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The Metropolized Partial Importance Sampling
MCMC mixes slowly on minimum reversal
rearrangement paths

Istvan Miklbs, Bence Mlykati, and Krister Swenson

Abstract—Markov chain Monte Carlo has been the standard The general theory of MCMC states that the Markov chain
technique for inferring the posterior distribution of genome il be in the prescribed distribution after an infinite nuenb
rearrangement scenarios under a Bayesian approach. We presen o yanqom steps. A Markov chain has to approximate its target

here a negative result on the rate of convergence of the gendlsa . ~. " . . . .
used Markov chains. We prove that the relaxation time of distribution in a reasonable time, in other words, it has te m

the Markov chains walking on the optimal reversal sorting duickly to be applicable in practice.
scenarios might grow exponentially with the size of the signed We conjectured that the mixing of MCMC methods on

permutations, namely, with the number of syntheny blocks. genome rearrangement might be slow, since for a related
Index Terms—Stochastic programming (G.1.6.k), Markov pro- Problem we had already had a negative result: we had showed
cesses (G.3.e), Analysis of Algorithms and Problem Complexity that the sampling protocol of Ajanet al. [1] generates a
(F.2.m) Biology and genetics (J.3.a) distribution of minimum reversal sorting paths that migkt b
very far from the uniform distribution [28].
We present a negative result in this paper: if we restrict
the state space of a special type of MCMC that is used for
HE fact that the gene orders of genomes evolve lyenome rearrangement problems to the uniform distribuifon
inversions was discovered earlier [40] than the DNAninimum reversal sorting paths, the resulting Markov chain
double-helix itself [43]. Although the computational pteim mixes slowly. Although it does not prove, it gives rise to our
was clearly stated already in 1941, the first study of thsbnjecture that the same Markov chain might mix slowly on
computational complexity of sorting by inversions was pullarger spaces containing suboptimal solutions.
lished only in the '90s [22]. The first polynomial running &m
algorithm was given by Hannenhalli and Pevzner [19], which
has been subsequently improved [21]. The best algorithm
today takes sub-quadratic time to find an optimal sortindn pat The genome rearrangement problem calls for a transfor-
[41], and a linear running time algorithm exists that ca¢es mation of one genome into another using a set of possible
the minimum number of inversions needed to transform omeutations. Genomes are typically described as signed permu
genome into another (without giving a sorting path) [3].  tations: numbers represent the different genes and thes sign
Unfortunately, the problem does not scale well with theepresent the reading directions of genes. It is easy to show
number of genomes: the inversion median problem — nametlyat the signed permutations with the usual composition of
finding an intermediate genome that minimizes the supermutations form a group, and the mutations act on them
of distances from three input genomes — is known to lgroup action). Therefore, transforming a genogaeinto g
NP-complete [12]. Several heuristic approaches have bedsrequivalent to sortingy, *¢g; into the identity permutation,
published on finding the optimal inversion median of threel, +2, ...,+n (writing products from left to right, and
genomes, and some of them are based on considering halhce assuming that mutations act from the right).
optimal sorting paths. Siepel introduced an algorithm for A signed permutation can be represented as a graph of desire
finding all sorting reversals [38]. Braget al. [11] gave an and reality (see, for example, [4]). In this representatibie
algorithm to find all optimal sorting scenarios, howeveg thsigned permutation is transformed into a double-length- non
running time of this algorithm might grow exponentially it signed permutation replacing: by 2i — 1, 2i and replacing
the length of the input genome [7]. Counting all optimal-i by 2i, 2i — 1. This unsigned permutation is framed by
sorting paths and the problem of sampling from the uniforand2n + 1, wheren is the length of the signed permutation.
distribution of them in polynomial time are still unsolved. Vertices of the graph of desire and reality are the numbers
Markov chain Monte Carlo methods (MCMC) [29], [20]of the unsigned permutation together withand 2n + 1.
for genome rearrangement have been introduced a few ye@tarting with0, every other pair of vertices are connected in
ago, which try to explore the posterior distribution of rearthe unsigned permutation with a black line, and they aredall
rangement paths instead of highlighting a single optima. orreality edges, since they show the reality, i.e. what the neighbor
They define different models where genomes can evolve bj0 is, etc. Also starting witt), every node2; and2i+ 1 are
reversals [23], [42], [24], reversals and translocatid¥],[or connected with a grey arc above the row of vertices, and these
reversals, transpositions and inverted transpositioBf [33]. grey arcs are calledesire edges, since they show which nodes

I. INTRODUCTION

Il. THE GRAPH OF DESIRE AND REALITY
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should be neighbors to get the identity permutation. Siaohe denote the newly drawn coordinates wpfproposed fromz;,.
vertex of the graph of desire and reality has a degre® tdie It is easy to show that the acceptance ratio in Eqn. (2) can be
graph decomposes into cycles. We can distingaigénted and replaced by

unoriented cycles. A cycle is oriented iff there are two reality 7(y)T (s, w'|y)
edges with different directions on a traversing of the cycle m(xe)T(y, w|zt)

otherwise it is unoriented. By definition, intersecting legc o .
form components, which partition the graph. A component isWhereT(a’ wlb) tells the probability of proposing from b by

oriented if it contains at least one oriented cycle, othsewt choosing and modifying the coordinates without changing

is unoriented. The Hannenhalli-Pevzner theorem says tieat he equilibrium distribution,r, even if y can be proposed

o altering a larger set of coordinates wof [26]. When the
minimum number of reversals necessary to sort a permutati . .
: : . newly drawn coordinates af do not depend on the respective
o that contains only oriented componentsrist 1 — ¢(o),

wheren is the length of the signed permutation arfd) is the coordinates ofz;, the algorithm is called Metropolized Partial

: : ImPortance Sampling.
number of cycles. Since a reversal can increase the number
n the case of genome rearrangements, the state space of

cycles at most by (see for example [38]), the theorem CIaimi/ICMC is the set of allowed transition paths between two

that if a permutation contains only oriented componentsieth . .
) : enomes. Such a state space can be considered as being com-
is always a reversal that increases the number of cyclek by . ;
. rised of (n + 2 — ¢(o))-tuples of genomesy(, intermediate
and does not create an unoriented component. . . .
genomes connecting to g2, andgs). A Metropolized Partial
Importance Sampler cuts out a subpath from the current path,
[11. MCMC AND PARTIAL IMPORTANCE SAMPLING which is framed by genomes, and g, and draws a new
A discrete time Markov chain over a state spacés a subpath transforming; into g,. This subpath is drawn from
random walk over the state spadeand can be given by a a distribution that does not depend on the cut out subpath. In

®3)

non-negativel x I matrix P for which published implementations [14], [23], [24], [30], [33],34 the
Z o o new subpath is drawn step by step, drawing a new intermediate
: Pij = genome by considering the list of mutations that act on the cu
J

rent intermediate genome. If the allowed transition paties a
for all i. p; ; describes what the probability is that the randorthe minimum reversal sorting paths, then the next interatedi
walk jumps into statg in the next step if the actual state isyenome is drawn by applying a random, uniformly distributed
i. Under some mild conditions, such a random walk globalkorting reversal on the current intermediate genome. In the

converges to a distribution. Roughly speaking, after adlargiext section, we prove that this kind of MCMC mixes slowly
number of steps, the actual state will be a random statethe worst case.

following a given distribution, regardless of the startistgte
of the chain.

The Metropolis-Hastings algorithm is a general algoritiom t
create a Markov chain that converges to a prescribed distrift: Speed of Convergence of Markov chain Monte Carlo algo-
tion 7. It needs a primary Markov chain that is irreducible angithms
aperiodic on the state spacelrreducibility means that there  The Markov chain Monte Carlo methods provide an al-
is a non-zero probability to reach any stgtérom any state gorithm that constructs a Markov chain for any input data.
i after a finite number of steps. Aperiodicity means that tfBelow D denotes the data, and the convergence is measured
greatest common divisor of the lengths of the possible syclgs a function of the size ab. We would like to measure the
of the Markov chain with non-zero probability is Moreover, convergence of a Markov chain on state spagewith what
it is also necessary that for anyy < I, p,, > 0 implies is called the maximal variation distance from the equilibri
py,z > 0. The Metropolis-Hastings algorithm transforms thiglistribution after stepk starting in an arbitrary positiony.
chain to another chain in the following two steps: We define

« (proposal) Draw a randony from the primary chain’s

transition distributionT’(-|z;), where z; is the state in

IV. PARIS MIXES SLOWLY ON MINIMUM REVERSAL PATHS

Tip (€) := min{ko|Vk > ko, d, (6L Pr,7p) < €} (4)

D

which the chain is after step whered;, is the vector whose coordinates correspond to the
« (acceptance) Draw a randomfrom U[0, 1]. Letx;11 =  possible states of the state spageand which containg for
y if the coordinate representing state, and contaings for all
< % (2) remaining coordinates?p is the transition probability matrix
~ ()P y of the Markov chaingrp is the equilibrium distribution, and
and letx; 1 = x; otherwise. d,(-,-) is the variational distance defined as
The resulting Markov chai(;) will be reversible, irreducible 1 ) )
and aperiodic, and hence, it will converge 1o since the dy(m1,72) = §Z|W1(Z) — m2(1)] ®)
detailed balance holds [29], [20]. el

Sometimes each point in the state spAcan be representedWe say that a Markov chain converges quickly if
as a vector, and the primary Markov chain modifigs by

changing a subset (or window) of its coordinates,Let w’ max 7y (€) (6)

ip€lp
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is a polynomial function of bothog(1/¢) and |D|, and the Each ten-long cycle in the second part of the permutation
Markov chain converges slowly if there exists asuch that needs4 reversals to get sorted, and each of them Rés

for all [ € N, optimal sorting paths. Of thesg6, 4! = 24 paths reverse
max 7;,(€) = Q(|D]") (7) single numbers one by one, and they form a four-dimensional
pelp hypercube, i.e. they havel common intermediate genomes
Aldous [2] showed that in addition to the start and end genomes. The remaining
oD 1 two sorting paths reverse the first or last three numbers of
nax Tip (6) = 21— pp) log <) ) such ten-long cycles alternately, twice each. The Hanrlknha
tDEID pD) 2e

Pevzner theorem says that all sorting paths of a permutation

where pp is the second largest eigenvalue modulus, that i8¢ combinations of the sorting paths over its components,
max{A2 p, A p|}, Where ), p is the second largest eigen- arefore there are

value of the transition matriX’p, and A, p is the smallest

eigenvalue ofPp (if the Markov chain is reversible, all Ip| = 2 x 26™ x (8n)! (12)

eigenvalues are real numbers). Consequently, if the second (4n)l(4)"

largest eigenvalue converges teexponentially with the size sorting paths of theath member of the series. This set of

of the data, then the MCMC converges slowly. paths can be partitioned into two, equal size parts based
The Cheeger’s inequality gives a lower bound on the secog| \hich path they use for sorting the first component.

largest eigenvalue. We define the ergodic flow of a%gtC | o Sp be one of these sets. We are going to show that

Ip as F(Sp)/mp(Sp) converges td exponentially fast with, and
F(Sp) := Z Pp(y|z)mp(z) (9) hence, exponentially fast witlD| = 13n — 2.
2€Sp,yelp\Sp The first observation is that
and the conductance of a Markov chains F(Sp) _ 1 Z Pp(y|z) (13)
F(Sp) 1 m(Sp)  19pl g 4= \S ‘
dp :inf{ (S ) Sp C Ip, 0<’/TD(SD)§2} (10) DYSIDASD
TDSD sincerp is the uniform distribution. We proceed by cutting
It can be shown [27] that Sp into three parts such that the first two parts are ‘negligibly

1—9®, <\ (11) small, and the third contains an ergodic flow towards the
D > A2,D .

' complement ofSp that is too small. LetSp ; be the subset
It follows that the convergence of a Markov chain is necesf Sp which contains the paths in which there are less than
sarily slow if there are setSp, for which F(Sp)/7p(Sp) (74 %) n intermediate genomes between the first and last
converges td exponentially with D|. A heuristic explanation sorting reversals of the first component. Since each sorting
is that the small ergodic flow betweétp and its complement path contains8n reversals anddn reversals sort the first
means a bottleneck, and a Markov chain having a bottleneskmponent, there existsa > 1 for which
cannot be quickly mixing. Below we construct a series of data

with suchSps, hence prove that the proposed MCMC mixes 5D.1 =0 <1n> (14)
slowly in at least one case. S| a

since the reversals sorting the first component can be posi-
B. The example tioned without constraints ir(iZ) ways into each complete

For eachn € N we construct al3n — 2-long signed sorting path, and in less tha({”j)”) ways if all these
permutation. Fig. 1. shows the general structure of the permmutations must be put in a window that is less tlﬁﬁnk 19—1) n
tation from our example. Its graph of desire and reality cdang, and the number of possible windows in&arlong series
be split into two parts. The first part is a single componewf reversals isO(n?).
that consists ofin — 2 rainbow motifs, each chained to the The remaining sefp\Sp 1 contains sorting paths in which
next, with a six-long cycle chained to the end. The secorkde complete sorting of at Ieas—l%n ten-long cycles are
part containg: repeats of ten-long cycles being equivalent tbetween the first and the last sorting reversals of the large
the—1, —2, —3, —4 permutation. Such permutation exists focomponent. LetSp » be the subset afp\Sp ; that contains
everyn. The general permutation of the first part is shown ipaths in which at mosﬁn ten-long cycles are sorted with
Fig. 2, the second part contains the numbers in the identisithgle number reversals between the first and the last gortin
order, one positive sign is followed by four negative signseversals of the large component. It is obvious that theigtsex
namely, the second part of the permutation is aco > 1 for which

8n—1, —(8n), —(8n+1), —(8n+2), —(8n +3), 8n +4, ... 1Sp.l _ ( 1 )

It is easy to show that the first part of the permutation |5p| &
needsin reversals to get sorted, and it has exactly two optimaince the number of ten-long cycles that are sorted withlsing
sorting paths by reversals. Moreover, these two sortinggpanumber reversals are binomially distributed with m(%éh for
have only the start and end genome in common, all tike> 2n. Hence%n < %k, and we can apply the Chernoff

11 2
intermediate genomes of the two sorting paths are differemtequality.

(15)
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Fig. 1. The general structure of the graph of desire andtyeafithe signed permutation that we generated. See main textefails.

6n—2,6n—3,1,6n—4,6n—1,6n—5,2,. ..k 6n—2k—2,6n+k—2,6n—2k—3,k+1,. ..
2n—2,2n+2,8n—4,2n+1,2n—1, —(8n—2),2n,8n—3,8n—1

Fig. 2. The general form of the signed permutation for the fimhponent on Fig. 1

Let Sp,s be Sp\ (Sp,1 U Sp2). We have V. DISCUSSION ANDCONCLUSION
F(Sp) _ 1 (ZzeleyeID\sD Pp(yla)+ In this paper we showed that the Metropolized Partial
mo(Sp)  |SD v Importance Sampler might mix slowly on the set of minimum
ersn,z,yem\sD Pp(ylz)+ reversal paths. The cause of slow mixing are the big gaps

Pr(yla 16) In the optimal sorting paths, like the gaps between the two
Laespawetp\sp L0 )) (16) optimal sorting paths of the large component in our example.
|Sp.1| and|Sp 2| are upper bounds for the first and the secoridue to these big gaps, large portions of the actual sortitiy pa

sum, hence should be replaced in the proposal to get an irreduciblenchai
F(Sp) 1 1 The large changes cause small acceptance ratios, and even-
i (min{cl 02}”>+|SD| > Pp(ylz) tually slow mixing. One might argue that the Metropolized

©€5p,3,y€Ip\Sp Partial Importance Sampling could be improved on the above
mentioned example if it resampled mutations only on one
Recall that , component (whose mutations might not be consecutive on the
PD(y\JJ):Z T (y, w|z) min {17 WD(y?TD(x’w f‘/)} current path). However, big gaps are common in genome re-

- mp(z)Tp(y, w|x) arrangements paths, for example, it can be shown that hurdle

cutting and hurdle merging [19] sorting paths are disjoint
except for the start and the end genome. Both the hurdle-
cutting and the hurdle-merging paths might be numerous,
and we conjecture that the Metropolized Partial Importance

:Z min {Tp(y, w|z), Tp(z,w'|y)} (18)

and hencePp(y|x) can be bounded by

Pp(ylz) < ZTD(m,w/|y) (19) Sampler might mix slowly even on sorting two hurdles.
w Our result does not prove but suggests that the similar
Let ¢ = min {cy, c2}, and we have MCMC methods on the posterior distribution of all sorting

F(Sp) 1 1 paths [14], [23], [24], [30], [33], [42] might also mix slowl
—— <0 (n) + = Z Z Tp(z,w'|ly) (20) Indeed, the key point in our proof is that the back-proposal
mp(Sp) ¢ 1Spl 4 2€Sp 3, probability is vanishingly small for the majority of the seft
velp\Sp paths Sp, and we saw similar behavior in the case of the
where the first sum runs only on windows that contain at posterior distribution of rearrangement paths. The BADGER
least the first and the last reversal sorting the large coeion software [39], [24] has a pre-burn-in phase in which the
The inner sum sums for alj the probability that such a proposal and backproposal probabilities are omitted from
subpath is proposed in the’ window that transformg into  the Metropolis-Hastings ratio, and this makes the likeditho
in the Sp 3 set. For a particulag, there is ac3 > 1 such that improve significantly. If that pre-burn-in phase is switdtuf,
the probability of the transformation towards amyc Sp 3, the burn-in phase remains at low likelihood values and no
namely, s, . To(z,w'y) is O (é . This is because at convergence is obtained. Indeed, our experiments [13] stiow
least 3n ten-long cycles should be sorted by single numbdat without this pre-burn-in phase, the Markov chain dasts n

reversals for a successful transition. However, in the @sap COTVErge on Yersinia phylogenies. Therefore we had to use
distribution the number of ten-long cycles that are sortgd he BADGER software instead of our software, which does

single number reversals is binomially distributed with mea0t @PPly this pre-burn-in trick [33].
%k for k smaller thann and we can again apply the Chernoff _H_owever, this propf dogs not imply in any sense that no fast
bound. The number afs in the subsef,\Sp, is exactly|Sp|, MiXing Markov chain exists for sampling from the uniform

the number of possible windows is ordy(n2), hence for some distribution of minimum reversal sorting paths or posterio
1< ¢ < e distributions of genome rearrangement paths under a Bayesi

n framework. Indeed, there are at least two possible ways to
F(Sp) =0 ((1> ) (21) improve the mixing of Markov chains: with novel proposals
mp(Sp) min{ey, ¢z, 3} that might destroy bottlenecks and with parallel chaing tha
[0 exchange information. We show one example for each.
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« Letareversal be described as a double cut-and-join (DCJ)
mutation [8]. The DCJ representation of a reversal tells

which adjacencies are changed in the signed permutation.

Let sorting paths be described by their series of reversals
in DCJ representation. For example, the sorting path:
+3,44,—1,-2 — +1,—4, -3, -2 — +1,+2,+3,+4

is represented by(0,b3|b1,¢e2) (el,ed|b2,5). This
means that before the first reversal, the beginning of gene
3 was at the beginning of the permutation (represented
as 0), the beginning of gend was in adjacency with
the end of gene, and the first reversal swapped the
positionsb3 andb1. Similarly, the second reversal breaks
the adjacencies between ande4 and betweerb2 and

the end of the permutation by swappiag andb2. Note
that (a, blc, d) means the same reversal @sc|b, a), but
differs from, for example(b, alc, d).

VOL. 2?2, NO. 2?72, 2?22 2?72 5

first choose a random between2 and k£ + 1, then we
count all the neighboring reversals in the sorting path
in the ith coordinate that can be swapped. We select
a random pair, calculate how many commuting reversal
neighbors there are after swapping them, and calculate the
corresponding Metropolis-Hastings ratio with which we
accept the change. We compared this Markov chain with
the Importance Sampling method of Ajaeal. [1], and
showed that this latter method explores only a negligible
part of the possible sorting reversals. Since the Partial Im
portance Sampling method applies the same Importance
Sampling transition kernel, this again suggests that the
slow convergence of the Markov chain we described in
this manuscript might be a general problem in case of
real data, not only for the example we gave.

We also would like to highlight that a commonly used

Let the vertices of a graph be the minimum reversghethod, Parallel Tempering [16], also known @4 C)? [37]
paths of a signed permutation. Let two points of thigill not work. Indeed, we showed that an MCMC might mix

graph be connected iff at most four, not necessarifowly even if the target distribution is the uniform onegdan
consecutive reversals can be removed from each of thgie uniform distribution cannot be further heated.

DCJ representations such that the remaining patterns will
be the same (note that the remaining representations
of DCJ mutations might not represent valid DCJ op-
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erations). Our conjecture is that the graph will alW&yPB/CSOQSGG/l IM was also supported by a Bolyai
be connected if the signed permutation contains on :
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