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Abstract: Manufacturing and service processes today usually involve more 
than one process stages and operations. With an emphasis on achieving 
satisfactory product and service quality, multistage processes surveillance and 
fault diagnosis has become a necessity. Statistical Process Control (SPC) 
methods have been widely recognised as effective approaches for process 
monitoring and diagnosis. However, most conventional SPC methods focus on 
single-stage process without considering the multistage scenario. In this paper, 
we attempt to offer comprehensive references of statistical control methods for 
multistage manufacturing and service operations. Existing methods are 
compared and some future research topics are discussed. 
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1 Introduction 

As modern technology becomes increasingly sophisticated, most manufacturing 
industries, such as the Printed Circuit Board (PCB), semiconductor manufacturing, 
automotive body assembling, aerospace and many others include not just a single 
operation stage, but a large number of operation stages, namely multistage or 
multistations which we use interchangeably. For instance, Kim and May (1999) 
introduced a via formation procedure of multichip module dielectric layers made of 
photosensitive benzocyclobutene. The via formation process involves several sequential 
unique stages: spin coating, soft baking, exposing, developing, curing and plasma 
descuming. Likewise, the thriving demand for professional and meticulous service asks 
for more and more detailed labour division, services in telecommunication, banks and 
healthcare industries can be similarly viewed as a multistage process. For example, it 
may require the devotion of the sales clerks, cashiers and even the employees in the 
warehouse to provide customers shopping in a supermarket satisfactory service. For an 
international terminal, the vessel discharging process can also be divided into several 
stages: the quay cranes first unload the containers to the tractors, next the tractors 
transport the containers to the container yard and then the yard cranes unload the 
containers onto the stacks. In most cases, outputs from operations at downstream stages 
can be affected by operations at upstream stages. A product part or service transferring 
from one stage to the next stage in a multistage process may introduce extra variations 
that do not occur in a generic single-stage process. Thanks to recent advances in 
sensoring and information technology, automatic data acquisition techniques are 
commonly used in increasingly complicated processes with multiple stages, and a  
large amount of data and information related to quality measurement has become 
available. Thus, engineering and statistical approaches to make use of the multistage data 
and information regarding control and monitoring have become possible and beneficial 
in both industrial and service practices. 

A large variety of Statistical Process Control (SPC) schemes have been developed for 
quality and productivity improvement since the 1960s. SPC utilises statistical methods to 
monitor manufacturing processes with an aim to maintain and improve the product 
quality while decreasing the variance. Much research has been conducted on the issues of 
SPC and the resulting developments are readily available in the literature, see surveys of 
research on SPC by Lowry and Montgomery (1995), Woodall and Montgomery (1999) 
and Stoumbos et al. (2000). Nevertheless, conventional SPC methods are typically 
restricted to a single process stage in industrial and service applications. 

The last decades have witnessed great progress in studying multistage statistical 
process control. A body of literature can be found on the fault monitoring and 
identification in multistage operations quality surveillance. In this paper, we provide an 
extensive review of the literature on monitoring multistage manufacturing and service 
operations; the discussion also includes historical retrospection along with some ideas for 
future extension. The rest of this paper is organised as follows. In section 2 we discuss 
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the development in modelling multistage manufacturing processes. Multistage service 
operations monitoring methods are introduced in Section 3. An overview of statistical 
process control methods for multistage processes is presented in Section 4. Section 5 
contains extended methods for existing unsolved problems in multistage processes 
monitoring and diagnosis. The conclusion is presented in Section 6. 

2 Multistage manufacturing operations 

Many practical applications in multistage manufacturing processes can be found in recent 
literature. Zhou et al. (2003b) discussed an example of the 2D panel autobody assembly 
process, which contains multiple stages of assembly operations and product inspection 
for surface finish, joint quality and dimensional defects. The authors also reported 
another example in which hundreds of different stages were involved, and more than 30 
stages were needed just for the engine-head machining. Djurdjanovic and Ni (2001) 
studied a machining process that is a combination of multiple machining operation 
stages. A key problem in monitoring a multistage process is how to describe such a 
process. Historically, most of the researchers tried to model the multistage process with 
statistical models, such as linear regression models. However, it is essential to 
incorporate engineering knowledge in multistage modelling and analysis for more 
effective process control and monitoring. Statistical model-based methods usually cannot 
describe the relationship among stages explicitly due to a lack of engineering background 
and knowledge. Thus, a large variety of current literature adopts multistage engineering 
models in a linear state space model structure based on physical laws and engineering 
knowledge that describe the quality information of a multistage process. See, for 
example, Jin and Shi (1999) and Ding et al (2002b) for rigid-part assembly processes and 
Djurdjanovic and Ni (2001), Huang et al (2002a,b) and Zhou et al (2003b) for multistage 
machining processes. Also, Lawless et al (1999) and Agrawal et al (1999) discussed an 
AR (1) model, which could be put in a linear state space form, for representing the 
variation transmission in both multistage assembly and machining processes. The linear 
state space model structure provides an analytical engineering tool for modelling, 
analysing and diagnosing a multistage process. An extensive review of state space model 
can be found in Basseville and Nikiforov (1993) and Ding et al (2002a). A book-length 
treatment of unified state space modelling methodology of multistage process can be 
found in Shi (2007). 

The hierarchical nature of data generated from the multistage process suggests a  
two-level model. The first level involves the fitting of the quality measurements to the 
system input and quality information. The second level involves modelling the way that 
quality measurements change as a function of those measurements collected from 
previous process stages. Suppose a process has a total of N stages. Using the same 
notations as given by Jin and Shi (1999), a linear state space model of quality 
measurement on the kth stage of an in-control process is formulated by  

1 1

k k k k

k k k k

y C x w
x A x v− −

= +

= +
 (1) 

For 1, , ,k N= K  where kx  denotes the unobservable product quality information, such as 
the dimensional deviations of parts, The process noise, say common-cause variation  
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and unmodelled errors, is represented by ,kv  and the measurement error of the product 
quality is represented by .kw  1 1k kA x− −  denotes the transformation of quality information 
from stage 1k −  to stage k. kC is used to relate process states kx  to quality measures ky  

1kA −  and kC  are known constant matrices at stage k, which are derived or estimated from 
engineering knowledge, such as physical laws and process/product  
design information. Particularly, for univariate cases, kv  follows (0, ),vN σ   

kw  follows (0, )
kwN σ  with variance depending on stage index k. The initial state 0x  

follows 2
0( , ).N a τ  

Process faults or out-of-control conditions could be fixture errors, machining errors, 
thermal errors, measurement errors, etc. As summarised by Basseville and Nikiforov 
(1993), possible faults in a state space model can be roughly classified into two types, 
additive change and non-additive change. Most of the multistage process monitoring 
methods emphasise on detecting additive changes. The study on multistage processes 
monitoring and fault detection methods for nonadditive changes is still scanty. Zhou  
et al (2004) used a linear state space model with a fault effect term, ku , added to the  
right-hand side of the second equation in model (1) to fit the possible faults in the state 
transition between successive stages. In particular, their work focused on the variation 
diagnosability problem with known parameters, where the true in-control process 
parameters were assumed to be known or could be accurately estimated. In Figure 1, we 
illustrate the quality information flow of a multistage process whenever the 
aforementioned fault occurs. 

Figure 1 Diagram of a multistage process 

 

3 Multistage service operations 

Many researchers have noticed the trend that service quality improvement has become a 
necessity in many industries. Wyckoff (1984) claimed that SPC is a good method for 
service managers to monitor service processes, and also helpful for staff to conduct  
self-improvement. Palm et al. (1997) also pointed out that SPC would have great 
possibilities in service industries, such as health care and education, and has already been 
proven to be useful in healthcare industry. The adoption of SPC into service operations 
provides a huge opportunity for service quality improvement. However, there are also 
some obstacles to applying SPC in services, such as what to measure and how to 
measure. The main difference between a manufacturing system and service system is that 
customers are involved into service operations. How to measure the customers’ perceived 
quality is a challenge. Therefore, researchers investigated modification of quality 
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definition in services (Lehtinen and Lehtinen, 1982; Gronroos, 1983). One of the most 
popular definitions was proposed by Parasuraman et al. (1985). Service quality was 
defined as the extent to which the service meets or exceeds customers’ expectations of it. 
Parasuraman et al. (1988) identified five service dimensions from their survey across 
industries and developed the service quality measurement scale called SERVQUAL, 
which has been a widely used measurement scale of service quality (Athanassopoulos, 
1998; Lee et al., 2000; Soteriou and Chase; 1998; Soteriou and Zenios, 1999). TOPSIS 
(Hwang and Lin, 1987) and Loss Function (Ross, 1988) are also alternatives of 
perceptual quality measurement. Besides the perceptual measurement data of service 
quality, Klassen et al. (1998) identified the operating data of productivity, efficiency and 
effectiveness as three of the most widely used indicators in service operations. 

Many service operations are in a series of stages, but research in services area usually 
assumed that there is no relationship between stages ((Souteriou and Hadjinicola, 1999) 
and Van Looy et al (1998)). Based on that, Souteriou and Hadjinicola (1999) discussed 
the resource allocation problem in multistage service operations. In their research, they 
suggested a model to determine the resource allocation with a minimum loss of 
perceptual quality. Armstrong (1995) also proposed a model for a medical clinic problem 
by using perceptual data and service wait. Both models assumed that the service quality 
indicators in each stage are independent. It is still an open research question on how to 
handle the more practical situation that multiple stages are intercorrelated. 

Another important subject in service operations is to detect abnormal patterns and 
frauds in a service process. Abnormal patterns in data may be caused by various special 
causes in the process. In the past few decades, SPC has become the major method to 
detect and monitor manufacturing processes. Various control charts have been invented 
and used. Recently, a few researchers also tried to apply conventional control charts to 
service processes (Apte and Reynolds, 1995; Mehring, 1995; Sulek et al., 1995). These 
applications showed that control charts had a positive effect in helping service managers 
to find out special causes in processes. However, when managers are dealing with a 
multistage service process, they should apply conventional control charts with caution. 
Conventional control charts may obtain a satisfactory monitoring performance only if 
quality measurements in every stage are indeed independent. Nevertheless, if the service 
process has a cascade property, that is, there may be some relationships between the 
quality measurements of current stage and those from upstream stages, conventional 
charts may not be as efficient in correctly identifying faulty stages. To solve such a 
problem, some advanced control charts have been invented, and many of them were 
based on a regression model (Mandel, 1969; Zhang, 1985, 1989; Hawkins, 1991, 1993). 
The cause-selecting control chart by Zhang (1985, 1989, 1992) is proven to be a useful 
approach to monitor cascade processes. Sulek et al. (2005) used the cause-selecting chart 
in a real grocery store process and compared it to the traditional Shewhart chart. The 
grocery store was modelled as a two-stage cascade process. According to their results, 
the cause-selecting chart outperformed the Shewhart chart in signalling abnormal 
patterns. However, the adoption of SPC to service industries/processes is sometimes not 
that straightforward. Jensen and Markland (1996) claimed that when people use 
SERVQUAL model as a measurement scale of service quality, univariate control charts 
may not be applicable. Because SERVQUAL model is made of five dimensions, if each 
dimension has a control chart, there will be too many out-of-control signals in all. 
Another drawback is that univariate control charts cannot show managers which 
customer has a poor quality perception of the entire service process. Jensen and 
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Markland (1996) have constructed a ‘quality perception control chart’ which is based on 
SERVQUAL modelled quality data. Besides, Hotelling 2T control chart and principal 
component analysis could also be used to replace the univariate control chart in service 
processes. 

4 SPC for multistage operations 

Although it is important for the practitioners to ensure and improve product quality by 
identifying and detecting out-of-control occurrences in multistage processes, it is not 
straightforward to extend conventional single-stage SPC techniques to a situation with 
multiple and correlated stages, where the input of the current process stage is related to 
the outputs of early stages. Efficient and effective multistage process control and 
monitoring remain a challenge due to the increasing complexity of multistage processes. 
A finished product may have up to hundreds of quality characteristics, and in each 
separate manufacturing stage, there may also be more than hundred of intermediate 
variables, which include system state variables and quality variables. Monitoring all of 
these variables becomes a challenging task. Therefore, to design a multistage process 
monitoring and diagnosis scheme, an important issue that needs to be considered is what 
to monitor and where to monitor. Below we first review the conventional SPC methods 
for multistage process control and then discuss recent advances in multistage processes 
monitoring and diagnosis. 

4.1 Multistage processes monitoring 

To detect out-of-control occurrences in multistage processes, we may monitor the 
quality measurements of the product at the final stage using SPC techniques 
(Montgomery, 2001), such as the Shewhart, the Cumulative Sum (CUSUM) and the 
Exponentially Weighted Moving Average (EWMA) control charts for univariate quality 
measurement and Hotelling’s 2T  , multivariate CUSUM and EWMA charts, etc., for 
multivariate cases. Nevertheless, these univariate and multivariate tools are designed  
for a single-stage process and cannot effectively identify the stage with root cause in a 
multistage process. Alternatively, we may also monitor quality measurements in 
individual stages by charting them separately. Hayter and Kwok-Leung (1994) 
established simultaneous confidence intervals for each variable mean in the multivariate 
quality control problem. Variables that fall out of the confidence interval are treated as 
errant variables. However, when the dimension becomes large, the detection power of 
their method becomes unsatisfactorily low. Moreover, ignorance of the fact that quality 
measurements at a certain stage are affected by the output quality from a preceding stage 
wastes much valuable information. This cascade property of multistage processes leads 
to challenging problems in statistical process monitoring and diagnosis. The regression 
adjustment approach, developed by Hawkins (1991, 1993), is often preferred by practical 
users when the process variables are related, but any subset of the variables can be 
impacted by an assignable cause without that effect being transferred to the others 
(Lowry and Montgomery, 1995). Due to its ability to tackle the cascade properties of a 
multistage process, Hawkins’ approach is applicable to multistage processes control 
problems (Shu et al., 2004a). In particular, Rao et al. (1996) address the application of 
Hawkins’ regression adjustment in multistage cases under a Bayesian statistical 
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framework. Shu et al. (2004b) investigated the run-length distribution of regression 
control charts in the presence of parameter uncertainty.  

However, since the quality measurements from different stages could be highly 
correlated, directly using the regression adjustment approach to monitor residuals from 
regression models may lead to misleading conclusions due to the collinearity. 
Alternatively, the co-linearity problem in regression adjustment approach can be partially 
alleviated by using the cause-selecting chart, see Zhang (1984, 1985, 1989, 1992) and 
Wade and Woodall (1993) for a review. Unlike the regression adjustment approach, the 
cause-selecting method includes only two adjacent stages in its regression model, and 
consequently leads to an easy identification of out-of-control stages. Current studies on 
the potential use of the cause-selecting chart for multistage processes can be found in Shu 
et al. (2003), Shu and Tsung (2003) and Shu et al. (2004b, 2005). 

Similarly, Zantek, Wright and Plante (2002) used a simultaneous-equation model  
to represent statistical relationships between quality measurements from multiple stages 
in a process. Zantek et al. (2006) proposed describing the multistage process  
with regression models and monitoring the residuals of stages with simultaneous 
CUSUM charts. 

4.2 Multistage processes diagnosis 

A large majority of recent research on multistage processes diagnosis adopts the 
engineering-based state space model. In this section, recent progress in research and 
implementation of the state space model in multistage processes diagnosis is thoroughly 
summarised. The existing fault diagnosis methods are roughly grouped into two 
categories: pattern-matching methods and estimation-based methods. 

In the pattern-matching methods, Ceglarek and Shi (1996) developed a pattern 
matching method for fixture fault diagnosis in an automotive body assembly process. 
Suppose one of the stages of the process experiences a malfunction, a consequence of 
such a change will be reflected in the final product or downstream intermediate products. 
Based on the historical data, an off-line diagnostic model that encompasses all possible 
fault patterns in the past can be built. Measurement data are collected online and analysed 
using some multivariate statistical methods to extract the fault feature patterns. Fault 
isolation can then be conducted by mapping the feature patterns of real production data 
with the predetermined fault patterns generated from the analytical model through 
principal component analysis. However, the diagnostics of this method require building 
an off-line diagnostic model, thus the possible fault patterns are restricted by the 
historical data. Ding et al. (2002a) also gave a fault monitoring and diagnosis method for 
detecting single faults in multistage processes with an application to an auto body 
assembly industry, fixture faults are identified by pattern recognition approach. Huang et 
al. (2002b) utilized a state space variation propagation model for multistage processes. A 
virtual machining concept was applied to identify faults between stages, and further used 
to determine the root cause of process faults. 

In the estimation methods, the variances contributed by the process faults are 
estimated in the state space model. Apley and Shi (1998) used least square method to 
estimate the faults and its variance. Zhou et al. (2004) formulated the multistage fault 
identification problem as a problem of estimation and hypothesis testing of a general 
linear mixed model. They used a MLE method and provided a detailed experimental 
study to illustrate the effectiveness of the proposed methodology. Recently, Ding et al. 



   

 

   

   
 

   

   

 

   

   8 F. Tsung, Y. Li and M. Jin    
 

    
 
 

   

   
 

   

   

 

   

       
 

(2005) summarised and compared the existing variance estimation methods and provided 
guidelines for choosing appropriate method under different scenarios. Furthermore, 
instead of investigating fault diagnosis methods, Ding et al. (2002a) and Zhou et al. 
(2003a) identified the necessary conditions under which an estimation method is 
applicable. Ding, et al. (2002b) studied the diagnosability of a multistage process. Zhou, 
et al. (2003b) also investigated the diagnosability of a multistage process with an 
example of two-dimensional panel assembly process. 

5 Extensions on multistage SPC based on engineering models 

Phase I analysis of SPC aims to identify the in-control condition in a set of historical 
observations colleted over time, so that in-control parameter values could be estimated. 
Up to now, only little work has been done on Phase I analysis of multistage processes.  
In the pioneering work of Zou et al. (2008), a popular multivariate change-point 
detection scheme is integrated with specific direction information based on a multistage 
state space model. From this integration, a multivariate change-point method was 
established for effectively testing and estimating a sustained shift in a fixed multistage 
process sample.  

On the other hand, the main concern of Phase II analysis of multistage processes is to 
detect the deviation from the in-control parameters estimated in Phase I as soon as 
possible, and at the same time, make correct diagnosis whenever the control chart gives 
out a signal; various statistical methods can be applied either to the original observations 
or to the residuals of each stage. A possible approach for multistage processes monitoring 
was given by Xiang and Tsung (2008); the state space model was adopted to describe a 
complex multistage monitoring problem. They assumed that fault only occurs in one 
stage and applied a Group Exponential Weighted Moving Average (GEWMA) charts to 
the one-step ahead forecast errors of each stage. Also, the EM algorithm was applied to 
estimate the model parameters since the model parameters are usually unknown in 
practice. Zantek (2007) also used state space models for multistage processes. The 
original observations were treated as multivariate data and multivariate process control 
techniques were applied when multiple faults occurred.  

Several extensions in the multistage SPC research that are based on engineering 
models are further discussed in the following sections. 

5.1 Identifying multiple faults in multistage processes 

Real world is complex, and multiple faults could occur simultaneously. How to detect 
and identify multiple faulty stages in multistage processes is still rarely explored. Most of 
the literatures mentioned thus far only consider single faults in a multistage process. 
Even multiple faults are considered, efficient online diagnosis methods were not 
provided. Zantek (2007) gave much attention to the monitoring aspect, but ignored how 
to identify the distinct faults. Lai (2000) proposed using multiple hypotheses testing 
methods to diagnose and identify the faulty variables in a multivariate distribution, which 
can be naturally adjusted for a multistage process. However, Lai’s method may be invalid 
when a multistage process involves a large number of stages. The reason is that, as the 
number of stages increases, the detection power of the multiple hypotheses testing 
methods that aim at controlling type I error rate would reduce dramatically and become 
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useless in practice. Nevertheless, thanks to the advance in modern statistics, new 
multistage processes control and diagnosis schemes for detecting multiple faults could be 
established based on more powerful multiple hypotheses testing methods. 

A possible approach for multistage processes diagnosis is to formulate it into a 
multiple hypothesis problem. Most change detection algorithms, according to Basseville 
and Nikiforov (1993), are based on generating ‘residuals’ from the measurements that 
reflect the change in the process and then designing decision rules based on the residuals. 
Therefore, based on model (1), the standardised one-step ahead forecast error of ,n jy  
given , 1,n jy −  as denoted by Durbin and Koopman (2001), , ,n je can be calculated from the 
recursive method below: 
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where the initial values are 1, 1, 1 1 0 ,j jy C A aυ = −  1/ 2
, 1, 1 1,/ , 0n j j je V uυ= =  and 

1

2 2
1 1 .W Aωσ τ= +  When the process is in control, Durbin and Koopman (2001) showed 

that ,n je  is independently and identically distributed as a standard normal distribution, 
(0,1).N When a particular stage of the multistage process undergoes a step change in its 

state transition equation, the residual mean of that stage will experience a mean shift 
while its variance remains the same. Thus, the multistage monitoring and diagnosis may 
be formulated into a multiple hypotheses testing problem: 

( )
0,  ,

1,  ,

: (0,1), 1, ,

: ,1 , 1, ,
n n j

n n j n

H e N n N

H e N n Nµ

∼ =

∼ =

K

K
 (3) 

where 0.nµ ≠  
Conventional multiple hypotheses testing methods applied to multistage processes 

monitoring are mostly Bonferroni-type methods, such as in Zantek et al. (2006). 
However, the power of such testing methods aiming at controlling the type I error rate 
becomes unsatisfactorily low when the number of hypotheses is large. A similar  
problem of high-dimensional multiple hypotheses testing also occurs in microarray 
genetics research. Microarray data may consist of up to thousands of individual DNA 
sequences. To compare gene expression between the control and treatment groups, 
researchers have to simultaneously test up to thousands of hypotheses. When 
conventional multiple hypotheses testing methods are used to differentiate genes, their 
power becomes so low that only few different pairs can be found. To tackle this problem, 
a False Discovery Rate (FDR) control approach has been proposed (Benjamini and 
Hochberg, 1995) and used extensively in recent microarray research. Instead of 
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controlling the probability of making one single wrong rejection, FDR approach controls 
the proportion of wrong rejections to the number of all the rejected hypotheses. It has 
been proved that when all the hypotheses are exactly true, controlling the FDR is 
equivalent to controlling type I error rate. When some of the alternative hypotheses are 
true, as in reality, controlling the FDR would provide much higher power. Li and Tsung 
(2008) introduced FDR control method into multistage processes monitoring and 
diagnosis. By integrating the false discovery rate control method and the conventional 
control schemes together, the simultaneous Shewhart, CUSUM or EWMA control charts 
proposed by Li and Tsung (2008) demonstrated higher multistage processes monitoring 
and diagnosis capability. 

5.2 Multistage processes chart allocation 

Chart allocation problem in multistage processes is another important issue that needs to 
be emphasized. Cost and resources are always limited in reality and it is not always 
possible to measure outputs and set up traditional control chart in every stage in a 
multistage process. Previously, chart allocation decisions are usually made based on 
common sense and experience. Due to the lack of systematic way to support the 
decisions, many of the decisions lead to deteriorated monitoring performance and wasted 
resources. Inspired by the cascade properties embedded in multistage processes, Jin and 
Tsung (2008) provided a more systematic and economic strategy for control charts 
allocation. Provided that stage correlation is treated as a critical factor  
in determining the decisions, efficiently monitoring the multistage process with simple 
control charts becomes possible. Agrawal, Lawless and MacKay (1999) analyzed  
the variation propagation model, which is in the form of a state space model, of the 
multistage process, with an aim to identify the stages which contribute most  
to the variance of the final product. Their results provide a clue to which stage should be 
monitored. Therefore, by allocating control charts in appropriate position in the 
multistage process, better performance in monitoring multistage processes can be 
achieved. Up to now, not much research works have been done on this topic. 

If we can identify fault patterns of mean shift offline using the modern techniques, 
such as CAD, or expert knowledge (Ceglarek and Shi, 1996, Apley and Shi, 1998, 
Ceglarek et. al 1994), an appropriate chart allocation strategy could be possibly designed: 
According to the stream-of-variance (SOV) model in a state space form (see equation 
(1)) (Shi, 2007), the correlations between stages and the propagation of faults can be 
obtained. By using the state space model, the noncentrality parameter-δ , in the 
downstream stages of the fault, can be obtained as: 

( )
[ ]2 2 2 2 2

1 1 1 21

*

...

i
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n n
n n l nl
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σ σ σ

=

−=

=
+ +

∏
∑

 (4) 

Based on the above result and the type of control chart we use, say, EWMA chart, we 
can obtain the out-of-control ARL of the downstream stages of the fault (Prabhu and 
Runger, 1997). If we consider processing delay between stages, the Average Time to 
Signal (ATS) can also be obtained: 

ATS ARL delayt= × +  (5) 
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where t is the time interval between runs. The stage which has the smallest ATS is the 
appropriate stage for the fault. The above approach can also be extended to multivariate 
cases with matrix manipulations. 

6 Conclusion 

Rapid development of modern technology, together with advances in information, 
sensoring and data acquisition technology, provide large volumes of data that are 
routinely collected in a multistage environment. To effectively utilise such data and 
develop effective process control methodologies for multistage manufacturing and 
service operations is a very challenging task. In this paper, a review of SPC methods for 
manufacturing and service industries is provided. Various statistical methods can then be 
applied to either original quality measurements or residuals. In particular, the 
engineering-based state space model is reviewed and recommended to characterize 
multistage processes. However, research on multistage processes monitoring and 
diagnosis is far from adequate. Technical challenges still remain. For example, although 
the state space model can be used to describe a multistage service process as in a 
manufacturing process, how to determine the transition matrix and variances in the state 
space model in service processes is still a challenge. 
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