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Abstract

This paper shows that with B = {1, 2, . . . , n}, the smallest k such that

(B ×B)− {(j, j) | j ∈ B} =
k⋃

i=1

(Ci ×Di)

is s(n), where s(n) is the smallest integer k such that n 6
(

k
b k

2
c

)
. This provides a simple

set-based formulation and a new proof of a result for boolean ranks [2] and biclique

covering of bipartite graphs [1, 5], making these intricate results more accessible.
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1. Introduction

The boolean rank br of a binary matrix Mm,n is the least k such that Mm,n = Sm,kTk,n,

where matrix product is carried out in the boolean algebra. Boolean rank is an important

topic for role-based access control [4, 8] and communication complexity [3].

There are two equivalent problems related to boolean rank. One is the additive version:

the boolean rank of a binary matrix M is the same as the minimal number k of rank-1

boolean matrices Mi such that M = Σk
i=1Mi. The second is the (edge) covering problem

for bipartite graphs: given a bipartite graph G, find the minimum number of bicliques

(complete bipartite subgraphs) covering all the edges in G. The translation between these

two versions is straightforward: a boolean matrix Mm,n corresponds to a bipartite graph,

where rows and columns form two disjoint sets of nodes without any edges between nodes

of the same set. Each rank-1 sub-matrix of Mm,n is a biclique.
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The fact that the decision problem for boolean rank is NP-complete [6] makes the

determination of boolean ranks of even seemingly simple binary matrices non-trivival. De

Caen, Gregory and Pullman [2] proved that br(Īn) = s(n), where Īn is the complement of

the identity matrix In, and s(n) is the smallest integer k such that n 6
(

k
b k

2
c

)
. The same

result was recently rediscovered in [1, 5] (see previous paragraph), with a new proof, for

biclique covering of the bipartite graph K−n,n, where K−n,n is the complete bipartite graph

Kn,n with a perfect matching removed.

In this paper, we give a simple set-based formulation and a new proof of the result

br(Īn) = s(n): with B = {1, 2, . . . , n}, the smallest k such that

(B ×B)− {(j, j) | j ∈ B} =
k⋃

i=1

(Ci ×Di)

is s(n). This simple proof can be easily reinterpreted in either the boolean rank setting

or the bipartite graph coverage setting.

2. Main Result

Let B = {1, 2, . . . , n} and 1B = {(j, j) | j ∈ B}. Suppose B×B− 1B =
k⋃

j=1

(Cj ×Dj).

Then Cj ∩ Dj = ∅ for each 1 ≤ j ≤ k. In fact, as long as this disjointness property is

enforced, we can make each “block” Cj ×Dj as large as possible and have B ×B − 1B =
k⋃

j=1

(Cj × Cc
j ), where Cc

j is the complement of Cj in B.

Theorem 1. Let B = {1, 2, . . . , n}. If B ×B − 1B =
k⋃

i=1

(Ci ×Di), then k ≥ s(n).

Proof. Suppose B × B − 1B =
k⋃

i=1

(Ci × Di). For j = 1, 2, . . . , n, let Aj = {i | j ∈ Ci}.

It is clear that Aj 6= ∅ for any j ∈ {1, 2, . . . , n}. To show that A1, A2, . . . , An form an

antichain on the set {1, 2, . . . , k}, it suffices to prove that there is no pair of sets Aj1 and

Aj2 such that Aj1 ⊆ Aj2 when j1 6= j2.

Suppose to the contrary that Aj1 ⊆ Aj2 for some j1 6= j2, then j1 ∈ Ci implies j2 ∈ Ci.

Since (j1, j2) ∈
k⋃

i=1

(Ci ×Di), there exists m ∈ {1, 2, . . . , k} such that (j1, j2) ∈ Cm ×Dm,

i.e., j1 ∈ Cm and j2 ∈ Dm. By the remark earlier, we have j2 ∈ Dm ⊆ Cc
m, that is,
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j2 /∈ Cm. This contradicts j1 ∈ Ci implies j2 ∈ Ci. Therefore, {A1, A2, . . . , An} is an

antichain on {1, 2, . . . , k}.

By Sperner’s Theorem [7], we have n 6
(

k
b k

2
c

)
. This completes the proof.

Our next lemma provides the key for an antichain-based “block” design.

Lemma 1. Let A = {1, 2, . . . , k} and {A1, A2, . . . , An} be an antichain on A. Let Ci :=

{j | i ∈ Aj} for i ∈ A. Then for any j ∈ {1, 2, . . . , n} we have

⋂
i∈Aj

Ci = {j}.

Proof. Since j ∈ Ci for any i ∈ Aj, we have j ∈
⋂

i∈Aj

Ci. Therefore, {j} ⊆
⋂

i∈Aj

Ci. Suppose

t ∈
⋂

i∈Aj

Ci. Then t ∈ Ci for each i ∈ Aj, that is, i ∈ At for each i ∈ Aj, from which it

follows that Aj ⊆ At. By the assumption that {A1, A2, . . . , An} is an antichain, we have

j = t. Hence
⋂

i∈Aj

Ci = {j}.

Theorem 2. Let B = {1, 2, . . . , n}. There exist Ci ⊆ B, for 1 ≤ i ≤ s(n), such that

B ×B − 1B =

s(n)⋃
i=1

(Ci × Cc
i ).

Proof. Consider A = {1, 2, . . . , s(n)}. Let {A1, A2, . . . , An} be a size-n antichain on A.

Such an antichain exists. For example, there are
( s(n)

b s(n)
2
c

)
(> n) different subsets of A

with cardinality b s(n)
2
c, and one can take all the size-b s(n)

2
c subsets of A to form such an

antichain.

For i = 1, 2, . . . , k, define Ci := {j | i ∈ Aj}. Now we prove that B × B − 1B =
s(n)⋃
i=1

(Ci × Cc
i ). It is clear that

s(n)⋃
i=1

(Ci × Cc
i ) ⊆ B × B − 1B. For any (s, t) ∈ B × B − 1B,

s ∈ Ci for all i ∈ As. We show that there exists m ∈ As such that t /∈ Cm by contradiction.

Suppose to the contrary that t ∈ Cm for all m ∈ As, then t ∈
⋂

m∈As

Cm. However, by

Lemma 1, we have
⋂

m∈As

Cm = {s}. Hence s = t, which contradicts the assumption that

(s, t) ∈ B ×B − 1B. Therefore, s ∈ Cm and t /∈ Cm, that is, (s, t) ∈ Cm × Cc
m.
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As an illustration of the construction given in Theorem 2, we present a simple example.

Example 1. Let n = 5. We have s(5) = 4. Consider A = {1, 2, 3, 4}. Take the antichain

A1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}, A4 = {2, 3}, A5 = {3, 4}. Then C1 = {1, 2, 3}, C2 =

{1, 4}, C3 = {2, 4, 5}, and C4 = {3, 5}. We have

({1, 2, 3, 4, 5} × {1, 2, 3, 4, 5})− 1B = {1, 2, 3} × {4, 5} ∪

{1, 4} × {2, 3, 5} ∪

{2, 4, 5} × {1, 3} ∪

{3, 5} × {1, 2, 4}.
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