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ABSTRACT
Flow control mechanisms in Network-on-Chip (NoC) architectures
are critical for fast packet propagation across the network and for
low idling of network resources. Buffer management and alloca-
tion are fundamental tasks of each flow control scheme. Buffered
flow control is the focus of this work. We consider alternative
schemes (STALL/GO, T-Error, ACK/NACK) for buffer and chan-
nel bandwidth allocation in presence of pipelined switch-to-switch
links. These protocols provide varying degrees of fault tolerance
support, resulting in different area and power tradeoffs. Our anal-
ysis is aimed at determining the overhead of such support when
running in error-free environments, which are the typical operating
mode. Implementation in the ×pipes NoC architecture and func-
tional simulation by means of a virtual platform allowed us to cap-
ture application perceived performance, thus providing guidelines
for NoC designers.

Categories and Subject Descriptors
B.4.5 [Input/Output And Data Communications]: Reliability,
Testing, and Fault-Tolerance; B.4.4 [Input/Output And Data
Communications]: Performance Analysis and Design Aids

General Terms
Performance, Design, Reliability, Experimentation

Keywords
Network on Chip, Flow Control, Error Correction, Fault Tolerance

1. INTRODUCTION
The high level of system integration characterizing Multi-

Processor Systems-on-Chip (MPSoCs) is raising the scalability is-
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sue for communication architectures. In this direction, traditional
system interconnects based on shared buses are evolving both from
the protocol and the topology viewpoint. Advanced bus protocols
aim at a better exploitation of available bandwidth, while more par-
allel topologies are instead being introduced in order to provide
more bandwidth [17]. In the long run, many researchers and SoC
designers agree on the fact that this trend converges to the Network-
on-Chip (NoC) solution, i.e. to a modular architecture where scal-
ability is a key design objective [14].

A NoC is instantiated with a mix of just three components:
switches, Network Interfaces (NIs) and links. The switches can
be arbitrarily connected to each other and to NIs, based on a
specified topology. They include routing, switching and flow
control logic, as well as error control circuitry. NIs decouple
communication from computation, are responsible for packetiza-
tion/depacketization and implement the service levels associated
with each transaction. The ability to hide network implementation
details from the connected cores is a valuable feature of NIs, and
standard interfaces allowing reuse of IP modules are typically used,
such as OCP [18] and AXI [1]. Repeater insertion is a well-known
technique to address the problem of high-frequency transmission
over data wires [13]. However, even with repeaters, wire delay can
exceed one clock period and multiple clock cycles will be needed
to transfer data from one synchronous block to another. By insert-
ing latches to improve throughput, wire pipelining techniques deal
with this concern [21].

Design features of NoC components affect key performance met-
rics of the communication fabric, such as latency and throughput.
While bandwidth is exceedingly available in NoCs, a lot of effort
is being devoted to cutting down on network latency, which might
violate performance specifications of applications. Under heavy
traffic conditions, fast packet propagation across the network and
low idling of network resources are key requirements for efficient
communication architectures. Flow control determines how net-
work resources are allocated to packets traversing the network, and
can be seen either as a problem of resource allocation or one of
contention resolution [22].

In circuit-switched NoCs providing Quality of Service (QoS)
guarantees, minimum buffering flow control can be used: a circuit
is formed from source to destination nodes by means of resource
reservation, over which data propagation occurs in a contention free



regime. For packet-switched best effort networks, typically buffer-
ing increases efficiency of flow control mechanisms. The amount
of buffering resources in the network depends on the target per-
formance and on the implemented switching technique. Switches
need to hold entire packets when store-and-forward or virtual-cut-
through switching are chosen, but only packet chunks (called flits,
flow control units) when wormhole switching is used.

In some proposed NoC architectures, flow control is combined
with error control in a unified mechanism. Error control is be-
coming a growing concern as technology scales toward deep sub-
micron, because of the increased impact on signal reliability of
noise sources such as crosstalk, power-supply noise, EMI and soft
errors. Corrupted flits can be detected either in hardware by means
of error correction or error detection/retransmission mechanisms,
or can be handled at higher network layers (e.g., connection ori-
ented transport layer). However, fast error recovery requires a hard-
ware implementation of error control, thus increasing switch and/or
NI complexity. The re-use of flow control mechanisms for error
handling allows to save some area and power and to avoid duplica-
tion of control lines.

This work focuses on the tradeoffs implied in providing different
levels of fault tolerance support in buffered architectures. We con-
sider different mechanisms for buffer and channel bandwidth allo-
cation in the ×pipes NoC architecture [6]. The different flow con-
trol techniques account for different buffering location and manage-
ment strategies and have been adapted to work with pipelined links,
where data introduction rate can be decoupled from link length.

The selected schemes provide increasing levels of fault tolerance
support, and this is reflected into the tradeoffs they span between
area, power and error control capability. However, we do not con-
sider error events for on-chip communication to be so frequent to
violate performance specifications of applications. Therefore, we
are interested in pointing out whether the overhead for implement-
ing combined flow and error control in hardware is such to degrade
application perceived performance in the normal error-free operat-
ing mode. Such enhanced flow control schemes run the risk of effi-
ciently recovering from infrequent errors at the cost of a significant
performance penalty in the typical fault-free regime. Quantifying
such a cost is another objective of this work.

Experiments have been performed by means of extensive sim-
ulation runs on a highly accurate virtual platform, capturing the
performance of flow control schemes in presence of different lev-
els of system integration. This allowed us to assess the congestion
recovery capability of the considered schemes, and to check its de-
pendency on implemented error detection features.

The work is structured as follows. Section 2 discusses flow con-
trol policies adopted by previous literature. The flow control pro-
tocols under test are analyzed in Section 3. Section 4 shows exper-
imental results that we achieved, and conclusions are presented in
Section 5.

2. PREVIOUS WORK
The simplest flow control mechanisms are bufferless. Memory-

less switches are employed in [9]: in case of congestion, packets
are emitted in a non-ideal direction, also called deflective routing.
The introduction of guaranteed bandwidth in [16] was made possi-
ble by loop containers and temporally disjoint networks.

Providing QoS by establishing circuits between communicating
nodes requires some buffering resources. A novel hybrid circuit
switching with packet based setup is reported in [8], which needs

minimum buffering resources, capable of holding just a request
packet. A circuit switched NoC using time division multiplexing
is reported in [12].

In buffered flow control, NoC performance is tightly related to
the amount of buffering resources implemented. A methodology to
size the FIFOs in an interconnect channel containing one or more
FIFOs in series as a function of system parameters (data production
and consumption rate, burstiness, etc.) is reported in [21], pointing
out the impact on performance.

Credit based flow control was described in [20], for use in ATM
networks, and in [22] for use in interconnection networks. It is
applied on a hop-by-hop basis. The upstream node keeps a count of
the number of free flit buffers in each virtual channel downstream.
Credit based flow control is used in [5, 2]. It is also employed in
the asynchronous multi-service level QNoC router in [7].

Flow control in SoCIN NoC architecture is based on the hand-
shake concept [3]. When a sender puts data on the link, it activates
the related VALID signal. When the receiver is ready to consume
the validated data, it activates the corresponding ACK signal. Both
handshake and credit based flow control are supported in the re-
vised SoCIN architecture called ParIs [4].

The router in [10] handles both best effort (BE) and guaranteed
throughput (GT) traffic. The GT router relies on a time division
multiplexing mechanism. Slot tables in the routers divide up band-
width per link and switch data to the correct output at each time slot.
Credit based flow control is used in the BE router at the link level,
but also for end-to-end flow control in the network interfaces [2].

The link control mechanism of NoCGEN uses a request, grant
and ready handshake to enable flow control on point-to-point
links [11].

The ×pipes NoC makes use of the ACK/NACK flow control
scheme, adapted to pipelined links [6]. Multiple flits are transmit-
ted from the source switch before the ACK/NACK of the first ou-
standing flit is received. In case of ACK, the flit is discarded from
the source buffer, otherwise it is retransmitted.

T-Error [19] is a flow control protocol aimed at gaining perfor-
mance by aggressively tackling timing constraints. Links are either
overclocked or spatially stretched. As a result, some transmission
errors are caused by timing violations. By sampling data on a de-
layed clock signal, faults can be detected and corrected. The au-
thors report a frequency boost of around 50% while introducing a
much smaller correction overhead.

Finally, ON/OFF flow control can greatly reduce the amount of
upstream signaling ([22]). The upstream internal state is a single
control bit that represents whether the node is permitted to send
(ON) or not (OFF). A feedback signal is sent upstream only when
it is necessary to change this state, for instance when the number of
free downstream buffers falls below a certain threshold.

3. FLOW CONTROL PROTOCOLS
In this paper, analysis will revolve around three flow control

protocols, namely STALL/GO, T-Error and ACK/NACK. Each of
these offers different fault tolerance features at different perfor-
mance/power/area points, as sketched in Table 1. STALL/GO is a
low-overhead scheme which assumes reliable flit delivery. T-Error
is much more complex, and provides logic to detect timing errors in
data transmission; this support is however only partial, and usually
exploited to improve performance rather than to add reliability. Fi-
nally, ACK/NACK is designed to support thorough fault detection
and handling by means of retransmissions.



STALL/GO T-Error ACK/NACK
Buffer area 2N + 2 > 3M + 2 3N + k

Logic area low high medium
Performance good good depends
Power (est.) low medium/high high

Fault tolerance unavailable partial supported

Table 1: Flow control protocols at a glance

Figure 1: STALL/GO protocol implementation

We implemented each of these flow control protocols to support
links having a variable physical length. Clock frequency was kept
invaried by pipelining the links with repeater stages, trading off
latency for clock speed.

3.1 STALL/GO Protocol
STALL/GO is a very simple realization of an ON/OFF flow con-

trol protocol (Fig. 1). It requires just two control wires: one go-
ing forward and flagging data availability, and one going back-
ward and signaling either a condition of buffers filled (“STALL”)
or of buffers free (“GO”). STALL/GO can be implemented with
distributed buffering along the link; namely, every repeater can be
designed as a very simple two-stage FIFO. The sender only needs
two buffers to cope with stalls in the very first link repeater, thus
resulting in an overall buffer requirement of 2N +2 registers, with
minimal control logic. Power is minimized since any congestion
issue simply results in no unneeded transitions over the data wires.
Performance is also good, since the maximum sustained through-
put in absence of congestion is of one flit per cycle by design, and
recovery from congestion is instantaneous (stalled flits get queued
along the link towards the receiver, ready for flow resumption).

In the NoC domain with pipelined links, STALL/GO indirectly
reflects the performance of credit-based policies, since they exhibit
equivalent behaviour.

The main drawback of STALL/GO is that no provision whatso-
ever is available for fault handling. Should any flit get corrupted,
some complex higher-level protocol must be triggered.

3.2 T-Error Protocol
The T-Error protocol (Fig. 2, [19]) aggressively deals with

communication over physical links, either stretching the distance
among repeaters or increasing the operating frequency with respect
to a conventional design. As a result, timing errors become likely
on the link. Faults are handled by a repeater architecture leveraging
upon a second delayed clock to resample input data, to detect any
inconsistency and to emit a VALID control signal (Fig. 3). If the
surrounding logic is to be kept unchanged, as we assume in this pa-
per, a resynchronization stage must be added between the end of the
link and the receiving switch. This logic handles the offset among
the original and the delayed clocks, thus realigning the timing of
DATA and VALID wires; this incurs a one-cycle latency penalty.

The timing budget provided by the T-Error architecture can also

Figure 2: T-Error protocol implementation

Figure 3: T-Error concept waveforms

be exploited to achieve greater system reliability, by configuring the
links with spacing and frequency as conservative as in traditional
protocols. However, T-Error lacks a really thorough fault handling:
for example, errors with large time constants would not be detected.
Mission-critical systems, or systems in noisy environments, may
need to rely on higher-level fault correction protocols.

The area requirements of T-Error include three buffers in each
repeater and two at the sender, plus the receiver device and quite
a bit of overhead in control logic. A conservative estimate of the
resulting area is 3M + 2, with M being up to 50% lower than N

if T-Error features are used to stretch the link spacing. Unneces-
sary flit retransmissions upon congestion are avoided, but a power
overhead is still present due to the control logic. Performance is of
course dependent on the amount of self-induced errors and will be
analyzed in detail in Section 4.

3.3 ACK/NACK Protocol
The main idea behind the ACK/NACK flow control protocol

(Fig. 4, [6]) is that transmission errors may happen during a trans-
action. For this reason, while flits are sent on a link, a copy is kept
locally in a buffer at the sender. When flits are received, either an
ACKnowledge (ACK) or Not ACKnowledge (NACK) is sent back.
Upon receipt of an ACK, the sender deletes the local copy of the
flit; upon receipt of a NACK, the sender rewinds its output queue
and starts resending flits starting from the corrupted one, with a
GO-BACK-N policy. This means that any other flit possibly in
flight in the time window among the sending of the corrupted flit
and its resending will be discarded and resent. Other retransmis-
sion policies are feasible, but they exhibit higher logic complexity.
ACK/NACK can either be implemented as end-to-end over a whole
fabric, or as switch-to-switch; due to complex issues with possible
flit misrouting upon faults in packet headers, we implemented the
latter. Fault tolerance is built in by design, provided encoders and
decoders for error control codes are implemented at the source and
destination respectively.

In an ACK/NACK flow control, a sustained throughput of one flit
per cycle can be achieved, provided enough buffering. Repeaters on
the link can be simple registers, while, with N repeaters, 2N + k



Figure 4: ACK/NACK protocol implementation

buffers are required at the source to guarantee maximum through-
put, since ACK/NACK feedback at the sender is only sampled after
a round-trip delay since the original flit injection. The value of k de-
pends on the latency of the logic at the sending and receiving ends.
Overall, the minimum buffer requirement to avoid incurring band-
width penalties in a NACK-free environment is therefore 3N + k.

ACK/NACK provides ideal throughput and latency until no
NACKs are issued. If NACKs were only due to sporadic errors, the
impact on performance would be negligible. However, if NACKs
have to be issued also upon congestion events, the round-trip de-
lay in the notification causes a performance hit which is very pro-
nounced especially with long pipelined links. This will be inves-
tigated in Section 4. Moreover, flit bouncing between sender and
receiver devices causes a waste of power.

4. EXPERIMENTAL RESULTS
Fault tolerance is an ever more important feature as deep submi-

cron lithographic processes get deployed, to counter increasingly
prevalent noise sources. In this paper, the assumption is made
that with a conservatively clocked design, errors can be made rare
enough to have a negligible performance impact. For this reason,
our benchmarking will assume an environment free from external
faults and will instead explore performance during normal opera-
tion.

This holds also for T-Error. When used to increase system relia-
bility, by deploying it with conservative link parameters, we will
simulate fault-free communication. When used to aggressively
space link repeaters, thus artificially causing and handling a non-
trivial amount of data corruption in exchange for better perfor-
mance, we will instead inject varying amounts of random trans-
mission errors. These however attempt to reproduce self-induced
corruption only, and not external faults.

To explore the performance of alternative flow control protocols,
we implemented them on top of the MPARM [15] platform and
the ×pipes [6] interconnect. MPARM is a cycle-accurate multi-
processor simulation environment, and allows instantiation of vari-
able amounts of IP cores and flexible memory hierarchies. ×pipes
is a configurable NoC, whose topology can be customized, and is
based upon wormhole flit switching with output buffering. Routing
is source-based and best-effort, i.e. no QoS provisions are made.
The native flow control policy of ×pipes is ACK/NACK, to support
error handling; we extended this support, as outlined in Section 3.

We chose a star-like topology, where up to eight clusters of three
processors and their private memories can be instantiated. At the
heart of each cluster is a 7x7 port ×pipes switch. Therefore, up to
24 processors can be deployed in the platform. Shared slaves exist
and are attached to a central 11x11 switch (see Fig. 5). The central
switch is connected to the computation clusters by means of ×pipes
pipelined links, whose length can be customized. Depending on the
amount of instantiated processors, the simultaneous traffic on the

Figure 5: The star-like topology under test

Figure 6: Link congestion under increasing traffic

links towards this central switch increases, resulting in congestion.
All of the processors are executing the same benchmark, which en-
compasses local computation (which happens within the peripheral
clusters) and performs communication and synchronization func-
tions by accessing the shared slaves on the central switch.

An analysis of the link congestion trend under increasing pres-
sure by IP cores can be found in Fig. 6, which plots the density
of ACKs and NACKs (ACKs and NACKs over clock cycles) when
using ACK/NACK flow control in the system. The chart is only
plotting figures for the links connecting the central switch to the
clusters; the links are here assumed to be very long, with six re-
peaters. As can be seen, with more processors, initially the ACK
density increases thanks to the increase in offered bandwidth. Just
before hitting the value 0.5 (one ACK every two cycles), growing
congestion and the intrinsic inefficiency of this flow control proto-
col impose a bandwidth ceiling, while a growing amount of NACKs
can be observed.

To evaluate the efficiency of the three flow control protocols,
we measured the average latency for communication transactions
across the congested links and the overall benchmark execution
time. Please note that clock frequency and physical layout were
assumed to be the same for all schemes. Results are plotted as a
function of the length of the pipelined links in Fig. 7. For T-Error,
the same simulations were carried out in two scenarios. The first
accounts for 50% less repeater stages (four instead of six, two in-
stead of three) and assumes a 5% error rate. The second scenario is
more conservative, with as many repeaters as in other protocols and
no errors. In both cases, a resynchronization stage is needed before
the receiving switch. In the direct connection scenario, where it is
assumed that operation over the links can be safely achieved in a



single clock cycle, T-Error logic is unneeded and this case reduces
to the direct STALL/GO connection. Under all circumstances, both
variants of T-Error and STALL/GO exhibit similar performance.
The latency advantage gained over STALL/GO by the aggressive
deployment of T-Error is mostly offset by the need for a resyn-
chronization stage and by some penalty upon transmission errors;
for short links and in low congestion environments, T-Error can
even perform worse. The conservative T-Error links perform al-
most on par with the aggressive ones because they trade repeater
stages for error-free operation. The conservative T-Error links al-
ways perform slightly worse than the corresponding STALL/GO
schemes due to resynchronizer latency, but the transaction over-
head is negligible. As expected, if links are very long (six repeaters:
Fig. 7(a)), the round trip delay imposed by the ACK/NACK proto-
col proves to be a major drawback, and latencies increase steeply
with congestion. With shorter links (three repeaters: Fig. 7(b)),
the ACK/NACK overhead decreases, and substantial performance
parity is achieved if the switches are directly attached (Fig. 7(c)).

In Fig. 8, the overall benchmark execution time is reported just
for the longest link scenario. The trend is of course similar to that
of the communication latency over the congested links, but differ-
ences are smaller because they are masked by the time spent in
local computation.

The aggressive T-Error variant achieves lower communication
latencies by accepting a certain amount of transmission errors as
a tradeoff. Determining this amount is not a focus of this work.
So, in Fig. 9 we explored the design space by assuming different
self-induced error probabilities. The plot is reporting figures for a
long link, which is assumed to have a 0% to 27% error rate per-
centage. This number expresses the percentage of errors per clock
cycle (not per transmitted flit), and is for the whole link. Laten-
cies are normalized against the ideal error-free case. As the plot
shows, under heavy congestion, T-Error is by design able to almost
completely mask errors, because error penalties can be hidden be-
hind congestion-triggered stalls. Under light traffic, transmission
faults have a more noticeable impact, with 6% worse transmission
latency when comparing a 27% link error probability against the
ideal case. Still, T-Error is very good at minimizing the impact of
faults on performance.

5. CONCLUSIONS
As expected, as can be seen in Table 1 and by looking at Sec-

tion 4, STALL/GO proves to be a low-overhead efficient design
choice showing remarkable performance, but unfortunately is fault-
sensitive.

T-Error can be either deployed to improve link performance, or
to improve system reliability by catching timing errors. In the for-
mer design, we observed average latencies on par with STALL/GO,
but no error detection capability was present; in the latter case,
speed degraded slightly, in exchange for a partial but significant
reliability boost. In both alternative schemes, some area and power
overhead is incurred. Overall, we believe that using T-Error to
decrease the number of pipeline stages does not bring significant
performance benefits, while the partial detection capability can be
effectively exploited in a conservative design. Another possible op-
tion is the conversion of the timing margin budget into a frequency
overclock; while this choice holds good potential, we did not ex-
plore it in the present paper since it is only feasible if the surround-
ing NoC components (switches, network interfaces) are designed
to work at the same extremely high frequencies.

Figure 7: Communication latency over congested links of dif-
ferent lengths

Figure 8: Benchmark execution time under increasing conges-
tion, long links



Figure 9: T-Error performance under varying error probabili-
ties

ACK/NACK pays its most extensive fault handling support with
significant power and area overheads. Performance penalties were
also noticed in presence of heavy congestion and long pipelined
links. However, we expect that, in current and imminent design
technologies, links will need no more than three repeaters, the very
long link scenario being representative of a more distant future. In
low-congestion or short-link scenarios, the application-perceived
latency overhead of ACK/NACK turned out to be negligible.
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