes its value from the values
Po, p1 of its two children, using one of the 16 possible binary truthctions. We define
djk, wherej,k € {0,1}, to be the value of this function on inpujsk, where 0 = False
and 1 = True. Then we define the propositional formitdyo, do1, d10,d11, Po, p1) tO
specify this function. Thus

I (doo, do1, d10, 11, Po, P1) =
doopopP1 V do1Pop1 V diopopP1 V d11Pop1

We define theig formulasDjk to specifydix, which according to (13) depend gras

follows: @®p)[j,K if p<b]
DMumm—{j if [o| < p

The reason for the casb| < p is that thenp is not an internal node of the recursion
tree of (13), so we war to take on the value of one of its children.

To complete the interpretation @&ID + in VNC?! we argue that each predicate
ALBDI is definable inVNC?. Thus giver?, B, D, let X interpret inVNC* the variables
Xin AID, and using the translatid®~» C* of 25§ to =8 formulas we define

a 2! IX|-1
p(i,X) = B'X.i+a)
®i,X)[p,q = I1(D(X.i),p.q)

Thenthe translations @f-BP! (x p) is R*¥(2/1XI-1 p X) (see (16)), an¥NC? proves
the translations of the axioms A.0, A.1, A.2.

Finally we need to verify that the translations ofEﬁLND)—LIND axioms ofAID
are provable in/NC?. TheZB(LND) formulas translate intﬁg(LTreeRea formulas. By

Lemma 13,\/NC1(LTreeRea proves the comprehension scheme for these formulas and
hence by (9) it proveVNCl(LTreeRea-lND. This suffices. (Theorem 20) O

By the proof of the above theorem we can obtain a strengtigefihemma 7.2 of
[1]. The isomorphism given in the proof actually describassomorphism between
the theoryZB—RD described in [1] an¥¥NC?. Therefore we obtain the following result,
not mentioned in [1].

Theorem 21. 3§-RD is equivalent t&\ID + 35-CA.

30

8 Propositional translations

Here we give a complete definition of the translation of bat&brmulas overL,i

to quantified propositional formulas. This translation RSUV equivalent” to the
translation of the first-order language of bounded arithen@ee [26] sec 9.2), which
is the one used by [1] to transladD, but our second-order setting allows a much
simpler translation [16].

We translate each bounded predicate calculus form(#a overL,i to a polyno-
mial size family||@(X)||[A] of formulas of the quantified propositional calculus. For
each string variablX we associate the propositional variabt@ p1 .. where pX is
intended to meaiX(i). We assume thap(X) has no free number varlables since we
will replace all such variables by number constants. Theslation has the property
that for eachn € N, ||@(X)||[n] is valid iff the formulaVX(|X| = n D ¢(X)) is true in
the standard model. More generally, there is a one-one sfporelence between truth
assignments satisfyingp(X)||[f] and tuples of stringX, with |X;| = n;, satisfying
o(X).

We use the notatiomal(t) for the numerical value of a tern wheret may have
numerical constants substituted for variables.

The first step in defining A(X)||[A] is to replace every atomic formula of the form
X =Y byits ZB definition, given by the RHS of the extensionality axiom SkeAthis
isdone, we defm&A(X)||[A] by structural induction on the resulting formuéX). The
base case is whep(X) is atomic. Ifg(X) is 1 or 0 thenl|A(X)|[[] = @(X). If (p()?)
is t(|X]) = u(IX|), then||A(X)[[[A] = 1 if val(t(F)) = val(u(i)) and [|AX)[|[A] =
otherwise. Similarly ifp(X) ist(|X|) < u(|X|).

If @(X) is X (t(]X])), then we sej = val(t(f) and

i ifj<ni-1
[AX)[[M =< 1 ifj=n—1
0 ifj>m—-1

For the induction stepp(X) is built from smaller formulas using a propositional con-
nectiveA, Vv, -, or a bounded quantifier. Far,Vv,— we make the obvious definition;

for example . _ _ .
W) AN CONA] = (WA A In (X))

For the case of bounded number quantifiers, we define

3y <t(XDwy. XU = V1w, X)lA
i=0

vy <t(XDwy. UM = AW, X)lIA
i=0

wherem = val(t(f)).

31

Finally, for the case of bounded string quantifiers, we define

I3Y <t(XDw(Y.X)l[A =
3p§--- 3P 2 Vito WY, X)|[i, i

VY <t(IXDW(Y, X[=
VPSP 2 Ao W (Y, X)|1 [,

where againm = val(t(f)). (To meet our free-bound variable convention, each quanti-
fied variablep above should be replaced by a “bound” variakfie

This completes the definition of the translatiop(X)||[f] of @(X). Notice thatz?
formulas translate to families & formulas.

We handle free number variablesq@rby substituting numerical constants (numer-
als) for them. Given any formulqa(f(,)_() over the languagé? there is a polynomial
p(X,y) such that the QPC formulap(F, X)||[fi] is bounded in size bp(F, fi). Further, if
®(%,X) is 28, then then - v alternation depth ofig(F, X) |[fi] is bounded, independent
of .

This translation allows us to state a number of results, lwvhan be inferred from
the literature [27, 26, 16, 17], connecting a thednpver L,?\ with a corresponding
QPC proof system. For examplezé—theorem ofv? translates to a tautology family
with polynomial size bounded-depth Frege proofs. Secadéroanalogs of th&s;
simulation theorems fa8, and T} are presented as Theorem 23 below.

The next result shows th&tNC* proofs of bounded formulas translate into poly-
nomial size families 06G; proofs. This is analogous to Arai’s [1] theorem showing that
AID proofs ofzg formulas translate into polynomial size families of Fregeqgds. Our
result is more general, because it applies to all boundeamt¢ines and not just those in
Zg, and simpler, because of our second-order setting.

Theorem 22. VNC' Simulation: If (%, X) is a bounded theorem &NC?, then the
family ||(p(?,>?)||[ﬁ] has G, proofs of size polynomial ifi,fi, and can be computed by
anNC? function off, .

Proof. Let Tt be an anchored treelike LK proof of a bounded formeia, X) from
the axioms ofVNC?!. Thus all cut formulas oft are substitution instances ¥NC?
axioms, and hence a&}, and therefore all formulas i are bounded. Give(T,n),
each sequer§(%, X) of tcan be transformed to a sequ&hF, i) of QPC formulas by
transforming each formula(%, X) to ||@(F,X)||[A]. Thus by induction on the length
of T, it is straightforward to find &; derivationtdir,] of ||@(F,X)||[f], where each
nonlogical axiom and each ndif} cut formula of1iF,] is a translatiorD of some
substitution instance of an axiom ®NC?!. (See [16], pp 103-105, for details.) It
remains to transformir, fi] to aGg proof with no nonlogical axioms.

All axioms of VNC! are>E exceptz8-COMP andzt — TreeRec Each of thex§
axioms either translates to 1, or translates to a \&Ejiformula with a trivialG; proof.
Each of thez® axioms ofVNC? has the formBY <Ty(%,X,Y), wherey is Z5. Further,
givent, it is easy find quantifier-free formul&@, ...,Cyn_2 witnessing the existential
quantifiersdx ...3xY, , in its translation

D = |3Y <ty(r.X,Y)|[] (20)

32

wherem = val(t). In fact, if these existential quantifiers are removed fidrand each
variablex! is replaced by, the resultis a vali(Ig formulaD’ with a Gy proof of size
polynomial in?, .

Now consider an uppermost instance of the cut rulgliffi], with cut formulaD
from (20). We change this instance to an instance in whicletiérmulaisD’ instead
of D, but the conclusion is the same. The right hypothesis of tlggnal instance has
D in the consequent: just replaBeby D’ after derivingD’ with a G; proof. The left
hypothesis haB in the antecedent: modify the derivation of this sequentdpfacing
every eigenvariablp; in an exists-left rule b; throughout the derivation, and remove
all 3 —left rules used to deriv®. The result is & derivation of the same sequent,
with D’ replacingD.

Continue replacing eac}j‘11 cut formula in the prooftr,f] by azg cut formula, in
the same way. O

Since aGy proof of a quantifier-free formula is a Frege proof, we obtain

Corollary 1. If (%, X) is aZ5-theorem oNC?, then the family|@(r, X)[fi] has Frege
proofs of size polynomial ifi A, and these can be computediNC?.

We point out that Theorem 22 together with tGg witnessing theorem 9 give an
alternative proof that thE? theorems of/NC* can be witnessed ByNC? functions.
Thus given values, B, i for the free variableg, X (wherefi gives the lengths of the
stringsP) in a theoremBY @(%, X,Y) of VNC* we compute a witnessing value féiby
first computing &Gj proof of ||I3Y(F, X)||[A] and then us&, witnessing to compute
the bitspg, p{, ... of Y, after usingP to evaluate the propositional variables #r

The simulation theorem 22 has versions for many theories 'tim.llel_anguageLA2
[17], and in particular the first-order simulation theorefmisthe S, andT, hierarchies
[27] have nice second-order settings. The thedPy(section 6.3) generalizes to the
theoryV' over the same language replacing the comprehension sd%aﬁ@MP by
3B-COMP. Fori > 1, V' is essentially the theory};, and is RSUV isomorphic t8,.
Similarly the theoryTV' is obtained fromv® by adding thezB-String-IND scheme,
which provides string induction faf® formulas when stringX are treated as binary
numbers. Thel’I'V0 is a second-order version of the polynomial time the®¥4, and
fori >1,TV' is RSUV isomorphic td,.

The following result gives a second-order setting to thejikek -Pudlak [27] result
showingG; simulatesTZ‘, and to the Krajicek result [26] showirigf simulateSZ. Our
modified definitions ofG; andG;" allow us to state the result for arbitrary bounded
theorems off V! andV', as opposed to jud® theorems.

Theorem 23. Fori > 1if (X, X) is a bounded theorem ¥, then the familyjg(F, X) |[F]
has G proofs which can be computed in time polynomialf,in. The same is true for
TV'and G.

Proof. (sketch) The theorie¥' andTV' can be formulated as LK systems with the
2 - BASICaxioms and=5-COMP formulated as af scheme, together with suitable
=B induction rules. Then all cut formulas in an anchored (ireefcut-free) proof of

a bounded formula arg®. In the case o¥/' the G} proofs are formed as in the proof

33

of Theorem 22. However each use of @& induction rule must be translated into a
polynomial size sequence of cuts in B¢ proof, with Ziq cut formulas. In the case of
TV', a straightforward translation of the induction rule woudgsult in exponentially
many cuts, so instead we use a doubling chain of implicatdnsse intuitive meaning
is [[W(X)|| = [JW(X + 2|, where heret is binary addition. ThisG; proof is not
treelike, and uses the fact that for 1 a substitution rule foE; formulas can be added
to G;j with only a polynomial increase in power. For more detaieg §16, 26] in the
caseV', and [27, 26] in the casgV'. O

9 Concluding Remarks and Open Problems

Leti, j > 1. Itis known thatifj <i the j-reflection principles foG; andG;" (soundness
of Gj andG;' for provingzﬁ1 theorems) are provable Tfi' and%', respectively [27, 26],
and thalsﬁ plus thej-reflection principle foiG; or G axiomatize th&?-consequences
of the corresponding theory [26]. Now that we have modifieddbfinitions ofG; and
G itis natural to ask whether these same relationships hol{l foi. As we remarked
after Theorem 7, the provability of thereflection principles in the corresponding the-
ories for suchj imply upper bounds on the complexity of tﬁ%—witnessing inthe same
way the similar upper bounds are obtained in the proof.

Fori =0, the O-reflection principle foBg is provable itVNC?. This s true because
Arai [1] shows thatAID proves the soundness of Frege systems, and we have shown
thatAID is RSUV isomorphic t&/NC?. It seems likely that the 1-reflection principle
for Gy is also provable i'VNC?, since our proof of Theorem S{f-witnessing forGp)
should be formalizable iWNC?'. By Theorem 12 the:? witnessing problem foGg
andGg are complete foNC?. Forj > 2, the complexity of the:? witnessing problems
for Gop andGg are open, and are related to the (unknown) complexity oferﬂ;isl;ingz‘j3

theorems of/NC1.

References

[1] T. Arai. Abounded arithmeti@lD for Frege system#nnals of Pure and Applied
Logic, 103:155-199, 2000.

[2] D. A. M. Barrington, N. Immerman, and H. Straubing. On fmmity within
NC. Journal of Computer and System Sciendds274—-306, 1990.

[3] S. Buss.Bounded ArithmeticBibliopolis, 1986.

[4] S. Buss. The Boolean formula value problem is in ALOGTIMEroceedings
of the 19th Annual ACM Symposium on Theory of Computing (BQ®@ages
123-131, 1987.

[5] S.Buss. Axiomatizations and conservation resultsriagfents of bounded arith-
metic. InLogic and Computation, Proceedings of a Workshop held ah&gie
Mellon University pages 57-84. AMS, 1990.

34

[6] S. Buss. Propositional consistency proofsnnals of Pure and Applied Logic
52:3-29, 1991.

[7] S. Buss. Algorithms for Boolean formula evaluation andtree-contraction. In
P. Clote and J. Krajicek, editoBroof Theory, Complexity, and Arithmetfzages
95-115. Oxford University Press, 1993.

[8] S. Buss. First-order proof theory of arithmetic. In S. By editor,Hand-
book of Proof Theorypages 79-147. Elsevier, 1998. Available on line at

www.math.ucsd.edu/ " sbuss/ResearchWeb/.

[9] S. Buss. An introduction to proof theory. In S. Buss, editHand-
book of Proof Theory pages 1-78. Elsevier, 1998. Available on line at

www.math.ucsd.edu/ " sbuss/ResearchWeb/.
[10] S. Buss, 2003. Personnal communication.

[11] S. Buss and P. Clote. Cutting planes, connectivity, tangishold logic.Archives
for Mathematical Logic35:33-62, 1996.

[12] S. Buss and J. Krajicek. An application of Boolean coewjily to separation
problems in bounded arithmetid@he Proceedings of the London Mathematical
Society 60(3):1-21, 1994.

[13] M. Chiari and J. Krajicek. Witnessing functions in balad arithmetic and search
problems.The Journal of Symbolic Logi63:1095-1115, 1998.

[14] P. Clote. ALOGTIME and a conjecture of S.A. CookAnn. Math. Art. Intell,
6:57-106, 1990. extended abstract in Proc. 13th IEEE Syimposn Logic in
Computer Science, 1990.

[15] P. Clote. Sequential, machine-independent chaiaetérns of the parallel com-
plexity classeAlogT IME,ACK,NC¥ andNC. In S. Buss and P. Scott, editors,
Feasible Mathematicpages 49-69. Birkhauser, 1990.

[16] S. Cook. Csc 2429 course notes: Proof complexity anchtded arithmetic, 2002.
Available from the web atww. cs.toronto.edu/ " sacook/csc2429h/.

[17] S. Cook. Theories for complexity classes and their psifonal translations.
submittegdpages 1-36, 2004.

[18] S. Cook and A. Kolokolova. A second-order system forgiole reasoning based
on Gradel's theoremAnnals of Pure and Applied Logi@24:193-231, 2003.

[19] S. Cook and N. Thapen. The strength of replacement inkwa#&hmetic.
manuscript pages 1-19, 2003.

[20] S. A. Cook and R. A. Reckhow. The relative efficiency obpositional proof
systems.Journal of Symbolic Logict4(1):36-50, 1977.

[21] N. Immerman.Descriptive ComplexitySpringer, 1999.

35

[22] D. S. Johnson. A catalog of complexity classes. In J.lhegwen, editorHand-
book of Theoretical Computer Scienpages 67—161. Elsevier Science Publish-
ers, 1990.

[23] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakisowheasy is local
search?Journal of Computer and System Scien&¥s79-100, 1988.

[24] J. Krajicek. Exponentiation and second-order basharithmetic Annals of Pure
and Applied Logic48:261-276, 1990.

[25] J. Krajicek. Fragments of Bounded Arithmetic and Boedduery Classes.
Transactions of the American Mathematical Sogig88(2):587-598, 1993.

[26] J. Krajicek. Bounded Arithmetic, Propositional Logic and ComputatioGam-
plexity. Cambridge University Press, 1995.

[27] J. Krajicek and P. Pudlak. Quantified propositiopalculi and fragments of
bounded arithmetic Zeitschrift f. Mathematkal Logik u. Grundlagen d. Mathe-
matik 36:29-46, 1990.

[28] P. Nguyen. Proving thatNC1 is finitely axiomatizable. unpublished note, 2004.

[29] T. Pitassi. Using hardness to prove Frege lower bou?@82. A seminar at the
Fields Institute for Research in Mathematical Sciencemiip, Canada.

[30] C. Pollet. Structure and Definability in General Bouddrithmetic Theories.
Annals of Pure and Applied Logi@00:189-245, 1999.

[31] A. A. Razborov. An equivalence between second ordended domain bounded
arithmetic and first order bounded arithmetic. In P. Clotd arKrajicek, editors,
Arithmetic, Proof Theory and Computational Complexisges 247—77. Oxford
University Press, 1993.

[32] A. Skelley. Personal communication., 2002.

[33] G. Takeuti. RSUV isomorphism. In P. Clote and J. Kraficeditors,Arithmetic,
Proof Theory and Computational Complexipages 364—86. Oxford University
Press, 1993.

[34] D. Zambella. Notes on polynomially bounded arithmetiournal of Symbolic
Logic, 61(3):942—-966, 1996.

36

