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WRITING APPLICATIONS THAT BENEFIT FROM THE MASSIVE COMPUTATIONAL POWER OF

FUTURE MULTICORE CHIP MULTIPROCESSORS WILL NOT BE AN EASY TASK FOR

MAINSTREAM PROGRAMMERS ACCUSTOMED TO SEQUENTIAL ALGORITHMS RATHER THAN

PARALLEL ONES. THIS ARTICLE PRESENTS A SURVEY OF TRANSACTIONAL MEMORY,

A MECHANISM THAT PROMISES TO ENABLE SCALABLE PERFORMANCE WHILE FREEING

PROGRAMMERS FROM SOME OF THE BURDEN OF MODIFYING THEIR PARALLEL CODE.

eeeees The advent of shared-memory
multicore microprocessors has created an
immense opportunity to exploit thread-level
parallelism. In most applications, parallel
thread execution requires synchronization
or ordering mechanisms for accessing shared
data. Traditional multithreaded program-
ming models usually offer a set of low-level
primitives, such as locks, to guarantee
mutual exclusion; ownership of one or
more locks protects access to shared data.
Locks are complex to use and error prone—
especially when a programmer is trying to
avoid deadlock situations or to achieve
better scalability on highly parallel hardware
by using fine-grained locking. Consequent-
ly, the programming and computer archi-
tecture communities are concerned that
a parallel-programming productivity and
performance wall might be looming.
Transactional memory (TM) is a promis-
ing mechanism for tackling this problem by
abstracting some of the complexities associ-
ated with concurrent access to shared data.'
With TM, muldple threads can simulta-
neously try to access shared memory loca-
tions in an atomic way, so all the accesses of
a specific thread succeed or none, within the
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scope of what we call an atomic transaction.
TM has its roots in transaction management
in concurrent database systems. However,
although it uses mechanisms similar to
classical database transactions, TM’s main
purpose is different: to handle concurrency
challenges in shared-memory chip multi-
processors.

Transactions replace locking with atomic
execution units, so that the programmer can
focus on determining where atomicity is
necessary, rather than on the mechanisms
that enforce it. For example, the following
code segment shows an example atomic
region in a simple kernel that computes the
histogram of an array:

atomic {
hist[array[i] [J]]1++;

}

With this abstraction, the programmer
identifies the operations that form a critical
section, while the TM implementation de-
termines how to run that critical section in
isolation from other threads.

Typical TM implementations optimisti-
cally run transactions in parallel, assuming
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that the transactions won’t perform con-
flicting memory accesses. Generally, “con-
flicting” means in violation of a temporal
order. Most often, a load (read) operation
from an ongoing transaction has failed to
use the result of a store (write) operation
from a previous transaction. Here, “pre-
vious” usually has a serial temporal-ordering
sense, although other logical orders are also
possible.

If the transactions don’t conflict, the
optimism has paid off. The transactions did
not have to contend for a common mutual
exclusion lock for the data they updated.
And, in many implementations, a transac-
tion making read-only accesses to shared
data allows all the data to remain in the
core’s data cache in shared mode, helping
scalability.

However, if transactions do attempt con-
flicting accesses, the optimism has not paid
off. The TM must abandon the work of one
of the conflicting transactions, ensuring that
any side effects of their attempted work are
not visible to other threads, before reexecut-
ing the abandoned transactions. The mech-
anisms by which the TM detects conflicts
and contains the effects of abandoned trans-
actions are the focus of the implementation
techniques and case studies discussed in this
article.

Compared with TM, locks are pessimis-
tic. With mutual exclusion locks, only one
thread can hold a lock at a time, whereas in
most TM implementations, more than one
thread can access a critical section simulta-
neously. Because actual conflicts are rare in
many programs, the optimistic TM ap-
proach makes more sense as a future pro-
gramming model. TM has the following

advantages over locks:

® TM provides a higher-level abstraction
for writing concurrent programs, let-
ting the programmer concentrate on
the algorithm instead of complex
mechanisms such as locks.

e TM provides a better trade-off be-
tween scaling and implementation
effort. Although algorithms using
fine-grained locking can scale well,
they are notoriously difficult to design.

® TM is inherently deadlock free. Live-
lock can be a problem, but it is easier
to deal with than deadlock.

® As a side benefit, TM provides failure
atomicity.

Of course, TM is not without disadvan-
tages. First, as with many high-level pro-
gramming abstractions, a carefully designed
algorithm using lower-level primitives can
outperform an algorithm using TM. Sec-
ond, there are many questions about how to
expose TM to programmers—exactly what
kind of abstractions to provide and what
kind of performance tuning and debugging
tools to develop.

Basic TM concepts

A transaction is a sequence of instruc-
tions, including reads and writes to mem-
ory, that either executes completely (com-
mits) or has no effect (aborts). When a
transaction commits, all its writes become
visible, and other transactions can use those
values. When a transaction aborts, the sys-
tem discards all its speculative writes.

To support transaction execution, a TM
system needs a data-versioning mechanism
to record the speculative writes. The system
should discard this speculative state on an
abort or use it to update the global state
on a successful commit. The two usual
approaches to implementing data versioning
are to use either an undo log or buffered
updates. In using an undo log, a transaction
applies updates directly to memory loca-
tions, while logging the necessary informa-
tion to undo the updates in case of an abort.
In contrast, approaches using buffered up-
dates keep the speculative state in a trans-
action-private buffer untl commit time. If
the commit succeeds, the buffer drops the
original values before the store instructions
and commits the transaction’s speculative
stores to memory.

A transaction’s instruction sequence can
be explicitly or implicitly delimited. Some
high-level programming languages include
constructs that explicitly define the extent of
transactions—for example, the “atomic”
statement shown earlie—whereas others
provide lower-level operations to explicitly
start and end transactions. In other cases,
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T T2 T T2
StartT StartT StartT StartT
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Figure 1. Execution timelines for two pairs of transactions. Both eager and
lazy conflict detection would detect a conflict in the first transaction pair (a).
In the second pair (b), eager conflict detection would detect the conflict,
but lazy conflict detection would allow both transactions to commit.
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transactions start implicitly after execution
of a transactional read or write operation or
immediately after the commit of another
transaction in the instruction stream.

A TM system can abort transactions
either explicitly by executing an abort
instruction or implicitly because of data
conflicts with concurrent transactions. Two
issues are related to conflicts: detection and
resolution. To detect and handle conflicts,
each running transaction is typically associ-
ated with a read set and a write set. Inside
a transaction, the execution of each trans-
actional load instruction adds the memory
address to the read set. Fach transactional
store instruction adds the memory address
and value to the write set.

Conlflict detection can be either eager or
lazy. Eager conflict detection checks every
individual read and write to see if there is
a conflicting operation in another trans-
action. Eager conflict detection requires
a transaction’s read and write sets to be
visible to all the other transactions in the
system. On the other hand, in lazy conflict
detection, a transaction waits until it tries to
commit before checking its read and write
sets against other transactions’ write sets.
Figure 1 illustrates conflict detection with

two sequences of memory accesses. In both
sequences, eager conflict detection would
detect the conflict at the read of location X
(ReadX) by T1 because T2 has already
written to it (WriteX). In Figure 1a, lazy
conflict detection would detect a conflict
because T2 tries to commit first, implying
that T1 should have used the result of T2’s
WriteX operation. In Figure 1b, however,
both T1 and T2 can commit because T1
commits first, and its ReadX need not use
the result of T2’s WriteX.

Different TM systems detect conflicts at
different levels of granularity—for example,
the level of objects (arrays, lists, and so
forth), individual fields in a data structure,
or cache lines. This choice introduces trade-
offs in terms of time and space overheads
and false sharing.

Another fundamental design choice is
how to resolve a conflict once it is detected.
Usually, a system must resolve a conflict by
aborting one of the transactions involved in
it. The decision of which transaction to
abort is complex. Consider the example
shown in Figure 2. Assume that the TM
system uses eager conflict detection. When
T1 performs ReadX, the system detects
a conflict with WriteX in T2, and one
transaction must be aborted. At this point,
if the conflict resolution policy decides to
abort T2, later T1 will conflict again with
T3 (ReadY and WriteY), and another trans-
action abort will be necessary. However, if
the resolution policy had decided to abort
T1, both T2 and T3 could have finished,
with only one transaction aborted instead of
two.

Two other important TM concepts are
blocking and choice. Blocking is the explic-
itly expressed mechanism that aborts a trans-
action, and choice is a set of transactional
actions undertaken as an alternative to block-
ing. Providing proper hardware, runtime,
and language support to implement blocking
and choice are practical design issues that all
TM systems must address.

TM implementations

The two main TM implementation styles
are hardware based and software based.
Historically, the earliest design proposals



were hardware based. Researchers proposed
software transactional memory (STM) to
address, among other things, inherent limi-
tations of earlier forms of hardware trans-
actional memory (HTM), such as a lack of
commodity hardware with the proposed
features and a limited number of locations
that a transaction can access.

Beyond these two approaches, two mixed
approaches are undergoing active research.
Hybrid transactional memory (HyTM) sup-
ports HTM execution but falls back on
STM transactions when hardware resources
are exceeded.”” Hardware-assisted STM
(HaSTM) combines STM with new archi-
tectural support to accelerate parts of the
STM’s implementation.”> These designs
provide very different performance charac-
teristics. HyTM provides near-HTM per-
formance for short transactions but encoun-
ters a performance cliff when falling back to
STM. In contrast, HaSTM provides per-
formance somewhere between HTM and

STM.

Hardware transactional memory

The first HTM designs were minimalist
(but fully functional and expressive) ap-
proaches based on modifying the cache
consistency protocols and complementing
the instruction set architecture (ISA) with a
small set of new instructions. These designs
keep the speculative state in an extended or
partitioned cache (or a buffer) until the
transaction either commits or aborts. These
two modifications are sufficient for basic
HTM.

Several proposed alternative approaches
require minimal or no ISA support or cache
modifications. For example, thread-level
speculation relies on speculation past locks
to admit multiple threads in the same
critical section.®” Another approach that
doesn’t require ISA modifications is implicit
transactions.®

API design: ISA additions. The conceptual
support required at the ISA level to delimit
transactions is start transaction (STR) and
end transaction (ETR) instructions. In addi-
tion, special versions of load (TLD) and
store (TST) instructions for transactional
read and writes are necessary. However,

T1 T2 T3
StartT StartT StartT

WriteX
ReadX

WriteY

ReadY
EndT (commit)

EndT (commit)

EndT (commit)

Figure 2. Execution timeline for three transactions. Transaction 1 conflicts
with Transaction 2 (ReadX and WriteX) and later with Transaction 3 (ReadY
and WriteY). If the conflict resolution policy aborts Transaction 2 at the first
conflict, it will have to abort another transaction at the second conflict. If
the policy aborts Transaction 1 at the first conflict, Transactions 2 and 3 can
both commit.

depending on the hardware implementa-
tion, some of these instructions might not
be needed. For example, Herlihy’s and
Moss’s implementation doesn’t use STR;
instead, when a transaction executes its first
TLD or TST operation, a flag is set at the
core indicating that the core is engaged in
a transaction.

Adding special instructions for abort
(ABR) and validation (VLD) of a transaction
makes several optimizations possible. For
example, the system can use ABR to select
a victim transaction for aborting under
program control. Usually, the implementa-
tion of abort policies involves a trade-off
between performance (total throughput)
and fairness. Similarly, VLD can provide
energy savings. For example, consider a very
long-running transaction that has a conflict
early in its execution timeline. Waiting until
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its commit instruction to check and roll
back this transaction will waste a lot of
energy and work. Using VLD throughout
this transaction’s execution timeline will
catch the conflict early, and the transaction
can roll back without wasting energy.

Data versioning and conflicts: cache or buffer
modifications. HTM systems keep transac-
tions” speculative state mostly in the data
cache or in a hardware buffer area. There-
fore, unlike STM systems, which often
detect conflicts at the granularity of pro-
gramming-language objects, HTM systems
work at the word or cache line level. The
systems keep transactional loads and stores
in a separate transactional cache or in con-
ventional data caches augmented with
transactional support.’ In either case, the
modifications are minimal because trans-
actional support relies on extending existing
cache coherence protocols, such as MESI
(modified, exclusive, shared, invalid), to
detect conflicts and enforce atomicity.

One of the designs described by Herlihy
and Moss keeps the transaction’s read set
and write set in the data cache and keeps an
extra version of the transaction’s tentative
updates. For this design, just two extra bits
per cache line (assuming cache line granu-
larity) are sufficient to indicate whether the
line is to be discarded on commit (for lines
holding unmodified data) or on abort (for
speculatively modified lines). The protocol
extensions specify whether the version is to
be kept or dropped. A conflict means that
a load has read invalid data and the asso-
ciated transaction must abort. In that case,
the write set of the aborting transaction
(associated with the tentative store instruc-
tions) is dropped. On the other hand, if the
transaction commits, the version of the
original values before the store instructions
are dropped, and the transaction’s specula-
tive stores are committed to memory.

In one variant of the design, the system
keeps the original state in main memory
and the speculative state in the data cache.
Just one bit per cache line is sufficient for
this design. The bit is set when a transaction
accesses the line. Upon commit and abort,

this bit is cleared; for abort, the modified
lines with this bit set are also invalidated.

Software transactional memory

The extensive research on software TM
implementations goes back to Shavit’s and
Touitou’s first use of the term in 1995.'°
Here, we look at the basic case of non-nest-
ing transactions that make updates to shared
memory within a single multithreaded
process, focusing on the main problems
that an STM must tackle: It must provide
separate per-thread views of the heap as
transactions execute, and it must provide
a mechanism for detecting and resolving
conflicts between transactions. Larus and

Rajwar explore this topic in greater depth.

API design: Managing transactional state.
Whereas traditional HTM systems use data
caches to buffer transactions’ tentative state,
an STM implementation must provide its
own mechanism for concurrent transactions
to maintain their own views of the heap.
Such a mechanism allows a transaction to
see its own writes as it continues to run and
allows memory updates to be discarded if
the transaction ultimately aborts.

A high-level distinction between STM
implementations is how they organize data
in memory. One approach separates trans-
actional data and ordinary data, introduc-
ing a distinct memory format for trans-
actional objects. An alternative approach
allows data to retain its ordinary structure in
memory, and the STM uses separate struc-
tures to maintain its own metadata. There
are advantages and disadvantages to each
approach.

Examples of the first type of design are
dynamic STM (DSTM), object-based STM
(OSTM), and adaptive STM (ASTM)
systems.'"® These systems identify trans-
actional data by references to object headers,
which must be opened to gain transactional
access to the object body. For example, the
STM implementation uses the object head-
er to track which transactions are currently
accessing the object. In OSTM, for exam-
ple, the programming API provides opera-
tions to open an object header, returning



a reference to a copy of the object’s body for
the transaction to use:

o_body *OpenForReading (tx
*tx, o_header *o0);

o_body *OpenForWriting (tx
*tx, o_header *o0);

The API must differentiate read and
write accesses because multiple concurrent
transactions can share the same object body
as long as they are all reading from it. If
a transaction must update an object, Open-
ForWriting returns a private shadow copy
of the object body. A program using OSTM
must not update object bodies that have
been opened only for reading, and when
working on pointer-based data structures,
it must always add an extra level of indirec-
tion by storing references to object head-
ers rather than direct references to object
bodies.

The OSTM runtime system maintains
a read set with the objects that a transaction
has read from and a write set with the
objects that it has updated. Aborting a trans-
action simply means discarding any shadow
copies that have been created for it. Com-
mitting a transaction means 1) atomically
checking that no conflicting transaction has
updated objects in the read set or the write
set, and 2) updating the object headers for
objects in the write set, thus publishing the
private shadow copies as the object’s new
contents.

In contrast, the Bartok STM system
makes no low-level distinction between
ordinary and transactional data.!® This im-
plementation holds the metadata that the
STM uses for concurrency control in sepa-
rate structures, with the STM using a func-
tion to map a word’s address to a particular
transactional metadata word (TMW) that
manages that data. This means that the
transactional API includes functions to
open the TMWs for the data that it will

read from or write to:

void OpenForReading (tx *tx,
tmw *t) ;

void OpenForWriting (tx *tx,
tmw *t) ;

atomic {
hist[index] ++;
}
(a)
atomic {
apenForReading(tr, TMW_FOR (index)) ;
OpenForWriting(tr, TMW_FOR (hist));
int *addr = &hist[STMRead(tr,
STMWrite(tr, addr, STMRead(tr, addr) + 1);
}

(b)

Figure 3. Translation of an atomic region into calls on a Bartok-STM-like
API: original source code (a); expansion of memory accesses to use the

&index)];

STM API (b). Function TMW_FOR maps an address to the location of the
TMW used for the address’s concurrency control—for example, an extra
header word on the object holding the address.

and functions for accessing the data that
directly refer to memory addresses:

word STMRead (tx *tx, word *a) ;
vold STMWrite (tx *tx, word *a,
word d) ;

As in OSTM, OpenForReading and Open-
ForWriting build up the read and write sets
that are used by the STM for concurrency
control. However, Bartok STM differs from
OSTM in that this interface means that
data structures in memory are built using
ordinary pointers rather than with a level of
indirection via object headers.

As Figure 3 illustrates, the compiler’s role
in translating code inside an atomic block
into STM operations can be quite straight-
forward. The figure does not show two
more subtle compilation techniques: First, if
the atomic block contains method invoca-
tions, the compiler must translate the code
in these methods to use STM operations on
its memory accesses. This can lead to code
duplication if the same methods are used
both inside and outside transactions. Com-
piler optimizations to improve the resulting
code remain the subject of research.'*" For
instance, if the same data is read more than
once, only the first OpenForReading oper-
ation is needed on the data. Second, the
atomic block itself must be translated into

MAY—June 2007



14

TRANSACTIONAL MEMORY

EEE MICRO

calls to library functions to start and
commit transactions and to reexecute the
transaction if the commit fails.

There are several ways to implement
these STM APlIs, each with different per-
formance trade-offs. Broadly, these choices
come down to two ways of managing
tentative updates. In designs that use buf-
fered updates, a transaction keeps a private
shadow copy of all the memory words it
updates, much as an HTM keeps private
copies of them in the local data cache. Calls
to STMRead must consult the shadow
copies so that they will see earlier writes
by the same transaction. Hashing can
accelerate this look-up (mapping an address
to a slot in the current transaction’s shadow
table to avoid searching it). Also, Bloom
filters, which quickly determine that a given
item is not in a list, can detect that a given
location is guaranteed not to be in the
transaction’s shadow table.

An alternative design uses in-place up-
dates. STMWrite directly updates the heap
so that calls to STMRead will see earlier
updates without needing to search a table.
In this case, STMWrite must maintain an
undo log of all values that it overwrites, so
that the transaction can roll back its changes
if it aborts. A disadvantage of in-place up-
dates is that they can introduce contention
between transactions—only one transaction
can be granted write access to the same
TMW at the same time.

Detecting and resolving conflicts in STM.
Classical HTM systems detect conflicts
between transactions through extensions of
the MESI cache protocol. The eviction of
a line holding transactional data causes the
transaction to abort. Aborting or commit-
ting a transaction is straightforward because
all of the state involved is held in the local
cache. Detecting and resolving conflicts can
become complicated in STM implementa-
tions in which only individual memory oper-
ations are atomic. Nonetheless, researchers
have explored a wide variety of approaches:
pessimistic schemes based on automatically
locking data that transactions are accessing,
optimistic nonblocking schemes, and numer-
ous hybrids. Again, Larus’s and Rajwar’s
book provides a good contemporary survey,'

and so, in this overview, we focus on the
broad design space.

One approach, used in the Argus pro-
gramming language, employs strict two-
phase locking of objects.’® A compiler can
readily automate this approach, which ac-
quires locks as a transaction executes and
holds them until it commits. However, this
approach scales poorly on current multi-
processor hardware because it introduces
contention in the memory hierarchy. Ac-
quiring a lock in shared-read mode usually
means fetching the cache line holding the
lock in exclusive mode.

An alternative is to use a nonblocking,
atomic multiword update to commit a trans-
action. OSTM does this by performing an
atomic multiword update across the header
contents of the objects in the read and write
sets. [t checks that there has been no update
to objects in the read set and updates the
object headers in the transaction’s write set
to publish the transaction’s shadow copies.
This design avoids the poor scalability of
read locks because the transaction’s read set
is validated purely by memory read opera-
tions.

Earlier work often aimed at nonblocking
behavior as an explicit goal. Nonblocking
algorithms provide a robust guarantee that
progress cannot be obstructed by threads
that are not actively executing. This avoids
problems of priority inversion or of threads
being descheduled while holding locks.

Work by Herlihy, Luchangco, and Moir
on obstruction-free synchronization gives
a good introduction to the design of prac-
tical nonblocking algorithms and the un-
derlying definitions.”” However, such algo-
rithms are notoriously complicated, in
terms of both software engineering and
the number of atomic compare-and-swap
operations used at runtime. Consequently,
researchers have explored support in the
operating system or a language runtime sys-
tem to provide robustness. In that setting,
a hybrid approach combines optimistic and
pessimistic schemes by using versioned
mutual-exclusion locks, which support nor-
mal mutual-exclusion semantics and pro-
vide access to a version number counting
the number of times the lock has been
acquired and released.' The design uses



mutual exclusion for pessimistic concurren-
cy control to grant write access to the data the
lock protects. The version number allows
optimistic concurrency control for read ac-
cess. That is, a transaction records the version
number before it first reads from an object
and then, at commit time, checks that the
version number is unchanged, meaning that
no one has updated the object concurrently
with the transaction.

This general approach is flexible; it can
serve as the basis of several STM designs.
Locks can support buffered updates in two
ways. A transaction can acquire locks eagerly
as it runs (to prevent conflicts, even though
the transaction still makes updates to a private
log). Or it can acquire locks only when it
tries to commit (preventing transactions that
abort from causing conflicts).

Locks can also support data management.
In Bartok STM a transaction acquires locks
eagerly on objects that it wishes to update,
makes the updates themselves directly to the
objects, and maintains an undo log to allow
the updates to be reverted if the transaction
aborts. The locks protect the data from
conflicting writes from concurrent transac-
tions, and making updates in place means
that transactional reads will see earlier values
written by the same transaction. This ap-
proach aims to make read operations as fast
as possible, on three assumptions:

® Reads will outnumber writes in trans-
actional workloads (as they do ordin-
arily).

* Reading data’s version number during
a transaction and checking it at com-
mit time will be faster than acquiring
and releasing a lock on the data.

® Transaction conflicts will usually be
rare, so it is better to accelerate trans-
actions running without contention
and committing, at the expense of
extra work in cases where conflicts do
occur. In other words, it is better to
“apologize” occasionally than to “ask
permission” frequently.'

These factors, of course, might change as
our experience of transactional workloads

grows and instruction set performance char-
acteristics change.

Case studies

In this section, we discuss selected HTM
and STM implementations in detail. Each
provides insights into different TM design
challenges.

TCC

The Transactional Memory Coherence
and Consistency model (TCC) is a form of
HTM in which the atomic transaction is the
basic unit of parallel work, communication,
and memory coherence.” Each transaction
maintains its write set until it attempts to
commit. Upon commit, the transaction asks
for permission to write its data. When the
bus grants this permission, the transaction
broadcasts its write set to other processors,
which can snoop the store addresses to de-
tect dependence violations and roll back in
case of conflict. Only one processor can
write its write set at one time.

Instead of imposing some order between
individual memory references, TCC im-
poses a serializable sequential order between
transaction commits. Therefore, all memory
references from a transaction that commits
earlier appear to come before all memory
references from a transaction that commits
later. This is true even if the references are
actually executed in an interleaved fashion.
When the transaction commits, the pro-
cessor notifies all processors of the status
changes. During this process, the other pro-
cessors perform invalidations or updates,
depending on whether only the address or
both the address and data were sent. A pro-
cessor is forced to roll back if it reads data
updated by another processor that has com-
mitted its transaction. So the snooping me-
chanism must check whether any address
sent by the committing transaction is in the
associated processor’s read set. In that case,
that processor must roll back its transaction.

Programmers using the TCC model must
first divide the program into transactions
that run concurrently on different proces-
sors. They must mark the parallel sections
but need not guarantee the independence of
these regions; the hardware will take care of
that. Second, they can optionally specify the
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Table 1. Comparison of TCC and LogTM.

Feature TCC LogTM
Commit Slower Faster

Abort Faster Slower

Coherence mechanism Bus-based Directory-based

Conflict detection Lazy Eager

Conflict resolution Abort self Oldest time stamp wins
Wirite visibility At commit Immediate

Always in transaction Yes No

Nesting Yes Yes

order between transactions to enforce a pro-
gram order. Many parallel applications have
points at which certain transactions must
complete before others. To deal with these
barriers, TCC adds hardware-managed
phase numbers to each transaction. Only
transactions with the oldest phase number
are allowed to commit at any time. A third,
performance-tuning step provides informa-
tion about where violations occur, which pro-
grammers can use to improve performance.
Transactions should be chosen to maximize
parallelism and minimize the number of
conflicts. Large transactions are preferable for
amortizing startup and commit, but small
transactions are better when violations are
frequent or available space for write and read
sets overflows.

LogTM

LogTM is an HTM design based on two
observations: First, commits are typically
much more frequent than aborts. Second,
most existing HTM systems use lazy version
management by using old values in place
and new values in a slower structure. This
makes commits slow but aborts fast.?

Because commit is the common case,
LogTM proposes that new values be used in
place and old values be placed in a slower log
structure. When a transaction commits (the
common case), new values become non-
speculative, a much faster operation with
LogTM. In the case of abort, old values
should be restored to their in-place position,
requiring a traversal of the log table to undo
the transaction’s effects, a much slower oper-
ation. However, overall performance in-
creases because aborts are relatively rare.

LogTM uses eager conflict detection;
instead of waiting until the end of the
transaction, the system checks for and
detects conflicts on every read and write.
To detect conflicts on the fly, LogTM uses
directory-based cache coherence. The pro-
cessor doing a read or write operation issues
a coherence request to the directory, which
forwards the request to other processors. A
responding processor detects the conflict
and tells the requesting processor about it.
Although this scheme might affect the
performance of each read or write, it detects
conflicts earlier. Table 1 compares the fea-

tures of TCC and LogTM.

Implicit Transactions using kilo-instruction
processors

The Implicit Transactions approach
translates TM concepts directly into hard-
ware.”! This provides benefits in muld-
processsor systems, even those running or-
dinary nontransactional applications, and
establishes the basic support that trans-
actional software needs.

The proposed multiprocessor system uses
implicit transactions as the basic unit of
parallel work. Transactions are implicit be-
cause they are transparent to the program-
mer, and, unlike most previous efforts,
require no change of the programming
model.

Implicit transactions are implemented
with low complexity by appropriately le-
veraging the key mechanisms in a kilo-
instruction processor, mainly its multi-
checkpoint mechanism.® The instructions
between two consecutive checkpoints are
considered part of one implicit transaction,



P1

In-flight instruction
Executed instruction

Figure 4. The Implicit Transactions mechanism for checkpointing and conflict resolution.

which appears to the rest of the system as
a single memory transaction. In particular,
the system manages memory updates (store
instructions) associated with a transaction as
a group and performs them globally and atom-
ically when the corresponding checkpoint
commits.

Figure 4 shows an example of the
execution flow for four processors and their
respective checkpoints. A processor’s oldest
checkpoint can commit when all of its
corresponding instructions—the ones that
come after the checkpoint and before the
next checkpoint—are finished. For exam-
ple, processor P3 can commit checkpoint

Chk31 when all instructions up to Chk32

have completed. Meanwhile, a general spec-
ulation substrate buffers the speculative read
set and searches for conflicts with any com-
mitted update, causing a processor to roll
back in case of violation. This mechanism
guarantees correct memory consistency. For
example, in Figure 4, the broadcast of
a store (st) to memory location A conflicts
with two other processors that have already
speculatively loaded from location A, and
the loads have not yet committed. In this
example, P2 rolls back to Chk23, causing
instructions from Chk24 to Chk23 to be
discarded. Also, P4 rolls back to Chk42,
forcing its newest instructions to be dis-

carded.
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Obviously, the size of transactions de-
pends on the point at which checkpoints are
taken, and the system carries out the de-
cision dynamically to avoid frequent roll-
back scenarios. If there is no conflict for
a substantial time period, the size of the
implicit transactions increases. Conversely,
if there are frequent rollbacks, transaction
size is halved.

Implicit transactions overcome a key
limitation of HTM systems: large transac-
tions. In case of overflow, a large transaction
splits into multiple smaller implicit transac-
tions without affecting correctness.

Haskell STM: Composable memory transactions

To illustrate the design and implementa-
tion of STM systems in more detail, we
examine the system used in the Glasgow
Haskell compiler (GHC) runtime system.*
Because our focus is on lower levels of TM
systems rather than higher-level language de-
sign issues, we use a simple, imperative style
of pseudocode to illustrate the Haskell STM
interface, rather than full Haskell programs.

The Haskell STM provides transactional
access to distinguish transactional variables
called TVars. It uses a buffered update design.
While a transaction is running, it builds a log
recording all the TVars it has accessed, the
values those TVars held at the point they were
accessed, and the new value (if any) that the
transaction wishes to write to the TVar. The
Haskell system ensures that only transactional
code can access TVars, and that the only
kinds of side effect possible inside a trans-
action are reads and writes to TVars. Each
TVar contains three fields: the TVar’s actual
contents (a pointer to an ordinary piece of
Haskell data), a TMW holding a versioned
mutual-exclusion lock used by the Haskell
STM implementation, and a wait queue used
for condition synchronization within trans-
actions.

As in other buffered-update systems,
aborting a Haskell STM transaction simply
means discarding the log holding its buffered
updates. However, there is one subdety. The
semantics provide that a transaction rolls back
if an exception propagates outside it, for
instance in pseudocode:

try {
atomic {
throw new Exception(); //T1
}
} catch (Exception e) {
// Cl;

This requires care: The language’s designer
must reconcile the idea that the transaction
rolls back with the expectation that the
exception allocated at T'1 must survive to be
caught at C1. GHC takes the approach that
only updates to TVars roll back; object
allocations are retained, and so the excep-
tion persists until at least CI.

At commit time, Haskell STM uses the
transaction’s log of buffered updates along
with the TMWs to attempt to atomically
perform the transaction’s TVar accesses at
the point at which it commits. Figure 5
shows how the commit operation proceeds,
starting from 5a, which shows the buffered
updates and the state of the TVars. First,
Haskell STM logs the version number from
each TVar that the transaction has read
from but not updated and compares the
value in the transaction’s log with the cur-
rent value in the TVar (Figure 5b). If the
values don’t match, the transaction is abor-
ted and reexecuted. Second, the STM ac-
quires the mutual-exclusion locks on the
TVars that the transaction has updated
(Figure 5¢). If that succeeds, the point at
which the STM finishes acquiring locks
becomes the transaction’s linearization point,
where the transaction appears to execute
atomically. If the thread fails to acquire all the
locks, again it aborts and reexecutes the
transaction.

After the STM has acquired all the locks
that the transaction needs, it continues by
checking the version numbers against those it
has just recorded. If they are all unchanged,
that guarantees that no other transaction has
committed an update to any of these TVars
since the versions were recorded. If any
version number is out of date, the transaction
aborts. Finally, if the versions match, the
STM writes the transaction’s buffered up-
dates to the TVars (Figure 5d) and releases

the mutual-exclusion locks, atomically incre-



Transaction log TVars
X old = 100 new = 100 | TVar x | 100 v17 |
y old = 200 new = 200
| TVary | 200 v42 |
The transaction has read from x, seeing the value 100, and wants to update from 200 to 300.
(a)
Transaction log TVars
X old = 100, 17 new = 100 | TVar x | 100 v17 |
y old = 200 new = 300
| TVary | 200 v42 |
The STM checks the old values of TVars it has read from and records their current version numbers.
(b)
Transaction log TVars
X old = 100, 17 new = 100 | TVar x 100 vi7 |
y old = 200 new = 300
[ Tvary 200 v42 locked |
The STM checks the new values of TVars it has updated and locks those TVars.
(c)
Transaction log TVars
X old = 100, 17 new = 100 | TVar x 100 v17 |
old = 200 new = 300
| TVary 300 v42 locked |
The STM writes the transaction’s buffered updates back to the TVars.
(d)
Transaction log TVars
X old = 100, 17 new = 100 | TVar x | 100 V17 |
y old = 200 new = 300
| TVary | 300 v43 locked |

The STM unlocks the TVars the transaction has updated, incrementing their version numbers.

(e)

Figure 5. Committing a transaction in Haskell STM. The shaded boxes show the locations accessed at each step.

menting the TVars’ version numbers (Fig-
ure Se).

A further notable aspect of the Haskell STM
design is the integration of composable block-
ing with atomic updates. The design uses this
condition synchronization in place of condi-
tion variables: A language construct retry
means “abort the current transaction, and
reexecute it.” For example, the following code
would wait until TVar x holds a nonzero value:

atomic {
if (ReadTVar (x) == 0) retry;

This is called composable blocking because
the call to retry can occur in a function call-
ed anywhere within the atomic block. It is
not necessary to hoist checks up to the start
of the block (although, from a performance
point of view, it is preferable to decide
whether to retry sooner rather than later).
Although the Haskell STM design de-
fines the retry semantics in terms of re-
execution, this is not a good implementa-
tion strategy. The condition that caused the
code to call retry is likely to still hold, so the
thread will keep spinning until an update is
made to the heap. This observation can be

MAY—June 2007



ll

TRANSACTIONAL MEMORY

EEE MICRO

exploited to make a more efficient imple-
mentation. When a thread calls retry, it
confirms that it has seen a consistent view of
the heap and atomically adds itself to the
wait queues of all the TVars from which its
transaction has read, before blocking in the
GHC user-level thread scheduler. Then,
when another thread commits a transaction
that updates one of these TVars, the com-
mitting thread iterates through the wait
queue, waking any threads blocked there.

The Haskell STM design provides the
retry operation alongside a second operation,
orElse, which allows a program to attempt
a series of alternative transactional operations.
This operation also has the goal of compos-
ability. For instance, if a programmer builds
shared queues that call retry to wait for items
to be deposited in the queue, the caller can
use orElse to compose access to a series of
queues, taking items from whichever queue
first supplies one.

Challenges

Although TM provides a potential solu-
tion to the programmer productivity problem
in a many-core environment, it poses several
challenges to designers. Some of these chal-
lenges are specific to HTM or STM, and
others apply to both types.

General challenges

TM research has investigated many chal-
lenges. Among them are open and closed nest-
ing as a way TM can help expose more par-
allelism; 1/0, which has been an issue starting
with the earliest TM research; and mixing TM
with programming models such as the Open
Multiprocessing (OpenMP) interface or the
Message-Passing Interface (MPI).

Open and closed nesting. An important
TM property is the possibility of calling
a function within a transaction that itself
contains a transaction. This can help pro-
grammers write efficient code and use
libraries. A nested transaction is a transaction
that begins and ends within the scope of
a surrounding transaction. There are two
types of nested transactions: closed and
open. In a closed-nested TM system, either
all or none of the transactions in a nested
region commit. In contrast, in an open-

nested TM, when an inner transaction
commits, its effects become visible for all
threads in the system.

The easy way to deal with closed-nested
transactions is the flattening model. This
model includes all nested transactions in the
outermost transaction; that is, all the in-
volved transactions share one read set and
one write set. Even this easy solution incurs
some complexity. HTM systems must use
counters to implement flattening. Each
STR instruction increments a counter, and
each ETR instruction decrements it, com-
mitting the transaction to memory only if
the counter is zero. If a conflict occurs, the
transaction must roll back to the outermost
transaction. This mechanism is often in-
efficient because each time the transaction
rolls back, it loses work that could be
preserved. A more efficient mechanism is to
allow each nested transaction to have its
own read and write sets, so that when the
transaction commits, the read and write sets
merge with the read and write sets of the
In case of abort, the
innermost conflicting transaction rolls back
to its STR but not to the top level.

Open-nested transactions can unleash

next level out.

more concurrency than closed-nested trans-
actions. When an open-nested transaction
commits, its write set becomes visible to all
other transactions, so other transactions can
see modifications sooner and work with the
modified data. This is different from closed-
nested transactions, which make all mod-
ifications visible only when the outermost
transaction commits. However, open-nested
transactions increase the programmer’s bur-
den. Compensating actions are needed when
the outermost transaction commits and when
one of the surrounding transactions aborts.
Handling this compensating code can be
complex, and the programmer must have an
expert grasp of the code’s semantics.?

The ongoing challenge is to support a rich
nesting model with minimum hardware-
software complexity. Even the simplest closed-
nesting flattening model incurs some hardware
complexity while limiting concurrency and
performance. Proposed open-nested transac-
tion models expose more concurrency but
increase complexity for programmers, who
must explicitly write commit and abort handler



codes to support these models. Moreover, these
models are especially challenging to use with
libraries because the library API might require
changes to support the handler code. Efficient
solutions to these problems are open research
questions.

To highlight some of the issues, Figure 6
shows a simple example of code that per-
forms preprocessing (in function somepro-
cess), and then tries to obtain work from
a work queue (getwork), and process the
resulting work item (process). Suppose that
there are two threads, P1 and P2, and that
transactions are validated at the end of the
transactions.

In the original code without nesting, if
there is a conflict between two threads, at
least one should abort. As Figure 7a shows,
P1 finishes and detects a conflict with P2 be-
cause both have modified workqueue.head
inside function getwork; in this case, P2 rolls
back.

In closed-nested

the
model allows partial rollbacks, at least the

transactions, if

work done in someprocess can be saved
(assuming there are no conflicts with the
data accessed in that part of the code), as
Figure 7b shows. In this case, when PI
finishes, it detects the conflict with P2,
which simply rolls back the nested trans-
action. With the flattening model, the
transaction is exactly the same as with no
nesting.

To express open-nested transactions, the
following construct is added to the lan-

guage:

atomic_open {statements
commit {statements}
abort{statements} }

The commit executes when the outermost
atomic block commits—in our example,
free(work) in P1 (Figures 7c and 7d) The
abort executes when a surrounding trans-
action aborts—in our example, the call
to insertwork(workqueue,work)

ure 7d.

in Fig-

1/0. The relationship between I/O opera-
tions and transactions is a significant re-
search challenge. For example, suppose that
inside a transaction, a system call attempts

atomic {

someprocess (shared_data) ;
work=getwork (workqueue) ;
process (work, shared_data);

}
node * getwork(workqueue_t &workqgueue)
{
node *work;
work=workqueue.head;
if (work!=NULL)
workqueue.head=work->next;
return work;
}

(a)

atomic {

someprocess (shared_data) ;

atomic {

work=getwork (workqueue) ;

}

process (work, shared_data) ;

}
(b)

atomic {

someprocess (shared_data) ;

atomic_open {

work=getwork (workqueue) ;

commit {

free (work) ;
}
abort {

insertwork (workqueue, work) ;

}
}

process (work, shared_data) ;

}
(c)

Figure 6. Example code for open- and closed-nested transactions: original
code (a), code with closed-nested transactions (b), and code with open-

nested transactions (c).

to output a character to the terminal. One
solution is to execute the system call
immediately; however, that would be very
problematic if this transaction aborted later.
Trying to undo the I/O by deleting the
character upon an abort would obviously
lead to a wobbly system. In some cases, even
executing the I/O operation might be
difficult if the data is buffered in HTM.
Another option is to defer the I/0O
operation, and wait until commit to output
the character to the terminal. However, this
can lead to problems if the user is expecting
the I/O to take some action. Particular
problems emerge in deferring 1/O in real-
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P1 P2

atomic
someprocess(...)

P1

atomic
I someprocess(...)

P2

work=getwork(...)

atomic

“m atomic

someprocess(...)

work=getwork(...)

atomic
I someprocess(...)

process(...) __m commit
work=getwork(...) D process(...) atomic
commit Conflict —p» - . - work=getwork(...)
g Roll back outer transaction SOl Corliet Roll back inner transaction
atomic atomic
someprocessy...) work=getwork(...)
work=getwork(...) - = commit
D process...)
process(...) commit
commit
(a) (b)
P1 p2 P1 p2
atomic atomic
someprocess(...) someprocess(...) )
. atomic
--m atomic i - -gm atomic (open) someprocessy...)
work=getwork(...) T work=getwork(...) .
- -mm atomic
- _m commit I SRl Rlocess.) commit work=getwork(...)
process(...) - Eiele process(...) comm|t
work=getwork(...
commit Conflict——m (g 9 (o . comunit Conmct_» process
free(work) N Roll back outer transaction free(work) msertwork(workqueue work)
I goorrrpelgrocess(...) Z?O"nl:%k outer transaction
- EiEmils someprocess( J)
k=getwork(...
work=getwork(...) L ——.
__m endT (commit) work=gEREIE
process(...) __m commit
endT (commit) procesRlel
free(work) :
commit
free(work)
(c) (d)

Figure 7. Example comparing open- and closed-nested transactions: no nested transactions (a); closed-nested transaction
(b); open-nested transaction—conflict before the open-nested transaction commits (c); open-nested transaction—conflict
after the open-nested transaction commits (d).
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time systems, which must process sensor
inputs as soon as they are received to avoid
deadline misses.

Still another approach is to forbid I/O
operations from within transactions—or at
least to restrict them to particular forms of
1/0
actional, such as access to a transactional
database or file system.

that can themselves become trans-

A final approach to solving the 1/0
problem is to categorize inputs and outputs
according to their abortive properties. By
definition, an I/O call is undoable if its
effects can be rolled back, which implies
that its effects are self-contained to the I/0
In this approach, the

challenge is to allow maximum programmer

operation only.

expressiveness while avoiding overly com-



plex implementations. Programmers must
be aware of types of I/O operations that
don’t make sense to transparently perform
as part of a single atomic transaction—for
instance, prompting the user for input and
then receiving and acting on the input.
Harris discusses some of the issues de-
scribed here in the context of atomic

blocks.?*

Programming models and TM. Some re-
cently proposed programming models, such as
Sun’s Fortress,”> IBM’s X10,° and Cray’s
Chapel,?” include an atomic statement to de-
fine conditional or conditional atomic blocks
of statements. In some cases, atomic can also be
an attribute for variables; thus, any update to
them in the code is treated as if the update is in
a short atomic section.

Other established programming models,
such as OpenMP and MPI, widely used for
parallelizing scientific and engineering ap-
plications, were not designed with TM in
mind. Exploring how TM can make parallel
programming with these models affordable
is another challenge.

OpenMP has become the industrial
standard for writing parallel programs on
shared-memory architectures for C, C++,
and Fortran. With OpenMP the program-
mer must insert pragmas to express, in
a portable way, the opportunities to exploit
parallelism, distribute work among threads,
and synchronize their execution. However,
OpenMP was initially designed for scientif-
ic applications in which the main source of
parallelism is in loops. The new specifica-
tion of OpenMP (3.0) includes task par-
allelism. It allows the programmer to de-
fine tasks as blocks of work that can enter
a queue of tasks and execute in parallel with
other tasks.

A major complexity in writing OpenMP
applications is the use of critical regions
(locks), atomic regions, and barriers to syn-
chronize the execution of parallel activities
in threads. The simplest way to mix Open
MP and TM is to replace critical and
atomic regions with transactional code
regions, making parallel applications easier
to program, understand, and maintain.
However, TM possibly can provide further
advantages to the OpenMP programming

model. For example, the violation of bar-
riers, both explicit and implicit, in certain
OpenMP work distributors, is a source of
potential speculative parallelism. The in-
clusion of tasks in OpenMP 3.0 also adds
more complexity in specifying the synchro-
nization of parallel activities performed by
the tasks, increasing TM’s potential for
applications based on tasking.

Supporting OpenMP parallelism within
transactions introduces challenges that re-
searchers have not yet considered in detail.
For example, extant TM implementations
don’t permit multiple threads to run in
parallel in the same transactional state.
Transparently to the programmer, TM can
also implement the runtime library support-
ing the code generated by the OpenMP
compiler, which relies on extensive use of
shared memory to implement the pro-
gramming model.

Although mixing TM with nonshared-
message-passing ~ programming
models such as MPI seems unpromising at
first glance, TM’s failure atomicity might
offer opportunities. Mixing the two models
might offer advantages in game application
domains in which CPU and graphics pro-

memory,

cessing unit (GPU) chips communicate
through message passing and in which the
communication channel is prone to faults or
errors. Although fault-tolerant versions of
MPI, such as MPI-FT, exist, they require
a new API. For MPI with TM however,
programmers could achieve fault tolerance
by wrapping each standard MPI directive
inside a transaction with handler code to
handle aborts (in the case of faults) or
commits. One challenge would be to pro-
perly implement the mixed model to pre-
vent cascading aborts.

Hardware transactional memory challenges

Limited on-chip resources present many
challenges for HTM design. The main prob-
lem is that HTM-imposed rules (such as
limited transaction size) decrease program-
ming expressiveness and ease.

Bounded and unbounded transactions. One
concern for HTM system programmers is
the lack of sufficient buffer space. Transac-
tions create additional copies of shared data
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items. One version of the data item remains
modified, and the other version keeps the
original value in case a rollback occurs. This
means that transactional state requires at
least twice the space that conventional state
does. Usually, transactions are small. For
example, Hammond et al. report that 90
percent of transactions fit in less than 8
Kbytes for most applications the authors
ran, and the rest fit in 64 Kbytes.”
However, some applications have a very
large transaction footprint. For example,
javac, the Java compiler, needs more than
1.2 million lines.”® As a result of large
transaction size, as well as limited associa-
tivity, the transactional state might not fit
into the cache.

There are two ways to deal with this
problem. A simple approach is to roll back
the HTM transactions and reexecute them
serially to guarantee that they don’t con-
flict. However, this approach can violate
TM semantics. Nevertheless, this approach
is attractive in systems using speculative lock
elision, in which TM is effectively an opti-
mistic implementation of traditional mutual-
exclusion locks.

The other approach is to combine a
bounded-HTM system with an unbounded-
STM system. Transactions are first at-
tempted with the fast HTM, and then, if
they overflow the hardware limits, they are
rolled back and reexecuted with STM.
This approach can add overhead to the
HTM transactions because they must
watch for conflicts from STM transactions.
Hybrid transactional memory (HyTM)
systems use this method to provide un-
bounded transaction size support without
the increased hardware design complexity
that a full unbounded-HTM system en-
tails.>?

Providing predictable performance for
applications using HyTM is very difficult
because the switch from HTM to STM leads
to a performance cliff. A further challenge is
avoiding complex implementations while
providing support for arbitrarily sized trans-
actions. To address the last issue, Ananian et
al. propose two different systems: the com-
plex Unbounded Transactional Memory
(UTM) and the simple, limited Large Tran-
saction Memory (LTM).?® UTM allows a

very large memory footprint, close to virtual-
memory size, and lets a transaction migrate,
run indefinitely, and survive time-slice inter-
rupts. Like LogTM, UTM is optimistic in
the sense that it assumes conflicts rarely
happen. UTM stores the original data in
a transaction log and the modified data in
place in memory. When a transaction com-
mits, it must discard the transaction log, but
when a transaction aborts it must write the
transaction log to memory.

LTM is a similar system but has some
constraints. It cannot support transactions of
virtual-memory size, so it limits transaction
size to physical-memory size. In LTM, trans-
actions cannot survive time-slice interrupts
and cannot migrate. Moreover, it uses cache
memory to handle the different data versions
and detects conflicts using the cache co-
herency mechanism. If the cache overflows,
the system uses a hash table in main memory.

ISA support.  Because HTM systems have
not been deployed yet, many ISA extension
proposals exist. They range from no ISA
support whatsoever in Implicit Transactions*'
to recent detailed support mechanism,? de-
monstrating the evolution of the field. In
Herlihy, Eliot, and Moss’s proposal, ISA
support is at a minimum; even the start
transaction instruction is unnecessary in their
system.” Still, their system could support or
emulate many of the more complex models;
for example, the flattening used in their system
could support a version of closed nesting. In
contrast, McDonald et al. provide explicit ISA
support for two-phase transaction commit,
closed- and open-nested transactions, and sup-
port handlers for transaction commit, conflict,
and abort.” The challenge is to provide the
right level of ISA support for TM (the issue is
similar to the RISC-CISC debate).

Software transactional memory challenges

The main advantage of STM over HTM
is the flexibility to implement a wide range
of semantics to handle the issues discussed
earlier: managing transactional state and
detecting and resolving conflicts. This flex-
ibility comes at a cost. STM’s most ob-
vious weakness is the runtime overhead
introduced by transaction management.



However, the following are two less obvious
challenges introduced by STM.
Atomicity and code interaction. In classic
HTM designs, normal memory accesses
interact cleanly with transactions. Nontran-
sactional reads see only committed state,
and conflicts are detected between non-
transactional updates and concurrent trans-
actions accessing the same data. However,
this is not usually true of STM systems
because concurrency control operations
must be explicitly introduced.

One aspect of this problem occurs in
systems such as OSTM, where transactional
data structures use different runtime for-
mats from ordinary data. Nontransactional
code must be aware of this—for instance,
when a thread creates a data structure that
later becomes shared between threads
through transactions.

Even if ordinary data structures represent
transactional data in memory, casual sharing
is not usually possible, and various problems
can occur. For instance, if an STM makes
updates in place, a direct read from trans-
actional memory might see uncommitted
data even if the transaction subsequently
aborts. In contrast, if an STM buffers its
updates, a direct read might not see an
update by a transaction that has logically
committed (in terms of the serialized order of
transactions) but has not yet written its
buffered updates back to the heap. Direct
stores are problematic as well. Whether the
STM uses in-place updates or buffered up-
dates, a direct store won’t cause a concurrent
transaction to detect a conflict.

Systems that cannot use direct access and
transactional access together are said to
exhibit weak atomicity. This means that the
programmer must select whether a data
structure will be managed directly or trans-
actionally—either by hand or with the aid of
the language’s type system. Conversely,
systems in which direct accesses look like
single-location transactions are said to ex-
hibit strong atomicity.

Providing strong atomicity in an STM
system appears challenging from a perfor-
mance viewpoint. Strong atomicity requires
that direct memory accesses check the me-
tadata structures that the STM uses to co-

ordinate transactions. Although a compiler
or managed runtime system can automate
the addition of these checks the perfor-
mance cost would be high because of the
vast increase in the number of memory
accesses that the checks need.

A possible middle ground between strong
and weak atomicity is to require some
discipline in the programmer’s use of atomic
blocks. One programming discipline is
single-lock equivalence, in which atomic
blocks are considered—merely conceptual-
ly—as acquiring and releasing a single pro-
cesswide transaction lock. If the resulting
lock-based program is correctly synchro-
nized, its original version using atomic blocks
will run with strong atomicity. However, if
the resulting lock-based program is not
cotrectly synchronized, the original version
can exhibit the kind of data races that weak
atomicity permits. For example, the follow-
ing pair of operations is not correctly
synchronized because there is no concurrency
control between the transaction executed by
Thread 1 and the direct access in Thread 2:

// Thread 1
atomic {
hist[index]++;

// Thread 2
hist[index] = 42;

We will need more experience of trans-
actional workloads to decide what kind of
atomicity model to provide. Although strong
atomicity is tempting, using it in place of
single-lock equivalence doesn’t make many
nontrivial programs work correctly. Instead,
we should focus on reliably preventing or
detecting the kinds of synchronization errors
caused by weak atomicity. On the other
hand, in many settings we still need some
guarantees, even when a program mixes di-
rect accesses and transactional accesses. Even
if such programs are incorrectly synchro-
nized, they should not, for instance, lead to
type-safety violations in a managed runtime
system.

Inconsistent reads and zombie transactions.
The second problem particular to STM is
controlling so-called zombie transactions.
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These are transactions condemned to abort
because another transaction has made
a conflicting update, but the STM runtime
system has not yet detected the conflict.
The problem with zombies is that they
might have read an inconsistent set of data.
For instance, in OSTM, transaction T1 can
read from object O1, transaction T2 can
commit updates to O1 and O2, and then
T1 can continue to read O2, leaving T1
a zombie.

How do we guarantee that zombies are
discovered, and how do we prevent them
from doing harm in the meantime? If
conflicts are detected only at commit time,
it is possible that inconsistent data read
form O1 and O2 might cause zombie T1 to
enter an infinite loop and never try to
commit. We must make sure that the zom-
bie doesn’t perform any irrevocable opera-
tions before it aborts. For instance, T1
might raise a null pointer exception or
attempt an out-of-bounds array access, both
of which must be detected and rolled back.

One way to solve these problems is to use
a managed programming environment,
such as the Java Virtual Machine, Micro-
sof’s .NET Common Language Runtime,
or the GHC runtime system. The managed
runtime system can periodically validate
transactions to find any zombies and ensure
that all memory accesses performed by
a transaction go through the STM machin-
ery so that the effects of zombie transactions
can be rolled back.

The situation is more difficult without
a managed runtime. For low-level languages,
one approach is to push the problem onto the
STM system user. The user must be aware of
the problem and make sure that zombies are
detected and remain benign—for instance, by
checking array bounds accesses made by
transactions. However, this eliminates many
of the ease-of-programming advantages of
using transactions.

An alternative with a more palatable
programming model is to prevent zombies
from arising in the first place. TM designs
can do this either by using pessimistic con-
currency control for all data accesses (that is,
reads as well as writes) or, if using optimistic
concurrency control, by ensuring that the
read set remains valid. The DSTM system

uses the latter approach by maintaining
visible reader lists that record which trans-
actions are reading from which objects. A
transaction opening an object for writing
can thereby detect which readers it might
conflict with.

The Transactional Locking II design
avoids explicit reader lists by assigning global
version numbers to transactions and associ-
ating each memory location with a versioned
write lock that records the version number of
the last transaction that updates the loca-
tion.® A new read is consistent with a
transaction’s earlier reads as long as the lo-
cation’s version number predates the global
version at the time that the transaction began.

ransactional memory provides a grace-

ful and natural mechanism for writing
parallel programs. Recendy, a flurry of
research activity has endeavored to define
and design hardware and software TM. We
are entering an era in which the design of
multicore chips will almost entirely be
driven by software usage models such as
TM. The greatest challenge is to make the
programmer community’s adoption of TM
as smooth as possible through hardware and
software design. Effective synchronization
mechanisms are crucial to fulfilling the
promise of improved application perfor-
mance on future muldcore chip muld-
processors. MICRO
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