
Bisimulation and Language Equivalence

Colin Stirling

Division of Informatics
University of Edinburgh

email: cps@dcs.ed.ac.uk

1 Introduction

One way to understand an interactive system is firmly rooted in language theory,
that a system is its set of runs (or words). Properties of systems are described in
a linear time temporal logic. Relationships between automata, language theory
and logic are then utilised, such as the theory of ω-regular languages and Büchi
automata.

An alternative viewpoint is that an interactive system should be understood
as its capability for interacting with other systems. Language and automata
theory then have less relevance because a more intensional account of system
behaviour is needed than that given by sets of words. Bisimulation equivalence
has a pivotal role within this approach.

Bisimulation is a rich concept which appears in various areas of theoretical
computer science. Besides its origin for understanding concurrency, it was inde-
pendently developed in the context of modal logic. In this paper we make some
contrasts between bisimulation equivalence and language equivalence. There are
two threads. First is that because bisimulation is more intensional, results in lan-
guage and automata theory can be recast for bisimulation. The second thread is
the contrast between definability of language equivalence and bisimulation equiv-
alence. Bisimulation equivalence is definable as a “simple” formula in first-order
logic with fixed points. Language equivalence is not definable as an unconditional
projection of simple least fixed point. This should be contrasted with a known
normal form result for least fixed point logic: any least fixed point definable re-
lation is definable as a projection of a simple least fixed point under equality
conditions on its components. It should be noted that undefinability of language
equivalence in least fixed point logic per se would actually imply P 6= NP. In
section 2 we consider the two origins of bisimulation. In section 3 we describe
some results which contrast bisimulation equivalence and language equivalence
on automata. The final two sections discuss logics and the undefinability result.

1

u

v

w

s t

p

q

coin coin coin coin

coffee tea coffee tea tea

a b c d e

Figure 1: Simple transition graphs

2 Background

Labelled transition systems are commonly encountered in operational semantics
of programs and systems. They are just labelled graphs. A transition system is
a pair G = (S, {

a
−→ : a ∈ A}) where S is a non-empty set (of states), A is a

non-empty set (of labels) and for each a ∈ A,
a
−→ is a binary relation on S. We

write s
a
−→ s′ instead of (s, s′) ∈

a
−→. Sometimes there is extra structure in a

transition system, a set of atomic colours Q, such that each colour q ⊆ S (the
subset of states with colour q).

Consider the transition systems pictured in Figure 1. Here u and w are
simple vending machines, and p is a person who wishes to obtain tea. The lan-
guage accepted by u, {coin coffee, coin tea}, is the same as that accepted by w.
When p is placed in parallel with w, p||w, then deadlock is possible before a

tea action because of the joint transition p||w
coin
−→ q||s: we assume here that

parallel composition requires both components to do the same action. In con-

trast p||u
coin
−→ q||v, and tea is then the only next possible action. Therefore

the language accepted by p||w, {coin, coin tea}, is different from the language
accepted by p||u, {coin tea}. Consequently language equivalence is not a con-
gruence for interacting “automata”. Because of this Milner and others sought a
more intensional notion of equivalence which would be preserved by communi-
cating automata.

Bisimulations were introduced by Park [16] as a small refinement of the be-
havioural equivalence originally defined by Hennessy and Milner between basic
CCS processes (whose behaviours are transition systems).

Definition 1 A binary relation R between states of a transition system is a
bisimulation just in case whenever (s, t) ∈ R and a ∈ A,

1. if s
a
−→ s′ then t

a
−→ t′ for some t′ such that (s′, t′) ∈ R and

2. if t
a
−→ t′ then s

a
−→ s′ for some s′ such that (s′, t′) ∈ R.

In the case of an enriched transition system with colours there is an extra clause
in the definition of a bisimulation that it preserves colours: if (s, t) ∈ R then

2

0. for all colours q, s ∈ q iff t ∈ q

Simple examples of bisimulations are the identity relation and the empty rela-
tion. Two states of a transition system s and t are bisimulation equivalent (or
bisimilar), written s ∼ t, if there is a bisimulation relation R with (s, t) ∈ R. The
machines u and w in Figure 1 are not bisimulation equivalent. The transition

u
coin
−→ v cannot be matched either by w

coin
−→ s because s does not have a tea

transition or by w
coin
−→ t because t does not have a coffee transition.

Transition systems are models for basic process calculi, such as ACP, CCS
and CSP. Bisimulation equivalence is a congruence for all the operators of these
calculi. By permitting more general operators, whose rules for transitions belong
to a general format, bisimulation equivalence turns out to be the least congruence
induced by language equivalence [9]. Models for richer process calculi capturing
value passing, mobility, causality, time, probability and locations have been de-
veloped. The basic notion of bisimulation has been generalised, often in a variety
of different ways, to cover these extra features. Bisimulation also has a nice cat-
egorical representation via co-algebras due to Aczel, see for example [18], which
allows a very general definition. It is an interesting question whether all the
different brands of bisimulation are instances of this categorical account.

It is common to identify a root of a transition system as a start state. Above
we defined a bisimulation on states of the same transition graph. Equally we could
have defined it between states of different transition systems. When transition
systems are rooted we can then say that two systems are bisimilar if their roots
are. A family ∆ of rooted transition graphs is said to be closed under bisimulation
equivalence when the following holds.

if G ∈ ∆ and G ∼ G′ then G′ ∈ ∆

Given a rooted transition system there is a “smallest” transition system which
is bisimilar to it: this is its canonical transition graph which is the result of first
removing any states which are not reachable from the root, and then identifying
bisimilar states (using quotienting). For instance Figure 2 is the canonical graph
of Figure 3.

An alternative perspective on bisimulation closure is from the viewpoint of
properties of transition systems. Properties whose transition systems are bisimu-
lation closed are said to be bisimulation invariant. Over rooted transition graphs
property Φ is bisimulation invariant when the following holds.

if G |= Φ and G ∼ G′ then G′ |= Φ

(By G |= Φ we mean that Φ is true of the transition graph G.) On the whole,
“counting” properties are not bisimulation invariant, for example “has 32 states”

3

0 1 32

pX pXX pXXX pXXXX . . .

.
.

.

. . .

a a a

d d d

b,c b b
bc c

if n = 2m then n = {rXn, qXm}
if n = 2m− 1 then n = {rXn, sXm}

Figure 2: Quotiented transition graph

or “has an even number of states”. In contrast temporal properties are bisimula-
tion invariant, for instance “will eventually do an a-transition” or “is never able
to do a b-transition”. Other properties such as “has an Hamiltonian circuit” or
“is 3-colourable” are also not bisimulation invariant. Later we shall be interested
in parameterised properties, that is properties of arbitrary arity. We say that
an n-ary property Φ(x1, . . . , xn) on transition systems is bisimulation invariant
when the following is true.

if G |= Φ[s1, . . . , sn] and t1, . . . , tn are states of G′ and
ti ∼ si for all i : 1 ≤ i ≤ n then G′ |= Φ[t1, . . . , tn]

(By G |= Φ[s1, . . . , sn] we mean that Φ(x1, . . . , xn) is true of G when xi is inter-
preted as state si for each i.) An example of a property which is not bisimulation
invariant is “x1, . . . , xn is a cycle”, and an example of a bisimulation invariant
property is “x1 is language equivalent to x2”. The notions of bisimulation clo-
sure and invariance have appeared independently in a variety of contexts, see for
instance [2, 3, 4, 5, 15].

Bisimulation was first introduced in the context of modal logic by Van Ben-
them [2] to give an account of which subfamily of first-order logic is definable in
modal logic. Let M be the following modal logic where a ranges over A:

Φ ::= tt | ¬Φ | Φ1 ∨ Φ2 | 〈a〉Φ

The inductive stipulation below defines when a state s of a transition graph G
has a modal property Φ, written s |=G Φ, however we drop the index G.

s |= tt

s |= ¬Φ iff s 6|= Φ
s |= Φ ∨Ψ iff s |= Φ or s |= Ψ

s |= 〈a〉Φ iff ∃t. s
a
−→ t and t |= Φ

4

In the context of an enriched transition system one adds propositions q for each
colour q ∈ Q to the logic, with semantic clause: s |= q iff s ∈ q. Modal formulas
are bisimulation invariant: if s |= Φ and s ∼ t then t |= Φ for any modal Φ.

First-order logic, FOL, over transition systems contains binary relations Ea for
each a ∈ A (and monadic predicates q(x) for each colour q if extended transition
systems are under consideration). Formulas of FOL have the following form.

Φ ::= xEay | x = y | ¬Φ | Φ1 ∧ Φ2 | ∀x.Φ

A formula Φ(x1, . . . , xn) with at most the free variables x1, . . . , xn will be true
or false of a transition system G and states s̃ = s1, . . . , sn in the usual way. For
example

G |= xiEaxj [s̃] iff si
a
−→ sj

G |= ∀xn+1.Φ[s̃] iff ∀s′. G |= Φ[s̃, s′]

Not all first-order formulas are bisimulation invariant. An example is the formula
∃y.∃z.(x

a
−→ y ∧ x

a
−→ z ∧ y 6= z) which says “x has at least two different a-

transitions”.
Van Benthem introduced bisimulation to identify which formulas Φ(x) of FOL

are equivalent to modal formulas (to M formulas) [3]. A formula Φ(x) is equivalent
to a modal formula Φ′ provided that for any G and for any state s, G |= Φ[s] iff
s |=G Φ′. Van Benthem proved the following characterisation.

Proposition 1 A FOL formula Φ(x) is equivalent to an M formula iff Φ(x) is
bisimulation invariant.

3 Caucal’s hierarchy

Bisimulation equivalence is a very fine equivalence between states. An interesting
line of enquiry is to re-consider classical results in automata and language the-
ory, replacing language equivalence with bisimulation equivalence. These results
concern definability, closure properties and decidability/undecidability.

Grammars can be viewed as generators of transition systems. Let Γ be a finite
family of nonterminals and assume that A is a finite set (of terminals). A basic
transition has the form α

a
−→ β where α, β ∈ Γ∗ and a ∈ A. A state is then

any member of Γ∗, and the transition relations on states are defined as the least
relations containing the basic transitions and satisfying the following prefix rule.

if α
a
−→ β then αδ

a
−→ βδ

Given a state α we can define its rooted transition system whose states are just the
ones reachable from α. An example is a pushdown automaton over the alphabet
A = {a, b, c, d} whose basic transitions are as follows (where ǫ is the empty stack
sequence).

5

qǫ
d
←− sX

d
←− qX

d
←− sXX

d
←− qXX

d
←− . . .

↑ c ↑ c ↑ c
...

pX
a
−→ pXX

a
−→ pXXX

a
−→ . . .

↓ b ↓ b ↓ b
...

rǫ
d
←− rX

d
←− rXX

d
←− . . .

Figure 3: A pushdown automaton

{pX
a
−→ pXX, pX

c
−→ qǫ, pX

b
−→ rǫ, qX

d
−→ sX, sX

d
−→ qǫ, rX

d
−→ rǫ}

The transition graph generated by pX is pictured in Figure 3. For any n ≥ 0

the transition qXXn d
−→ sXXn is derived from the basic transition qX

d
−→ sX

using the prefix rule when β is Xn. In this example the set of nonterminals is
divided into two, states Q′ and stack elements Γ. Each basic transition belongs
to (Q′ × Γ)×A× (Q′ × Γ∗).

In the table below is the “Caucal hierarchy” of transition graph descriptions,
which depends on how the family of basic transitions is specified. In each case we
assume a finite family of rules. Type 3 captures regular grammars (whose graphs
are finite-state), Type 2 captures context-free grammars in Greibach normal form,
and Type 11

2
, in fact, captures pushdown automata. For Type 0 and below this

means that in each case there are finitely many basic transitions. In the other
two cases R1 and R2 are regular expressions over Γ. The idea is that each rule
R1

a
−→ β stands for the possibly infinite family of basic transitions {α

a
−→ β :

α ∈ R1} and R1
a
−→ R2 stands for the family {α

a
−→ β : α ∈ R1 and β ∈ R2}.

For instance a Type−1 rule of the form X∗Y
a
−→ Y includes for each n ≥ 0 the

basic transition XnY
a
−→ Y .

Basic Transitions

Type−2 R1
a
−→ R2

Type−1 R1
a
−→ β

Type 0 α
a
−→ β

Type 11
2

α
a
−→ β where |α| = 2 and |β| > 0

Type 2 X
a
−→ β

Type 3 X
a
−→ Y or X

a
−→ ǫ

This hierarchy is implicit in Caucal’s work on understanding context-free
graphs, and understanding when a graph has a decidable monadic second-order

6

theory [5, 4, 6]. With respect to language equivalence, the hierarchy collapses
to just two levels, the regular and the context-free. The families between Type 2
and Type−2 are equivalent: for every G of Type−2 and root α there is a G′ of
Type 2 and root α′ such that the language of α is the same as the language of α′.

The standard textbook transformation from pushdown automata to context-
free grammars (Type 11

2
to Type 2) does not preserve bisimulation equivalence. In

fact, with respect to bisimilarity pushdown automata are richer than context-free
grammars. Caucal [5] shows that there is not a Type 2 transition graph and root
α which is bisimulation equivalent to pX of Figure 3. He also shows that Type 0
transition systems coincide (up to isomorphism) with Type 11

2
. There is a strict

hierarchy between Type 0 and Type−2. Therefore, with respect to bisimulation
equivalence there are five levels in the hierarchy. An interesting consideration is to
what extent this hierarchy is closed under canonical transition graphs. Figure 2
is clearly not a Type 0 graph but it is the canonical graph for Figure 3, and
therefore this shows that Type 0 is not closed under canonical graphs, see [4] for
further details and results.

Baeten, Bergstra and Klop proved that bisimulation equivalence is decid-
able for a subset of Type 2 transition systems1 [1]. The decidability result was
generalised in [7] to encompass all Type 2 graphs. Groote and Hüttel proved
that other standard equivalences (traces, failures, simulation, 2/3-bisimulation
etc..,) on Type 2 graphs are all undecidable using reductions from the undecid-
ability of language equivalence for these graphs [10]. The most recent result is
by Sénizergues [20], who shows that bisimulation equivalence is decidable for
transition systems somewhere between Type 0 and −1. This result is a small
generalisation of his formidable proof of decidability of language equivalence for
DPDA [19, 20]. Using ideas developed in concurrency theory (tableaux methods)
we have simplified his proof of the DPDA result [22]. This leaves as an open ques-
tion whether bisimulation equivalence is also decidable for Type−1 and Type−2
systems.

4 Richer logics

Modal logic M of section 2 is not very expressive. For instance it cannot express
temporal properties, such as safety or liveness properties, of transition systems.
Such properties have been found to be very useful when analysing the behaviour
of concurrent systems. Modal mu-calculus, µM, introduced by Kozen [13], has
the required extra expressive power. The new constructs over and above those of
M are

Φ ::= X | . . . | min XΦ

1They proved it for the normed subfamily. G is normed if for every state s there is a word

w such that s
w

−→ ǫ.

7

where X ranges over a family of propositional variables, and in the case of min XΦ
there is a restriction that all free occurrences of X in Φ are within the scope of
an even number of negations (to guarantee monotonicity).

The semantics of M is extended to encompass these extra constructs. The
inductive definition of satisfaction stipulates when a state s of a transition system
has the property Φ(X1, . . . , Xn) when each Xi is interpreted as the set of states

Si, written s |= Φ[S̃], and the semantic clauses for the modal fragment are as
before (except for the presence of the state sets).

s |= Xi[S̃] iff s ∈ Si

s |= min Xn+1Φ[S̃] iff ∀S ′. if (∀t ∈ S ′. t |= Φ[S̃, S ′]) then s ∈ S ′

The stipulation for the fixed point follows directly from the Tarski-Knaster the-
orem, as a least fixed point is the intersection of all prefixed points. (Again we
would add atomic formulas q if we are interested in extended transition systems.)

Second-order propositional modal logic, 2M, is defined as an extension of M
as follows.

Φ ::= X | . . . | 2 Φ | ∀X.Φ

The modality 2 is the reflexive and transitive closure of
⋃
{[a] : a ∈ A}, and

is included so that 2M includes µM. As with modal mu-calculus we define when
s |= Φ[S̃]. The new clauses are:

s |= 2Φ[S̃] iff ∀t. ∀w ∈ A∗. if s
w
−→ t then t |= Φ[S̃]

s |= ∀Xn+1.Φ[S̃] iff ∀S ′. s |= Φ[S̃, S ′]

There is a straightforward translation of µM into 2M. Let Tr be this translation.
The important case is the fixed point: Tr(min XΦ) = ∀X.(2(Tr(Φ)→ X)→ X).

Formulas of M and closed formulas of µM are bisimulation invariant. This is
not true in the case of 2M, for it is too rich for characterising bisimulation: for
instance, a variety of “counting” properties are definable, such as “has at least
two different a-transitions”, expressible as ∃X.(〈a〉X ∧ 〈a〉¬X). This means that
two bisimilar states need not have the same 2M properties.

FOL over transition graphs is also not rich enough for capturing interesting
properties. One extension of first-order logic is monadic second-order logic, 2OL,
with the extra formulas

Φ ::= X(x) | . . . | ∀X.Φ

The semantic clauses are generalised as follows:

G |= Xi(xj)[s̃, S̃] iff sj ∈ Si

G |= ∀Xn+1.Φ[s̃, S̃] iff ∀S ′. G |= Φ[s̃, S̃, S ′]

8

Formulas of 2OL need not be bisimulation invariant. An interesting question is
the relationship between µM and 2OL. Van Benthem’s result was generalised by
Janin and Walukiewicz [12] as follows.

Proposition 2 A 2OL formula Φ(x) is equivalent to a closed µM formula iff
Φ(x) is bisimulation invariant.

One corollary of this result is that the bisimulation invariant closed formulas of
2M has the same expressive power as the closed formulas of µM.

A different extension of FOL is first-order logic with fixed points, µFOL, where
there is the following extra formulas

Φ ::= X(x1, . . . , xk) | . . . | (µX(x1, . . . , xk). Φ)(y1, . . . , yk)

In the case of (µX(. . .). Φ)(. . .), there is the same restriction as in µM that all
free occurrences of X in Φ lie within the scope of an even number of negations.
The interpretation of a predicate Xi with arity k is a set of k-tuples, a subset of
Sk. The semantic clauses are therefore as follows (where we use the notation Si

for sets of tuples).
The new semantic clauses are (where s̃′ is sk+1, . . . , sn)

G |= Xj(xi1, . . . , xik)[s̃, S̃] iff (si1, . . . , sik) ∈ Sj

G |= (µXn+1(. . .).Φ)(x1, . . . , xk)[s̃, S̃] iff ∀S ′. if (∀(t1, . . . , tk) ∈ S ′.

G |= Φ[t̃, s̃′, S̃, S ′]) then (s1, . . . , sk) ∈ S ′

When the alphabet A is finite, bisimulation equivalence is definable in µFOL
as a dyadic greatest fixed point formula

(νZ(x, y).(Z(y, x) ∧
∧

a∈A

(∀x′.∃y′.xEax
′ → yEay

′ ∧ Z(x′, y′))))(. . .)

where (νZ(. . .)Φ) (. . .) is ¬ ((µZ(. . .)Φ(¬Z))(. . .)). An interesting open question
is how to characterise the bisimulation invariant sublogic of µFOL.

5 Finite model theory

Finite model theory is concerned with relationships between complexity classes
and logics over finite structures. It is interesting to consider bisimulation invari-
ance in the context of finite model theory. Rosen showed that Proposition 1 (in
section 2) remains true with the restriction to finite transition systems [17]. It is
an open question whether Proposition 2 also remains true under this restriction.

Part of the interest in relationships between µM and 2M or 2OL with respect
to finite transition systems is that within 2M and 2OL one can define NP-complete
problems: examples include 3-colourability on finite connected undirected graphs.

9

Consider such a graph. If there is an edge between two states s and t let s
a
−→ t

and t
a
−→ s. So in this case A = {a}, and 3-colourability is given by:

∃X. ∃Y. ∃Z. (Φ ∧2((X → [a]¬X) ∧ (Y → [a]¬Y) ∧ (Z → [a]¬Z)))

where Φ, which says that every vertex has a unique colour, is

2((X ∧ ¬Y ∧ ¬Z) ∨ (Y ∧ ¬Z ∧ ¬X) ∨ (Z ∧ ¬X ∧ ¬Y))

In contrast, µM formulas over finite transition systems can only express PTIME
properties.

An interesting open question is whether there is a logic which captures exactly
the PTIME properties of transition systems. Otto has shown that there is a logic
for the PTIME properties that are bisimulation invariant [15]. The right setting
is µFOL over canonical transition systems (where = is ∼, and a linear ordering
on states is thereby definable).

We now consider emaciated finite transition systems whose set A is a singleton.
That is now G = (S,−→) where S is finite. We write s

n
−→ t, n ≥ 0, if there is

a sequence of transitions of length n from s to t (and by convention s
0
−→ s). A

state is terminal if it has no transitions. The language of state s is therefore the

set of words L(s) = {i ≥ 0 : s
i
−→ t and t is terminal}. Consequently, s and s′

are language equivalent if L(s) = L(s′). The property “x is language equivalent
to y” as was noted earlier is bisimulation invariant. The definition in µFOL of
bisimulation equivalence of the previous section remains correct when transition
systems are finite. However it is unlikely that language equivalence is definable
in µFOL because of the following result, proved in [23].

Proposition 3 Language equivalence on (canonical) emaciated finite transition
graphs is co-NP complete.

Hence language equivalence over finite transition systems is definable in µFOL
iff PTIME = NP. Dawar offers a different route to this observation [8].

A classical result (due to Immermann, Gurevich and Shelah) in a slightly
normalised form is:

Proposition 4 A µFOL formula Ψ(y1, . . . , yn) over finite transition systems is
equivalent to a formula of the form ∃u. ((µZ(x1, . . . , xm). Φ)(y1, . . . , yn, u, . . . , u))
where Φ is first-order and contains at most x1, . . . , xm free.

The argument places in the application (. . .) from n + 1 to m are all filled by
the same element u. This allows for the arity of the defining fixed point m to be
larger than the arity of the µFOL formula n. Consequently, if one can prove that
“y is language equivalent to z” is not definable by a µFOL formula in normal
form, ∃u. (µZ(x1, . . . , xm). Φ (y, z, u, . . . , u)), then this would show that PTIME
is different from NP.

10

The result below has the consequence that language equivalence is not defin-
able by a normal formula of the form ∃u. (µZ(x1, x2, x3). Φ (y, z, u)). We present
the theorem in the most general form possible, that language equivalence is not
definable as an unconditional projection of a simple fixed point.

Theorem 1 Language equivalence is not definable by a normal formula of the
form (µZ(x1, . . . , xn). Φ)(. . .) (over finite transition systems).

That is, language equivalence is not definable as an unconditional projection of
a simple fixed point. The rest of the paper is devoted to its proof. One popular
method for showing non-definability is to use games. Here we use a variant
method which introduces “proofs” of formulas. A sufficiently concrete account
of when a formula is true of a transition system is given by a tableau proof. The
aim is to provide a proof system G ⊢ Ψ(s1, . . . , sn) for showing G |= Ψ[s1, . . . , sn]
when Ψ is a formula of the form (µZ(x1, . . . , xn). Φ)(. . .) containing the single
fixed point µZ(. . .): it is straightforward to extend the proof system to formulas
with multiple fixed points. The property checker is a tableau system, a goal
directed proof system. Assume that the starting formula is (µZ(x1, . . . , xn). Φ)(x̃)
and let {s1/x1, . . . , sn/xn} be the simultaneous substitution of each si for xi. We
assume that in Φ all negations are moved inwards in the usual way. The tableau
rules are therefore as follows.

G ⊢ (µZ(x1, . . . , xn). Φ)(x̃)(s1, . . . , sn)

G ⊢ Z(s1, . . . , sn)

G ⊢ Z(s1, . . . , sn)

G ⊢ Φ{s1/x1, . . . , sn/xn}

G ⊢ ∃x.Ψ

G ⊢ Ψ{s/x}
s ∈ S

G ⊢ ∀x.Ψ

G ⊢ Ψ{s1/x} . . . G ⊢ Ψ{sk/x}
S = {s1, . . . , sk}

G ⊢ Ψ1 ∧Ψ2

G ⊢ Ψ1 G ⊢ Ψ2

G ⊢ Ψ1 ∨Ψ2

G ⊢ Ψ1

G ⊢ Ψ1 ∨Ψ2

G ⊢ Ψ2

To test if G |= (µZ(x1, . . . , xn). Φ)(x̃)[s1, . . . , sn] one tries to develop a proof
of G ⊢ (µZ(x1, . . . , xn). Φ)(x̃)(s1, . . . , sn) by building a tableau, a finite proof
tree whose root is labelled with this initial sequent. The sequents labelling the
immediate successors of a node are determined by an application of one of the
rules. One keeps building a proof until we reach a terminal sequent.

A terminal sequent has one of the following forms

1. G ⊢ s = t or G ⊢ s 6= t

11

Assume 0 < t < k < k + t < a

e0 −→ . . . −→ ek −→ . . . −→ ek+t −→ . . . −→ ea and e0 −→ et

l0 −→ . . . −→ lk −→ . . . −→ lk+t −→ . . . −→ la and ek −→ ek+t

l′1 −→ . . . −→ l′k −→ . . . −→ l′k+t −→ . . . −→ l′a and l′k −→ l′k+t

Figure 4: Ingredients of the graphs G and G′

2. G ⊢ sEt or G ⊢ ¬(sEt)

3. G ⊢ Z(s1, . . . , sn) and in the proof tree above this sequent there is the same
sequent G ⊢ Z(s1, . . . , sn).

Terminal sequents of type 1 or 2 which are true are successful. A tableau proof
is successful if all of its leaves are successful, as shown by the next result whose
proof is straightforward.

Lemma 1 G |= (µZ(x1, . . . , xn). Φ)(x̃)[s1, . . . , sn] iff there is a successful tableau
whose root is G ⊢ (µZ(x1, . . . , xn). Φ)(x̃)(s1, . . . , sn).

Proof of Theorem 1: Suppose (µZ(x1, . . . , xn). Φ)(x̃) defines language equiv-
alence. That is for any transition graph G and states s1, . . . , sn of S

G |= (µZ(x1, . . . , xn). Φ)(x̃)[s1, . . . , sn] iff L(s1) = L(s2)

We assume that Φ is in prenex normal form Q1xi1 . . . QmximΨ where Ψ is in
DNF: each clause in Ψ contains atomic formulas of the form x = y, x 6= y,
xEy, ¬(xEy) and Z(y1, . . . , yn) where the variables x, y range over the set X =
{x1, . . . , xn, xi1, . . . , xim} (where xij could be the same as xk).

Consider the transition systems in Figure 4. The e vertices have an “early”
branching point whereas the l and l′ vertices have a “late” branching point. Let
G be the graph whose vertices are ei and li, and let G′ be the similar graph
whose vertices are ei and l′i. Notice that L(e0) = L(l0) but L(ei) 6= L(li) when
i : 0 < i < k + 1. Moreover L(e0) 6= L(l′1). We assume that k > n2m+1 where m
is the number of quantifiers and n is the arity of Z, and we assume that t < k
and t > 1.

There is a tableau proof of G ⊢ (µZ(x1, . . . , xn). Φ)(x̃)(e0, l0, ṽ) by Lemma 1,
where ṽ is any sequence of vertices v3, . . . , vn. Consider any ṽ such that there
is a shortest depth tableau proof of G ⊢ Z(e0, l0, ṽ). The argument proceeds
by showing that there is also a proof of G′ ⊢ Z(e0, l

′
1, ṽ

′). First we define the
elements ṽ′.

Assume ṽ = v3 . . . vn. We define ṽ′ = v′
3 . . . v′

n as follows. If vi is ej then
v′

i = ej and if vi = lk+j then v′
i = l′k+j. Otherwise vi = lj and j < k. Consider all

12

such vi in decreasing order, say lj1 . . . ljb (where b < (n− 1)). If j1 ≥ (k − 2m+1)
then the corresponding element is l′j1 otherwise it is l′j1+1: and in the second case
all the other corresponding elements are l′js+1 for 1 < s ≤ b. Assume then that for
the first element lj1 the index j1 ≥ (k−2m+1). Consider now the second element
lj2. If the index j2 ≥ (j1−2m+1) then the corresponding element is l′j2 otherwise
it is l′j2+1 and again in this second case the rest of the corresponding elements
are l′js+1 for 2 < s ≤ b. Repeat this construction as long as js ≥ j(s− 1)− 2m+1

where the corresponding element is l′js, and otherwise it is l′js+1 and the rest of
the corresponding elements are l′jz+1 for s < z ≤ b.

Consider the sequence of elements lk lj1 . . . ljb l0 in G and the corresponding
sequence l′k l′j1′ . . . l′jb′ l

′
1 in G′. The index ji′ in the second sequence is either ji

or ji + 1. Let p be the pivot point in the sequence where all indices to the left
also occur in the first sequence and all indices to the right including that of p are
1 plus the index of the corresponding element in the first sequence. Note that
the difference in the index between element p and the next element to the left is
greater than 2m+1.

We now show how a proof of G ⊢ Z(e0, l0, ṽ) can be used to develop a
proof of G′ ⊢ Z(e0, l

′
1, ṽ

′). The goal G ⊢ Z(e0, l0, ṽ) reduces to the subgoal
G ⊢ (Q1xi1 . . . QmximΨ)(e0, l0, ṽ). Similarly the goal G′ ⊢ Z(e0, l

′
1, ṽ

′) reduces to
the subgoal G′ ⊢ (Q1xi1 . . . QmximΨ)(e0, l

′
1, ṽ

′).
We consider the quantifiers in turn, and at each stage the pivot point may

become updated.
Suppose Q1xi1 = ∀xi1. The goal G ⊢ (Q1xi1 . . . QmximΨ)(e0, l0, ṽ) reduces to

subgoals one for each u ∈ G, G ⊢ ((Q2xi2 . . . QmximΨ)(e0, l0, ṽ)){u/xi1}. For each
such subgoal we associate a subgoal of the second proof which has the following
form G′ ⊢ ((Q2xi2 . . . QmximΨ)(e0, l

′
1, ṽ

′)){u′/xi1}, so that all u′ ∈ G′ are dealt
with. If u = ei then u′ = ei. Let j be the index of the pivot element p. If u = li
and i > j + 2m then u′ = l′i otherwise u′ = l′i+1. In the circumstance that i ≥ j
but j + 2m ≥ i then the pivot element p is updated to that of u′.

The argument is similar when Q1xi1 = ∃xi1. Now there is only one sub-
goal G ⊢ ((Q2xi2 . . . QmximΨ)(e0, l0, ṽ)){u/xi1}. The corresponding subgoal G′ ⊢
((Q2xi2 . . . QmximΨ)(e0, l

′
1, ṽ

′)){u′/xi1} is chosen as above, and again the pivot
element may be updated.

The argument continues for the remaining quantifiers. Suppose the goal is
G ⊢ ((Qcxic . . . QmximΨ)(e0, l0, ṽ)){u1/xi1, . . . , uc−1/xi(c−1)}, and the correspond-
ing goal is G′ ⊢ ((Qcxic . . . QmximΨ)(e0, l

′
1, ṽ

′)){u′
1/xi1, . . . , u

′
c−1/xi(c−1)} in the

second proof. If Qcxic is ∀xic then we proceed as above except if j is the index of
the current pivot element p and uc = li and i > j+2(m+1)−c then u′

c = l′i otherwise
u′ = l′i+1. The pivot element is updated to uc when i ≥ j but j + 2(m+1)−c ≥ i.

As quantifiers are eliminated the sequence of elements lk lj1 . . . ljb l0 in G and
the corresponding sequence l′k l′j1′ . . . l′jb′ l

′
1 in G′ may be expanded, and the pivot

element in the second sequence updated. However at each stage, after eliminating
quantifier Qcxic, the difference in the index between the pivot element p and the

13

next element to the left is greater than 2(m+1)−c.
Finally all the quantifiers are removed, and a subgoal of the first proof has the

form G ⊢ Ψ(e0, l0, ṽ, ũ) and in the second proof has the form G′ ⊢ Ψ(e0, l
′
1, ṽ

′, ũ′).
The formula Ψ is in DNF. Assume that Ψ =

∨
Ψi where each Ψi is a con-

junction of atomic formulas. Suppose the subgoal of G ⊢ Ψ(e0, l0, ṽ, ũ) is G ⊢
Ψi(e0, l0, ṽ, ũ), then the corresponding subgoal is G′ ⊢ Ψi(e0, l

′
1, ṽ

′, ũ′). Consider
any atomic formula B in Ψi. If B has the form x = y or xEy then because of the
construction of ṽ′ and ũ′ it follows that G |= B[e0, l0, ṽ, ũ] iff G′ |= B[e0, l

′
1, ṽ

′, ũ′].
The only other possible atomic sentences have the form Z(y1, . . . , yn). Suppose
a subgoal of G ⊢ Ψi(e0, l0, ṽ, ũ) is G ⊢ Z(w1, . . . wn). It follows that w1 and w2

are not e0 and l0 (for otherwise the proof of G ⊢ Z(e0, l0, w̃) must be shorter
than that of G ⊢ Z(e0, l0, ṽ) contrary to assumption). Hence either w1 = w2 or
w1 = ej and w2 = lj where j > k. But then there must also be a successful proof
for G′ ⊢ Z(w′

1, . . . , w
′
n) as L(w′

1) = L(w′
2). 2

Acknowledegment: I would like to thank the referee for comments and wording
of the main result of this paper.

References

[1] Baeten, J., Bergstra, J., and Klop, J. (1993). Decidability of bisimulation
equivalence for processes generating context-free languages. Journal of As-
sociation of Computing Machinery, 40, 653-682.

[2] van Benthem, J. (1984). Correspondence theory. In Handbook of Philosoph-
ical Logic, Vol. II, ed. Gabbay, D. and Guenthner, F., 167-248, Reidel.

[3] van Benthem, J. (1996). Exploring Logical Dynamics. CSLI Publications.

[4] Burkart, O., Caucal, D., and Steffen, B. (1996). Bisimulation collapse and
the process taxonomy. Lecture Notes in Computer Science, 1119, 247-262.

[5] Caucal, D. (1992). On the regular structure of prefix rewriting. Theoretical
Computer Science, 106, 61-86.

[6] Caucal, D. (1996). On infinite transition graphs having a decidable monadic
theory. Lecture Notes in Computer Science, 1099, 194-205.

[7] Christensen, S., Hüttel, H., and Stirling, C. (1995). Bisimulation equiva-
lence is decidable for all context-free processes. Information and Computa-
tion, 121, 143-148.

[8] Dawar, A. (1998). A restricted second-order logic for finite structures, In-
formation and Computation, 143.

14

[9] Groote, J. (1993). Transition system specifications with negative premises.
Theoretical Computer Science, 118, 263-299.

[10] Groote, J., and Hüttel, H. (1994). Undecidable equivalences for basic pro-
cess algebra. Information and Computation, 115, 354-371.

[11] Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and
concurrency. Journal of Association of Computer Machinery, 32, 137-162.

[12] Janin, D. and Walukiewicz, I (1996). On the expressive completeness of the
propositional mu-calculus with respect to the monadic second order logic.
Lecture Notes in Computer Science, 1119, 263-277.

[13] Kozen, D. (1983). Results on the propositional mu-calculus. Theoretical
Computer Science, 27, 333-354.

[14] Milner, R. (1989). Communication and Concurrency. Prentice Hall.

[15] M. Otto. Bisimulation-invariant ptime and higher-dimensional µ-calculus.
Theoretical Computer Science, 224, 73–113, 1999.

[16] Park, D. (1981). Concurrency and automata on infinite sequences. Lecture
Notes in Computer Science, 154, 561-572.

[17] Rosen, E. (1997). Modal logic over finite structures. Journal of Logic, Lan-
guage and Information, 6, 427-439.

[18] Rutten, J. (1995). A calculus of transition systems (towards universal coal-
gebra). In Modal Logic and Process Algebra, ed. Ponse, A., De Rijke, M.
and Venema, Y. CSLI Publications, 187-216.

[19] Sénizergues, G. (1997). The equivalence problem for deterministic push-
down automata is decidable. Lecture Notes in Computer Science, 1256,
671-681.

[20] G. Sénizergues. L(A) = L(B)? decidability results from complete formal
systems. Theoretical Computer Science 251, 1–166, 2001

[21] Sénizergues, G. (1998). Decidability of bisimulation equivalence for equa-
tional graphs of finite out-degree. Procs IEEE FOCS 98, 120-129.

[22] C. Stirling. Decidability of DPDA equivalence. Theoretical Computer Sci-
ence, 255, 1–31, 2001.

[23] Stockmeyer, L. and Meyer, A. (1973). Word problems requiring exponential
time. Procs. 5th ACM STOC, 1-9.

15

