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Abstract

Mobile Switching Centers (MSCs) in wireless telecommunication networks must implement signaling overload controls to

maintain acceptable performance during periods of high load especially due to fast changing hot spots resulting from user mobility.

An MSC’s signaling load comprises a variety of service requests, some more important than the others, and it must treat them

differentially under overload conditions. We propose multi-class overload control algorithms that are highly reactive to sudden

bursts of signaling load and maintain high performance under a wide range of overload conditions as well.

First, we introduce the concept of equivalent system load measures to convert the system load measures associated with differ-

ent classes of traffic into a single measure with respect to a pre-defined base class. We use this concept to develop three multi-class

overload detection and measurement algorithms. Next, we develop a new algorithm for partitioning the allowable equivalent system

load across multiple traffic classes, using a strict priority scheme. Using simulations of call flows from mobile telecommunications

standards, we compare different multi-class overload algorithms under a variety of overload conditions. Our simulation results

indicate that our algorithm that measures system load using a combination of request acceptance rate and processor occupancy,

provides highly reactive and robust overload control.

Last, for the purpose of making the overload control algorithms more robust, we propose a measurement-based simple regres-

sion technique to dynamically estimate key system parameters. We find that estimates derived in this manner converge rapidly to

their true values.

I. INTRODUCTION

The heart of mobile telecommunication networks are the Mobile Switching Centers (MSCs). MSCs perform both

control and transport functions. Control functions include routing calls to and from mobile users through the access

radios, processing authentication of location update requests from mobile users, accessing user profiles so that advanced

services may be invoked, and providing access to data services such as short messaging services. These control services

are requested and invoked through the exchange of application level signaling protocols.

These switches are engineered to support a certain number of active calls and to process requests for calls and services

at a certain rate. Occasionally, service requests may arrive at a switch at higher rate than the switch can process, even
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if a switch has available bearer resources. This is possible under many conditions in a multi-service wireless network,

for example a UMTS network, in which many requests to the network are for services other than connections, such as

location updates. In this paper, we address processor overload controls due to signaling traffic. These controls execute

inside MSC controllers to react to conditions of high signaling requests that overwhelm internal switch processing

resources. They are required to maintain system integrity and maximize performance during overload. The lifetime of

MSCs is many years, and processor upgrades can only be made within tight power budgets and floor-space constraints

which are major cost factors in running a telecommunication network. Therefore, properly engineering an MSC for

expected traffic, and relying on overload control algorithms to manage unexpected bursts of requests is critical to

providing a cost effective service. These controls may also be used for load balancing and traffic differentiation.

Due to the ever growing demand for faster, ubiquitous, and newer services, mobile telephony poses new challenges

in the design of signaling overload control algorithms for an MSC. First, user mobility causes fast changing hot spots

resulting in bursty signaling traffic. Second, user mobility management and newer services result in a large number

of signaling messages that require processing in an MSC. Third, some service requests might be more important than

others, thereby requiring differential treatment under overload. Multi-class overload controls, as opposed to single class

overload controls, are critical to multi-service wireless networks. The importance of service requests for basic users may

vary from requests to establish calls, which generate immediate revenue, to registrations which may generate revenue

in the future. Furthermore, these networks will provide multiple services, including voice, data, and messaging, each

of which may generate different revenues for operators. By instituting multi-class overload controls, operators may

maximize their revenue during overload periods.

Under overload, a switch may invoke remote overload control or congestion control by signaling its neighbors of its

state. In practice, although recommended procedures exist to deal with inter-switch congestion control, many deployed

switches do not implement these algorithms. Therefore, it is critical that a switch makes no assumptions about any

remote overload control and locally protect its own processing resources by implementing appropriate local overload

controls. This is usually done by throttling a fraction of the new service requests. In the multi-class case when certain

service requests are more important than the others, the throttling must honor the class priority.

In this paper, we propose multi-class local overload control algorithms that are designed to be robust against different

input traffic patterns (gradual, bursty) and system upgrades. Generally, overload control algorithms involve measure-

ment of the system load and its comparison with a specified or measured system load threshold. When the system load

threshold is reached or exceeded, overload control actions are triggered. In order to appropriately measure the system

load when several classes of traffic are present, we first introduce the concept of equivalent system load measure, that

converts the multiple system measures associated with different classes of traffic into a single measure with respect to
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a pre-defined base class. For example, arrival rates corresponding to calls, location updates, registrations, and short

messages may be converted into a single, equivalent arrival rate. We use the concept of equivalent system load measure

to develop three multi-class overload detection and measurement algorithms.

The first algorithm (denoted “Occupancy”) uses processor occupancy to measure system load. The second algorithm

(denoted “ARO”) uses acceptance rate in conjunction with processor occupancy to measure the system load. Acceptance

rate is defined to be the number of service requests accepted into the system in a given time interval. The third algorithm

(denoted “SRED”) measures the system load using queue lengths. Each of the three algorithms determine how much

equivalent load should be allowed into the system at any given time. We develop a new procedure for partitioning

the allowable equivalent load across traffic classes, using a strict priority scheme that assigns preferential treatment to

higher priority classes. Our partitioning procedure is common to all the three algorithms.

Using simulations of call flows from mobile telecommunication standards, we investigate the performance of the three

algorithms. We find that all three algorithms are capable of sustaining good throughput and delay performances under

a wide range of steady overload conditions. Interestingly, under sudden load ramp up, ARO and SRED dramatically

reduce the reaction time and the maximum average delay in comparison to the Occupancy algorithm. In comparison to

SRED, ARO has a slightly higher reaction time and maximum average delay under sudden load ramp up, but provides

more stable feedback under heavy overload, leading to a throttling pattern that is more consistent with the desired

priority scheme.

Our algorithms require the relative processing cost of each class of traffic. Knowledge of switch behavior may allow

values to be specified, but it is important to know how robust the algorithms are when the relative processing costs are

mis-specified. We find that mis-specification can cause some instability in the algorithms, particularly if the cost of a

high priority event is under-specified. For the purpose of making the algorithms more robust, we propose a scheme

that does not require prior specification, but instead uses simple regression techniques to obtain estimates of relative

processing costs using measured data. We find that estimates of relative costs derived in this manner converge rapidly

to their true values as additional data accumulates.

The rest of the paper is structured as follows. Section II describes related work in multi-class overload control

algorithms. A high level description of a wireless access switch and the system model used is presented in Section III.

The multi-class overload algorithms considered in the paper are described in Section IV and compared via simulations

in Section V. We discuss implementation issues in Section VII. We conclude in Section VIII and also provide several

directions for future extensions to our work.
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II. RELATED WORK

Overload and congestion control has been actively studied in both telecommunication networks and the Internet. In

telecommunication networks, single class overload controls have been proposed and evaluated in [12], [1], [5], [6], [15],

[18], [17], [19]. One common overload control technique standardized and used in telecommunications networks is call

gapping in which all service requests are rejected during certain time gaps. The period and duration of the gap are tuned

based on overload conditions. To date, no analysis of multi-class overload controls using call gapping exist. Another

common technique used is call percentage blocked in which a certain percentage of service requests are blocked during

overload periods, but the remainder are serviced. The percentage blocked is tuned based on the level of overload. We

have designed our algorithms in the spirit of percentage blocked algorithms, but they can be applied to call gapping

algorithms as well. In the remainder of this section, we consider work related to multi-class overload controls only.

In [9] the authors developed analytical approximations for the queue length distributions in the buffers of a multi-

queue, multi-priority traffic. In addition to the difference due to using multiple queues, this work differs from ours in its

use of tail drop mechanism under overload. In a tail drop mechanism new arrivals are dropped when the queue length

exceeds a certain threshold. The tail drop mechanism suffers from synchronization effects in which remote switches

might reduce, or increase, sending traffic at the same time, causing degraded performance. Even though we do not study

the synchronization effects in this paper, our dropping mechanism (first proposed in [11]) prevents them.

In [2] the authors examined a multi-class token-based scheme where a newly arrived call of a given class is accepted

when there is free token of that class or when there is free token in a common pool of unused tokens. One concern

with this scheme is that there is no priority mechanism in using the tokens of the common pool and under overload,

calls belonging to lower priority classes might exhaust these tokens. Here too, the drop mechanism is tail drop. In [16]

Rumsewicz used different queue size thresholds, one for each class, for discarding call messages when the thresholds

are exceeded in a tail drop manner. He also observed that call completion throughput rather than message throughput is

a better measure of performance. We also use call completion throughput as one of our performance measures.

In the Internet, overload control has manifested itself in active queue management of router queues. Most of the

proposed multi-class active queue management approaches including RIO [4], WRED [20] and [3] are multi-class

extensions of the Random Early Discard (RED) algorithm [10]. In these approaches, different average queue size

thresholds are set for different classes and packet drop probabilities are computed based on how the actual average

queue length(s) compare with the thresholds. It is assumed that the link, rather than the processor, is the bottleneck.

In order to study the applicability of RED-like approaches in the context of controlling processor overload, we studied

a modified version of the RED of RED, called signaling RED, or SRED1 in [12]. In this paper we extend SRED for
�

The acronym SRED has also been used in [14] for a different scheme called Stabilized RED.
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handling multiple classes of signaling traffic. The performance of RED, RIO, WRED has been mainly evaluated in

the presence of TCP traffic with TCP’s remote overload control (end-to-end congestion control). In evaluating our

algorithms, we do not assume any remote overload controls.

Our algorithms and their evaluation extend and build upon the earlier work on single class signaling overload con-

trol [12]. The main enhancements and differences from [12] are as follows. First, we consider multiple classes of traffic

and introduce the concept of equivalent system load measures to design multi-class overload control algorithms. We

introduce a new algorithm for partitioning load across multiple classes of traffic. Second, we evaluate our algorithms for

a wireless scenario. Last, we propose a simple scheme that uses regression techniques to estimate relative processing

cost of calls belonging to each traffic class.

We end this section by noting that several papers on handling multi-class traffic have been written in the context

of admission control where new calls or requests are admitted or dropped depending upon their requirements and the

available bearer resources. This differs from our work which focuses on controlling processor overload due to the

signaling messages themselves.

III. SYSTEM DESCRIPTION AND MODEL

In a wireless network, service requests are processed through the cooperation of several network elements, each of

which performs a fixed set of functions. For example, MSCs provide local processing for call requests, location updates,

registrations, messaging services, etc. They provide these services by interacting with other network elements, such as

Home Location Registers (HLRs) which store user profiles, track user mobility, and provide authentication services.

Each element in a wireless network requires its own local overload controls since they receive service requests from

many different sources. For example, MSCs receive requests from mobile devices as well as all HLRs in the network.

For this reason, we evaluate overload control algorithms within a single network element. We choose an MSC because

it handles many types of service requests, and because it services users based on location, it is particularly susceptible

to transient overload periods.

Figure 1 shows a mobile network with an MSC. The MSC receives both control as well as bearer traffic from base

stations on one side and the Public Services Telephone Network (PSTN) on the other side. The functional components

of an MSC [13] are shown in Figure 2.

Typically, the processing in a switch is distributed between line cards and processing cards [17]. The signaling

component, which terminates the protocol interfaces with the network, is implemented on line cards. These line cards

exchange internal control messages with the processing cards which perform the call processing and Visitor Location

Register (VLR) functions. The call processing functions include call routing, invoking services, and maintaining call

state.
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We are concerned with signaling overload control at the line and the call processing cards. Signaling traffic arrives

in the form of new requests, messages associated with established requests, or those associated with requests that are in

the process of getting established. It is a standard practice to throttle new requests under overload rather than throttling

a message associated with an established request or that associated with a request in the process of getting established.

This allows elimination of future signaling messages associated with the throttled requests. When a signaling message

arrives at a line card, the line card must first perform lower layer protocol processing and any other processing to

determine if the signaling message is a new call request. Hence even if a new call is throttled due to overload in

the line card, it imposes some processing cost on the line card. This processing cost is called the throttling cost. A

call processing card may avoid this cost by communicating its load (or the rate at which it would accept calls) to the

line card(s) which identifies and throttles new calls appropriately. The division of functionality across cards varies in

different switch implementations.
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Fig. 3. Single processor queue model for a card.

We model a card, also referred to as system, by a single processor queue as shown in Figure 3. In this model, new

requests belonging to different priority classes are assumed to arrive at the queue. For example, in the case of the

MSC we could potentially have five different priority classes of requests - mobile calls, power-up registrations, location

updates, paging requests, and SMS (short messaging service) requests. Depending on the current measure of load of

the system, the class priority, and the overload control algorithm, a new request could be accepted or throttled. If the
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new request is accepted, it is processed by the CPU and, depending on the nature of the request, an additional task is

generated and fed back into the system after a variable delay. This additional task, when processed, may generate more

tasks which are fed back into the system. The processor schedules tasks using a first-in-first-out policy. Eventually,

when all the tasks associated with an accepted request are executed, the request is considered completed and removed

from the system. The generation of new tasks models the multiple tasks and messages associated with a request. The

variable delay applied to a task, before it is fed back into the system, models the delay between arrival of different tasks

associated with a request. Two throttling scenarios are shown in Figure 3. In the first scenario, a new call is throttled

in a neighboring card and hence is shown to be throttled even before it is queued. In the second scenario a new call is

throttled after incurring some processing cost. Due to user retrials a throttled request could arrive again at the system

after a variable amount of delay. In this paper, we will only examine the first throttling scenario and assume that the

call retrials are part of the new calls. The correlation between throttled calls and the retrials is not considered. Retrials

cause overload to persist for a longer period of time. We do consider this persistence in our evaluation in Section V.

IV. MULTI-CLASS OVERLOAD ALGORITHMS

In this section we develop overload control algorithms for multiple classes of signaling traffic representing tasks of

multiple types of service requests. Under normal conditions, when the processor is not in overload, all the requests are

allowed into the system. When the processor is in overload, some requests are throttled. In this paper we consider the

scenario where service requests are arranged in strict priority order and under overload lower priority service requests

are throttled first. An alternate approach would be to allow some kind of fair access to different service requests but we

do not consider that approach in this paper.

As mentioned earlier, the process of throttling tasks could be done intelligently by throttling only those tasks that

initiate service requests. It is assumed that ongoing events cannot be terminated to reduce overload.

All multi-class overload control algorithms considered in this paper are comprised of three steps.

1. A Time-driven measurement and detection mechanism in which system load is measured at fixed probe times, with

overload being assessed at every
�����

probe interval, denoted the assessment time. The detection mechanism produces a

total fraction of the incoming service requests that must be allowed into the system.

2. An allocation mechanism, in which the total fraction to be allowed is converted into fractions for individual classes,

in a manner that respects class priority.

3. A throttling scheme, which converts the fractions allowed into accept/reject decisions for individual events in each

class.

The algorithms presented below differ only with respect to the first step where different measures are used for detecting

overload; the allocation and throttling mechanisms are common to all algorithms.
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In the rest of this section we introduce the concept of equivalent measures used in three multi-class overload detection

and measurement algorithms (Step 1) described below. This is followed by a description of the allocation procedure

(Step 2) and the throttling scheme (Step 3).

A. Equivalent System Load Measure

Equivalent system load measure allows us to convert the multiple system load measures associated with different

classes of traffic into a single load measure with respect to a pre-defined base class as described below.

It is assumed that there are � types of origination events that start a new thread of tasks (e.g., new calls, location

updates, registrations), which are assumed to be the only events that can be throttled. These origination events arrive

at rates �������	��
���
�
�
���� events/sec and are processed by a single card at rates �������	��
���
�
�
���� . The corresponding

average processing times ��� �� comprise the complete processing of the events, including all subtasks they generate, up

to their termination.

It is also assumed that a strict throttling priority ����������
���
�
�
���� has been established for each event class, such

that, if ���! "�$# , then events of class � should be throttled before events of class % . A processing priority may also

be established for the event classes, but, for simplicity of implementation, we consider that all events have the same

processing priority and are processed according to a FIFO scheme.

Let &'� represent a generic system measure for class � based on counts. Examples of such count measures are arrival

rates, acceptance rates (i.e., the number of events accepted into the system per unit time), and queue lengths (i.e., the

number of events waiting for processing).

One possible way of combining the different class count measures would be to simply add the &(� , but this is clearly

not reasonable for certain load measures, as events in different classes generally have very different processing times.

For example, if a location update takes, on average, 10% of the average processing time of a call, then accepting ten

new location updates into the system is equivalent, in terms of processing effort, to accepting one new call. Therefore,

a weighted average of the &�� , with the weights proportional to the processing times of each class, is used to combine

the different class count measures into a single, equivalent count measure. For that, we choose a class, say the � ���
, to

serve as a base class and define the relative cost of processing an event of class � with respect to an event in the base

class as )����*� � ��,+ � �
�- 
 The equivalent count measure is then defined as

&'.0/1�
-2
�43 �

) � & � 
 (1)

This measure can be interpreted as the equivalent number of counts (in terms of processing cost) if the system were

receiving only base class events. In order to determine )5� ’s we require the relative processing cost of each class of

traffic. A measurement-based scheme for estimating these costs is derived in Section VI-B.
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B. Overload Measurement and Detection

In this section, we describe three algorithms that use equivalent measures of system load and compare it with a corre-

sponding equivalent system load threshold to detect and measure overload. The goal is to produce an equivalent fraction

of the input load that can be allowed into the system. The three algorithms we describe are multi-class extensions of

the single class algorithms described in [12]. The first algorithm is based on measurement of processor occupancy, the

second is based on a combination of processor occupancy and acceptance rate measurements, and the third is based on

measurement of queue lengths.

B.1 Occupancy Algorithm

Processor occupancy, � , is defined as the percentage of time, within a given probe interval, that the processor is busy

processing tasks. Processor occupancy is a dimensionless quantity, which makes it relatively system independent. The

measurement of processor occupancy is clearly independent of the number of event classes present in the system. This

is because the total processor occupancy is the sum of individual processor occupancies. Therefore, the measurement

and detection part of the Occupancy algorithm are same in the single-class and multi-class cases.

In the Occupancy algorithm, the estimated processor occupancy at assessment interval � , denoted by ���� and given

by the average of the previous
�

probed processor occupancies, is compared to an occupancy threshold � �������
	 � . When

the measured �� � is greater than � ��������	 � , the system is considered to be in overload, and throttling is forced. When �� � is

less than � �������
	 � , no throttling is required. The specific feedback function for the equivalent fraction allowed (similar to

the single class feedback function proposed in [5] and later examined in [12]), is

� .0/��
 � ����������������� � �����! � � �������
	 ��� � � .0/� � 
�" (2)

where �����������#���%$'&���( ��)�* �,+.-�/0$'&���+.�#10$2( ��)�*�* bounds ( to the interval 3 &���)�4 . A minimum fraction allowed
�5���! 

is used

to prevent the system from throttling all incoming events. In the single-class case the fraction allowed is applied directly

to the individual events; in the multi-class case, it must be split into separate fractions allowed for the individual classes

depending on their priorities. The mechanism for achieving this is described in Section IV-C.

B.2 ARO Algorithm

One of the problems with using an occupancy-based algorithm is that processor occupancy provides only a measure

of the processed load. The offered load in a given time interval might be much higher than the processed load especially

when there is a sudden burst of service requests. The acceptance rate, defined to be the number of new service requests

accepted into the system in a given time interval, is a better measure of offered load. An algorithm based on the

acceptance rate (AR) uses a feedback function similar to (2), but here the average number of accepted service requests
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over the past
�

probe intervals replaces the processor occupancy. In our multi-class scenario, the equivalent acceptance

rate is obtained using (1). That is, letting �� ��� � represent the estimated acceptance rate for events in class � at assessment

time � , the equivalent acceptance rate is �� .0/� � � -
�43 � ) � �� ��� � . It estimates the equivalent number of class � events

being accepted into the system. Letting � .0/��������	 � denote the equivalent acceptance rate threshold (whose determination

is discussed later in this section), the multi-class AR feedback function is

� .0/��
 � � �����������#���%$ �����! � � .0/�������
	 ��� . /� � .0/� � 
%* 
 (3)

The equivalent acceptance rate threshold � . /��������	 � is the most crucial parameter in the multi-class AR feedback func-

tion (3). It may either be determined based on the engineered capacity of the system, or it may be estimated dynamically,

by determining the equivalent maximum system throughput � .0/����� � �� .0/ +
	� , where �� .0/ is the current estimate of the

equivalent acceptance rate and 	� is the current estimate of the processor occupancy. We then set � .0/��������	 � ��� ��������	 � � .0/����� .
For robustness against sudden traffic bursts, � . /��������	 � is updated at every �
� �

probe intervals, according to an expo-

nentially weighted moving average (EWMA) scheme with small updating weight � .

The problem with using a detection mechanism based only on acceptance rate is that this measure does not indicate

overload induced by internal changes in the system. For example, an increase in the service rate for certain classes of

events or consumption of processing resources by background tasks can not be captured by acceptance rate. Therefore,

it is necessary to combine acceptance rate with another system measure that represents the system’s processed load and

not just offered load. This leads us to consider the combined acceptance rate and occupancy (ARO) algorithm,

� . /��
 � � ��������� ����� � � ���! ��+.��1 � � .0/��������	 ��� .0/� � � �������
	 ���5� " � .0/� � 
���

B.3 SRED Algorithm

The SRED algorithm is based on the average queue length of new events. We use (1) to obtain the equivalent queue

length � .0/ � � -
�43 � ) � � � , where � � represents the length of the queue of originating events of class � 2.

The average equivalent queue length at time ����
 is estimated according to an EWMA based on the measured

equivalent queue length at time � , � .0/� , � .0/� 
 � � $�
���� *�� .0/� ����� .0/� , where the updating weight � needs to be specified.�
We consider the equivalent queue of origination events instead of equivalent queue of all events for the following reasons.

1. There is no simple definition of an equivalent non-originating event as the relative costs used refer to the complete processing of the event and

the events that are processed by it.

2. In our scheme, only new service requests (originating events) can be throttled, so there is a direct relationship between the queue length and

the amount of throttling, which would be indirect if all events were considered.

3. The SRED algorithm is more reactive when only originating events are used in the queue because lower threshold can be used, and more

immediate changes in the queue length are produced.
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The equivalent fraction allowed for the multi-class SRED algorithm is then defined as

� .0/� 
 � �
������ �����

� .0/���! � � .0/��� � .0/�����

�� � .0/��� � .0/���! +.-�/�� � .0/���! �
	���
����� � 	���
�	 ��
����� � 	 ��
��� ��� ������� ����� ����� �

where � .0/���! and � .0/����� are lower and upper thresholds on the equivalent queue length, which need to be specified or

could also be obtained from specifications of minimum and maximum queue length thresholds of each class using (1).

Note that unlike the Occupancy and ARO algorithms, SRED does not use an explicit closed feedback loop for updating� �! � .

C. Allocation

The detection step of the overload algorithms, discussed in Section IV-B, determines the equivalent fraction of class

� events that should be allowed into the system. Let " . / � 
 � � .0/ be the the equivalent fraction of class � events

that should be throttled. In the multi-class case, this throttling fraction needs to be split among the various event classes,

respecting the throttling priority specified for them. We now describe a simple algorithm for calculating throttling

fractions " � ��
�
�
���"$# for each priority, so that the equivalent throttling fraction is " .0/ .
Recall the arrival rate for class � events is � � , and the relative processing cost with respect to the base class � is )�� .

The total requested load, per unit time, for class � events is therefore ��� ) � , and the total requested load for the entire

system is % - � � -
� 3 � � � ) � .

Since the required equivalent throttling fraction is " . / , the load that must be throttled is " .0/ % - . The throttling

scheme then assigns individual throttling fractions to each class, so that the low priority classes are throttled first, and

to maintain the desired overall throttling fraction. Formally, define %�& ��' and %)( � � (# 3 � � � )�� ; note that %*( is the

cumulative requested load for classes 1 to
�

. The throttling fraction " # for class % is

" # �
������ �����

�� % # � " .0/ % -$�" .0/ % - �+% # � � * + � # ) # ��% # � � � " .0/ % -  ,% #' � % # � � � " .0/ % - (4)

The allocation algorithm described in (4) requires that some estimates of the class arrival rates, � � , be available. We

use separate EWMAs in each measured class arrival rate, which, for robustness, are updated at each �.-�� �
probe

intervals, using a small updating weight � - .
D. Throttling

Given the throttling fraction " ��� � to be used for class � during the n
���

interval, the throttling scheme determines which

new events to drop. We adopt a deterministic throttling scheme first proposed by [11]. In this algorithm, a variable / is
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first initialized to 0, then the accept/reject decision procedure described below is used

/�� � / � $�
 �+"���� �'* .
If / � 
 /�� � / � 


accept request

else reject request,

[12] compares this deterministic throttling algorithm to alternative schemes based on pseudo-random numbers and

concludes that the deterministic algorithm has the best overall performance in terms of reducing the variability in the

fraction allowed. The randomness in arrivals from different sources ensures that no particular source is able to misuse

the deterministic throttling to its advantage.

V. PERFORMANCE OF ALGORITHMS

We now evaluate the performance of the multi-class overload control algorithms described in Section IV by simulating

the system model described in Section III. We make the simplifying assumption that the process of detecting overload

is free. The simulator used to obtain the results presented in this section is custom written.

For simplicity, only two classes of events are considered in the simulation: mobile originated calls and location

updates. As described in Section IV, strict priority is used in throttling events from the two classes. The task and

event structures for calls and location updates, derived from call flows from mobile telecommunication standards, are

presented in Figure 4. The call model treats each request as consisting of four task segments: initial request, call setup,

handover, and call termination. The model used for location updates consists of a single task segment: the initial request.

The initial request, call setup and call termination tasks comprise several subtasks which are generated after a random

delay. For the purpose of the simulation, subtasks occurring with negligible delay of each other are combined into one

subtask. This results in the initial request being subdivided into one or three subtasks, the call setup being subdivided

into four subtasks and the call termination being composed of three subtasks. Only 10% of the initial request events

require three subtasks; the other 90% require a single subtask3 . In our simulations, 70% of the calls experience handover

and the ratio of number of calls to the number of location updates has been assumed to be 1:10.

The system represented in the simulation is designed to operate under approximately 95% processor occupancy under

a load of 592,000 busy hour calls attempts (BHCA), corresponding to an average of about 164 call attempts per second,

together with ten times more location updates. The probability distributions used for the delays until the next subtask
�
The choice of one or three subtasks depends upon whether the record of the user is available on the local VLR or if it must be obtained from

a remote VLR or even the user’s Home Location Register (HLR). Here, we assume that 90% of the time the user’s record is found in the local

VLR.
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further tasks
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Fig. 4. Task and event structures for calls and location updates. Numbers represent branching probabilities.

and the subtask processing times are listed in Table I, with ��/�� $0� * denoting the exponential distribution with parameter

� and � $ � ��� * denoting the Gamma distribution with parameters � and � .

The choice of distributions and parameter values in Table I, as well as the task and event structures in Figure 4, are

based on telecommunications traffic engineering recommendations and measurements on prototype implementations.

Under these assumptions, the total average processing time is �$
��	��

� per call and ' 
��	��

� per location update. The

average relative cost of a location update with respect to a call is about 10%. The holding time for a call, that is, the

time between the end of the call setup and the start of the call termination, is assumed to be exponentially distributed

with mean 90 seconds.

All three overload algorithms considered in the simulation use the same probe intervals and assessment intervals of

100 ms, and the same minimum fraction allowed,
�5���! � ' 
 ' '�� . Experience with evaluation of switches suggests that

a timer value of a few hundred milliseconds is good for a variety of input traffic patterns and system settings. Smaller

timer values would result in faster response during sudden overload but also cause more oscillations during steady state

leading to reduced performance. Table II lists the parameter values used in the simulations for the different algorithms.

The parameter values for the SRED algorithm were chosen to produce an average processor occupancy of about 95%

under mild to moderate overload conditions (call rates between 160 and 350 calls/s). As discussed in Section V-A,

SRED becomes unstable under higher overload (call rates above 500 calls/s) and it is not possible to choose parameter

values that give steady 95% occupancy for the range of call rates considered in the simulation.

The performance metrics used to compare the algorithms are task delay (time in queue until start of processing),
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TABLE I

PROBABILITY DISTRIBUTIONS FOR DELAY UNTIL THE NEXT SUBTASK AND SUBTASK PROCESSING TIME.

Subtasks

Subt. Delay Process. Mean

Task No. Dist. Dist. (ms)

Init. Req. 1 ��/�� $ �	��' * � $ �$
��$� 
 ' * .25

2 ��/�� $ �	��' * � $ �$� 
 ' * .2

3 ��/�� $ �	��' * � $ �$� 
 ' * .2

Setup 1 ��/ � $ �	��' * � $ � � � * 1

2 ��/�� $ �	��' * � $ �$� 
 ' * .2

3 ��/ � $�� ��' ' * � $ �$� 
 ' * .2

(no HO) 4 ��/ � $ ��' ' ' ' * � $ �$� 
 ' * .2

(with HO) 4 ��/�� $�� ��' ' ' *
HO 1 ��/ � $�� ��' ' ' * � $ � � � * 1

Term. 1 ��/ � $ �	��' * � $ � � 
 ' * .3

2 ��/�� $ �	��' * � $ �$� 
 ' * .2

3 — � $ �$� 
 ' * .2

TABLE II

PARAMETER VALUES USED IN THE SIMULATIONS.

Algorithm

Parameter Occupancy SRED ARO� ��������	 � 0.95 – 0.95
� �����

20 – 20
�

3 1 3� – 0.05 0.02� – – 300� ���! – 1 –� ����� – 4.5 –
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throughput (number of service requests or calls completed per second), and allowed fraction of service requests (call

origination or location update events) into the system.

A. Performance Under Steady Load

We investigate the performance of the overload control algorithms when call arrivals are Poisson4, under steady mean

call attempt rates varying between 450 thousand BHCA (125 calls/s) and 7.2 million BHCA (2000 calls/s), covering the

range from no overload to severe overload. The location update mean arrival (also a Poisson process) rate was set to ten

times the mean call rate. For each attempt rate, calls and location updates were simulated over a 15-minute period, with

the performance metrics averaged over the whole period.

The sample size associated with the simulation depends on the performance metric under consideration: for task delay

the sample size is determined by the number of simulated calls during the 15-minute period (which ranges from around

112,500 to 1,800,000, depending on the call load); for throughput and allowed fraction the sample size is determined

by the number of probe intervals in the 15-minute period, 9000.
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Fig. 5. Average performance metrics versus call attempt rate by overload control algorithm.

Figure 5 shows the averages of the performance metrics versus call attempt rate, for each overload control algorithm5 .

The sample sizes, mentioned above, give the following maximum simulation errors for the average performance metrics

in this figure: �
' 
4
 ms for task delay, � 
 % for allowed fraction, and �
�

calls (or location updates)/s for throughput6 . All

three algorithms show good, similar performance under multi-class overload conditions. The average delay stays within

reasonable limits (below 12 ms), though SRED gives consistently higher delays for heavier overload conditions. The

fraction of allowed events behave consistently with the strict priority scheme adopted: the fraction of allowed location

updates drops faster than that of calls, staying close to zero for call rates � ��' ' calls/s. Consistently, the average

throughput curves indicate that no location updates are processed under heavier overload. The system is capable of
�
Other arrival processes can be easily used in our simulator�
Because of their close proximity, the ARO curves have been overwritten by the Occupancy curves in some cases.�
In order to obtain the simulation errors, we had to make some assumptions about the distributions of these performance metrics. The details

have been skipped for brevity.
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sustaining a constant call throughput, under all three overload algorithms.

The fraction allowed and throughput plots in Figure 5 also indicate that SRED throttles location updates less aggres-

sively than the other two algorithms, under moderate overload conditions (close to 500 calls/s). The reason for this is

the greater instability observed for the feedback mechanism of this algorithm, which translates into a highly variable

fraction allowed of calls. Figure 6 presents the inter-quartile ranges (i.e., the difference between the third and the first

quartiles, which provides a measure of variation for the variable under consideration) of the fractions of calls and loca-

tion updates allowed, observed over time during the simulation, for the different call attempt rates. The SRED fraction

allowed variation is about three times larger for location updates and ten times larger for calls. To further explore this

issue we study the behavior of the algorithms over time.
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Fig. 6. Inter-quartile ranges of fraction allowed versus call attempt rate by overload control algorithm and event class.

We consider the case of a steady state call rate of 1.38 million BHCA (385 calls/s), considerably above the nominal

capacity of the system. As before, the location update rate was set to ten times the call rate. Figure 7 shows the behavior

of the fractions of calls and location updates allowed (given as averages per second), between the third and the fifth

minutes of operation, for the three overload control algorithms.
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Fig. 7. Evolution of fractions allowed under a steady overload.
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Fig. 8. Evolution of performance under non-steady overload.

The ARO and Occupancy algorithms show similar, stable fractions allowed with respect to both calls and location
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updates, which are consistent with the strict priority scheme. The SRED algorithm, however, presents quite unstable

fractions allowed in both event classes, which, over time, leads to throttling that is not consistent with strict priority.

The ARO and Occupancy algorithms show more consistent behavior under steady overload.

B. Performance Under Non-Steady Load

In order to study the reactiveness of the algorithms to sudden changes in arrival rates, we consider the scenario

in which the call and location update processes operate at mean rates of, respectively, 167 calls/s and 1667 location

updates/s (corresponding to a condition of non-overload) up to 300 seconds, at which point both rates experience an

eight-fold increase over a period of 1.5 seconds, staying at that level for two minutes, and then dropping back to their

original non-overload rates in 1.5 seconds. Note that the arrival process in each interval is still Poisson but with different

mean arrival rates. The objective of this simulation is to study how fast the overload algorithms react to a sudden onset

of overload and to a sudden cessation of overload. Figure 8 presents the evolution of the average delay and the fractions

allowed for the three algorithms.

The SRED algorithm has the best overall performance with respect to average delay under this overload scenario,

showing no significant changes in average delay during the onset of overload. The Occupancy algorithm has the worst

delay performance, taking about 38 seconds to recover from the event rate ramp up and experiencing maximum delay

of 4.5 seconds. The ARO algorithm has a much better performance than the Occupancy algorithm, but slightly worse

than SRED: about 5 seconds to recover and a maximum delay of 260 milliseconds. The basic reason for the poorer

performance of the Occupancy algorithm is that processor occupancy measures processed load which cannot be higher

than 100% even when the offered load is very high. This reduces the processor occupancy measure’s response to sudden

overload in comparison to to either queue length (SRED) or call acceptance rate (ARO).

Once again, the SRED algorithm displays a marked increase in variability of fraction allowed (for call originations,

in this case) under overload, which is not observed for the other two algorithms. All three algorithms show almost

immediate recovery when the system goes from overload to non-overload.

In summary, under sudden load ramp up, ARO and SRED reduce the response time by an order of magnitude in

comparison to the algorithm that uses processor occupancy only. In comparison to SRED, ARO experiences a slightly

higher response time under sudden load ramp up but exhibits more stable fractions allowed under overload. We also

investigate the behavior of the three algorithms under a variety of other simulation settings (including variations in

Tables I and II, different load patterns, etc.) and find that the results are qualitatively the same as the ones presented

here.
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VI. ESTIMATION OF PROCESSING COSTS

The algorithms and simulations studied so far assume that the relative processing costs of events in different classes

is known. In this section, we investigate the sensitivity of the algorithms to mis-specification of the relative processing

costs, and derive reliable, measurement-based estimates of the relative processing costs.

A. Behavior under mis-specified costs

Figure 9 compares the performance of the algorithms when there is an abrupt increase in the rate of the low priority

location updates. The scenario used in the simulations (the same for all three plots) is similar to the one described in

Section V-B, but this time only the location update rate increases during overload: call and location update processes

operate at rates of, respectively, 167 calls/s and 1667 location updates/s (corresponding to a condition of non-overload)

up to 300 seconds, at which point the location update rate increases eight-fold to 13,333 location updates/s, over a

period of 1.5 seconds, staying at that level for two minutes, and then dropping back to its original non-overload level in

1.5 seconds.

For the occupancy and ARO algorithms, the interpretation of these plots is straightforward. Under-specification of the

cost of the (lower priority) location updates results in the algorithms overreacting to overload. The result is oscillation,

and some new calls are unnecessarily rejected. When the cost is over-specified, the algorithms are more stable, but

reaction to the onset of overload is slower. In all cases, SRED shows high variability in the fraction allowed, and

correspondingly drops an unnecessary number of call originations.

B. Regression Estimates of Processing Cost

A reliable strategy for determining the relative costs of the various event types is to estimate them directly from the

data collected at the MSC, under non-overload conditions. We use a simple, easy to implement methodology for esti-

mating the relative costs using linear regression. The underlying idea for a regression model is to collect measurements

over successive time intervals of the processor occupancy and event processing counts, and to use this data to model the

behavior of processor occupancy as a function of the count data. The fitted model can then be used both to estimate the

system capacity, and to estimate the relative costs of processing the different event classes.

Our regression model for estimating the relative costs of each originating event class is based on the relation between

the overall processor occupancy and the processor occupancies associated with each event class.

�!� � &�� 2
�

� ��� � & � 2
�
� � + �5� (5)

where � & represents the “background” processor occupancy when no call traffic is present, and � � , � � , and � � �� are,

respectively, the processor occupancy, the arrival rate and the average processing time associated with the ��� � event
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Fig. 9. Fractions allowed and average delay with a plateau in the location update rate. The costs are correctly specified (top);

under-specified for location updates (middle) and over-specified for location updates (bottom).

class. Recall from Section IV-A that the relative costs )�� are proportional to the average processing times of the

originating events. Note that (5) includes all events, not just the originating ones.

In order to estimate the relative costs using a regression model based on (5), measurements of overall processor

occupancy and the counts of processed events are collected over successive time intervals. The counts are broken down

by the type of event: the number of location updates; number of new call originations, handovers etc.. For each time
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interval � , we denote the observed variables as follows:

� � � No. of Location Updates

� � � No. of New Call Originations

� � � No. of Handovers

� � � No. of Call Terminations

� � � Processor Occupancy

The number of events over each unit time interval represents an estimate of the arrival rate ( � � ). The following linear

regression model is then used to explain the behavior of processor occupancy as a function of the different event counts

during the � th time interval. �5� ��& & � & � � � � &�� � � � &�� � � � &�� � � �
	��
where & & , & � , &�� , &�� and &�� are the regression coefficients to be estimated from the observed data representing, re-

spectively, the background occupancy � & when no call traffic is present and the average processing times � � �� of event

classes
�

,
�

,
�

, and
�

. The motivation for this model is that processor occupancy is expected to behave linearly in the

amount of traffic handled. The error term 	!� accommodates the stochastic nature of the observed data and represents

sources of variation that cannot be controlled, variability in event processing time, measurement error, and any other

random fluctuations.

The coefficients & & ��
�
�
���& � are unknown, and must be estimated from the data. The regression coefficients should

be estimated so that the regression model explains as much variation of � � as possible. Equivalently, we want the

“unexplained variation” represented by the error terms 	�� to be as small as possible. The regression coefficients are

chosen to minimize the squared-error loss [7],

2 � $2�5� � $'& & � & � � � � &�� � � � &�� � � � &�� � � *�* � 

This minimization problem can be reduced to solving a system of linear equations.

As mentioned above, the regression model can include terms that do not correspond to the originating event classes.

Here, we have included Handover and Call Termination. A mobile originated call consists of one origination, possibly

some handovers, and one termination. The corresponding processing costs can be lumped together in a single event, as

done in Section IV-A. However, when the events are collected over shorter time intervals, there may be an imbalance

between originations and terminations, and the regression model provides a better fit when these are treated separately.

This leads to additional complications when converting the estimated coefficients to relative cost, as addressed below.

One could also extend the regression model by including separate terms for each subtask of call origination, for
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example. But this seems less beneficial; since all subtasks will typically be completed within a small time interval, the

imbalance between the counts of subtasks will generally be small, and there is less benefit to treating these separately.
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Fig. 10. Regression coefficients (in m.s. per event) for call origination (top) and location updates (middle); and estimated relative

cost (bottom).

Figure 10 shows the behavior of regression coefficients & � and &�� over a period of 1500 minutes, measured and

updated every 10 seconds. The coefficients show the average cost of processing these events; they quickly stabilize

around long-term asymptotic values. The main computational effort in updating the coefficients is the solution of a

system of linear equations with five variables.

The regression coefficient & � provides an estimate of the cost of a location update. The cost of a new call is more

complicated, since it consists of a call origination, call termination and possibly one or more handovers. Let � be the

average number of handovers per call; this may be known from experience or estimated as a long-run average. The

average cost of processing a call is then &�� ��� &�� � &�� 
 (6)

The relative cost of a location update is & � divided by the quantity (6). The third panel of Figure 10 shows this estimate

stabilizing over time; the true value of 0.1 is shown for reference.

VII. IMPLEMENTATION ISSUES

In this section we discuss issues related to the implementation of SRED and ARO. The main challenge in implement-

ing SRED (or RED) is the specification of parameters for maximum and minimum queue lengths. The right choice

requires tuning and will change with processor speed. Hence SRED is not robust against system upgrades.

Implementation of ARO requires measurement of acceptance rate, arrival rate and processor occupancy. Acceptance

rate/arrival rate is easily measured by counting the number of requests accepted/arrived in a given time interval. Mea-

suring processor occupancy is a hardware and operating system dependent task. Some Unix-like operating systems
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including Solaris and Linux allow applications to monitor CPU usage of individual processes by simply reading kernel

data structures. However, line cards typically implement light weight real time embedded systems, which do not always

provide straightforward ways to measure processor occupancy. While some embedded real time executives, for example

VxWorks, provide utilities to measure processor occupancy on a per task basis, others do not provide such tools.

One way to measure occupancy in such cases is to launch a low priority idle task which increments a counter.

By periodically measuring this counter, it is possible to determine the amount of time the idle process has run and

conversely the processor occupancy. The main drawback of this method is that it does not distinguish between time

spent in high priority signaling request processing tasks and lower priority background tasks. For example, a sudden

run of a lower priority accounting task could cause a low value for the idle task count and a high value for the processor

occupancy. Therefore this method of measuring processor occupancy needs additional validation by ensuring that a

minimum threshold of signaling requests have arrived in a given interval. Note that this arrival rate measurement is

already done in case of the ARO algorithm, making this an attractive way to measure processor occupancy in such

systems.

There are also real time executives like pSOS which provide a call-back function that is called each time a task switch

occurs. By providing a customized call-back function which records the real time clock and the current task each time

it is invoked, it is possible to accurately measure the time spent in individual tasks at the cost of a little added overhead

with each task switch.

Even though ARO requires measurement of multiple system measures, it requires specification of only one parameter,

the processor occupancy threshold. Processor occupancy is dimensionless and need not be changed with software and

processor upgrades. The choice of a processor occupancy threshold should come from experience of the switch operator.

Typically a switch operator would engineer the value of � �������
	 � such that there is enough room to process administrative

tasks as well as sudden signaling congestion. However, if the threshold is exceeded most of the time than the switch

operator must upgrade its system.

We end this section by noting that we have used a timer-based overload control instead of an event-based overload

control where the system load is measured on every task arrival. The main reasons for this choice is to reduce processing

overhead of system load measurement.

VIII. CONCLUSIONS AND FUTURE EXTENSIONS

We proposed and evaluated approaches for monitoring and controlling processor overload due to excessive signaling

traffic in a wireless access switch, involving multiple classes of traffic. We developed the concept of equivalent system

load measure to convert multiple system measures associated with different classes of traffic into a single measure with

respect to a pre-defined base class. We also proposed a new procedure for allocating the allowable equivalent load
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across multiple traffic classes, according to a strict priority scheme.

We found that our algorithm that measures system load using a combination of acceptance rate and processor oc-

cupancy, provides highly reactive and robust overload control. All the three multi-class overload control algorithms

developed in this paper, require relative processing cost of each class of traffic. We studied the performance of these

algorithms when these processing costs were mis-specified and derived measurement-based regression estimates of the

relative costs. We also discussed implementation issues. Potential future extensions to our work are described below.

� Throttling cost case – In this paper, we have only considered and evaluated the case where no processing costs

are associated with new service requests that are eventually throttled. Even though this is a realistic assumption for

some of the cards in the MSC, it does not necessarily hold for all cards. If processing costs are associated with new

service requests that are throttled (Scenario 2 in Figure 2), under heavy overload a substantial part of the processor

occupancy might be due to throttling of new service requests and not due to processing of accepted calls. As a result,

the processing power of the system might be reduced considerably. Hence schemes that appropriately adjust the system

load threshold(s) with variations in the degree of overload need to be developed.

� Network of Cards, Switches – We believe that our single queue model can be easily extended to a network of queues,

but this will require further research. There is also a need to study the local overload control algorithms examined in

this paper in conjunction with remote overload control at other switches.

� Weighted Fair Allocation Across Multiple-Traffic Classes – The strict priority throttling scheme described in this

paper may be impractical in situations where there is an interest in allowing events from all classes into the system,

at possibly different, prioritized rates. A weighted fair allocation, would be preferred in such cases. Any allocation

scheme producing fractions allowed
� ��� ��� 
���
�
�
���� for an equivalent fraction

� .0/ must satisfy

-2
� 3 �

� �0� . /� � � .0/ � .0/ 
 (7)

A trivial solution to (7) is to set
� ��� � . / for all classes, corresponding to the equal-priority case. Under weighted

fair allocation, priority weights � � � ��� + � ���! could be defined with respect to the smallest throttling weight � ���! 
and a base fraction allowed

��� ���
. (corresponding to events of priority weight 1) could be obtained such that

� �!�+.��10$ � � ��� ��� . � 
%* � � � 
���
�
�
���� and (7) is satisfied. An algorithm to obtain
��� ���

. needs to be developed.

� Application of ARO in the Internet – It would be interesting to study the robustness of our multi-class ARO algo-

rithm for active queue management in router queues forwarding datagram traffic especially in conjunction with TCP

congestion control. The application of our ideas could also be studied in the context of overload due to signaling traffic

resulting from resource reservation mechanisms.
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