Thesis Proposal as of January 7, 2003

Modular Programming with

Aspectual Collaborations
Thesis Proposal

Johan Ovlinger

Abstract

The holy grail of software engineering is to tackle the three pronged
problem of quickly building large, complex systems. We are once
again able to choose only two out of three. This thesis investigates a
system combining aspects—tackling complexity—with modules—
tackling building large systems quickly—in an attempt to provide a
solution for all three prongs.

We propose a programming construct called “Aspectual Collabo-
rations”, consisting of modules tailored to capture multi-object be-
havioral interactions, both at the explicit and implicit levels. Static
and dynamic properties of the construct are explored and a sample
implementation for Java provided. Finally, the construct is evalu-
ated against the claim of supporting all three prongs of the prob-
lem.

1 Problem Statement

The fundamental problem in software development is that it is too
hard fo write large, complex software quickly. The various di-
rections of research in computer science indicate differing beliefs
about which approaches will ultimately lead to a solution. This
thesis explores the intersection of the Object-Oriented Program-
ming (OOP) and Aspect-Oriented Programming (AOP) styles of
programming.

The key idea behind module systems is that by allowing the lan-
guage to enforce encapsulation of implementation details behind
an interface, clients of the implemented behavior are forced to re-
main oblivious to the details of its implementation—and hence im-
mune to changes to the implementation as long as the interface is
unchanged. Programs constructed from modules can thus be ana-
lyzed in these smaller pieces (the modules), rather than as mono-
lithic structures. If a module is reused, time spent understanding it
is amortized over all uses. Modules can be implemented separately,
resulting in streamlined parallel development, and reused in other
programs, resulting in an overall reduction in programming tasks,
without affecting other modules of the program. Thus, modules
allow larger programs to be constructed, and by enabling parallel
development and reuse, also signi£cantly speed up this construc-
tion.

However, not all behaviors £t neatly into a module. Common ex-
amples are error handling and context-sensitive behavior (where be-
havior varies depending on where it was invoked). In general, such
behaviors rely on, and modify, occurrences in other parts of the
program. We may £nd that code in one module affects an invariant
maintained by another module: for example, we may wish to mir-

ror a directory layout in memory, without having to re-write either
the i/0 module or its client. The specifcation is compact, but the
implementation touches all disk operations.

The AOP manifesto can be summarized as “languages have mod-
ules, but programmers have concerns.” The key insight/opinion is
that a single kind of module boundary — be it along class, procedure,
or group of classes — will not be suffcient to capture all the kinds
of concerns the programmer wishes to express. In order to cleanly
modularize his concerns, the programmer needs to draw module
boundaries in different directions under different scenarios.

Unfortunately, this also implies that the interaction points between
modules become less regular: if we wish to modularize a behav-
ior that is implicitly' invoked whenever a variable is modifed, we
cannot use the same interface that we would had we wanted to mod-
ularize a set of classes exposing a subset of their members. Infact,
the needs of Hexible concern interaction seem to contradict the strict
regimentation of module interfaces. Thus, many languages offer a
trade-off: either a module system catering to different dimensions
of concerns but with simple interactions between the modules, as in
Hyper/J, or capturing complex interactions between concerns but
offering conversely simpler modularity constructs, as in Aspect].

This thesis investigates what happens if we want the best of both
worlds: modules and aspects, and gives one data point of how we
needed to de£ne the concepts to allow them to work well together.
We design a language along these guidelines, provide an imple-
mentation using Java as a base OO language, and formally analyze
a small model of the language using a [much] smaller language as
the OO core. We aim to show that with suitable design, a module
language interacts very well with aspect oriented features.

1.1 Terminology

Because we want to use the same terms to discuss both modular
and aspectual features, we will use slightly different de£nitions
than introduced in [19] and normally used in literature. Our de£ni-
tions maintain the same Xavor as the previous de£nitions, differing
mainly in how terms invented for AOP can be retroftted to older
concepts like modules. For example, we refer to the interaction of
two concerns as an aspect, while normally an aspect is considered
to be an advice concern which is tightly coupled with some interac-
tion specifcation over some [more loosely] coupled base concern.
The rest of this section describes terminology in greater depth. Sec-

'Why implicit invocation is interesting is covered in the next
section.

Thesis Proposal as of January 7, 2003

tion 4.5 describes in more detail why we feel that a terminology
change is justifed.

A concern is a somewhat nebulous de£nition, including all pro-
gram entities that are involved with some part of the program. Ex-
amples of concerns are tracing, logging, class is-a and has-a graphs,
or maintaining some invariant. The language provides modules,
which may contain several concerns. We would like to have a con-
cern contained in exactly one module, but concern boundaries may
require more Mexibility than the language provides. The mismatch
between modules and concerns may force the concern to crosscuts
several modules. We say that a language supports the Separation
Of Concerns (SOC) when it has features that enhance the Xexibil-
ity of module boundaries, or provides different kinds of modules
to capture different concerns. Some examples of SOC include: the
ability to package small multi-class behaviors into a module, where
the £nal classes will be constructed from several modules; the spec-
ifcation of how to resolve real-time constraints; and the succinct
specifcation of a traversal path through an object-graph.

As a consequence of the many different and overlapping concern
boundaries, the interactions between them can be very complex,
with program artifacts participating in several concerns simulta-
neously. It quickly becomes burdensome to require all interac-
tions between concerns to be explicit in the code. From a practical
standpoint, explicit concern interaction hampers reuse of concerns
by hard-coding assumptions about the referenced concern. The
key contribution of replacing explicit interactions between concerns
with implicit ones is that the concerns can now be oblivious to each
other, which is a step towards allowing them to be analyzed and
understood in separation. On an aesthetic level, the interactions be-
tween concerns can be seen as a separate concern, which we should
be able to specify separately. We refer to the external speci£cation
of interaction between concerns as an aspect, and a programming
language as Aspect Oriented (AO) if it supports both separation
of concerns and the separate specifcation of the aspects of their
interactions.”

The points where concerns can interact—the points that aspects
talk about—are called join points. The join point model of a lan-
guage describes which kinds of information and control is provided
to the programmer. Our model includes declarations in the pro-
gram text—allowing class de£nitions to be enriched with additional
methods or £elds—and regions in the execution of the program—
allowing executions of a method to be monitored, and allowing one
join-point to determine whether it is within the dynamic extent of
another. Other possible join points include dynamic properties of
the program, such as real-time constraints, or remote invocation
considerations such as object discovery. Aspect] uses point-cut des-
ignators to declare sets of join points. Such sets only capture single
join points; there is no way to create a set of join-point tuples. For
example, the subject-observer pattern reasons about pairs of join
points, rather than individual points. If we wish to advise several
instances of the subject-observer pattern, we need sets of join-point
tuples, rather than join-points. In order to maintain type safety, we
require that each tuple in a join-point-tuple set have the same type.
This makes it attractive to view the set as a join-point table, with

ZNote that we are being intentionally vague about the
[a]symmetry of this relationship. While our solution uses concerns
mediated by a mutually external aspect, the most popular AOP lan-
guage, Aspect], organizes code asymmetrically into one base con-
cern, which is modifed by external aspects that combine interaction
specifcations and the advising concern.

an unknown number of rows, but where each cell in a column has
the same type.>

A join point can have advice associated to it by an aspect. Exam-
ples of advice are to introduce program text or to intercede in the
execution of the program point. Other possible advice also includes
declaring static errors—allowing the advice to specify interaction
pattern that should be Ragged as static errors if they occur—and
manipulating the type relationships of a collaboration.

The goal of separating concerns is to enhance both program main-
tainability, by increasing the clarity of code, and also to increase
productivity, by separating out functional blocks into units that
can be independently re-used. Using external aspects to control
the interactions between concerns amplifes both of these bene£ts
by removing explicit inter-concern references. This improves re-
usability by removing hard-coded dependencies and maintainabil-
ity by localizing interaction to the aspect.

Merely separating concerns’ interaction into an aspect does not by
itself promote reusable and maintainable code. Reuse and main-
tenance is hampered by several factors: Allowing concerns to in-
teract at arbitrary points contradicts the encapsulation principles
that allow modules to vary their internals as long as an external in-
terface is maintained. Without encapsulation, aspects are tempted
to encode assumptions about the base concern into the aspect—
including names, data structures, and call-graphs. Any change to a
concern can potentially invalidate the assumptions made by the as-
pect, increasing the maintenance costs of aspect oriented code. An
example is hard-coding class- and member-names from the base
application into the concern, which of course tightly couples the
concern to be used in contexts that bind exactly those names in a
similar manner. Likewise, encapsulation contradicts one of the fun-
damental assumptions of AOP: that the advising concern has com-
plete understanding of the implementation of the base concern —
not only which join points are involved in a behavior, but also how
and why. When all that is visible via the interface are exports, how
they are implemented, and how they call each other, also becomes
opaque to advice. The obliviousness of concerns to aspects implies
that there is no evidence of the aspect in the concern; we are re-
duced to searching all aspects to identify which may be invalidated
by a given modi£cation to a concern. If any join point can have ad-
vice, and that advice can be from any aspect, the programmer must
simultaneously understand all concerns and aspects that make up a
program.

These defects can be circumvented by adding a Xexible module sys-
tem to protect and encapsulate concerns behind well de£ned inter-
faces.

1.2 Solution

We propose a Xexible module language—Aspectual Collaborations
(henceforth ACs)—tailored to interact well with aspect-oriented
features. We add a strong encapsulation boundary to a group of
cooperating classes—the collaboration—allowing the classes and
their interactions to be analyzed as a unit. The encapsulation bound-
ary allows the collaboration to specify explicit imports and exports:
methods, £elds, and join points can be exported. The strong

3The use of existential types allows seemingly dissimilar join
points be viewed as having the same type.

4Support for join points in the interface is currently under de-
velopment, and not yet implemented.

Thesis Proposal as of January 7, 2003

encapsulation boundary allows each collaboration to be compiled
separately.

Collaborations can be composed, point-wise merging class de£ni-
tions, allowing explicit imports and exports between composed col-
laborations, and advice to be attached to join points. In the termi-
nology of Section 1.1, collaborations have two kinds of concerns
(and hence also aspects): structural and behavioral.

1.2.1 Structural Concern

The structural concern is captured by our module language. A num-
ber of participants make up a collaboration. Participants are like
Java classes in that they declare members—methods or £elds—and
form has-a and is-a graphs. Unlike Java classes, participants are
also able to declare members as expected, so that member must be
provided before the program is complete. Collaborations are com-
posed by attaching one or more constituent collaborations to an
output—or host—collaboration. The attachment process resolves
differences in has-a and is-a graphs between the interacting col-
laborations, with the output collaboration providing the graphs that
the attached constituent collaborations must be made to conform
to. Additionally, attachment links provided members to expected
members, and constructs the composed collaboration’s interface by
controlling which members and participants are exported or hidden.

A collaboration’s structural concern consists of participant and
member defnitions. These are also the join points of the collab-
oration. Attachment is the structural aspect, whose advice speci-
£es how a collaboration’s declarations should be added to the out-
put collaboration, and how its explicit member imports and exports
should be linked to other collaborations’ members.

1.2.2 Behavioral Concern

The behavioral concern deals with how one collaboration can inter-
cede in the execution of code in another collaboration, with neither
collaboration aware of the other. The join points of the behavioral
concern are method executions, with optional conditions on when
the join point is active. The advice we offer for method executions
is to reify them as £rst-class objects and then allowing advising
methods to use the API on these objects to control how the execu-
tion proceeds. The advising methods are able to inspect and affect
the arguments to the advised method execution, whether it is exe-
cuted at all or several times, and similarly control the result of the
execution.

Since structural aspects modify the typing relationships of struc-
tural concerns, and since structural concerns type behavioral con-
cerns, we can only reason about behavioral aspects in the context
of structural ones. Once structural aspects have united types for the
two concerns, we are able to determine whether the behavioral con-
cerns and advice are well typed in the new typing environment. We
are currently in the process of formalizing the constraints on struc-
tural aspects necessary to guarantee that well typed behavioral as-
pects and concerns remain well typed when interpreted in the con-
text of structural aspects.

Behavioral and Structural concerns may interact at the same point:
a behavioral concern may have a method’s execution as a join point,
while the structural concern has references to that method as a join
point. Such situations are handled just like concerns: the behavioral
concern is interpreted in the context of the structural. The details
of such interactions can be complicated. For example, an expected

method can be a behavior join point, and thus its execution can be
advised. When a method is provided to the expected method, it
is clear that all executions of the expected method should be ad-
vised, but it is less clear whether executions of the provided method
(which is now the same as the expected) should be affected by the
same advice.

One extreme case of interactions between structural and behavioral
concerns are Join Point Tables. Each column in the table contains
behavioral join points with the same type, while each row is a set
of related join points, sharing a common set of types. In order to
make all cells in a column have the same type while retaining the
ability to write powerful advice, we existentially quantify the types
that differ from row to row. These types can then be used during
attachment, allowing advising collaborations to be instantiated for
the types of each row: thus, join-point tables carry both structural
and behavioral types. Join-point tables can manually specifed, or
generated manually by matching against the participant graph. Ta-
bles can be exported and expected from collaborations, but like join
points have no representation at runtime.

1.2.3 Behavioral / Structural vs Dynamic / Static

This section hopes to clarity the de£nitions of closely related terms
that we are not rede£ning. We have used the terms “Structural” and
“Behavioral” to classify kinds of concerns and aspects, while the
terms “Static” and “Dynamic” are in common use in current aspect
oriented discourse. The terms seem to refer to similar concepts, but
there is actually no overlap in their de£nitions.

Static / Dynamic refers to the distinction of when an aspect is ap-
plied: before runtime, or at runtime. Runtime applied aspects are
often assumed to be under programmatic control, but this is not
the only possibility: for example a quality-of-service aspect can be
externally selected based on network congestion and applied dy-
namically.

Structural / Behavioral refers to what the concern talks about. Our
implementation is completely static, yet has both structural and
behavioral concerns. A more dynamic language might well have
structural concerns that were applied dynamically.

Join points can exist both at runtime and/or compile time, depend-
ing on the language. A dynamic AOP language might allow join
points to be passed as £rst-class values and advised at runtime, or
perhaps only allow activation or deactivation of advice at runtime,
without treating join points as £rst class values. Our implementa-
tion is static: we can not pass nor advise any kind of join point at
runtime. The API for behavioral advice does instantiate method ex-
ecution join points as Java objects, but only as representations of
the join point — the instantiated join point cannot be advised, nor
will it effect other instances of the same join point. However, the
join point instance is a £rst-class object, which allows a great deal
of Xexibility.

1.3 Thesis Contribution

Aspectual Collaborations combine powerful modularity constructs
with aspectual features, supporting external composition, separate
checking and compilation, and strong encapsulation, while also
capturing both explicit and implicit interactions between modules.

The focus of the thesis will be a thorough investigation of the se-
mantics of Aspectual Collaborations. We show that not only is

Thesis Proposal as of January 7, 2003

modular encapsulation compatible with aspectual programming,
but that encapsulation is in fact a powerful tool for structuring as-
pects. The thesis provides one data point describing how to balance
the power of aspects and the control of modules.

Adding encapsulation interfaces to code comes at a price: a mod-
ule must a-priori specify which join points it will expose to outside
advice, while languages without encapsulation—such as Aspect]—
can advise any point in the base code while the base code re-
mains completely oblivious that any interaction will take place at
all. However, the gains from our approach outweigh the costs:

Modular reasoning. The biggest gain attributed to modularity
is that the program can be reasoned about in smaller units. We
show that ACs allow modular reasoning to be applied to aspectual
programs—both the base code and the advice that is applied to it.

Separate analysis. The interfaces that allow modular reasoning
are precise enough to allow ACs to be analyzed and compiled sep-
arately from their uses. We develop a set of rules that identify cor-
rect composition specifcations. We believe that these rules will
maintain specifc static guarantees, such as type safety and non-
invasiveness (as per [10]), which we state informally but do not
prove. We will however formalize and prove these properties on a
smaller language that avoids the complex semantics of Java.

External composition of aspects. By expressing composition ex-
ternally to the constituent ACs, we allow the programmer to see the
high-level architecture of the program without needing to inspect
the code. The integration of aspects and modules in Aspectual Col-
laborations extends this understanding to aspectual behavior. With-
out external composition of modules, we would need to compre-
hend the entirety of the program to understand what will happen
when some method is invoked.

Generic, type-safe aspectual behavior. We develop an API that
allows the advice to manipulate the join point (including executing
it multiple times, not at all, and storing the join point in a variable
for later invocation). Our API is carefully crafted to allow the ma-
nipulating code to be compiled separately from the join point being
manipulated, while remaining type safe. This includes the guaran-
tee that there will be no typecast failures in the generated adapter
code necessary for the API to function.’

Join-point tables. An important feature is to decouple the ability
to advice a method execution from the ability to call the method di-
rectly: this allows invariant-insensitive methods to be advised with-
out endangering the invariant. Thus, we need to have join points
represented directly in the interface of modules, rather than expos-
ing the methods they represent. All other AOP systems we know
of focus on manipulating sets of join points—pointcuts, in normal
nomenclature. We have discovered that in order to achieve type-
safe reuse of generic aspectual behavior, all related advice must be
attached in the same context, necessitating use of sets join-point
tuples, rather than unstructured sets of join points. Thus our inter-
faces contain what we call Join-Point Tables (JPTs), and account
for them in our precise but smaller model of ACs.

JPTs additionally allow us to directly express how state should be
shared between advice to join points in a set. Thus, we are able to
clearly differentiate between state that is local to one join point, to
a join-point tuple, to a table, or global for the whole application.

5We mention this as Aspect]’s whole-program compiled advice
does not have this property. See Section 3.1.

Terminology. Our partial rede£nition of “aspect” and “concern”
allows us to use the same terminology to discuss module systems,
multi-dimensional separation of concerns, and aspect-oriented pro-
gramming. This new terminology allows us to precisely state our
position in the continua of these concepts.

2 Collaborations

This section illustrates the modular features of collaborations: the
ability to import and export methods and variables, and how col-
laborations are composed. We start with an example that highlights
structural concerns, moving on to behavioral concerns for the fol-
lowing examples. The rest of the report will discuss ACs as they
are currently designed. In parallel with this report, we are investi-
gating the precise semantics of how join points can be added to the
interface of a collaboration. This will likely signi£cantly enhance
the match specifcations of Section 2.2.2.

The Aspectual Collaboration language is purposefully kept minimal
(for example, eschewing “before” and “after” advice for behavioral
join points for the more general “around”). A small, orthogonal
language allows us to keep the language implementation—and its
semantics—small and easily understood. This allows the user to
predict what is going to happen when a language feature is used
in a non-standard way, and more importantly to understand why
something failed to work when it goes wrong. The intent was to
layer a prettier language ontop of this base, but we have found that
the minimal language is surprisingly easy to program in.

2.1 Aspectual Collaborations Outlined

An Aspectual Collaboration consists of a participant graph, where
the nodes are Java-class like entities called participants, and the
edges are is-a and has-a relations. The set of participants is closed;
it can be extended only by recompiling the whole collaboration.

Each participant has zero or more members. A member is a £eld
or a method, obeying the normal semantics of Java. In addition to
the member modifers offered by Java classes, participants can have
three additional orthogonal member modifers:

o expected members are deferred members that, like abstract
members, must be provided before the collaboration can be
executed. These, however, differ from abstract members in
that both methods and £elds can be expected, and, more im-
portantly, in that an expected member does not inhibit class
instantiation, and is provided to the participant directly, rather
than by overriding it.

e aspectual methods are able to intercede in — advise — invoca-
tions of other methods. When an aspectual method is attached
to advise a host method, all invocations of the host method is
intercepted, reifed as a method call object, and passed to the
aspectual operation as an argument. The aspectual method
can then control and modify the details of the call, until re-
turning control to the original caller. An aspectual method
may be constrained to work with only a more limited set of
signatures, thereby gaining access to the arguments to- and
returned value of- the method execution.

e exported members are visible outside the collaboration.
When creating a composed collaboration, any members that
should remain visible must be explicitly re-exported. Non-
exported members become hidden behind the encapsulation
interface of the AC. Note that we will want to export all ex-

Thesis Proposal as of January 7, 2003

Listing 1. A simple host package

Listing 2. De£ning generic setters and getters

package variables ;
class Vars {
String foo;
Baz bar;

class Baz {
Vars var;

}

pected members that have not been provided, as otherwise
they will not be visible to subsequent attachment specifca-
tions, dooming the collaboration to never be executable.

These annotations are applied at the member—rather than
participant—Ievel for reasons of practicality rather than fundamen-
tal design. If we wanted to use imported participant usefully, we
would anyway need to specify signatures of members the importing
module needs to reference on the imported participants. Further-
more, we would also need to also import participants mentioned
transitively by the signatures of the imported members. We would
then need to apply some programming pattern like Jiazzi’s mixin
and open class patterns in order to be able to compose participants
referencing imported behavior and the imported behavior into one
exported participant. We avoid these obstacles by instead specify-
ing imports and exports at the member level.®

Unlike other module systems, we choose to derive the signature of
an AC from in-line annotations in its declaration, rather than an ex-
ternal signature applied to the declaration. The signature of an AC
consists of the exported and expected members of the collaboration,
along with the participants on which these members are defned.
However, the names expected and exported are confusingly similar,
so we often refer to these as the required and provided interfaces,
respectively.

A collaboration is either compiled directly from source code, or else
composed from already compiled collaborations. We call the result-
ing collaboration the output collaboration, and the already compiled
collaborations from which it is composed, the constituent collabo-
rations. The composition is akin to static linking, by which we
mean that a change to a constituent collaboration will not be re-
rected in the output collaboration until it has be re-composed. This
is merely an implementation choice, and nothing in the language
design would hinder a more dynamic approach.

2.2 Collaborations and Structural Concerns

Listing 1 is a package consisting of two classes. The only difference
between a trivial collaboration and a package is that a collaboration
is a unit of compilation and is thus closed to subsequent addition of
participants, while a single class can be compiled to augment an ex-
isting package. Since we will not be adding classes to the package,
it can also be claimed to be a collaboration with two participants.

A slightly less trivial collaboration is adviceSetGetAttribute in List-
ing 2. Its HasAttribute participant defnes a pair of set and get

6Collaboration-private participants are easily achieved by omit-
ting them from the type mapping phase of collaboration attachment.
This is only a possibility for participants that don’t appear in the ex-
ported signature of the collaboration.

1 collaboration adviceSetGetAttribute ;

> participant HasAttribute {

s expected AttributeType aName;

public void set (AttributeType aName) {{
this .aName = aName;

public AttributeType get () {{
return aName;

o 1}
0}

11 limited participant AttributeType ;

L TS

methods 7 for an expected attribute aNane, which will only be pro-
vided later. If adviceGetSetAttribute is composed with another col-
laboration, and aName is mapped to a concrete £eld, the effect will
be to introduce a setter and a getter for the expected £eld. Compo-
sition is specifed by attachment clauses.

The limited keyword (line 2.11) allows for an external class (such
as String), for which all modifcations are prohibited, to play the
role of AttributeType. Limited participants could hypothetically also
be mapped to primitive types such as int: this would require a
small amount of automatic modi£cation to the compiled partici-
pants, as they are represented as Java . class £les containing byte-
code that treats primitive and Object types differently, and would
additionally restrict how such a participant could be used.

2.2.1 Attachment

A composite collaboration is created by combining several con-
stituent collaborations, and specifying (a) the pointwise mapping
of constituent participants to output participants, and (b) how the
members that thus end up on the same participant should be pro-
vided and exported. The composition specifcation controls the
structural concern of our application. Syntactically, this is ex-
pressed in an attachment specifcation, and we say that the details
of how one constituent is mapped to the output collaboration is its
attachment. 8

In greater detail, a composite collaboration is composed from one
or more constituent collaborations, of which one is denoted the base
collaboration.’ The base collaboration is special in that it will play
the role of skeleton for the output collaboration, with all of its mem-
bers exported by default, rather than unexported, as is the default for
the other constituent collaborations. This asymmetry is a compro-
mise that allows us conveniently to model adding advice to a base
program while retaining a core module language that maintains
encapsulation principles. Once built—either by copying from the
base, or by compiling the in-line specifed participants—the output
collaboration is decorated by attaching the remaining constituents
collaborations as per the attachment specifcations.

"The double braces around the method bodies should be read as
if they were a single brace. Their sole purpose is to allow our im-
plementation to avoid parsing full Java, and are included in our pre-
sentation to indicate that all examples are verbatim runnable code.

8Currently, the attachment specifcation also manages behav-
ioral concerns, but that is set to change in the next version of our
system.

9The base collaboration can also be specifed in-line, and future
work includes efforts to derive a suitable base collaboration auto-
matically from the constituents and attachment speci£cations.

Thesis Proposal as of January 7, 2003

Listing 3. Attaching setters and getters for foo
1 collaboration adviceSetGetFoo;
» extends variables ;
s attach adviceSetGetAttribute {
4 Vars += HasAttribute {
5 provide aName with foo;
6 export set as set_foo ;
7
8
9

export get as get_foo ;

String += AttributeType ;
0 }

The adviceSetGetFoo collaboration (Listing 3), for example, is
created by designating variables as the base collaboration (line
3.2), thus creating the output collaboration from its contents. The
remaining constituent collaboration (adviceSetGetAttribute) is at-
tached (line 3.3) to introduce and subsequently export a setter (line
3.6) 1agld getter (line 3.7) for the foo £eld (line 3.5) of Vars (line
3.4).

The structural aspect expressed in the attach clause (lines 3.3—10)
controls the interaction of the two structural concerns: the base
from variables, and the constituent collaboration adviceGetSetAt-
tribute. Line 3.4 maps HasAttribute to Vars, which has the effect
of decorating the latter with three members provided by the former
(the methods get and set, and the variable aName). Participants
are mapped with the += operator, which also redirects any refer-
ences of the inserted type to the destination type (HasAttribute and
Vars, respectively). Inspection of Listing 1 shows us that Vars. foo,
which is the concrete £eld provided to aName, is of type String.
In order to satisfy the structural aspect’s static consistency require-
ments with respect to the host application, we need to map Attribute-
Type to String (line 3.4). Luckily, AttributeType has been marked
limited (line 2.11), which means that it cannot be decorated at all,
but is ?Illowed to be mapped to a non-collaboration type such as
String.

Once decorated, the members now on participant Vars can be
linked, allowing structural advice to affect explicit member refer-
ences between concerns. Line 3.5 provides the variable foo to the
expected variable aName. Lines 3.6 and 3.7 export the set and get
methods to more accurate names. Since aName was not exported, it
is not visible on the resulting participant.

2.2.2 Multiple Attachment

A collaboration can be attached several times. For example, we may
want getters and setters for several variables. Listing 4 illustrates
how we can attach adviceSetGetAttribute twice to provide getters
and setters for both the variables foo and bar (on participants Vars
and Baz, respectively).

While multiple attachments can be specifed in this way, duplicat-
ing the attachment clause for every variable is unsatisfactory. One
improvement would be to abstract an attach clause over formal vari-
ables (making an attachment template), and to instantiate it for a set

101 the cases that there are many £elds and only some of the
£elds should be provided with getters and setters a more expressive
matching is available.

1By redirecting references from AttributeType to String, we
achieve type parameterization as a degenerate case of attach-
ment [1, 2, 33].

of variable-binding tuples. Even better would be to generate these
tuples automatically by matching against the class graph and solv-
ing constraints. This corresponds to using a point-cut designator to
generate a set of join points (a point cut). This section describes
how such a mechanism works, how our needs differ from those
provided by point-cut designators, and how it can be used to attach
collaboration to several parts of a program.

A template attachment clause needs one or more textual holes to
be £lled in with appropriate values to generate a complete attach
clause, which is then evaluated to attach the constituent- to output-
collaborations. The mapping of template holes to text is called a
MT. By applying the attachment template to a set of MTs, we can
generate a set of attach clauses from a template. 12

The important difference between combining Match Templates
with an attachment template and attaching advice to a set of Join
Points (JPs) is that the former allows a whole collaboration to be si-
multaneously attached, maintaining its internal structure and shared
references, while advising a JP merely talks about one join point in
the concern. A MT allows us to write advice that can observe and
intercede in the interplay between several methods and variables.

Writing out lists of MTs manually is clearly an improvement over
writing out whole attachments, but only by a constant factor. A bet-
ter option is to generate MTs by evaluating a match clause against
the output collaboration’s structure. Listing 5 shows an example:
the attach clause (lines 5.7-14) looks very similar to Listing 3,
but with some identifers replaced by variable references (within <
...>). The identifers thus replaced control the name of the variable
for which we are generating the getter and setter, and the variable’s
type. Each application of this abstraction generates an attachment
indistinguishable from one written explicitly. Indeed, for the vari-
able bindings

(HasFields — Vars, fieldName — foo, FieldType — String)
the attachment is equivalent to that in Listing 3, and

(HasFields — Vars, fieldName — foo, FieldType — String)
(HasFields — Vars, fieldName — bar, FieldType — Baz)

corresponds to Listing 4. The match speci£cation (lines 5.3-6) will
generate the latter.

To generate a set of Match Templates from a match clause, it is
interpreted as a subgraph constraint against the output collabora-
tion. A tuple of variable bindings is generated so that the graph in
the match clause matches the output collaboration—where matches
is de£ned as a subgraph relationship. The set of all distinct match
tuples is generated.

We have already seen a template attachment to attach getters and
setters for all instance variables in the output collaboration, but to
use it we need to generate tuples binding the name of the variable,
the class it is de£ned in, and its type. lines 5.3—6 declare a match
clause that produces such a tuple from every [visible] instance vari-
able in every participant of the output collaboration. The keyword
role is used in place of participant to highlight that this is not a
declaration of participants, but rather a pattern match against them.
The result is that addAllSettersGetters will have getters and setters
for each of its variables foo, bar, and var (recall Listing 1 for the
de£nitions of the variables).

I2MTs are precursors to Join-Point Tables. MTs generate textual
results that are tightly bound to attachment templates, which is not
the case for JPTs.

Thesis Proposal as of January 7, 2003

Listing 4. Attaching two getter methods.
1 collaboration adviceGetTwo;
> extends variables ;
; attach adviceSetGetAttribute {
4 Vars += HasAttribute {
5 provide aName with foo;
6 export get as get foo;
7
8
9

export set as set_foo ;

}

String += AttributeType ;

i attach adviceSetGetAttribute {
12 Vars += HasAttribute {

13 provide aName with bar;
14 export get as get_bar;
15 export set as set_bar ;

17 Baz += AttributeType ;
18 }

__ Listing 5. Defning all setters and getters.
1 collaboration addAllSettersGetters ;
» extends variables ;
3 match {
4+ role <HasFields> {
<FieldType> <£eldName>;

<HasFields> += HasAttribute {
provide aName with <£eldName>;
10 export set as set_<feldName>;
1 export get as get_<£feldName>;

5
6
7 } attach adviceSetGetAttribute {
8
9

}
13 <FieldType> += AttributeType;

The particular matching clause in Listing 5 contains only variable
bindings, but in general a matching clause will contain hardwired
names as well, signifcantly constraining the number of generated
matches. More complicated matches can match chains of getters,
every pair of getters and setters (illustrated in Section 2.3), or in
general any constraint expressible by a partially labeled subgraph
of the static program.

In the current state of the language, the Match Templates generated
by match clauses must be immediately used to attach a collabo-
ration. We are currently working out a more advanced semantics
which would allow information similar to that in MTs to be named
and exported from Aspectual Collaborations. The MTs will then
be subject to manipulation such as concatenation, £ltering, and nar-
rowing. Sections 3.2 and 5.1.1 describe our progress towards this
goal.

2.3 Collaborations and Behavioral Concerns

So far, we have seen examples of combining collaborations, link-
ing expected and provided members, and controlling the interface
of a collaboration through exports, which constitute the structural
aspects of Aspectual Collaboration’s module language. This sec-
tion will focus on the other half, the behavioral aspects, where we
are able to intercept method calls without either invoker or invokee
being aware.

Listing 6 implements a simple collaboration which maintains some
state. Two aspectual methods (lines 6.4 and 8) keep count of how
many times inc is called between resets. We’ll use this collabo-
ration to introduce the concepts of aspectual methods and sharing
of state between attachments of a collaboration.

The novelty of Listing 6 are the aspectual methods reset and inc,
and—more precisely—how they are invoked. Aspectual methods
are seldom invoked directly, but instead intercede when the execu-
tion of the program reaches a Join Point that the aspectual method
advises. In our prototype system, we focus on method execution as
the only kind of behavioral join point. Other possible points include
variable access and object instantiation. It is also possible to attach
conditions to Join Points: a common example is Aspect]’s cow,
which states that a Join Point only £res if the program execution is
within the dynamic extent of a certain method.

Unlike exported and expected members which can be wired
together to form explicit references between collaborations—
allowing information and control to cross collaboration
boundaries—aspectual methods and behavioral join points
can be wired up to form implicit references between collaborations.
The difference is that in the explicit model, the calling collabo-
ration controls the interaction, while in the implicit model, the
called collaboration is in control. In the terminology of Filman and
Friedman [11], aspectual methods allow the host collaboration to
be oblivious to invocation of such aspectual behavior. We prefer
to think of aspectual methods as intercessionary, as they have the
ability to intercept and advise the invocation of advised methods.

Method Interception Through Late Binding Instead of aspectual
methods, it could seem that late binding and overriding would be
able to simulate method interception. Indeed, the ability to invoke
the overridden method from the overriding one is very similar to
how we want to be able to control the execution of the intercepted
method call in the advice of a join-point, and this is incidentally the
technique we foresee our reimplementation with Jiazzi as a back
end (Section 5.1.4) to use.

There we run into some diffculties if we try to use this technique
directly. (a) We would be unable to expose a method to be advised
without exposing it to direct invocation. The visibility that allows
us to override the method also allows us to call it directly, if only
from within the overriding method. (b) Our advice becomes tightly
bound to the exact signature of the method we are advising, losing
the genericity offered by the API of reifed method invocations. As
a consequence, it becomes problematic to allow the same advice to
advise a set of anonymous join points: all must now have exactly
the same signature. (c) Late binding works only if the runtime type
of the object is a subclass of the class with the overriding method.
Since the base code, whose method is being intercepted, is oblivi-
ous to advice, and hence the name of the subclass, we must use a
programming pattern that allows late binding of class names. This
is rather contradictory to the “oblivious” nature of the base code.

2.3.1 Aspectual Methods

Aspectual methods are like normal methods, but have a stylized
signature that starts with the keyword aspectual:

aspectual RetVal methname(MethM arg),

where both RetVal and MethM are user chosen participant names
that are either unde£ned or de£ned locally to the collaboration. The

Thesis Proposal as of January 7, 2003

Listing 6. Count incs between resets.

Listing 7. Counting all the getters and setters.

1 collaboration counter ;

> participant Counted {

3 int count;

4 aspectual ResetR reset (ResetM e) {{
5 count = 0;

6 return e.invoke ();

S

s aspectual IncR inc(IncMe) {{

9 count++;

10 return e.invoke ();

!

12

user thus names the types that reify the intercepted method call and
its return value.We’ll assume these names for the following discus-
sion.

Reifying the intercepted method call as MethM allows us to treat it
as £rst class value: storing it in a variable and passing it as an argu-
ment to other methods to invoke, in addition to controlling when (or
if) to proceed with the advised method call.Similar arguments hold
for the bene£t of reifying the returned value as RetVal. To maintain
type safety, each aspectual method in the collaboration needs dis-
tinct types for its reifed method call and return value.'3 Otherwise,
an aspectual method could attempt to return a RetVal object ob-
tained from proceeding with some other advised method execution
that generated some other return type.

The reifcation participants corresponding to the user chosen names
RetVal and MethM, are automatically generated by acc. The two
generated participants’ default API consists of only one expected
method on MethM:

expected RetVal invoke ().

The default RetVal participant has an empty APL !4 By having reif-
cation participants be completely ignorant of the signature of the
method call and return value they represent, an aspectual method
can advise methods of any signature (including raised exceptions or
void returns). Encapsulation guarantees that this holds even when
the aspectual collaboration has been attached to a host.

In addition to specifying exports and provides, the attach clause of
a collaboration also sets up which methods should be advised by
which aspectual methods. When a method with aspectual advice
is invoked, the system intercepts the method invocation. The inter-
cepted method invocation is reifed as a MethM object, and passed
as the sole argument to the aspectual method. The aspectual method
can invoke the host method at any time, multiple times or not at all
(returning either a default return value, or perhaps a return value
from a previous invocation). Both method thunks and return value

13 Actually, not only does every aspectual method need to have
distinct types, but every attachment of an aspectual method needs
to have distinct types. Our implementation simply maps RetVal and
MethM to fresh participants for each attachment.

14Optionally, the MethM’s API can be extended to provide ac-
cess to [some] arguments of the call. This of course reduces the
general applicability of the aspectual method, as it can now only
wrap methods whose argument-list contains these types. Similarly,
we can also gain access to details concerning result of invoking the
wrapped method, including its return value or whether it returned
normally or threw an exception.

1 collaboration usecounter ;

> extends addAllSettersGetters ;

3 match {

4 role <Part> {

<FType> get_<name>();

void set- <name>(...,<FType>,...);

} attach counter {
<Part> += Counted {

10 export count as count_<name>>;
1 around get_<name> do inc;

12 around set_<name> do reset;

13 }

14 }

objects are plain Java objects, and can be stored in data structures,
passed as arguments, or even persisted to the £le system. The aspec-
tual method is guaranteed eventually to return a reifed return-value
object (by its signature), which is unpacked to reveal the real return
value of the intercepted method call. This real value is then returned
to the caller, from which point the program continues oblivious to
the advice.

2.3.2 A Counter Example

Listing 6 presented an AC for maintaining statistics between calls to
two methods. To illustrate its use and attaching aspectual methods,
we present usecounter in Listing 7, which extends the collaboration
varsgns. By the extends clause, we know usecounter will contain
the structure imported from addAllSettersGetters: two participants,
three variables, and a getter and setter for each variable.

The match clause of usecounter (lines 7.3-7) illustrates a clause
that constrains some of the graph structure. The variable <Part>
will be matched against all participants that have at least one pair
of getter and setter methods. We identify as such a pair any two
methods whose names start with pre£xes get _and set_, have the
same name suffx, and talk about the same type. The constraint that
the methods have the same name suffx is expressed by the vari-
able <name> occurring in both lines 7.5 and 6. The setter method
may have arguments of other types as well, but the return type of
the getter method must occur at least once in the arguments to the
setter, which must return void. Each match against the output col-
laboration will bind the variables <Part>, <FType>, and <name>,
to which the attach clause (lines 7.8-14) is applied. The three gen-
erated tuples are:

(Part — Vars, name+ foo, FType — String)
(Part — Vars, name+— bar, FType— Baz)
(Part— Baz, name+ var, FType— Vars)

Listing 7 attaches collaboration counter three times. It is specifed
in line 7.11 that when a get method is invoked, inc should advise
the invocation. Likewise, line 7.11 attaches reset as advice to set-
ters. Each pair of getter and setter has a distinct count variable,
which are exported as Vars.count_foo, Vars.count_bar, and
Baz.count_vars, respectively. This makes the calculated statistics
accessible to the rest of the program.

The result of the collaboration is that each time a getter
(Vars.get_foo, Vars.get _bar, or Baz.get _baz) is called on the
resulting collaboration, aspectual method inc (line 6.8) intercedes,
incrementing the count variable corresponding to the invoked get-

Thesis Proposal as of January 7, 2003

el

variables
setsget

soeet
variables| | setaget counter variables | | (Setaget &
counter)

variables &

counter

variables &

(variables &
set&get) & setdget & (setaget &
counter counter counter)

Figure 1. Different ways to compose collaborations.

ter. Likewise, each setter causes its corresponding count to be reset
to zero, via reset (line 6.4).

Had we used wild-card syntax to generate a join-point set of all
methods that matched get_*, and likewise for set_*, we would
have been hard pressed to £gure out which join point in the for-
mer corresponded to a join point in the latter. Match Tuples makes
this correspondence explicit, and is key to our ability to advise the
interplay between several members.

2.4 Composition and Advice Interaction

Figure 1 graphically shows a number of ways to compose three
collaborations. From left to right, we can (a) attach collaborations
incrementally to the base (variables), as shown earlier in this sec-
tion, (b) attach all collaborations in one monolithic attachment, or
we can (c) combine two collaborations £rst, and then attach that
composite to the base.

These organizational options follow from our underlying module
system. However, things become interesting when we consider how
to order advice attached to a join point. Previous approaches have
left the order unspecifed, or specifed as a hard-wired relation be-
tween particular sets of advice (Aspect] aspects, in particular).

Exploring the options open to us, we could do something similar,
expressing the ordering of advice at the granularity of their contain-
ing concerns. Instead, we opt to allow ordering to be expressed at
the granularity of individual advice.

We have three scenarios, not coincidentally similar to Figure 1:
(a) attach advice to a join point, incrementally, in different attach-
ments, (b) attach a number of advice to a join point in the same
attachment, or (c) compose advice £rst, and then attach the com-
posed advice to a join point.

We can intuitively order these cases by viewing advice attached to a
join point like the skins of an onion with the join point at the center,
as in Figure 2. Each layer represents wraps its inner layer, deciding
if and how program control should proceed inward. Later attach-
ments of advice are added to the outside of the onion, creating an
easy-to-understand model of how the advice interacts. This inter-
acts very well with the external nature of our aspects: if we need to
have a careful ordering of advice to a set of join points, we merely
need to import the advice and join points into the same attachment,
and there specify the ordering. This approach has been success-
fully used by the QuO [28] project to order advice for managing
quality-of-service for a video stream from an unmanned aerial ve-
hicle. Alternately, behavioral advice can be composed £rst, and
then [perhaps later] attached to a join point.

Collaboration A Collaboration B Collaboration C

The JP is the method f()

Two advice (one of which composed) One advice around an imported JP
around an imported JP

Figure 2. Advice as skins of an Onion.

3 Analysis

While the Aspectual Collaboration language is relatively small and
orthogonal, it extends and interacts with Java. Java is anything but
a small language, with semantics that are infeasably large and com-
plex to work with. As such, we are hindered from proving any
properties about our language, as that would involve taking in the
whole of Java.

Instead, we hand-wavily defne the semantics of ACs, arguing
rather than proving that the type system is sound. To add weight
to this argument, we are investigating the semantics of how ACs
interact with a a much smaller language than Java. If we prove that
combination sound, it would suggest that the combination of ACs
and Java may be sound by the same principles.

3.1 Type Safety

Collaborations are separately compiled by a standard Java compiler,
and as such are well typed according to the rules of Java. In this
section we argue that composition of collaborations results in a col-
laboration which is as type safe as the constituents.

Java’s type Soundness theorem states that a well-typed Java pro-
gram will run (inde£nitely, or to completion), or fail either in an ex-
ception (including nullpointer dereference) or a cast. Since excep-
tions and casts are dynamic properties, which may occur on some
execution paths but not others, and the paths taken will clearly be
dependent on the details of composition, we cannot state any theo-
rems about which errors will occur dynamically. However, we can
talk about where in the program these errors can happen, and make
statements about how composing collaborations can affect these lo-
cations.

Given two collaborations which are both well typed according to
Java’s type checking rules, a successful composition of the two will
generate a new collaboration which is also well typed. In other
words, while the composed collaboration may uncover previously
unexercised casting and nullpointer errors, it will not increase the
locations where such errors could occur.

To argue this point, we note that

e [Rename] A systematic renaming of participants and mem-
bers of a collaboration should not affect its typing.

e [Extend] Adding a set of members to the participants of a col-
laboration should not affect its typing, given that the added
members form a well-typed set themselves, and they do not
name-clash with the existing members.

Thesis Proposal as of January 7, 2003

e [Encapsulate] The composition of two collaborations will not
introduce relationships between types that did not exist in the
constituent collaborations.

e [Generated] Inspection of the code generated by attachment
reveals that it is devoid of casts, and can be analyzed as a
well-typed collaboration itself.

e [Compose] Thus, composing two well typed collaborations
will result in a well typed collaboration that does not have any
additional locations where dynamic errors can occur.

Notably, Aspect]’s generic around advice does not have the [Gener-
ated] property. Aspect] has a somewhat unconventional genericity
mechanism for around advice:

o If the advice returns void, it can match any signature. The
language takes care of propagating the result of the proceed
call to the caller of the advice.

o If the advice returns Object, it can match any signature. The
proceed call will return a result Object to the advice, which
must return that (or some other object) as the result of the
invocation. This allows the advice to return completely dif-
ferent results than the advised method. Primitive types and
void are automatically wrapped in wrapper objects inside the
advice, and correspondingly unwrapped and returned after the
advice.

The body of the advice is type-checked against each join
point. It is important that the body be analyzed rather than
a method call, because the implicit upcast to Object to match
the return type would invalidate the stupid-cast'> check per-
formed by the Java compiler.

Unfortunately, all that is required to circumvent this check is
an explicit upcast to Object, which will result in a casting error
in the code generated by Aspect]. Combined with separate
compilation and abstract aspects, it is quite possible to write
code that will never cause a static type error, yet cause casting
errors at run time, and require a change to the [possibly third-
party] abstract aspect to £x.

e All other return types much exactly match the signature of
their use.

The possibility for casting errors are inherent in all APIs that return
a common supertype and require the client to downcast. We make
a point of the use of casting in Aspect]’s advice for four reasons:
it points out the danger of using in-band signaling—it is now not
possible to restrict advice to wrap only methods that return void
(and similarly Object); it also creates a false sense of security, as
some cases are caught, but not others; the errors occur in code that
is beyond the programmer’s control; and the type error is delayed
until the aspect is used, which may occur in a situation where the
aspect’s development has been closed (bought from a third-party,
or version branch).

Hyper/J also uses casts (to downcast arguments passed in as an Ob-
ject array), but the casts are optional and must be inserted by the
programmer, rather than being automatically generated. Thus, any
casting errors will be obvious and £xable by the programmer.

In addition to a composed program not causing runtime cast errors
not present in an uncomposed program, we also want it not to allow
casts to succeed that would otherwise have failed. If a participant

158ee [16] for a good discussion on the subtlety of stupid casts.

type is mapped to two different host classes in two attachments,
those two host classes should not be castable to each other.

Aspect]’s interfaces will likely cause casting in implementation of
interface methods.

3.2 Semantics of Aspectual Units

To enable a complete soundness proof, we will develop a semantics
for Aspectual Collaborations with a much simpler language sub-
stituted for Java. The semantics are currently incomplete, as they
are in a state of Xux from being used to analyze several missing
features in ACs. When these features have been resolved, the next
task will be to prove useful properties of the semantics. Finally, the
semantics will guide the process of adding crosscuts (here called
join-point tables) to the interface of ACs.

3.2.1 Basic Model

The two main issues that we need to model are how advice is
hooked up to a join point, and how join-point sets interact with
modular encapsulation boundaries. A straight forward semantics
can be achieved by modeling advice as a program transformation
and join points as locations in the program text. The resulting se-
mantics closely model the implementation strategy of acc, making
it more likely that we have implemented the language we meant
to. Unfortunately, a transformation-based semantics becomes very
awkward when attempting to model any other operation than adding
advice to locally visible methods. Notably, it is very diffcult to put
sets of such join points into the interface of a collaboration.

The solution is to model the join points directly in the semantics.
We introduce a simple language over join points, allowing them to
be def£ned, conditioned, and combined. This interacts with encap-
sulation in that we must maintain some structure between related
join points, so that rather than putting sets of join points in the in-
terface of modules, we need sets of ruples of join points.

A tuple captures the complete context needed to attach advice to
the related join points. Part of the context captured by the tuple
are type bindings for types that are generic in the advice: Since
every attachment of the advice will have different bindings, a join-
point tuple consists of a set of program locations, and type bindings
for the generic types of the advice. Type safety requires that each
tuple in a set contain the same type of join points; it is convenient
to visualize the set of tuples as a join-point table, where each row
is a tuple, and each column represents a particular join-point type.
The type of a table tells us the number of columns and types of the
join points they contain, but not how many rows a table has. It is
infeasible to expect to be able to £nd several tuples of join points
that have exactly the same types; however, it is feasible to £nd join
points with similar types; for example, all pairs of getter and setter
methods will have the types () — T and T — (), respectively, for
some type T which depends on the variable being affected. Thus,
the types in a table can be quantifed over some existential types (T
above) differing for each row.

Note that ACs do currently have a the more simplistic module in-
terface, where only participants and members are in the interface.
A concrete bene£t of a careful analysis of the semantics will be to
facilitate the task of adding join-point tables to AC interfaces.

A common example are the getters-and-setters of Listing 2. In List-
ing 6, we see a module that has advice that wants two related join

Thesis Proposal as of January 7, 2003

points: each such set of related join points will share a counter. It
would be straight-forward to add a generically-typed variable to the
counter, in order to ignore redundant sets. In our use of the counter
collaboration (Listing 7) we explicitly set the type of the £eld for
each attachment of the collaboration. Had we exported the three
attachments as a join-point table, we also need to capture the differ-
ent types that the type-variable <FType> takes. The join point table
captures these as values for existential types.

3.2.2 Benefts

The main reason for developing a semantics of to model the interac-
tion between advice and encapsulation is to prove that our minimal
semantics are sound: a well-typed program guarantees that unfore-
seen type-errors do not occur at runtime (in our toy language, that
covers all possible type-errors, but other languages may have more
powerful type systems that allow casting errors to occur at runtime
in a type-safe program).

The proof that our toy language is sound will strengthen our argu-
ment that the real implementation—using Java rather than a small
functional language, but a very similar module-system—at least
can be sound. Diffcult cases discovered in the process of work-
ing through the proof will guide where we are most careful when
adding the join-point tables to ACs.

4 Related Work

We compare our work against previous work in the AOP £eld, the
£eld of modules, that of composable components or classes, and
also the £eld of modeling.

4.1 Aspects and Concerns

Aspect] and Hyper/J are the two most mature and well known AOP
languages. Each focuses on a different facet of AOP: adding aspects
to the base language and separation of concerns, respectively.

Hyper/J [31] emphasizes structured software engineering rather
than aspectual features. Rooted in the subject-oriented program-
ming paradigm [14], Hyper/J supports merging and decomposition
of separately specifed class hierarchies: hyperslices. Unlike As-
pect], Hyper/J treats the base and the aspectual behaviors symmet-
rically, that is, a hyper-slice can model both the base and the aspec-
tual unit.

Hyper/J’s composition mechanisms focus on merging of structural
aspects, but limited support for behavioral aspects are also possible.
This is achieved via the several ways to implicitly combine meth-
ods, each one with differing constraints on the methods that can be
combined.

Hyper/J’s main restrictions are that the implicit connections are
quite restricted in what can be combined, and that it does not at-
tempt to enforce any encapsulation, instead exposing the whole
slice to composition.

Aspect]J [18, 19] takes a completely different tack to managing con-
cerns than Hyper/J. Rather than view concerns as modular units,
Aspect]Jviews them as language features. An aspect is a class-like
construct whose behavior is scattered throughout the program.

As a language feature, Aspect] aims at programmer convenience
and expressiveness rather than reuse or software architecture. Con-

cerns in Aspect] have no encapsulation whatsoever, but as a trade-
off join points can be very succinctly expressed.

The Aspect] team defne an aspect as a “modular unit of cross-
cutting implementation”. Note that this is not how we defned an
aspect in the introduction. We prefer to say that an aspect is “the
external specifcation of the interaction between several oblivious
concerns”. Sullivan et. al [30] point out that the Aspect] de£nition
of an aspect is relative to the module system and programming lan-
guage in question, and that aspects satisfy Parnas’ [27] information-
hiding criterion.!® They go on to demonstrate a bound on the mod-
ularity offered by Aspect], showing that Aspect] is not modular for
the interaction of aspect instances (in the language of Aspect]) —
not unsurprising, as Aspect] lacks the notion of aspect instances
(collaboration attachments, in our language). However, it is unclear
what the exact parameters used in this study were, as Aspectual
Collaborations are able to solve the problem posed in Sullivan et.
al with only one collaboration attachment. One possibility is that
structural modularity provide ACs crucial expressiveness to avoid
multiple attachments that would otherwise be necessary.

Semantics of around advice for method execution join points are
modeled in [32], but does so for an untyped language. This work
is extended to model the semantics of Aspect]’s compilation in
[23]. The two papers above do not consider separate compilation.
Method call interception is investigated by [20], but does not inves-
tigate around advice, which avoids describing how to control an in-
tercepted method call. The interceptions he models are amenable to
separate compilation. It appears that the three papers do not model
grouping join points or sharing state between advice.

4.2 Module Systems

Module systems are effectively the dual of Aspect], offering pow-
erful encapsulation and reuse support, but no support for aspec-
tual or concern-oriented features. However, just as Aspect] can
still achieve reuse without encapsulation, it is possible to achieve
some aspectual features without tool support—as in Hyper/J’s im-
plementation of an around method. Indeed, we are currently in-
vestigating the possibility to use a third-party module system as a
back end, rather than our own solution, in order to free up developer
resources.

Jiazzi [24] is the implementation of Units [12] for Java. Jiazzi
reuses Java’s core composition feature—inheritance—and the Open
Class pattern to construct the resulting classes from partial imple-
mentations. Late binding is used to allow mutually recursive depen-
dencies between modules. A Jiazzi implementation of the caching
example would likely look very similar to the Hyper/J version, but
instead of capturing the original method explicitly and then relink-
ing the resulting class to swap in the cached version instead of the
original, In Jiazzi we would specify that we expected the cached
method to be declared on a superclass, and then proceed to override
it, calling the original method with a super call.

Itis interesting to note that although developed completely indepen-
dently, the composition we use for structural concerns in acc and
the modular composition provided by Jiazzi are strikingly similar.
The main differences are how the £nished classes are assembled

16The summary of Parnas presages the weaving implicit in
AOP—for performance rather than expressibility—suggesting that
modules should composed into base language procedures, rather
than containing such procedures.

Thesis Proposal as of January 7, 2003

(Jiazzi favors inheritance, while we manually combine and link par-
ticipant .class £les) and the fact that we favor intrinsic typing for
collaborations, while Jiazzi allows the extrinsic signature of a unit
to be reused for several unit implementations.

Mixin-Layers [29] represent a collaboration as a layer of mixin
classes. This layer is treated as a unit, so that the interface to the
mixin layer is a set of superclass imports, and a set of class exports.
Mixin layers can be composed creating composite layers, allowing
modular construction of complex programs. Both Jiazzi and As-
pectual Collaborations generalize layers, in that both can represent
layers as a programming pattern, but can also represent other forms
of modular construction.

4.3 Component Systems

Component Systems can be seen as a dynamic form of module sys-
tem, where the modular units, components, have a representation in
the program, and are often instantiated and composed programmat-
ically at runtime, rather than than module’s declarative composition
at compile time. Furthermore, the result of linking components typ-
ically does not generate a new type, but rather links existing com-
ponent instances together to construct complex behaviors from sim-
pler ones.

Dynamically Attachable Aspectual Components share a com-
mon history with Aspectual Collaborations. Adaptive Plug&Play
Components [25] were developed in parallel and collaboration with
the author’s tentative work on Class Graph Views. The shared his-
tory explains the similarity between ACs and the work that has
evolved from AP&PCs, including the use of separate participant
graphs for each component, and attachment speci£cations to map
components to each other. Notably, Aspectual Components [21]
suggests the specifcation of generic “replace” methods to imple-
ment method interception. However, neither AP&PCs or Aspectual
Components has a convincing argument for type safety, and are de-
scribed in a very informal manner. Typing issues are addressed
in [26] by introducing an asymmetric system that is claimed to be
type-safe through virtual types.

Only ACs have even a partial implementation as described. A vari-
ation [15] on Aspectual Components has been implemented using
the interpreted language Lua. The implementation offers both dy-
namically and statically attached components, but seems not to be
able to advise methods that return results, nor is it type safe.

All the above systems are dynamic, in that a component attach-
ment is reifed at runtime, and can by dynamically applied or re-
moved. Unfortunately, the dynamic nature causes a few problems,
in that the necessary wrapping and unwrapping of objects to trans-
port them from the base’s type kind to the component’s type kind
needs to be exposed to the programmer. Although automatable to a
certain extent, the inability to declare two types equal means that the
programmer needs to be aware that wrapping is taking place. For
example, to transparently pass a container of objects between the
base and component worlds, the container needs to be traversed to
£nd and translate all sub-objects from one kind to the other. Such
translation would be necessary for all objects crossing from one
type kind to the other.

ArchJava [4, 3] is a a modern example of a component system.
Components communicate with each other over named sets of
methods, called ports. Component instances can be connected both
statically or dynamically, and in both cases, the system guarantees

that components only communicate to their neighbors, ensuring
communication-integrity. However, the authors point out that this
applies only to method invocations—shared object references can
still be propagated through the system allowing communication to
pass via the shared object.

ACs are not able to conveniently express, nor guarantee communi-
cation integrity for dynamic component connection, but are able to
quite well for the static case. Using encapsulation, we are able to
make statements not only which components a component is able
to talk fo, but more strongly which components it can talk about.

If a component doesn’t import another component’s type, direct
communication between them is impossible. This applies addition-
ally to auxiliary classes and objects that are passed between com-
ponents. If a component has only a limited view of a class (for
example omitting a sensitive £eld), then we can statically guaran-
tee that this £eld cannot be directly manipulated by the component.
If a component does not know about a class at all, it cannot com-
municate via objects of that type at all.

4.4 Modeling Languages

Moving away from implementation to the modeling arena, we see
some connections to modeling efforts.

Composition Patterns [7] adds the concept of composition pat-
terns to UML [5]. From the implementation suggestions in [6], we
believe that Aspectual Collaborations will be a very good match to
implement models described in this notation. It is unclear whether
Composition Patterns capture multiple attachments of a collabora-
tion, and how sharing of members between such attachments would
be expressed.

Catalysis methodology [9] has a strong emphasis on modeling col-
laborations. Catalysis uses a common model of attributes. In com-
parison, we use a participant graph, and have built-in support to
express aspectual decompositions.

4.5 Change in Terminology

As noted earlier, some terms we use are subtlety different from how
they are normally used in AOP discourse. The terms aspect and
concern—and consequently defnitions thereof—stem from As-
pect] and Multi-dimensional Separation of Concerns, respectively.
At the time, the connections between aspects, separation of con-
cerns, and composable modules were not fully understood, and the
terms’ de£nitions thus overlap somewhat. This section will present
slightly modifed de£nitions of these terms, with the goal of making
them orthogonal.

The de£nition of aspect from [19] is:

With respect to a system and its implementation using a GP-
based language, a property that must be implemented is:

A component, if it can be cleanly encapsulated in a general-
ized procedure (i.e. object, method, procedure, API). (...)

An aspect, if it can not be cleanly encapsulated in a general-
ized procedure. Aspects tend not to be units of the system’s
functional decomposition, but rather to be properties that affect
the performance or semantics of the components in systemic
ways. Examples of aspects include memory access patterns and
synchronization of concurrent objects.

Which is summarized in a statement about the goal of AOP [17] as:

Thesis Proposal as of January 7, 2003

The job of AOP is to turn a tangled and scattered implementa-
tion of a crosscutting concern into a well-modularized imple-
mentation of a crosscutting concern.

while [31] doesn’t present a direct de£nition of concerns, they do
describe requirements on their decomposition: !’

Many common maintenance and evolution activities result in
high-impact invasive modi£cations. (...) These somewhat di-
verse problems are due (...) to limitations and unfulflled re-
quirements related to separation of concerns [27]. Our ability
to achieve the goals of software engineering depends funda-
mentally on our ability to keep separate all concerns of impor-
tance in software systems. All modern software formalisms
support separation of concerns to some extent, through mecha-
nisms for decomposition and composition.

)

Decomposition according to concerns along a single, dominant
dimension is valuable, but usually inadequate. Units pertaining
to concerns in other dimensions end up “scattered” across many
modules and “tangled” with one another. Separation according
to these concerns is, therefore, not achieved.

Notice that all de£nitions involve behavior that has been modular-
ized, and which has some interaction with the rest of the system: an
aspect is a concern whose interaction is crosscutting in the current
module system, while a separated concern is a concern whose in-
teraction is de£ned along multiple dimensions of (de)composition.

Thus, the common vocabulary to describe both kinds of decomposi-
tion would separate what a concern does, from where and how it in-
teracts with other concerns. Hyper/J correctly realizes this, and has
separated concerns and their interactions into HyperSlices and Hy-
perModules, respectively. Aspect] combines a concerns and how it
interacts with the system into what it calls an aspect.

Whether the interaction of a concern is crosscutting depends both
on the language it is written in and the details of it’s interaction: A
logging concern for one method is hardly crosscutting. Therefore,
we choose to separate out what makes both Multi-Dimensional Sep-
aration of Concerns and Aspect-Oriented programming powerful,
and call that the aspect: the specifcation of concern interaction,
possibly in a crosscutting way.

Our terminology allows us to analyze both Hyper/J and Aspect]
with the same language. An Aspect] aspect can be decomposed
into the composition of a behavioral concern (the advice) and one
of our aspects (how it interacts with the rest of the program: the join
points). Additionally we can compare separation of concerns with
aspect orientation: Hyper/J provides strong support for structural
aspects, but fairly weak support for behavioral aspects, while As-
pect] is the opposite, providing weak structural aspects, but strong
behavioral aspects.

5 Conclusion

Much of what the thesis will contain has been worked out in detail
already, but there remain a few factors that need to be cleared up,
and a few speculative branches we can investigate as time allows.

7The quoted reference has been moved into our bibliography.

5.1 Remaining Tasks

At the programming level, there remains much feasibility testing to
be done. While we have presented a number of language features,
we have not characterized what problems they solve well. Ongoing
work with BBN on the AIRES project allows us to evaluate the
usefulness of Aspectual Collaborations in a number of real-world
scenarios. Additionally, a self-hosting reimplementation of acc,
the AC Compiler, using Jiazzi as the back end will simultaneously
highlight the similarities of the underlying module language, the
additional power afforded by aspectual programming, and validate
ACs for medium scale projects.

5.1.1 Join points in Collaboration Interfaces

Perhaps the biggest remaining task is to include join points into the
interface of an AC.

ACs, as described in this report and implemented, do not support
the export or import of Join points (JPs). This causes two prob-
lematic effects: (1) Currently, a method can be advised iff it it is
visible: the ability to advise a method is equivalent to the ability to
provide it to be explicitly invoked. (2) Furthermore, the advising
attachment must refer to advised methods by name.

Neither of these is a desirable property; a method may maintain an
invariant that only holds when invoked from within a context, and
requiring an attachment to name—and hence know how many—all
advised methods restricts it to work under exactly these circum-
stances: an additional method cannot be logged without adding it
explicitly to the interface of the exporting collaboration and the at-
tachment of the importing collaboration.

The obvious solution to the former effect (1) is to put join points
representing the static ability to advise executions of some method
into the interface of a collaboration. This would allow a collab-
oration to export the ability advise a method without making the
method itself visible. The latter effect (2) suggests that instead of
a number of single, named, join points, a named set of join points
would be a better alternative. By writing the attachment as a set
comprehension, it would apply equally to singleton sets as well as
sets of unknown size.

However, a set of join points is not suffcient for our needs.'® As we
mentioned in the discussion of multiple attachments (Section 2.2.2),
we need to specify the attachment of several advice simultaneously
in order to maintain shared state between the advising methods.
For example, if we have several push-pop method pairs, it would
not suffce to make one set of push methods, and one set of pop
methods, as this would break the cohesion of the pairs.

Join-point Tables The set in the interface needs to contain enough
information so that the attachment clause can perform the multiple
simultaneous attachments that Match Templates (MTs) are able to
specify. The same information that we can gain by interpreting the
MT in the context of an attachment template must be put into the
set in the interface. We will need this information when advising
the join points in the table, but will be unable to interpret textual
names against an attachment, as we won’t be able to see the attach-
ment (due to encapsulation) nor the context in which it was written.

181n general, there could be several differing sets of join points
in the interface, but for simplicity we’ll refer to the set.

Thesis Proposal as of January 7, 2003

Rather than Match Templates consisting of textual strings, the set
needs to contain tuples of Join Points.

Each tuple in the set can then be an argument to an attachment tem-
plate to generate a complete attachment. Because the exact details
of the join points in the set is [purposefully] obscured, we need to
type the join points so that we can be sure that our attachment will
be well typed.!® The type of a join point is merely the details it is
willing to export to advice: types and values of exposed arguments
and return values, and possible exceptions will be redected in the
join point’s type. The type of a tuple of join points is the tuple of
the types of the join points it contains. All tuples in the set comply
to the declared type of the set. This allows us to statically verify
whether a set of tuples will be compatible with an attachment tem-
plate.

Since the set contains tuples complying to a single type, it is con-
venient to view the set of join-point tuples as a Join-Point Table
(JPT). Each row in the table corresponds to one tuple, while each
column is one position in the tuple. We statically know the number
and type of columns, while the number of rows and the contents of
the cells (actual methods to be advised) is knowable only at compile
time by elaborating all compositions.

As a concrete example, when the MT that is generated by the match
clause in Listing 7:

(Part— Vars, name+— foo, FType — String)
(Part— Vars, name+— bar, FType— Baz)
(Part— Baz, name+— var, FType— Vars)

is interpreted against that listing’s attachment template, it specifes
that each pair of methods: Vars:get_foo and Vars:set_foo,
Vars:get bar and Vars:set bar, and Baz:get_var and
Baz:set_var, should be advised by inc and reset, respectively,
as one attachment. 20

Expressing this as a join-point table, we cannot rely on textual con-
catenation to generate names like get bar from the match name —
bar. Rather, we detail each method explicitly:

JPart, JFType | Part:: FType exec(), Part:: void exec(FType)
Vars, String | Vars::String get_foo(), Vars:: void set_foo(String)
Vars, Baz | Vars:: Baz get_bar(), Vars:: void set_bar(Baz)
Baz, Vars | Baz:: Vars get.var(), Baz:: void set.var(Vars)

The text above the horizontal line is the signature of the JPT, telling
us that it exports two participant types, and two method-execution
join points whose types reference those participant types. The rows
below the line are the actual values of the cells. These will not be
visible to the programmer unless he simulates the compiler manu-
ally. We have not decided on a syntax for generating JPTs, but it is
reasonable to assume that something close to the current matching
clauses can be used.

Manipulating JPTs However, the signature of this JPT is overly
precise for our purposes. To attach inc and reset we don’t need
access to the precise signature of the methods in the join point, and
if we want to concatenate this with another JPT, their signatures
need to match exactly. We will need to provide operators to allow
JPTs to be manipulated without revealing the contents of their rows.

191f there were a mismatch, this would be discovered at compile-
time, as all attachments are resolved before run-time, but without
types the programmer would be unable to discover the problem
other than by trial-and-error compilation.

20We’11 ignore the exported variable for now (c.f. line 7.10).

We expect that these operations will be needed: (1) Reorder and
drop columns from the table. (2) Filter rows according to some sort
of condition. The exact nature of the condition is yet unclear. (3)
Hide details about the join-point type of a column to make it more
general. This may require exporting more participant types from
the JPT, but can also result in fewer exports.

The third of these operations will allow us to transform the JPT
to the more generic signature shown below. Notice that only the
signature has been changed: the join points are untouched by hiding
details of the type. Furthermore, since we no longer reference Part2
in the signature, we no longer export it. In this signature, neither
join point publishes any type information, returning the any type
(-), and taking no arguments.

JPart | Part :: _exec(),
Vars | Vars::String get_foo(),
Vars | Vars:: Baz get_bar(),
Baz | Baz:: Vars get.var(),

Part :: _ exec()

Vars:: void set_foo(String)
Vars:: void set_bar(Baz)
Baz:: void set_var(Vars)

The types Partl and Part2 are existential types scoped over each
row. Thus we know that for each row in the JPT, there exists a map-
ping of collaboration participants to the existential types of the JPT,
so that the type of the join points in the JPT signature correspond
to the join points in the row. It is necessary to export the name of
the participant, as otherwise type mapping becomes diffcult and
the signature of the join point potentially ill-formed. This JPT sig-
nature tells us that both execution join points of a row are de£ned
on the same class.?!

Attaching advice to a JPT To use the JPT, we would attach its
de£ning collaboration, and write the attachment as a set compre-
hension. The £nal syntax has not been worked out, but it might
look something like:

1 aee

> attach hasJPT {

3 ... /I exports and provides from hasJPT

4 for (ThePart, getterjp , setterjp) in hasJPT.theJPT {
5 attach counter {

6 <ThePart> += Counted {

7 around < getter_jp> do inc;

8 around < setter_jp> do reset ;

9

}
0o}
11 }
0}

Remaining Remaining Tasks 1t is unclear what sorts of join
points we want to have in a JPT. We have discussed method-
execution join points above, but we may want to be able to ref-
erence additional members from advice attached to the JPT. For
example, if we have advice that verifes an invariant, we want to
intercede in the execution of potentially invariant-breaking meth-
ods, but also access any variables that form the variant. The
signature of a JPT that gives us access to executions of a get-
ter and the variable whose value is being gotten, might be:

JPart,3Var | Part :: Var exec(),Part :: Var field Indeed, we may
want to nest JPTs inside JPTs. This would allow us to very con-
veniently tackle 1e-to-n relationships like caching advice. Caching

21 3Part1,3Part2 | Part1 :: _exec(),Part2:: _exec() would
not tell us anything about the relative locations of the methods.

Thesis Proposal as of January 7, 2003

advice needs to have 1 cached method, but n invalidator methods.
Nesting JPTs will allow us to specify several cached methods, each
with its own set of invalidators.

5.1.2 Constructors

When collaborations are attached, we compose the participants of
the constituent and base collaborations per the attachment spec-
ifcation. During this process, members of the constituent par-
ticipants are systematically renamed, along with their references,
to avoid name clashes with other members. Unfortunately, some
members cannot be renamed without breaking the semantics of the
program. Methods overriding non-participant methods—such as
toString overriding a method from java.lang.Object—cannot be
renamed without breaking overriding, as we are unable to rename
the external method being overridden. Luckily, by overriding an
external method, the method would have been necessarily exported
anyway, so the situation only becomes problematic when a name-
clash occurs. This is likely to be a relatively uncommon problem, so
we can just force the programmer resolve the name-clash manually
at composition time.

Unfortunately, constructors face a similar, but trickier, problem.
Constructors—both instance and class initializers—are intricately
tied into the semantics of the JVM, with hardwired method names
and special instructions to invoke. The £rst complication is that
every participant will have constructors, which means that we are
guaranteed to get name clashes for every composition. Further-
more, there is a prede£ned order in which constructors will be in-
voked: superclasses are initialized before subclasses. For the pur-
poses of discussion, we’ll summarize this order as the invariant that
a participant’s constructor must be entered before any of that par-
ticipant’s methods are invoked on the object.

A partial solution is to transform constituent constructors into nor-
mal methods, and build a new “spine” of constructors where each
built constructor calls the super-constructor £rst, then invokes the
original constructor from each participant.

Unfortunately, we cannot guarantee the desired invariant, as a con-
structor is free to invoke any method, including an expected method
that is provided from another participant. This would require that
the providing participant had already been initialized, which we
cannot guarantee in general as participants can be mutually depen-
dent, implying that a safe order of initialization isn’t guaranteed to
exist. However, the situation is acceptable, as a similar interaction
happens in plain Java, when a constructor calls an instance method
which has been overridden in a subclass: that subclass’s method
will be invoked on an uninitialized object.

Finally, constructors can be overloaded, leaving us with an unclear
situation as to which constructor from one participant to combine
with a constructor from the other. Fortunately, encapsulation of
collaborations allows us to avoid the combinatorial explosion that
would have resulted had we needed to cater to all possible pairings.
We are faced with a choosing a heuristic or always making the pro-
grammer decide: we choose to combine constructors with identical
signatures by default, and allowing the programmer to optionally
specify other pairings.

Jiazzi [24] has a similar restriction, requiring all constructors in an
inheritance chain to have exactly the same signature.

5.1.3 Semantics

While we have convinced ourselves of the static safety of ACs, a
more convincing argument is necessary. This argument will take
the form of a fully worked out semantics for a version of ACs with
Java replaced by a very simple language. Both ClassicJava[13] and
FeatherweightJava[16] are candidates. The former provides a more
accurate reXection of the intricate features of Java, but is thus also
more complex to work with than the latter.

By proving a simpler version of ACs type sound, we will show that
the concepts are not inherently unsafe, and by carefully choosing
how we simplify ACs to achieve this proof, we will argue that ACs
are probably sound as well, at least at the language design level.

5.1.4 Jiazzi as a Back End

The current back end of acc is implemented using the Byte Code
Engineering Library [8]. It manually composes classes by insert-
ing bytecode from constituent collaborations into the output collab-
oration’s .class £les. Serendipitously, the .class £le format [22]
makes such moving very simple, as all member and class references
are indirected via handles (constant pool entries, in the JVM termi-
nology), so all that is required to combine two compiled classes is
to copy all constant pool entries from the destination into the source
constant pool, and adjusting their referencing byte codes to use their
new indices.

Ultimately, the implementation details of the byte-code munging
(as we call the composition of compiled classes) do not contribute
towards the novel aspects of ACs, and the maintenance of the
munger consumes resources better used in other parts of the imple-
mentation. Jiazzi is a mature implementation of the Units module
system, and chooses to compose classes via inheritance rather than
direct composition. As we note in Section 4.2, Units in general—
and Jiazzi in particular—have a notion of module composition that
is compatible with how we compose structural concerns.

By using Jiazzi as a back end, we get the double bene£t of clar-
ifying the exact nature of our contribution, and also reducing out
programming burden by reusing a mature implementation. Unfor-
tunately, using Jiazzi is not side-effect free: class composition via
inheritance will be unable to provide expected £elds in collabora-
tions. However, the workaround of using getters and setters is fairly
well accepted by the community, so this is not a signi£cant short-
coming. Other than that, we don’t foresee any change in the surface
syntax or semantics stemming from such a move.

5.2 Summary

We have outlined a thesis that will present a module system tai-
lored to reusable aspect-oriented programming in Java. It improves
on current state-of-the-art by combining the reuse and modular rea-
soning capabilities of module systems with the encapsulation of
concerns offered by aspect-oriented programming. To our knowl-
edge, no other aspect-oriented language offers separate compilation
or signifcant reuse.

Aspectual Collaborations share design with a much smaller lan-
guage of modules and events. This smaller language’s type system
will be proven sound, and we argue that by extension ACs share
this property. However, the complexity of Java makes proving this
claim infeasible.

Thesis Proposal as of January 7, 2003

ACs also present a novel join point model, which is integrated into
the module language to allow points inside a module to be advised
without exposing the details of those points in the interface of the
module.

The price for this power is that interfaces must be explicitly de-
clared and composed for each AC. We expected this to be a sig-
nifcant programming burden made worthwhile by the power and
safety it enabled. However, initial tests suggests that the burden
is comparable to writing reusable aspects in Aspect] or working in
Hyper/J, which is signi£cantly less burdensome than expected.

6 References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-
Verlag, NY, 1996.

[2] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type
parameterization to the java language. In Proceedings of the
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications in Special Issue of SIGPLAN
Notices, volume 32, pages 49—65, 1997.

J. Aldrich and C. Chambers. Architectural reasoning in arch-
java. In European Conference on Object-Oriented Program-
ming, 2002.

J. Aldrich, C. Chambers, and D. Notkin. Archjava: Connect-
ing software architecture to implementation. In International
Conference on Software Engineering, 2002.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unifed Model-
ing Language User Guide. Object Technology Series. Addi-
son Wesley, 1999. ISBN 0-201-57168-4.

S. Clarke. Designing reusable patterns of cross-cutting be-
havior with composition patterns. In The Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering
at ICSE, 2000.

S. Clarke and R. Walker. Composition patterns: An approach
to designing reusable aspects. In International Conference on
Software Engineering. ACM Press, 2001.

[8] M. Dahm. Byte code engineering library.
http://jakarta.apache.org/bcel/manual.html.

3

—

[4

—

[5

—

[6

—_

[7

—

[9] D. D’Souza and A. Wills. Objects, Components, and Frame-
works with UML: The Catalysis Approach. Addison-Wesley,
1998.

[10] E. Ernst. Syntax based modularization: Invasive or not? In
Position papers from the workshop on Advanced Separation
of Concerns at OOPSLA, 2000.

[11] R.Filman and D. Friedman. Aspect-oriented programming is
quanti£cation and obliviousness. In The Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering
at ICSE, 2000.

[12] M. Flatt and M. Felleisen. Units: Cool modules for hot lan-
guages. In ACM Conference on Programming Language De-
sign and Implementation, pages 236-248, 1998.

[13] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syntax
and Semantics of Java, volume 1523 of LNCS. Springer Ver-
lag, 1999. expanded version of the POPL 98 paper, correc-
tions in TR 97-293.

[14] W. Harrison and H. Ossher. Subject-oriented programming (A

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

critique of pure objects). In Proceedings OOPSLA '93, ACM
SIGPLAN Notices, pages 411-428, Oct. 1993. Published as
Proceedings OOPSLA *93, ACM SIGPLAN Notices, volume
28, number 10.

S. Herrmann and M. Mezini. Combining composition styles
in the evolvable language lac. In Advanced Separation of Con-
cerns Workshop at ICSE, 2001.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In Proceedings of the
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications in Special Issue of SIGPLAN
Notices, pages 132—-146, 1999.

G. Kiczales. Is cross-cutting a good way to de£ne aspects?,
2001. email message archived at http://aspectj.org/-
pipermail/users/2001/000723.html.

G. Kiczales, E. Hilsdale, J. hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of Aspect]. In European Con-
ference on Object-Oriented Programming, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In European Conference on Object-Oriented Pro-
gramming, 1997.

R. Ldammel. A semantical approach to method-call inter-
ception. In Proceedings of the International Conference on
Aspect-Oriend Software Development, 2002.

K. Lieberherr, D. Lorenz, and M. Mezini. Program-
ming with Aspectual Components. Technical Re-
port NU-CCS-99-01, College of Computer Science,
Northeastern University, Boston, MA, March 1999.
www.ccs.neu.edu/research/demeter.

T. Lindholm and E. Yellin. The Java[tm] Virtual Machine
Specifcation. Addison-Wesley, 1999.

H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation
semantics of aspect-oriented programs. In Foundations of
Aspect-Oriented Languages workshop at AOSD, 2002.

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New age
components for old-fashioned java. In Proceedings of the
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications in Special Issue of SIGPLAN
Notices, 2001.

M. Mezini and K. Lieberherr. Adaptive plug-and-play compo-
nents for evolutionary software development. Technical Re-
port NU-CCS-98-3, Northeastern University, April 1998. To
appear in OOPSLA °98.

M. Mezini and K. Osterman. Integrating independent com-
ponents with on-demand remodularization. In Proceedings of
the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications in Special Issue of SIG-
PLAN Notices, 2002.

D. Parnas. One the criteria to be used in decomposing systems
into modules. In Communications of the ACM, volume 15,
pages 1053-1058, 1972.

R. Schantz, J. Loyall, M. Atighetchi, and P. Pal. Packag-
ing quality of service control behaviors for reuse. In IEEE
International Symposium on Object-Oriented Real-time dis-
tributed Computing, 2002.

Y. Smaragdakis and D. Batory. Implementing layered de-
signs with mixin-layers. In European Conference on Object-

Thesis Proposal as of January 7, 2003

(30]

(31]

(32]

(33]

Oriented Programming. Springer Verlag, 1998.

K. Sullivan, L. Gu, and Y. Cai. Integration as a crosscutting
concern for aspectj. In Proceedings of the International Con-
ference on Aspect-Oriend Software Development, 2002.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. In In-
ternational Conference on Software Engineering, pages 107—
119, 1999.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics for ad-
vice and dynamic join points in aspect-oriented programming.
In Foundations of Object-Oriented Languages, 2002.

P. Wegner. The object-oriented classifcation paradigm. In
B. Shriver and P. Wegner, editors, Research Directions in
Object-Oriented Programming, pages 479-560. Cambridge,
Massachusetts, MIT Press, 1988.

