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This paper studies efficient allocations in a dynamic private information economy with
a continuum of idiosyncratic shocks that are persistent. I develop a first-order approach for
this environment and show that the problem has a simple recursive structure that relies
on only a small number of state variables, making the problem tractable. I find sufficient
conditions that guarantee that the first-order approach is valid.

To illustrate the first-order approach I numerically compute the efficient allocations in
a Mirrleesean economy with productivity shocks that follow a random walk and verify the
validity of the first-order approach. I show that persistent shocks create a new trade-off
where the social planner decreases the informational rent of the agent today at the cost of
providing higher insurance in the future.

1. INTRODUCTION

This paper studies efficient allocations in a dynamic economy with a continuum of
idiosyncratic private information shocks that follow a Markov process. It is well known
that persistent shocks significantly increase the complexity of the problem. As shown by
Fernandes and Phelan (2000), the efficient allocations have a recursive structure, but the
dimensionality of the state space is proportional to the number of possible shock values.
Quantitative analysis thus is feasible only for a small number of shocks. This paper shows
that when the first-order approach is used, the state space can be reduced to a manageable
dimension of two endogenous state variables even when the shocks take a continuum of
values. This greatly increases the tractability of the problem and the ability to investigate
the efficient allocations both qualitatively and quantitatively. While I use the first order
approach to study the efficient allocations in a Mirrleesean private information economy,
the methodology developed in this paper has much wider applicability. It can be used
to answer other important questions where both private information or persistence of
shocks are essential, like the analysis of firm financing constraints or the analysis of
optimal health insurance.

When the shocks are i.i.d., the recursive formulation of the efficient contract is
known to take a very simple form.1 The agent’s reporting history up to any period t
can be summarized by a single statistic, called promised utility, which is the lifetime
utility the agent is entitled to receive from period t onwards. The promised utility is
sufficient to summarize agent’s past because all agents have identical preferences over the
allocations from the current period onwards, regardless of whether they have reported
truthfully in previous periods or not. This is no longer true when shocks are persistent.
The probability distribution, and hence preferences, over the allocations now depend on
the previous shock. Thus, to ensure incentive compatibility, the continuation utility must

1. See Green (1987), Thomas and Worrall (1990) or Atkeson and Lucas (1992).
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2 REVIEW OF ECONOMIC STUDIES

depend on both the current report and on the current shock. Since the social planner
does not observe the shock, the continuation utility must be chosen for all possible shock
values. With a continuum of shocks, the state variable must therefore be a function that
specifies the agent’s promised utility for each possible shock the agent might have had in
the previous period.

The advantage of the first-order approach in static economies is that it restricts
attention to local deviations from the optimum (Mirrlees (1971)). This paper develops a
dynamic version of the first-order approach. I provide necessary conditions for incentive
compatibility using the envelope condition and show that it only requires knowing how
the continuation utility varies with the agent’s previous period shock on the margin. The
marginal continuation utility corresponds to the future informational rent of the agent.

Replacing the incentive compatibility constraint with the envelope condition leads
to a relaxed problem. The relaxed problem is shown to have a simple recursive structure
in the sense that the set of all admissible lifetime utility and lifetime marginal utility
pairs, VR, can be factorized into a current allocation and a pair of continuation utilities
and marginal continuation utilities drawn from the same set VR. As a consequence, the
social planner’s problem can be written recursively and its state space can be reduced
from to two numbers, instead of a function. I provide conditions for the validity of the
first-order approach and show that, if those conditions are satisfied, the recursive relaxed
problem solves the original unrelaxed problem.

I apply the first-order approach in a simple Mirrleesean economy with endogenous
consumption and labor supply and privately observed productivity shocks that follow a
random walk and are Pareto distributed. I find that the intratemporal wedge tends to
decrease with the marginal promised utility. This is consistent with the mechanics of the
efficient contract: for lower marginal promised utilities the informational rent and labor
supply decreases, and lower labor supply is associated with higher intratemporal wedges.
Quantitatively, the initial intratemporal wedge is small, equal to only about 2.5%. The
expected intertemporal wedge is hump shaped, and is between 1-2%. I numerically verify
the validity of the relaxed problem.2

The examples highlight a new type of trade-off that the social planner faces when the
shocks are persistent. The trade-off involves two opposing effects in which the marginal
continuation utility affects the social planner’s costs. On one hand, a higher marginal
continuation utility decreases the informational rent of the agent and makes it easier
to provide incentives in the current period. On the other hand, a higher marginal
continuation utility distorts the allocation in the next period by forcing the social planner
to choose an allocation that is less sensitive to the current shock. In other words, the
social planner is forced to provide insurance that is, from the ex-post perspective, too
high. In the optimum, the social planner optimally balances those two effects.

1.1. Related Literature

The first-order approach has been so far used mainly in static environments. Dynamics
extensions include Courty and Li (2000), who study a two period price discrimination
problem, Eso and Szentes (2007), who study an optimal auction design, and especially
Pavan et al. (2009). Eso and Szentes (2007) characterize the efficient allocations in a

2. In the online Appendix B I also study an economy with linear-quadratic utility and uniformly
distributed shocks. I provide a closed form solution for the relaxed problem. I also analytically verify
that the relaxed problem is valid for all degrees of shock persistence.
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KAPIČKA FIRST-ORDER APPROACH 3

two period model with private information being revealed gradually over time. They
are able to prove the validity of the first order approach under a simple assumption
that the transformed payoff function has a bounded derivative. Pavan et al. (2009) have
recently extended the first-order approach to dynamic environments with a more general
stochastic structure. There are two main differences between their paper and this one.
First, Pavan et al. (2009) do not characterize the recursive structure of the efficient
allocations, which is the main goal of this paper. Second, they show the validity of
the first-order approach under slightly different conditions that rely on the Lebesque
Dominated Convergence Theorem, while this paper uses the Monotone Convergence
Theorem to prove the applicability of the first-order approach. While the difference seems
subtle, using the Monotone Convergence Theorem allows one to apply the first-order
approach to some major parametric classes of distributions, for instance the lognormal
distribution.

The literature on recursive dynamic contracting with persistent private information
has mainly focused on an environment with a finite number of shocks, starting with
Fernandes and Phelan (2000). Doepke and Townsend (2006) extend the results for
economies with both private information and hidden action. Battaglini and Coate (2008)
study efficient income taxation in a Mirrleesean economy with hidden productivity, while
Tchistyi (2006) studies the optimal security design with hidden cash flows. Both papers
exploit a very special environment where Markov shocks can take only two values and the
agents are risk neutral. There is also a growing literature that studies private information
economies with persistent shocks in continuous time. Zhang (2009) characterizes the
efficient allocations in a Mirrleesean economy with two shocks. His quantitative findings
are similar to my findings, namely that both intertemporal and intratemporal wedges
are larger than in an economy with i.i.d. shocks. Williams (2011) studies an economy
with hidden income that follows a Brownian motion. As he points out, the trade-offs
in continuous time models are very different from discrete time models. In particular,
current consumption has measure zero in a continuous time setting, and so all incentives
are provided through the variations in the continuation utility. Williams (2011) also
assumes that the agent cannot overstate her true shock, and it is not obvious how
important this restriction is for the validity of his first-order approach. Nevertheless,
his recursive formulation is similar in a sense that one needs to introduce an additional
costate variable, corresponding to the marginal continuation utility in this paper.

Farhi and Werning (2010) and Golosov et al. (2010) both use the first-order approach
developed in this paper to study dynamic Mirrleesean economies with a finite horizon.
Both papers consider utility functions with a constant Frisch elasticity of labor supply.
Golosov et al. (2010) assume in addition that there are no income effects on labor supply.
Both papers differ in their assumptions about the distribution of the shocks: in Farhi and
Werning (2010) the shocks are lognormally distributed and follow a random walk, while
in Golosov et al. (2010) the shock distribution is calibrated from the data. In contrast
to both papers, the Mirrleesean economy studied in this paper assumes infinite horizon
and Pareto distributed shocks.

Finally, the first-order approach is technically related to the dynamic Ramsey
problem with commitment (Kydland and Prescott (1980)) or without commitment in
a strategic framework (Phelan and Stacchetti (1999), see also Chang (1998)).3 The

3. Similar techniques have also been used by Werning (2001) and Abraham and Pavoni (2008) to
study dynamic hidden savings problem and by Jarque (2010) to analyze moral hazard environment with
effort persistence.
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4 REVIEW OF ECONOMIC STUDIES

dynamic Ramsey problem can be characterized recursively by introducing an additional
costate variable that plays a role similar to the role played by the marginal promised
utility here. In both cases, their role is to rule out marginal deviations from the agent’s
optimum (deviations in savings in the Ramsey problem and deviations in the report in the
dynamic private information problem). Kydland and Prescott (1980) see the introduction
of the additional costate variable as a restriction on the planner that overcomes the time
consistency problem and ensures that the solution is optimal. The same logic applies
in the dynamic private information problem with persistent shocks: the solution is not
time consistent, and the planner would, if allowed, like to reoptimize at the beginning of
each period (except for the initial one). Adding the marginal promised utility as a state
variable to the planning problem enforces the efficient, but time inconsistent, solution.

2. THE MODEL

The economy is populated by a continuum of infinitely lived agents of measure one. Each
period the agents care about consumption xt ∈ X. They receive an idiosyncratic shock
θt ∈ Θ ⊆ R++, where Θ is an open interval, its infimum is θ and its supremum is θ.
Agents’ preferences are represented by an expected utility function

E0

∞∑
t=1

βtU(xt, θt) 0 < β < 1.

The following is assumed:

Assumption 1. The consumption set X is convex and compact.

Assumption 2. The utility function U : X × Θ → R is continuous, strictly
increasing and concave in x.

Assumption 1 could be substantially relaxed, and is made here mainly to reduce the
mathematical complexity of the problem. Both assumptions together imply that |U | is
bounded by U0+θU1 for some finite constants U0 and U1. The utility function is allowed
to be unbounded in the shock. This is important because a common specification is that
the utility function is affine in θ, and many important parametric distributions have
unbounded support.

The shock θt follows a first-order Markov process. Its transition cumulative
distribution function is given by F : Θ2 → [0, 1], such that F (·|θ−) is, for all θ− ∈ Θ, a
cumulative distribution function, and F (θ|·) is, for all θ ∈ Θ, a Borel measurable function.
Let, for any 1 ≤ j < t, θtj = (θj , . . . , θt) ∈ Θt−j+1 denote a partial history of shocks in
periods j through t. Given the transition cumulative distribution function F and any
θj−1 ∈ Θ, let µt

j(θ
t
j |θj−1) : Θ

t−j+2 → [0, 1] be the cumulative distribution of the partial

histories θtj ∈ Θ1+t−j .4 The distribution of shocks is such that the present value of shocks
is always finite:

Assumption 3. The conditional expectation E0(θ
′|θ) is bounded by B0 +B1θ for

some finite constants B0 and B1 < β−1.

4. For j = 1 a simplified notation µt = µt
1 will be used.
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KAPIČKA FIRST-ORDER APPROACH 5

The social planner is committed to deliver a lifetime utility w1 ∈ W(θ0) and his
objective is to minimize the present value of costs. The social planner has access to
credit markets and can freely borrow or save. The intertemporal price of consumption is
exogenously given by q < 1. Each period, the costs of allocating x ∈ X to the agent are
given by a function R : X → R that satisfies the following:

Assumption 4. The cost function R is continuous, increasing and convex.

The timing and information structure are as follows. At the beginning of each period,
agents observe their current shock. After that, a report is sent to the social planner, and
current consumption is determined. While consumption is observed by the social planner,
the shock of the agent is her private information. The only exception is the initial shock,
θ0, which is observed by the social planner and is the same for everyone.

3. CONSTRAINED PARETO OPTIMA

At time zero, the social planner selects an allocation X = {Xt}∞t=1, which is a sequence
of measurable functions Xt : Θt → X, t ≥ 1. Let X be the set of all allocations. The
agent’s preferences over an allocation X are given by

W (X; θ0) =
∞∑
t=1

βt−1

∫
Θt

U
(
Xt(θ

t), θt
)
dµt(θt|θ0).

At the beginning of each period, the agents report their current type to the social
planner. The reporting strategy σ = {σt}∞t=1 is a sequence of measurable functions
σt : Θ

t → Θ. The set of all reporting strategies is denoted by Σ, and the history of reports
up to period t is denoted by θ̂t ∈ Θt. Since the shocks are private information of the agent,
the allocation must be such that the agent always prefers to report her shock truthfully.
If the agent chooses reporting strategy σ ∈ Σ she receives (X ◦ σ)(θt) = {Xt(σ

t(θt)}t≥1.
Thus, the allocation is incentive compatible if

W (X; θ0) ≥ W (X ◦ σ; θ0) ∀σ ∈ Σ. (3.1)

3.1. Temporary Incentive Compatibility Constraint

It will now be shown that the incentive compatibility constraint (3.1) is essentially
equivalent to a temporary incentive compatibility constraint that explicitly only rules
out one period deviations. Let X∞

t+1(θ
t) ∈ X be the continuation of an allocation X ∈ X

from period t+1 on, given a history θt. Define an allocation X to be temporarily incentive
compatible after a history of shocks θt if

U(Xt(θ
t), θt) + βW (X∞

t+1(θ
t); θt) ≥ U(Xt(θ

t−1, θ̂), θt) + βW (X∞
t+1(θ

t−1, θ̂); θt). (3.2)

for all reports θ̂ ∈ Θ. The relationship between incentive compatibility and temporary
incentive compatibility is given in the next Lemma.5

Lemma 1.

5. The proof is similar to the proof of Theorem 2.1 of Fernandes and Phelan (2000) and is in the
online Appendix C.
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6 REVIEW OF ECONOMIC STUDIES

i. Suppose that an allocation X is incentive compatible. Then it is temporarily
incentive compatible for all t ≥ 1 and for almost all θt ∈ Θt.

ii. Suppose that an allocation X is temporarily incentive compatible for all t ≥ 1, for
all θt−1 ∈ Θt−1 and for almost all θt ∈ Θ. Then it is incentive compatible.

Imposing the temporary incentive compatibility constraint for all past histories θt−1 is
thus a stronger requirement than imposing the incentive compatibility constraint. The
asymmetry disappears if the shocks are discrete and each of them has strictly positive
probability, see Theorem 2.1 of Fernandes and Phelan (2000). Since the differences
between the incentive compatibility constraint and the temporary incentive compatibility
constraint occur only on a set of measure zero, I will restrict attention to allocations that
satisfy the temporary incentive compatibility constraint (3.2) after all histories.

3.2. The Set of Implementable Utilities

Allocations that satisfy the temporary incentive compatibility constraint (3.2) for all
histories generate a set of lifetime utilities W(θ0):

W(θ0) = {W (X; θ0) |X satisfies (3.2)} .
Assumptions 1-3 imply that |W(θ0)| is bounded by K0 + K1θ0, where K0 and K1 are
finite constants. Let ΓIC : W � X be the set of all allocations that satisfy the temporary
incentive compatibility constraint (3.2) and deliver a lifetime utility of w1 to an agent
with initial shock θ0:

ΓIC(w1, θ0) = {X ∈ X |W (X; θ0) = w1} . (3.3)

It is desirable that the set ΓIC(w1, θ0) be convex. It is easy to show that ΓIC(w1, θ0) is
convex in X if the following assumption holds:

Assumption 5. The utility function U is affine in x.

Assumption 5 is relatively innocuous for two reasons. First, if the utility function
is separable and affine in θ, that is, if there are functions U1 and U2 such that
U(x, θ) = U1(x1) + θU2(x2) for x = (x1, x2) ∈ X, then one can transform the utility
and the costs by redefining the choice variable to be

(
U1(x1), U2(x2)

)
directly. The

utility is then affine.6 Second, even if the utility is not separable and affine in θ one can
convexify and linearize the problem by introducing lotteries over consumption.7 In the
remainder of the paper, Assumption 5 is assumed to hold, although to reduce notation,
I will continue using the general expression for the utility function.

3.3. Social Planner’s Problem

The present value of the costs that are implied by an allocation X is given by

D(X; θ0) =

∞∑
t=1

qt−1

∫
Θt

R
(
Xt(θ

t)
)
dµt(θt|θ0).

6. Note that a standard taste shock utility with U(x, θ) = θU2(x), as well as a utility function
with consumption and leisure with x = (c,−l) and U(x, θ) = U1(c) + θU2(l) are both separable and
affine in θ.

7. Online Appendix A formally shows how to transform the problem in both cases, and proves that
the transformed problem satisfies Assumptions 2, 4 and 5 with the choice variable being

(
U1(x1), U2(x2)

)
in the first case and a probability distribution over X in the second case.
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KAPIČKA FIRST-ORDER APPROACH 7

The social planner’s objective is to select an allocation that minimizes the present value
of costs among all the incentive compatible allocations that give the agents a lifetime
utility w1 ∈ W(θ0). The cost function P IC : W → R satisfies

P IC(w1, θ0) = min
X∈X

{
D(X; θ0) |X ∈ ΓIC(w1, θ0)

}
. (3.4)

An allocation X∗ is efficient if it attains the minimum of (3.4). Assumption 1 implies that
the correspondence ΓIC is compact valued. It is also continuous in w1. By Assumption
(2) the objective function is continuous in X. Hence, by Berge’s Theorem of Maximum,8

a solution exists and P IC is continuous in w1.

4. FERNANDES-PHELAN RECURSIVE FORMULATION

To derive a recursive formulation of the social planner’s problem, it is necessary to show
that its state space has a recursive representation. Unfortunately, the set of lifetime
utilities W(θ0) does not have a recursive structure. To see why, note that one needs to

know the value of W (X∞
t+1(θ

t−1, θ̂); θt) for each θ̂ ∈ Θ and each θ ∈ Θ to determine
whether an allocation satisfies the temporary incentive compatibility constraint (3.2).
Specifically, one needs to know not only the equilibrium lifetime utility W (X∞

t+1(θ
t); θt),

but also the off-equilibrium lifetime utility W (X∞
t+1(θ

t−1, θ̂); θt) for θ̂ ̸= θt. The set W(θ0)
contains only the equilibrium lifetime utilities, and so is too small to have a recursive
structure. To put it differently, knowing that W (X∞

t+1(θ
t); θt) ∈ W(θt) is not enough to

determine whether W (X∞
t (θt−1); θt−1) ∈ W(θt−1).

Fernandes and Phelan (2000) propose a solution by showing9 that the set of all
equilibrium and off-equilibrium lifetime utilities

VIC = {W (X; ·) |X satisfies (3.2)}

possesses a recursive representation. That is, any function w : Θ → W that belongs
toVIC can be, using the language of Abreu et al. (1990), factorized into the current
allocation and a continuation equilibrium and off-equilibrium lifetime utility function
chosen again from the set VIC . The social planner’s problem can then be shown to have
a recursive representation as well, and its state space includes VIC .

While the Fernandes-Phelan recursive formulation works well in theory, it is clear
that having a function w : Θ → W as one of the state variables makes the social planner’s
problem, as well as the computation of the set VIC , prohibitively complex. In addition,
it is hard to see how to provide insights into how the efficient allocations work if the
problem depends on the dynamics of a function.

To obtain a simpler recursive structure, one first needs to provide a simpler
characterization of the temporary incentive compatibility constraint. The approach taken
in this paper is to use the first-order approach. The first-order approach uses an envelope
theorem to replace the temporary incentive compatibility constraint (3.2) by an envelope
condition. It will be shown that the envelope condition involves only the equilibrium
continuation utility W (X∞

t+1(θ
t−1, θt); θt) and its partial derivative with respect to the

current shock θt.

8. See for example Aliprantis and Border (2005), Theorem 17.31.
9. Fernandes and Phelan (2000) show the result for the case of finite number of shock values. The

generalization for a continuum of shocks is straightforward.
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8 REVIEW OF ECONOMIC STUDIES

Naturally, the first-order approach relaxes the constraints on the social planner
because the envelope condition is sufficient but not necessary. I therefore provide
sufficient second-order conditions that can be checked to determine whether the first-
order approach is valid.

5. FIRST-ORDER APPROACH

In order to apply the first-order approach, it is necessary to ensure that the function
W (X, θ) is differentiable with respect to θ and that the derivative is well behaved. To
this end, it will be assumed that the transition function is continuously differentiable:

Assumption 6. F (θ′|θ) is differentiable in θ.

Denote the derivative of F by F2(θ
′|θ). It will also be assumed that

Assumption 7. F2(θ
′|θ) ≤ 0 and F (θ′|θ) is either concave or convex in θ on Θ.

That is, F2 is required to be nonpositive, which means that the shocks are positively
autocorrelated. It is also required to be monotone, either decreasing or increasing, but is
not allowed to be strictly increasing on some part of the domain, and strictly decreasing
on the rest of the domain. Under these conditions, the following result holds:

Lemma 2. The function W (X; θ) is differentiable in θ with its derivative

Wθ(X; θ) =

∫
Θ

[U (X1(ε), ε) + βW (X∞
2 (ε); ε)] dF2(ε|θ). (5.5)

Assumption 6 is clearly required by Lemma 2. On the other hand, Assumption 7 can
be avoided. It is imposed in order to apply the Monotone Convergence Theorem and
could be replaced by a condition that |F2| has some integrable bound.10 However, some
prominent parametric classes of distributions, for instance the Lognormal distribution, do
not satisfy the integrable bound assumption, but they satisfy Assumption 7 (see Example
1 below).

Note also that the assumption that F is differentiable in θ may sometimes be too
restrictive. For instance, if F does not have a full support then, in most cases, F will
fail to be differentiable everywhere on Θ.11 However, Lemma 2 can be extended to allow
for moving support, provided that the support is well behaved. In particular, if F (θ′|θ)
has a density f(θ′|θ) and satisfies the assumptions of Lemma 2 only on the interior of
[a(θ), b(θ)] and both a and b are differentiable, then one can show that the derivative of

10. As in Pavan et al. (2009), second part of Assumption 5. One would then apply the Lebesque
Dominated Convergence Theorem to prove the result. Note also that Assumptions 1 and 2 and 5 (first
part) of Pavan et al. (2009) are satisfied as well, while Assumptions 3,4 and 6 are not needed for this
result.

11. For example, suppose that F (θ′|θ) is uniformly distributed on [θ− 1
2
, θ+ 1

2
]. Then the derivative

F2(θ′|θ) does not exist at θ − 1
2
and θ + 1

2
.
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KAPIČKA FIRST-ORDER APPROACH 9

W at the interior of the support is given by

Wθ(X; θ) = b′(θ) [U (X1(b(θ)), b(θ)) + βW (X∞
2 ; b(θ))] f(b(θ))|θ)

− a′(θ) [U (X1(a(θ)), a(θ)) + βW (X∞
2 ; a(θ))] f(a(θ))|θ)

+

∫ b(θ)

a(θ)

[U (X1(ε), ε) + βW (X∞
2 (ε); ε)] f2(ε|θ) dε. (5.6)

In the theoretical analysis that follows, this case will not be explicitly studied. This is
done only for algebraic convenience, and the results can be extended to the more general
case. An example with moving support will be studied in the quantitative exercise in
Section 7.

To provide a sharper characterization of the function W (X, θ), the following
restriction is imposed:

Assumption 8. E(θ′|θ) is Lipschitz continuous in θ on [η, θ) for any η ∈ Θ.

The restrictions imposed by Assumption 8 are weaker than Lipschitz continuity in θ on Θ.
This is an important generalization, because for many standard parametric distributions
Θ = (0,∞) and E(θ′|θ) = θρ, which is not Lipschitz continuous on Θ, but satisfies
Assumption 8. Next Lemma shows that this property is inherited by W :

Lemma 3. W (X, θ) is Lipschitz continuous in θ on [η, θ) for any η ∈ Θ.

Lemma (3) implies that for any θ ∈ Θ, the marginal continuation utility Wθ(X, θ) is
bounded.

5.1. Necessary and Sufficient Conditions

Necessary conditions for an allocation to be temporarily incentive compatible are derived
next using the envelope theorem. It will be possible to apply the envelope theorem because
of Lemmas (2) and (3), as well as because of the following assumption:12

Assumption 9. U is differentiable and Lipschitz continuous in θ.

Denote the derivative of the utility function by Uθ. Let also W (X∞
t (θt−1)) =

limθ→θ U(Xt(θ
t−1, θ), θ) + βW (X∞

t+1(θ
t−1, θ); θ). Then the following result holds:

Theorem 4. Suppose that an allocation X satisfies the temporary incentive
compatibility constraint (3.2). Then for any t ≥ 1 and any θt ∈ Θt,

U(Xt(θ
t), θt) + βW (X∞

t+1(θ
t); θt) =

∫ θt

θ

[
Uθ

(
Xt(θ

t−1, ε), ε
)
+ βWθ(X

∞
t+1(θ

t−1, ε); ε)
]
dε

+W (X∞
t (θt−1)). (5.7)

The theorem is proven by verifying the conditions of Theorem 2 in Milgrom and Segal
(2002). The envelope condition (5.7) shows how the lifetime utility must vary with the
current period shock in order to be incentive compatible. The expression under the

12. Pavan et al. (2009) use a similar assumption, see their Assumption 4.
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10 REVIEW OF ECONOMIC STUDIES

integral consists of two terms. The first term is the current informational rent: the extra
current period utility an agent receives from a marginal increase in current skills. The
second term corresponds to the future informational rent: extra lifetime utility from
tomorrow on that an agent receives from a marginal shift in the future distribution of
shocks. The second term is zero if shocks are i.i.d. because the current shock bears no
information about future shocks.

Condition (5.7) is necessary but not sufficient for an allocation to be temporarily
incentive compatible. A sufficient condition is given next:

Theorem 5. Suppose that an allocation X satisfies (5.7) and, in addition,

Uθ

(
Xt(θ

t−1, θ̂t), θt

)
+ βWθ

(
X∞

t+1(θ
t−1, θ̂t); θt

)
(5.8)

is increasing in θ̂t for all t ≥ 1, all θt−1 ∈ Θt−1 and almost all θt ∈ Θ. Then X is
temporarily incentive compatible.

If the shocks are i.i.d. and U satisfies the Spence-Mirrlees condition, the second term
in the expression (5.8) drops out and Theorem 5 is equivalent to a simple requirement
that Xt(θ

t) is increasing in θt, and one can show that this requirement is necessary as
well. When the shocks are persistent, monotonicity of Xt is clearly neither required nor
implied. Note that condition (5) is identical to condition ii. of Proposition 3 in Pavan
et al. (2009), although the proof is somewhat different.13

5.2. Some Parametric Examples

Since the applicability of the first-order approach is essential for the recursive formulation
developed in the next section, three major parametric distributions are now studied in
detail to verify that they satisfy its assumptions. The first two examples are such that F
has full support, while the last one involve a moving support.

Example 1 (Lognormal distribution). Suppose that σ > 0, ρ ∈ [0, 1] and

Θ = (0,∞). Define F (θ′|θ) = Φ( ln θ′−ρ ln θ
σ2 − 1

2 ) where Φ is cdf of a standard normal
distribution. The distribution clearly satisfies Assumption 3. Assumption 6 holds as well
since F is differentiable in its second argument on Θ with F2(θ

′|θ) = − ρ
σ2

1
θΦ

′ ≤ 0. The

second derivative is F22(θ
′|θ) = ρ

σ2
1
θ2 (Φ

′ − ρ
σ2Φ

′′
) ≥ 0. Hence Assumption 7 is satisfied

as well and Lemma (2) applies. Since E(θ′|θ) = θρ, Assumption 8 holds, and Theorem 4
may be applied.

Example 2 (Mixture distribution). Suppose that Θ = (0, θ), K ≥ 2 and

define F (θ′|θ) =
∑K

k=1 ρk(θ)Fk(θ
′) where Fk : Θ → [0, 1] satisfy Fk ≥ Fk+1 and

ρk(θ) : Θ → [0, 1] are twice differentiable functions that are Lipschitz continuous on

[η,∞) for any η > 0 and satisfy
∑K

k=1 ρk(θ) = 1 for all θ ∈ Θ. The distribution
satisfies Assumption 3. Assumption 6 holds as well since F is differentiable with
F2(θ

′|θ) =
∑K

k=1 ρ
′
k(θ)Fk(θ

′). If, in addition,
∑k

j=1 ρ
′′
j (θ) ≥ 0 for all k = 1, . . . ,K then

the second derivative F22(θ
′|θ) =

∑K
k=1 ρ

′′
k(θ)Fk(θ

′) is nonnegative. Hence, Assumption

13. Condition i. of their Proposition 3 follows from (5.7), while Condition iii. of their Proposition
3 follows from (1).
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KAPIČKA FIRST-ORDER APPROACH 11

7 is satisfied and Lemma (2) applies. The lifetime utility and its derivative are given by

W (X, θ) =
∑K

k=1 ρk(θ)Wk(X) and Wθ(X, θ) =
∑K

k=1 ρ
′
k(θ)Wk(X) where Wk(X) is the

expected utility under Fk. Since ρ is Lipschitz continuous on [η,∞), Assumption 8 holds,
and Theorem 4 may be applied.

Example 3 (Pareto distribution). Suppose that λ > 1, ρ ∈ [0, 1] and Θ =

(κ1−ρ,∞), where κ = λ−1
λ . Define F (θ′|θ) = 1 −

(
θ′

κθρ

)−λ

if θ′ > κθρ and zero

otherwise. The distribution clearly satisfies Assumption 3. Assumption 6 holds as well

since F is differentiable for θ′ ≥ κθρ with F2(θ
′|θ) = −ρλ 1

θ

(
θ′

κθρ

)−λ

. The second

derivative is F22(θ
′|θ) = ρλ(1 − ρλ) 1

θ2

(
θ′

κθρ

)−λ

. The sign of F22 depends on whether

ρλ is greater or smaller than one, but in both cases it does not change sign and F2

satisfies Assumption 7. Hence Wθ is given by (5.6), which simplifies to Wθ(X, θ) =
ρλ
θ [W (X, θ)−W (X, θ)] where W (X, θ) = U (X1(κθ

ρ), κθρ)+βW (X∞
2 (κθρ);κθρ). Since

E(θ′|θ) = θρ, Assumption 8 holds, and Theorem 4 may be applied.

6. A RELAXED PROBLEM

Define a relaxed problem by replacing the temporary incentive compatibility constraint
(3.2) by the envelope condition (5.7) for all histories. The critical simplification brought
by the relaxed problem is that the envelope condition (5.7) only contains the lifetime
utility of the truthteller and her marginal lifetime utility, rather than the continuation
utility of all possible types. As will be shown, this implies that the set of pairs of the
lifetime utility and the marginal lifetime utility that can be obtained by some allocation
satisfying the envelope condition (5.7) has a recursive structure. The social planner’s
problem will then also have a recursive structure, and its state space will be given by the
space of lifetime and marginal lifetime utilities.

6.1. Characterizing Admissible Utilities

An allocation X ∈ X is said to be admissible if it satisfies the envelope condition (5.7)
for all histories. The set of the lifetime utility and the marginal lifetime utility pairs,
VR(θ), obtained by some admissible allocation is given by:

VR(θ) = {W (X; θ),Wθ(X; θ) |X is admissible} ,

where R stands for “Relaxed”. The set VR(θ) has the following properties:

Lemma 6. VR(θ) is nonempty, compact and convex for all θ ∈ Θ.

A recursive representation of VR is derived as follows. Define an allocation rule
z ≡ (x, v, h) to be a triplet of measurable functions x : Θ → X, v : Θ → R and
h : Θ → R. The function x specifies the current consumption of an agent, v represents
the continuation utility of the truthtelling agent, and h represents a marginal change in
the continuation utility of the truthtelling agent. Take V to be any nonempty subset of
R2 ×Θ. The allocation rule is said to be admissible with respect to V if the continuation
utility and the marginal continuation utility belong to the set V(θ):

[v(θ), h(θ)] ∈ V(θ) ∀θ ∈ Θ, (6.9)
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12 REVIEW OF ECONOMIC STUDIES

and the envelope condition holds:

U (x(θ), θ) + βv(θ) =

∫ θ

θ

[Uθ (x(ε), ε) + βh(ε)] dε+ w, (6.10)

where w = limθ→θ U (x(θ), θ) + βv(θ). The set of all allocation rules that are admissible
w.r.t. V is denoted by Z(V).

An admissible allocation rule z generates a lifetime utility w(z; θ−) and a marginal
lifetime utility g(z; θ−) given by

w(z; θ−) =

∫
Θ

[U (x(ε), ε) + βv(ε)] dF (ε|θ−), (6.11)

g(z; θ−) =

∫
Θ

[U (x(ε), ε) + βv(ε)] dF2(ε|θ−). (6.12)

The set of all lifetime utility and marginal utility pairs that are generated by some
allocation rule that is admissible with respect to V defines an operator T :

T V(θ−) = {(w(z; θ−), g(z; θ−)) | z is admissible w.r.t. V}

The set VR is the fixed point of the operator T :

Theorem 7.

T VR = VR.

Hence, any pair of lifetime and marginal lifetime utilities that can be obtained by an
admissible allocation can also be obtained by an allocation rule that is admissible with
respect to VR and vice versa.

6.2. A Relaxed Social Planner’s Problem

It is useful to separate the social planner’s problem into two stages. In the second stage
(called the auxiliary planning problem in Fernandes and Phelan (2000)), the social
planner minimizes the costs of delivering a given pair of a promised and marginal
promised utility (w, g) ∈ VR(θ) to a θ− type agent. In the first stage, the social planner
chooses the initial marginal promised utility g1 that minimizes the costs of delivering the
lifetime utility w1 ∈ W(θ0).

Consider first the second stage. An allocation X ∈ X is said to support (w, g, θ) if it
is admissible and delivers a lifetime utility w = W (X; θ) and a marginal lifetime utility
g = Wθ(X; θ). Define ΓR : VR � X to be the set of all such allocations:

ΓR(w, g, θ) = {X ∈ X | X supports (w, g, θ)} .

The social planner selects an allocation that minimizes the costs among all the allocations
that support (w, g, θ). The minimized costs P ∗ : VR → R are given by

P ∗(w, g, θ−) = min
X∈X

{
D(X; θ) |X ∈ ΓR(w, g, θ−)

}
. (6.13)

If X∗ : VR → X attains the minimum of the social planner’s problem (6.13) then it is
called second stage efficient.
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KAPIČKA FIRST-ORDER APPROACH 13

6.2.1. Second Stage: A Recursive Representation. An allocation rule is said
to support (w, g, θ) if it is admissible with respect to VR and delivers a lifetime utility
w = w(z; θ) and a marginal lifetime utility g = g(z; θ).14 The set of all such allocation
rules γR : VR � Z(VR) is defined by

γR(w, g, θ) = {z ∈ Z | z supports (w, g, θ)} . (6.14)

Consider a cost function P : VR → R that solves the following Bellman equation:

P (w, g, θ−) = min
z∈γR(w,g,θ−)

∫
Θ

[R (x(θ)) + qP (v(θ), h(θ), θ)] dF (θ|θ−), (6.15)

The efficient allocation rule is given by functions z∗ : VR ×Θ → X×VR, that attain the
minimum of the right-hand side of (6.15). The solution of the Bellman equation (6.15)
has the following properties:

Theorem 8.

(i) There exists a unique bounded and continuous function P that solves the Bellman
equation (6.15). The efficient allocation rule z∗ admits a measurable selection.

(ii) The function P is convex in (w, g). If R is strictly convex in x then P is strictly
convex in (w, g) and the efficient allocation rule z∗ is essentially unique and
measurable.

The relationship between the solution of the social planner’s problem (6.13) and the
corresponding recursive formulation (6.15) is now studied. It is first shown that there
is a one-on-one relationship between admissible allocations and sequences of admissible
allocation rules. To state the result formally, define Vt(θ

t−1) = W (X∞
t (θt−1); θt−1) and

Ht(θ
t−1) = Wθ(X

∞
t (θt−1); θt−1) to be the stochastic precesses for lifetime and marginal

lifetime utilities in the relaxed problem. Then one obtains the following result:

Lemma 9. X ∈ ΓR(w, g, θ0) if and only if, for all θt ∈ Θt and all t ≥ 1,

[X1(·), V2(·),H2(·)] ∈ γR(w, g, θ0) (6.16)[
Xt(θ

t−1, ·), Vt+1(θ
t−1, ·),Ht+1(θ

t−1, ·)
]
∈ γR

(
Vt(θ

t−1),Ht(θ
t−1), θt−1

)
. (6.17)

Now, take the efficient allocation rule z∗ and any (w, g, θ0) ∈ VR and define an allocation
X as follows. Set V1(w, g, θ0) = w and H1(w, g, θ0) = g. For t ≥ 2 let Vt(w, g, θ

t−1) and
Ht(w, g, θ

t−1) solve difference equations

Vt+1(w, g, θ
t) = v∗

(
Vt(w, g, θ

t−1),Ht(w, g, θ
t−1), θt−1, θt

)
Ht+1(w, g, θ

t) = h∗ (Vt(w, g, θ
t−1), Ht(w, g, θ

t−1), θt−1, θt
)

Since v∗ and h∗ are measurable with respect to its arguments by Theorem 8, Vt+1 and
Ht+1 are measurable with respect to θt for all t ≥ 1. Then define X by

Xt(w, g, θ
t) = x∗ (Vt(w, g, θ

t−1),Ht(w, g, θ
t−1), θt−1, θt

)
.

Since x∗ is measurable with respect to its first argument and Vt and Ht are measurable
with respect to θt−1, the allocation Xt is measurable with respect to θt for all t ≥ 1 as

14. Those constraints are called a promise keeping constraint and a marginal threat keeping
constraint.
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14 REVIEW OF ECONOMIC STUDIES

well. Hence X(w, g, θ0) is an allocation and X : VR →∈ X . The allocation X is called an
allocation generated by the efficient allocation rule z∗. Using Lemma 9, one obtains:

Theorem 10.

(i) P = P ∗.
(ii) If z∗ is efficient and X∗ is generated by z∗, then X∗ is second stage efficient.

6.2.2. First Stage. The first stage corresponds to period 1 when the social
planner is only constrained by the promised utility of the truthtelling agent, w1 ∈ W(θ0),
and so chooses the cost minimizing promised utility function that delivers w1 to the
truthteller. That is, he is free to choose any marginal lifetime utility g as long as it
delivers a lifetime utility w1 to the truthteller and satisfies (w1, g) ∈ VR(θ0):

PR(w1, θ0) = min
g∈R

{
P ∗(w1, g, θ0) | (w1, g) ∈ VR(θ0)

}
. (6.18)

The initial marginal promised utility is efficient if it attains the minimum of the right-
hand side of (6.18) and is denoted by h∗

1 : W(Θ) × Θ → R. It follows from Theorem
(8) and from compactness of VR that such a function exists. Also, if X∗ is generated by
the efficient allocation rule z∗, then the allocation X∗ (w1, h

∗
1(θ0), θ0) solves the relaxed

social planner’s problem.

6.3. Validity of the Relaxed Problem

I will now examine conditions under which the solution to the relaxed problem coincides
with the solution to the unrelaxed problem. One way is to check whether the allocation
X∗ (w1, h

∗
1(θ0), θ0) generated by the efficient allocation rule z∗ satisfies the temporary

incentive compatibility constraint (3.2) or the sufficiency conditions (5.8). A more
convenient approach is to find conditions on the allocation rule directly.

To do so, one needs to characterize the lifetime utility for all possible reporting
strategies. If a θ- type agent reports θ̂, the continuation and marginal continuation
utilities are given by

v̂(w, g, θ−, θ̂; θ) =

∫
Θ

s∗
(
v∗(w, g, θ−, θ̂), h

∗(w, g, θ−, θ̂), θ̂, ε
)
dF (ε|θ) (6.19)

ĥ(w, g, θ−, θ̂; θ) =

∫
Θ

s∗
(
v∗(w, g, θ−, θ̂), h

∗(w, g, θ−, θ̂), θ̂, ε
)
dF2(ε|θ), (6.20)

where

s∗(w, g, θ−, θ) = U (x∗(w, g, θ−, θ), θ) + βv(w, g, θ−, θ)

is the lifetime utility of an agent after the current shock has been revealed (ex-post
utility). A relaxed problem is called valid if the efficient allocation rule is such that for
all (w, g, θ−) ∈ VR the agent prefers to report truthfully:

θ ∈ argmax
θ̂∈Θ

{
U
(
x∗(w, g, θ−, θ̂), θ

)
+ βv̂(w, g, θ−, θ̂; θ)

}
. (6.21)

If the relaxed social planner’s problem is valid, then the solution coincides with the
solution to the unrelaxed social planner’s problem (3.4):

Theorem 11. If the relaxed social planner’s problem is valid then PR = P IC .
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KAPIČKA FIRST-ORDER APPROACH 15

The verification procedure is similar to the one examined by Abraham and Pavoni (2008)
for the hidden savings problem. However, condition (6.21) is simpler in one key aspect: one
does not need to recompute the whole agent’s problem to verify it.15 Condition (6.21)
is used by Farhi and Werning (2010) to verify the validity of their relaxed problem.
Condition (6.21) can be checked directly, but one can also derive a sufficiency condition
analogous to the monotonicity condition (5.8):

Lemma 12. If

D(w, g, θ−, θ̂; θ) ≡ Uθ

(
x∗(w, g, θ−, θ̂), θ

)
+ βĥ(w, g, θ−, θ̂; θ) (6.22)

increases in θ̂ for almost all θ ∈ Θ then the relaxed problem is valid.

The presence of the first term on the right-hand side of (6.22) is well understood

from the static theory. The second term ĥ is, however, quite complex. To get a better
understanding, assume that the utility function is separable and affine in θ and let

m∗(w, g, θ−, θ) = Uθ (x
∗(w, g, θ−, θ)) + βh∗(w, g, θ−, θ)

be the informational rent of a θ-type agent. Then one can write

D(w, g, θ−, θ̂; θ) = m∗(w, g, θ−, θ̂) + βM(w, g, θ−, θ̂; θ). (6.23)

where, after integration by parts,

M(w, g, θ−, θ̂; θ) =

∫
Θ

[
F2(ε|θ̂)− F2(ε|θ)

]
m∗

[
v∗(w, g, θ−, θ̂), h

∗(w, g, θ−, θ̂), θ̂, ε
]
dε.

The report θ̂ thus affects the function D in two ways. First, the informational rent of
the truthteller m∗ depends on the current report θ̂. If the planner chooses a higher
informational rent for agents with higher skills, the sufficiency condition is more likely to
hold. Second, the misreporting agent experiences a different distribution of shocks. The
significance of the distributional shift is captured in the function M .

Differentiating M with respect to θ̂ yields that for local deviations from the truthful
report the function M is going to be increasing in θ̂ if F22 ≥ 0. For global deviations
from the optimum the relationship between θ̂ and M also depends on whether the

realized informational rent next period, m∗
[
v∗(w, g, θ−, θ̂), h

∗(w, g, θ−, θ̂), θ̂, ε
]
, increases

or decreases with the current report. Although it is not possible to determine the sign in
general, the intuition is similar to the one for local deviations: If the distributional shift
tends to increase the expected informational rent of the deviating agent, the monotonicity
condition is more likely to hold. If F22 = 0 then M = 0 and we have:

Corollary 13. Suppose that the utility is separable and affine in θ and that
F22 = 0. Then the relaxed problem is valid if m∗(w, g, θ−, θ) increases in θ.

The sufficiency condition is then essentially no different from the sufficiency condition
in a static model: it requires the term under the integral on the right-hand side of the
envelope condition to be increasing in the report, or, equivalently, the ex-post utility

15. Note also that the condition (6.21) may sometimes be unnecessarily strong. If the efficient

contract always chooses the lifetime and marginal lifetime utilities from some subset V̂R of VR and that(
w1, h∗

1(w1, θ0)
)
∈ V̂R(θ0), then it is enough to check whether (6.22) holds on V̂R.
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16 REVIEW OF ECONOMIC STUDIES

s∗ to be convex in the report. Lemma 13 is applicable, for instance, in the case of the
Mixture distribution as in Example 2 when ρk is linear in θ for all k.16 Note also that
Lemma 13 only applies when F has full support.

Typically, the sufficiency conditions will have to be checked numerically. One
exception is an economy with linear quadratic utility and uniformly distributed shocks.
In the online Appendix B I provide a closed form solution for its relaxed problem. I
show that the function M is always decreasing in θ̂. Despite that, the relaxed problem is
valid, because m∗ is increasing in θ̂ sufficiently fast. The result holds for all coefficients
of autocorrelation ρ ∈ [0, 1], with ρ = 1 being a marginal case where D is independent

of θ̂. The

7. A MIRRLEESEAN ECONOMY WITH RANDOM WALK

Consider a simple economy where c ∈ R+ is consumption and y ∈ R+ is output. The
utility function is given by

Û(c, y, θ) = ln c− α

1 + η

(y
θ

)1+η

where η is inverse of the compensated elasticity of labor supply. This is a typical Mirrlees-
type economy with labor supply given by l = y

θ̃
where the private information shock θ

represents individual’s skill. The cost function is given by R̂ = c − y. The skill shocks
are Pareto distributed as in Example (3) and are assumed to follow a random walk
with E(θ′|θ) = θ. The utility specification and the assumption of random walk are
both standard ingredients in the empirical macro and public finance literature.17 The
assumption of Pareto distributed shocks is consistent with the distribution of earnings
at the right tail.18

I transform the problem as follows. Let x1 = ln c, x2 = α y1+η

1+η . Then, one can write

U(x, θ) = x1 − θ−(1+η)x2 R(x) = ex1 − γ(1 + η)x
1

1+η

2 , where γ =
(
1+η
α

) 1
1+η 1

1+η . The

transformed functions satisfy Assumptions (2), (4), and (5).

7.1. The Relaxed Social Planner’s Problem

The problem has several properties that simplify the problem. First, the set of admissible
utilities VR has a very simple characterization: VR = R×R+×Θ. That is, any promised
utility and nonnegative marginal threat utility is implementable. Second, as Example
(3) shows, the marginal lifetime utility (6.12) is proportional to the spread between the
expected lifetime utility and the utility of the agent with the lowest possible shock,
w(z; θ−):

g(z; θ−) =
λ

θ−
[w(z; θ−)− w(z; θ−)]. (7.24)

Third, the value function satisfies the following homogeneity property:19

16. The example of the mixture distribution is also studied by Fukushima and Waki (2011).
They show that one can reduce the state space to K state variables. The first-order approach further
strengthens the results in that the state space can be reduced to 2 state variables for any K.

17. See e.g. Heathcote et al. (2009) or Heathcote et al. (2011).
18. See Diamond (1998) or Saez (2001).
19. Proof of the Lemma is in the online Appendix C.
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KAPIČKA FIRST-ORDER APPROACH 17

Lemma 14. The value function satisfies

P (w, g, θ−) = θ−P (w − ln θ−
1− β

, gθ−, 1).

In what follows I will solve the normalized problem with θ− = 1. It is convenient to
rescale the policy rules h and v by defining r(θ) = θh(θ) and q(θ) = v(θ) − ln θ

1−β . The

set of allocation rules γR(w, g, 1) is characterized as follows. First, the lifetime utility the
allocation rules deliver needs to be w, where

w =

∫ ∞

κ

[
x1(θ)− θ−(1+η)x2(θ) + βq(θ)

]
f(θ) dθ +

β

1− β

(
1

ϕ
+ lnκ

)
. (7.25)

Second, the marginal lifetime utility has to be equal to g. By using equation (7.24), the
marginal threat keeping constraint is

g = λ(w − w). (7.26)

Third, the continuation lifetime and marginal lifetime utility has to be admissible with
respect to VR. This requires that the envelope condition holds,

x1(θ)−θ−(1+η)x2(θ)+βq(θ)+
β ln θ

1− β
=

∫ ∞

κ

[
(1 + η)ε−(2+η)x2(ε) + βr(ε)

] dε

ε
+w, (7.27)

and that

r(θ) ≥ 0 ∀θ ≥ κ. (7.28)

The function P : R× R+ → R then satisfies the following Bellman equation:

P (w, g) = min
x,q,r

∫ ∞

κ

[
ex1(θ) − γ(1 + η)x2(θ)

1
1+η + βθP (q(θ), r(θ))

]
f(θ|1) dθ, (7.29)

subject to x2 ≥ 0 and the constraints (7.25), (7.26), (7.27), and (7.28). The optimal
policy rules are x1(w, g, θ), x2(w, g, θ), q(w, g, θ) and r(w, g, θ).

There are several notable properties of the dynamic program (7.29). The value
function P reaches, for a given w, its minimum at some g∗(w) ≥ 0. Moreover, if g ≤ g∗(w)
one can show that r(w, g, θ) ≤ g∗(w) for all θ ≥ κ. This result is important because it
implies that the downward sloping part of the value [0, g∗(w)] constitutes an ergodic set.
Since in the first period the social planner chooses g = g∗(w), the efficient allocation will
always lie in this ergodic set.

The dynamics of the efficient allocation is driven by the fact that the marginal
continuation utility affects the efficient contract in two distinct ways. First, in the next
period, the marginal continuation utility determines the amount of dispersion in the ex-
post utilities and therefore the amount of insurance the social planner must provide.
Lower marginal continuation utilities are associated with less dispersions in ex-post
utilities. Second, the marginal continuation utility affects the future informational rent.
Higher marginal continuation utilities are associated with higher informational rents.
Those two effects are obviously related, since a lower dispersion of ex-post utilities in
the future makes the current shock less relevant (if there is no dispersion in the ex-post
utilities in the next period then the current shock is irrelevant, and bears no future
informational rent). Informational rents are not desirable because they limit the amount
of insurance the social planner can provide. This explains why the efficient contract never
chooses r(w, g, θ) > g∗(w). Such a choice would increase the current informational rent
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18 REVIEW OF ECONOMIC STUDIES

and, at the same time, make the dispersion in ex-post utilities inefficiently high. On the
other hand, choosing some r(w, g, θ) ≤ g∗(w) involves a trade-off: it makes it cheaper
to provide insurance today, at the expense of being forced to provide more insurance
tomorrow.

7.2. Numerical Simulations

The discount rate β is set to 0.96. The shape parameter of the Pareto distribution λ is
chosen to be such that the variance of the log shock innovations in the productivity shock
ζ is 0.007, based on the evidence in Heathcote et al. (2005).20 This yields λ = 11.952.
The utility function parameter η is set equal to 5 to match the Frisch elasticity of labor
supply of 0.2. The parameter α is normalized to 1. The parametrization, as well as the
functional forms, are similar to the ones used by Farhi and Werning (2010).21

The space of shocks is discretized with N = 100 logarithmically distributed grid
points, with θ1 = κ and θN being chosen in such away that F (θN ) = 0.999. On each
interval [θn, θn+1), the optimal policy functions x2, r and z are assumed constant, while
x1 is affine, with its slope chosen to satisfy the envelope condition on every interval. The
same approximation is taken on the right tail [θN ,∞). The dynamic program (7.29) is
solved by iterating on the value function until it converges. The convergence criterion ϵ
is set equal to 1−3. The value function is approximated on a 2-dimensional grid (wi, gj),
i = 1, . . . , I, j = 1, . . . , J with linear interpolation for values outside of the grid. I set
g1 = 0 and gJ large enough so that the minimum of the value function is below gJ for
each wi. I extrapolate the value function below w1 and above wI . I choose I = 64 and
J = 90 for the computations.22

Figure 1 shows the value function P (w, g), as well as the cost minimizing marginal
promised utility g∗(w). When g < g∗(w), the costs are decreasing relatively steeply in g.
This is not surprising, since low g is associated with low informational rent, high amount
of insurance, and hence with low labor supply and low marginal continuation utility.
Moreover, low marginal continuation utility implies that those features will persist in the
future.

Figure 2 shows how the social planner solves the tradeoff involved in choosing
the marginal continuation utility. It plots the expected marginal continuation utility,
Er(w, g) =

∫∞
κ

r(w, g, ε)f(ε) dε, for a promised utility w0 that is such that the social
planner breaks even at g∗(w0) (i.e. satisfying P [w0, g

∗(w0)] = 0). The figure is drawn
for g ∈ [0, g∗]. The expected marginal continuation utility is clearly increasing in g.
In addition, the figure shows that Er(w0, g) < g. The social planner thus trades off a
cheaper insurance today (because the informational rent today decreases) for an ex-post
inefficiently high insurance in the future.

20. The variance of the hourly wage rate increase by 21 log points between age 21 and age 55 with
time effects. This increase implies that the variance of the annual innovations must be 0.21 / 30 = 0.007.

21. There are three significant differences: Farhi and Werning (2010) consider an economy with
finite lifetimes, they assume that the shocks are lognormally distributed, and they choose a Frisch
elasticity of labor equal to 0.5.

22. The most critical assumption from the perspective of numerical computations is that the shocks
follow a random walk since it allows the problem to be normalized and reduces its dimensionality. The
assumption of Pareto distributed innovations simplifies the problem as well in that the marginal threat
keeping constraint has an explicit expression, see equation (7.24). On the other hand, the assumption of
logarithmic utility could be relaxed quite easily.
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Value Function P (w, g). Black line denotes g∗(w)
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Expected Marginal Continuation Utility Er(w0, g).

7.2.1. The wedges. A convenient way to summarize the extent of insurance is
to look at intratemporal and intertemporal wedges. Because of the homogeneity of the
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Expected Intratemporal Wedge Eτ(w0, g).

optimal policy functions, the intratemporal wedge τ(w, g, θ) and the intertemporal wedge
δ(w, g, θ) can be written as

τ(w, g, θ) = 1− θ

γ
ex1(w,g,θ)x2(w, g, θ)

η
1+η

δ(w, g, θ) = 1− θe−x1(w,g,θ)

(∫ ∞

κ

e−x1[x(w,g,θ),r(w,g,θ),ε]f(ε) dε

)−1

.

Figure 3 examines the intratemporal wedge. It shows the expected intratemporal wedge,
Eτ(w, g) =

∫∞
κ

τ(w, g, ε)f(ε) dε, for the break even promised utility w0 as a function
of the marginal promised utility. The expected intratemporal wedge decreases with the
marginal promised utility. At the cost minimizing promised utility g∗(w0), the expected
intratemporal wedge is only 5%. It decreases with the marginal promised utility and
converges to 1 as the marginal promised utility g decreases toward zero. The simulations
also reveal that the intratemporal wedge decreases with the continuation utility as well.
The dynamics of the expected intratemporal wedge, as well as its magnitude at the
beginning are similar to the one obtained by Farhi and Werning (2010)).

Ales and Maziero (2009) study an economy with finite lifetimes and i.i.d. shocks
and find that the intratemporal wedge increases with age. While their model differs from
ours, the argument is somewhat similar. In their model the intratemporal wedge increases
because as people age, the social planner is less able to vary the continuation utility and
must provide incentives through intratemporal distortions. In this model, lower marginal
promised utilities are associated with lower dispersion of ex post lifetime utilities. Hence,
the current shock becomes less important in determining the continuation lifetime utility
and the social planner must rely more heavily on intratemporal distortions to provide
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Expected Intertemporal Wedge Eδ(w0, g)

incentives.

The intertemporal wedge is plotted in figure 4, again for the break even promised
utility w0. As expected, it is always nonnegative. The intertemporal wedge is decreasing
in the marginal promised utility. It also tends to increase in the promised utility. In terms
of magnitude, it is between 0.05% and 0.4%, which is consistent with the findings in Farhi
and Werning (2010)).

7.2.2. Validity of the Relaxed Problem. The solution to the dynamic
program does not specify what happens if the agent reports θ̂ > θ and receives shock
θ′ ∈ [κθ, κθ̂) next period. This information is, however, needed to compute the deviator’s
continuation utility (6.19), and one needs to extend the allocation for such values.

Because of the homogeneity of the optimal policy functions, one only needs to extend
the functions x1(w, g, θ), x2(w, g, θ), v(w, g, θ), and r(w, g, θ) for the off-equilibrium values
θ ∈ (0, κ) in a way that does not violate incentive compatibility. There is no unique way of
doing so, and any extension that satisfies the envelope condition is a suitable candidate.
I do so by setting, for all θ ∈ (0, κ), x∗

2(w, g, θ) = x̄2 and r∗(w, g, θ) = r̄ for some values
of x̄2 and r̄, and then compute s∗(w, g, θ) from the envelope condition. The envelope
condition then holds by construction.

I verify the validity of the relaxed problem by directly computing the right-hand side
of equation (6.21) and check whether truthtelling is optimal. I compute the right-hand
side of (6.21) for all gridpoints (wi, gj) for which the dynamic program was computed,
for 10 equispaced shock values θ, ranging from κ to θN , and for 100 equispaced reports
θ̂, ranging again from κ to θN . The value of reporting θ̂ for a θ-type agent at a gridpoint
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Gains from deviation for a given i,j and θ, a typical example

(wi, gj) is denoted by V̂ij(θ̂; θ). Since the policy functions are either piecewise linear or

step functions, their values can be computed for any θ̂ without a need for approximation.
The condition (6.21) is satisfied for all gridpoints in the state space. A typical pattern

of the gains from deviation is shown in figure 5. The horizontal axis shows the difference
between the report ln θ̂ and the shock ln θ for a given shock θ. The vertical axis shows the
difference between the utility from reporting ln θ̂, V̂ij(θ̂; θ), and the utility from reporting

truthfully, V̂ij(θ; θ). Truthtelling is optimal, and the function is maximized at zero. In
most cases, the most attractive non-local alternative to truthtelling is to report the
lowest possible shock.23 Nevertheless, the gain from reporting the lowest possible shock
is negative for all gridpoints and all shocks.

8. CONCLUSIONS

The main contribution of this paper is methodological. The paper develops a method of
solving dynamic private information models with a continuum of persistent shocks that
is simple enough to be solved numerically. The first-order approach is used to simplify
the structure of the incentive constraints. It is shown that the first-order approach not
only simplifies the problem within each period (as is well known from static models), but
has the added benefit that one only needs to keep track of the continuation utility of the
truthtelling agent and her marginal continuation utility. In contrast, without the first-
order approach one needs to keep track of the continuation utility of all possible deviating

23. Such a report would be attractive if the least able agent faces a large dispersion in ex-post
utilities next period. Since the deviating agent has a more favorable distribution of shocks next period,
he is more likely to obtain high ex-post utilities next period.
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agents. Sufficiency conditions that guarantee that the first-order approach is valid are
presented as well. I illustrate the first-order approach by quantitatively analyzing the
efficient allocations in a Mirrleesean consumption-labor economy with Pareto distributed
shocks that follow a random walk.

A major limitation of the first-order approach is that it is useful only as long as
it is valid.24 Since in most cases there are no conditions on the primitives that would
guarantee validity, it is not possible to determine beforehand whether the first-order
approach is valid or not. The application in this paper, as well as the applications in
Farhi and Werning (2010) and Golosov et al. (2010), check the sufficiency conditions and
all find that the first-order approach is valid. In previous versions of this paper I have
computed the efficient allocations in taste shock economies with exponential utility and
Pareto distributed shocks, and the first-order approach was valid as well. Perhaps the
unanswered question now is not whether the first-order approach can be usefully applied
at all, but where its limits are.

9. APPENDIX: PROOFS

Proof (Lemma 2). Fix X and let S(θ) = U (X1(θ), θ) + βW (X∞
2 (θ); θ). Then,

W (X; θ) can be written as

W (X; θ) =

∫
Θ

S(ε) dF (ε|θ). (A-1)

Integrating the Lebesque-Stieltjes integral (A-1) by parts, one gets

W (X; θ)−W (X; θ̂) =
[
S(ε)

(
F (ε|θ)− F (ε|θ̂)

)]θ
θ
−
∫
Θ

[
F (ε|θ)− F (ε|θ̂)

]
dS(ε)

= −
∫
Θ

[
F (ε|θ)− F (ε|θ̂)

]
dS(ε). (A-2)

If θ < ∞, then the second equality follows immediately. Suppose that θ = ∞. Since |U |
is bounded by U0 + U1θ and |W | is bounded by K0 +K1θ by Assumptions 1, 2 and 3,
|S(θ)| ≤ B̂0 + B̂1θ for B̂0 = U0 + βK0 and B̂1 = U1 + βK1. Hence,

|S(θ′)
(
F (θ′|θ)− F (θ′|θ̂)

)
| ≤ (B̂0 + B̂1θ

′)|F (θ′|θ)− F (θ′|θ̂)|.

The last term converges to zero as ε → ∞. To see this, suppose by contradiction that
θ′|F (θ′|θ) − F (θ′|θ̂)| converges to some nonzero constant B̃. Then |F (θ′|θ) − F (θ′|θ̂)|
converges to B̃

θ′ and F (θ′|θ) must converge to 1 −
˜̃B
θ′ for some ˜̃B. This implies that the

conditional expectation E(θ′|θ) must be infinite, a contradiction with Assumption 3. One
can then write

Wθ(X; θ) = lim
η→0

W (X; θ + η)−W (X; θ0)

η
= − lim

η→0

∫
Θ

F (ε|θ + η)− F (ε|θ)
η

dS(ε)

where the second equality follows from (A-2). Note, that since Θ is open, θ0 + η ∈ Θ for
η sufficiently small, and so Wθ is correctly defined.

By Assumption 7, F (θ′|θ) is either convex or concave in θ. Suppose it is convex.

Then, F (θ′|αθ̂+(1−α)θ) ≥ αF (θ′|θ̂)+(1−α)F (θ′|θ). for any α ∈ [0, 1]. Let η2 ≥ η1 ≥ 0

24. Werning (2001) argues that an invalid first-order approach can still be useful as an upper bound
on the Pareto frontier.
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and set α = η1

η2
and θ̂ = θ + η2. Rearranging terms, one gets

−F (θ′|θ + η1)− F (θ′|θ)
η1

≤ −F (θ′|θ + η2)− F (θ′|θ)
η2

.

Hence, the sequence −F (θ′|θ+η)−F (θ′|θ)
η is monotonically increasing in η. Since F2 ≤ 0 by

Assumption 7, this sequence is nonnegative. Assumption 6 ensures that the limit of this
sequence exists and is equal to −F2(θ

′|θ). The Monotone Convergence Theorem can be
applied and

Wθ(X; θ) = −
∫
Θ

lim
η→0

F (ε|θ + η)− F (ε|θ)
η

dS(ε) = −
∫
Θ

F2(ε|θ)dS(ε).

where the second equality follows from the definition of F2. Similar results obtain if
F (θ′|θ) is concave in θ.

Suppose now that θn converges to θ. By Assumption 7, F2(θ
′|θ) is monotone in θ,

and so applying the Monotone Convergence Theorem once more yields

lim
n→∞

Wθ(X; θn) = − lim
n→∞

∫
Θ

F2(ε|θn)dS(ε) = −
∫
Θ

lim
n→∞

F2(ε|θn)dS(ε) = −
∫
Θ

F2(ε|θ)dS(ε)

= Wθ(X; θ).

Hence, Wθ is continuous in θ. Finally, integrating by parts again, one gets

Wθ(X; θ) = [S(ε)F2(ε|θ)]θθ +
∫
Θ

S(ε) dF2(ε|θ) =
∫
Θ

S(ε) dF2(ε|θ),

where the first term on the right-hand side vanishes by the same arguments that were
used to show (A-2).

Proof (Lemma 3). Take any η ∈ Θ. By Assumption 8, E(θ′|θ) is Lipschitz
continuous in θ on [η, θ). Let L be the Lipschitz constant. Since |U | is bounded by
U0 + U1θ and |W | is bounded by K0 +K1θ by Assumptions 1, 2 and 3, one has for all

θ, θ̂ ∈ [θ0, θ]

|W (X; θ)−W (X; θ̂)| ≤
∫
Θ

|U (X1(ε), ε) + βW (X∞
2 ; ε)|

∣∣∣dF (ε|θ)− dF (ε|θ̂)
∣∣∣

≤
∫
Θ

(
U0 + U1ε+ βK0 + βK1ε

) ∣∣∣dF (ε|θ)− dF (ε|θ̂)
∣∣∣

= (U1 + βK1)

∫
Θ

ε
∣∣∣dF (ε|θ)− dF (ε|θ̂)

∣∣∣
≤ (U1 + βK1)L|θ − θ̂|.

Hence, W (X; θ) is Lipschitz continuous on [η, θ).

Proof (Theorem 4). The proof verifies the conditions of Theorem 2 of Milgrom
and Segal (2002). Take any η ∈ Θ and θt ≥ η. By Lemma (2), W (X; θ) is differentiable
in θ, and by Lemma (3), it is Lipschitz continuous on [η, θ). By Assumption 9, U(x, θ) is
differentiable and Lipschitz continuous in θ. Therefore,

Ŝt(θ
t−1, θ̂t, θt) = U

(
Xt(θ

t−1, θ̂t), θt

)
+ βW

(
X∞

t+1(θ
t−1, θ̂t); θt

)
. (A-3)

is differentiable in θt on (η, θ) and Lipschitz continuous in θt on [η, θ). Hence, it is
absolutely continuous and has a bounded derivative w.r.t. θt on (η, θ). Since (3.2) holds,
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Ŝt(θ
t−1, θ̂t, θt) is maximized at θ̂t = θt and by Theorem 2 of Milgrom and Segal (2002),

it can be represented by an integral of its derivative. Thus,

Ŝt(θ
t−1, θt, θt) =

∫ θt

η

∂

∂θt
Ŝt(θ

t−1, ε, ε) dε+ Ŝt(θ
t−1, η, η). (A-4)

The equation (5.7) obtains by taking the limit as η→θ and noting that

∂

∂θt
Ŝt(θ

t−1, θ̂t, θt) = Uθ(Xt(θ
t−1, θ̂t)) + βWθ(X

∞
t+1(θ

t−1, θ̂t); θt).

Proof (Theorem 5). Fix t ≥ 1 and θt−1 ∈ Θt−1. Define S(θt−1, θt) =
Ŝ(θt−1, θt; θt) where Ŝ is defined in (A-3). An allocation is temporarily incentive
compatible if

S(θt−1, θt)− Ŝ(θt−1, θ̂t; θt) ≥ 0. (A-5)

By the envelope condition (5.7), S(θt−1, θ) is differentiable for almost all θ ∈ Θ, with its
derivative ∂

∂θS(θ
t−1, θ) = Uθ

(
Xt(θ

t−1, θ), θ
)
+ βWθ

(
X∞

t+1(θ
t−1, θ); θ

)
. Hence, one can

write

S(θt−1, θt)− S(θt−1, θ̂t) =

∫ θ

θ̂

∂

∂θ
S(θt−1, ε) dε

=

∫ θ

θ̂

[
Uθ

(
Xt(θ

t−1, ε), ε
)
+ βWθ

(
X∞

t+1(θ
t−1, ε); ε

)]
dε

≥
∫ θ

θ̂

[
Uθ

(
Xt(θ

t−1, θ̂t), ε
)
+ βWθ

(
X∞

t+1(θ
t−1, θ̂t); ε

)]
dε

= Ŝ(θt−1, θ̂t; θt)− S(θt−1, θ̂t),

where the inequality follows from the fact that the expression (5.8) is increasing in θ̂t, and

the last equality follows from the fact that Ŝ(θt−1, θ̂t, θ) is differentiable in θ. Canceling
terms, one gets (A-5).

Proof (Lemma 6). Fix θ ∈ Θ. The set VR(θ) is clearly nonempty because any
allocation that is independent of the report is incentive compatible. VR(θ) is bounded
because W (X; θ) is bounded by K0 + K1θ by Assumptions 1-3 and boundedness of
Wθ(X; θ) follows from Lemma (3).

To prove that VR(θ) is closed, let {wn, gn}∞n=1 be a Cauchy sequence in VR(θ).
Denote its limit by (w, g). Let also {Xn}∞n=1 be a sequence of allocations such that
wn = W (Xn; θ) and gn = Wθ(Xn; θ). Since X is compact, Xn contains a convergent
subsequence {Xnk

}∞k=1. Let X∞ be its limit. Because X is compact by Assumption 1 and
a limit of a sequence of a measurable functions is measurable, X∞ ∈ X . One has

w = lim
k→∞

wnk
= lim

k→∞
W (Xnk

; θ) = W ( lim
k→∞

Xnk
; θ) = W (X∞; θ),

where the second inequality follows from the fact that Xn supports (wn, gn), and the
third one follows from affinity of W in X. Similarly,

g = lim
k→∞

gnk
= lim

k→∞
Wθ(Xnk

; θ) = Wθ( lim
k→∞

Xnk
; θ) = Wθ(X∞; θ).

Finally, since Xn satisfies the envelope condition (5.7) and U ,W ,Uθ and Wθ are all
continuous in X, X∞ satisfies (5.7) as well. Thus, X∞ supports (w, g), which implies
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that (w, g) ∈ VR(θ), and so VR(θ) is closed. Since it is both bounded and closed, VR(θ)
is compact. Convexity of VR(θ) follows from the fact that the utility is affine in x, and
so both W (X; θ) and Wθ(X; θ) are affine in X.

Proof (Theorem 7). Let (w, g) ∈ VR(θ−). Then, there exists some admissible
allocation X ∈ X such that W (X; θ) = w and Wθ(X; θ) = g. Define the allocation
rule z = (x, v, h) by x(θ) = X1(θ), v(θ) = W (X∞

1 (θ); θ) and h(θ) = Wθ(X
∞
1 (θ); θ). Since

X is measurable and the utility is affine in x, z is measurable as well, and so z ∈ Z. Since
X∞

1 (θ) is an allocation and satisfies the envelope condition (5.7) after all histories, one
has [v(θ), h(θ)] ∈ VR(θ) for all θ ∈ Θ. The allocation rule z satisfies (6.10) since

U (x(θ), θ) + βv(θ) = U (X1(θ)), θ) + βW (X∞
1 ; θ)

=

∫ θ

θ

[Uθ (X1(ε), ε) + βWθ(X
∞
1 (ε); ε)] dε+W (X∞

1 )

=

∫ θ

θ

[Uθ (x(ε), ε) + βh(ε)] dε+ w.

Hence, z is admissible w.r.t. VR. One can show that w(z; θ−) = w and g(z; θ−) = g.
Hence, (w, g) ∈ T VR(θ−) and so VR(θ−) ⊆ (T VR)(θ−). Since θ− is arbitrary, VR ⊆ T VR.

To show the reverse implication, suppose that (w, g) ∈ T VR(θ−). Then, there exists
some allocation rule z such that (6.10) holds and [v(θ), h(θ)] ∈ VR(θ). Define an allocation
X as follows. Let X1(θ) = x(θ). Since [v(θ), h(θ)] ∈ VR(θ), there is for each θ ∈ Θ
some allocation X̃(θ) such that W (X̃(θ); θ) = v(θ) and Wθ(X̃(θ); θ) = v(θ). Define
X∞

1 (θ) = X̃(θ). The allocation X constructed in this way is measurable and so X ∈ X .
It is also easy to see that X satisfies (5.7), and so is admissible, and that W (X; θ−) = w
and Wθ(X; θ−) = g. Thus, (w, g) ∈ VR(θ−) and so T VR(θ−) ⊆ VR(θ−). Since θ− is
arbitrary, T VR ⊆ VR.

Proof (Theorem 8). Let C(VR) be a space of bounded and continuous functions
P : VR → R, endowed with a sup norm. Let also T be the operator defined by the right-
hand side of the Bellman equation (6.15). The set C(VR) is a complete metric space.

The correspondence γR is clearly nonempty and continuous in (w, g). Lemma (2)
implies that both w(z; θ) and g(z; θ) are continuous in θ. Hence, γR(w, g, θ) is continuous
in θ as well. Since X is compact by Assumption 1 and VR is compact by Lemma (6), γR

is compact valued.
Suppose now that P ∈ C(VR). Define a function P̂ : VR ×Z(VR) → R by

P̂ (w, g, θ−, z) =

∫
Θ

[R (x(θ)) + qP (v(θ), h(θ), θ)] dF (θ|θ−).

Since R is continuous by Assumption 4 and F is continuous in θ− by Assumption 6, P̂
is continuous in (w, g, θ−, z). Berge’s Theorem (Aliprantis and Border (2005), Theorem
17.31) then implies that T maps C(VR) on itself. Since q < 1, T is a contraction, and it
follows from the contraction mapping theorem (Stokey et al. (1989) Theorem 3.2) that
there is a unique fixed point of the operator T within C(VR).

Since both X and VR are compact, Z(VR) is compact as well. Since ΓR is a closed
subset of VR × Z(VR), by the measurable selection theorem (e.g. Proposition 7.33 of
Bertsekas and Shreve (1978)), there exists a measurable selection from the efficient
allocation rule.
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The utility is affine in x, and so γR is convex in z. Since γR is affine in (w, g) for each
θ ∈ Θ, it is convex for each θ ∈ Θ. The objective function R is convex in x. Convexity of
P then follows from standard arguments. If R is strictly convex then P is strictly convex
by Corollary 1 of Stokey et al. (1989). Since the objective function is strictly convex, the
efficient allocation rule is essentially unique, and so must be measurable.

Proof (Lemma 9). Proof of (if). Suppose that X ∈ ΓR(w, g, θ0). Define V2(θ1) =
W (X∞

1 (θ1); θ1) and H2(θ1) = Wθ(X
∞
1 (θ1); θ1). Since X is measurable and W is affine,

Z1(·) ≡ [X1(·), V2(·),H2(·)] is measurable as well. Hence, Z1 is an allocation rule. Since
X ∈ ΓR(w, g, θ0), it satisfies

w =

∫
Θ

[U (X1(θ1), θ1) + βW (X∞
1 ; θ1)]dF (θ1|θ0)=

∫
Θ

[U (X1(θ1), θ1) + βV2(θ1)]dF (θ1|θ0)

≡ w(Z1; θ0),

where the second equality uses the definition of V2. Similarly, one can show that
g = g(Z1; θ0). Since X∞

1 (θ) is an allocation and supports [V2(θ1),H2(θ1)] at θ1 by
construction, [V2(θ1),H2(θ1)] ∈ VR(θ1). Since X satisfies the envelope condition (5.7)
at t = 1, Z1 satisfies the envelope condition (6.10). Hence, Z1 is admissible w.r.t. VR and
(6.16) holds. Property (6.17) can be shown in a similar fashion.

Proof of (only if). If (6.16) and (6.17) hold, Vt(θ
t−1) satisfies for all t ≥ 1 and all

θt−1 ∈ Θt−1

Vt(θ
t−1) =

∫
Θ

[U
(
Xt(θ

t−1, θt), θt
)
+ βVt+1(θ

t−1, θt)] dF (θt|θt−1), (A-6)

where V0(∅) ≡ w. Recursively eliminating Vt+s on the right-hand side of (A-6) T− times,
taking the limit as T → ∞ and noting that since

(
Vt+T (θ

t−1, θT ),Ht+T (θ
t−1, θT )

)
∈

VR(θT ) and VR(θT ) is compact, one gets

Vt(θ
t−1) =

∞∑
s=1

βs−1

∫
Θs

U
(
Xt+s−1(θ

t−1, θs), θs
)
dF (θt+s−1|θt+s−2) . . . dF (θt|θt−1)

=
∞∑
s=1

βs−1

∫
Θs

U
(
Xt+s−1(θ

t−1, θs), θs
)
dµt+s(θt−1, θs|θ0)

≡ W (X∞
t (θt−1); θt−1) (A-7)

where the second equality follows from the definition of µt. Similarly,

Ht(θ
t−1) = Wθ(X

∞
t (θt−1); θt−1), (A-8)

where H0(∅) ≡ g. Evaluating (A-7) and (A-8) at t = 0 yields w = W (X; θ0) and
g = Wθ(X; θ0). Since (6.16) holds, [X1(·), V2(·),H2(·)] satisfies the envelope condition
(6.10). Because V2(θ1) = W (X∞

2 (θ1); θ1) and H2(θ1) = Wθ(X
∞
2 (θ1); θ1) by equations (A-

7) and (A-8),X satisfies the envelope condition (5.7) at t = 1. Analogous arguments show
that X satisfies the envelope condition (5.7) after any history. Hence X ∈ ΓR(w, g, θ0).

Proof (Theorem 10). Proof of i. Take any [X1(·), V2(·),H2(·)] ∈ γR(w, g, θ0). The
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value function P satisfies

P (w, g, θ0) = min
z∈γR(w,g,θ0)

∫
Θ

[R (x(θ1)) + qP (v(θ1), h(θ1), θ1)] dF (θ1|θ0)

≤
∫
Θ

[R (X1(θ1)) + qP (V2(θ1),H2(θ1), θ1)] dF (θ1|θ0). (A-9)

By the same argument, P satisfies for any
[
Xt(θ

t−1, ·), Vt+1(θ
t−1, ·), Ht+1(θ

t−1, ·)
]
∈

γR
(
Vt(θ

t−1), Ht(θ
t−1), θt−1

)
P
(
Vt(θ

t−1),Ht(θ
t−1), θt−1

)
≤

∫
Θ

[
R
(
Xt(θ

t)
)
+ qP

(
Vt+1(θ

t),H2(θ
t), θt

)]
dF (θt|θt−1).

(A-10)

Eliminating the value function from the right-hand side of (A-9) T−times using (A-10),
one gets

P (w, g, θ0) ≤
T∑

t=1

qt−1

∫
Θt

R
(
Xt(θ

t)
)
dF (θt|θt−1) . . . dF (θ1|θ0)

+ qT
∫
ΘT

P
(
VT+1(θ

T ),HT+1(θ
T ), θT

)
dF (θT |θT−1) . . . dF (θ1|θ0). (A-11)

Taking the limit for T → ∞ and noting that P is bounded by Lemma 8, one obtains

P (w, g, θ0) ≤
∞∑
t=1

qt−1

∫
Θt

R
(
Xt(θ

t)
)
dF (θt|θt−1) . . . dF (θ1|θ0)

=

∞∑
t=1

qt−1

∫
Θt

R
(
Xt(θ

t)
)
dµt(θt|θ0) (A-12)

≡ D(X; θ0), (A-13)

where the second equality follows from the definition of µt. By Lemma 9, any X ∈
ΓR(w, g, θ0) can be constructed in this way. Hence P ≤ P ∗.

To show the opposite inequality, let z∗ be the efficient allocation rule, and X be
the allocation that is generated by z∗. Then, the argument above can be repeated with
equality at every step. Since X may not be second stage efficient, P ∗ ≤ P . Combining,
one gets P = P ∗.

Proof of ii. By previous arguments, if X is generated by the efficient allocation
rule z∗ then P ∗(w, g, θ0) = P (w, g, θ0) = D(X; θ0). Hence, X solves the social planner’s
problem (6.13) and so is second stage efficient.

Proof (Theorem 11). Let X be an allocation generated by the efficient allocation
rule z∗. To reduce notation, suppress the dependence of X on w and g. Then, for any
t ≥ 1 and any θt−1 ∈ Θt−1,

U
(
Xt(θ

t−1, θ̂t), θt

)
= U

(
x∗

(
Vt(θ

t−1),Ht(θ
t−1), θ̂t

)
, θt

)
.

Lemma (9) implies that W
(
X∞

t (θt−1), θt−1

)
= Vt(θ

t−1). The continuation utility can
then be shown to satisfy

W
(
X∞

t+1(θ
t−1, θ̂t); θt

)
= v̂

(
Vt(θ

t−1),Ht(θ
t−1), θt−1, θ̂t; θt

)
.
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Combining, one obtains

U
(
Xt(θ

t−1, θ̂t), θt

)
+ βW

(
X∞

t+1(θ
t−1, θ̂t); θt

)
= U

(
x∗

(
Vt(θ

t−1), Ht(θ
t−1), θt−1, θ̂t

)
, θt

)
+ βv̂

(
Vt(θ

t−1),Ht(θ
t−1), θt−1, θ̂t; θt

)
.

If (6.21) holds for any (w, g, θ−) ∈ VR(θ−), then

θ ∈ argmax
θ̂∈Θ

U
(
Xt(θ

t−1, θ̂t), θt

)
+ βW

(
X∞

t+1(θ
t−1, θ̂t); θt

)
.

The allocation X therefore satisfies the temporary incentive compatibility constraint
(3.2) and solves the social planner’s problem (3.4). Hence P IC = PR.

Proof (Lemma 12). Let ŝ(w, g, θ−, θ̂; θ)=U
(
x∗(w, g, θ−, θ̂), θ

)
+βv̂(w, g, θ−, θ̂; θ).

The relaxed problem id valid if

s∗(w, g, θ−, θ)− ŝ(w, g, θ−, θ̂; θ) ≥ 0. (A-14)

By the envelope condition (6.10), s∗ is differentiable for almost all θ ∈ Θ, with its
derivative ∂

∂θ s
∗(w, g, θ−, θ) = Uθ (x

∗(w, g, θ−, θ))+βh∗(w, g, θ−, θ). Hence, one can write

s∗(w, g, θ−, θ)− s∗(w, g, θ−, θ̂) =

∫ θ

θ̂

∂

∂θ
s∗(w, g, θ−, ε) dε

=

∫ θ

θ̂

[Uθ (x
∗(w, g, θ−, ε), ε) + βh∗(w, g, θ−, ε)] dε

≥
∫ θ

θ̂

[
Uθ

(
x∗(w, g, θ−, θ̂), ε

)
+ βĥ(w, g, θ−, θ̂; ε)

]
dε

= ŝ(w, g, θ−, θ̂; θ)− s∗(w, g, θ−, θ̂),

where the inequality follows from the fact that the expression (6.22) is increasing in θ̂,
and the last equality follows from the fact that ŝ is differentiable in θ. Canceling terms,
one gets (A-14).
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