
1

Unit Testing in Multi-Agent Systems using

Mock Agents and Aspects

Roberta Coelho
Uirá Kulesza

Arndt von Staa
Carlos Lucena

1/6/2006 2© LES/PUC-Rio

Outline

1. Testing Multi-Agent Systems

2. Our Approach

– Overview

– Implementing our approach on top of JADE

3. Conclusions & Next Steps

2

1/6/2006 3© LES/PUC-Rio

Testing Multi Agent Systems

• Agent-Oriented methodologies, proposed so far, defines
approaches to:

– analyze,

– design,

– and implement MASs.

• However, little attention has been paid to how multi-agent
systems can be tested.

– see:

Cernuzzi, L., Cossentino, M., Zambonelli, F., “Process Models
for Agent-based Development”, Journal of Engineering
Applications of Artificial Intelligence, 18(2), 2005.

1/6/2006 4© LES/PUC-Rio

Related Work

• Only a few of these methodologies define an explicit verification
phase.

– MaSE and MAS-CommonKADs methodologies propose a
verification phase based on model checking;

– Desire methodology proposes a verification phase based on
mathematical proofs.

– AGILE defines a testing phase based on JUnit.
• implement a sequential agent platform, used strictly during tests.

– Agile PASSI proposes a framework to support tests of single
agents.

• poorly documented.

3

1/6/2006 5© LES/PUC-Rio

Outline

1. Testing Multi-Agent Systems

2. Our Approach

– Overview

– Implementing our approach on top of JADE

3. Conclusions & Next Steps

1/6/2006 6© LES/PUC-Rio

Unit Test Approach for MAS

• Our testing approach calls attention to:

– the test of the smallest building block of a MAS: the agent.

– Rather than, analyzing the system as a whole trying to
devise system properties.

• The key hypothesis is:

– if an agent taken alone is not dependable then the collection
of agents will not be dependable too

• Hence the basic idea is:

– to verify whether each agent in isolation respects its
specification;

• under normal and abnormal conditions

4

1/6/2006 7© LES/PUC-Rio

Objects interaction x Agents Interaction

• A running MAS is a web of agents that interact
asynchronously by sending messages to each other.

• This kind of interaction differs in nature from the direct
method call.

• We need to devise specific techniques to test each individual
agent in isolation.

• We assume that the code comprising an agent has been
(unit and integration) tested

– Hence we need to test just the agent’s interface

1/6/2006 8© LES/PUC-Rio

Unit Test Approach for MAS

• Since:

– Nearly no agent is an island;

• Almost all agents access resources and interact with others:

• to whom they provide services or

• on whom they rely for services,

• One question arises:

How can we define meaningful tests to verify
an agent in isolation?

5

1/6/2006 9© LES/PUC-Rio

Unit Test Approach for MAS

• A test of agent A, which needs a service provided by
another agent;

• A valuable strategy is to define a “dummy” version of B
(usually called stub).

– Fake implementations that return canned results.

Any agent playing
 role BA

Test

1/6/2006 10© LES/PUC-Rio

Mock Object Definition

• Mackinnon et al proposed the Mock Object test design
pattern;

• A Mock Object is:

– an object that acts as a stub,

– but also includes assertions to instrument the
interactions between the mock and its neighbors.

• Mock Objects have been recognized as a useful approach
to the unit test of object-oriented software;

Mackinnon, T., Freeman, S., and Craig, P. “EndoTesting: Unit Testing with Mock Objects”. Proc. of
XP2000, 2000.
Hunt, A.; Thomas, D.; Pragmatic Unit Test: in Java with JUnit; Sebastopol, CA: O'Reilly; 2003;
Chapter "Mock Objects"; pags 65-78

6

1/6/2006 11© LES/PUC-Rio

Mock Agent Definition

• We adapted Mackinnon et al. idea to the MAS context;

• A Mock Agent is:

– an agent that communicates with just one agent: the
Agent Under Test (AUT).

– And has just one plan: to test a specific (or small set)
interaction with the AUT.

– there may be several mocks.

• The Mock Agent’s plan is equivalent to a test script:

– it defines the messages that should be sent to the AUT

– and the messages that should be received from it.

1/6/2006 12© LES/PUC-Rio

Outline

1. Multi Agent Systems

– What is a Multi-Agent System?

– When do we need to use agents?

2. Testing Multi Agent Systems

3. Our Approach

– Overview

– Implementing our approach on top of JADE

4. Conclusions & Next Steps

7

1/6/2006 13© LES/PUC-Rio

Approach’s Overview

• Five elements take part in the unit test of an agent:

Agent's platform

 Running
Agents

 Created
Agents

Work_Done
Agents

AUT

Test Suite

Test Case 1

Test Case 2

Mock Agents

Plans
(Test Scripts)

AgentMonitor

1/6/2006 14© LES/PUC-Rio

Approach’s Participants

• Test Case:

– defines a scenario – a set of conditions – to which an
Agent Under Test is exposed;

– and verifies whether this agent obeys its specification
under these conditions.

• Test Suite:

– consists in a set of Test Cases and a set of operations
performed to prepare the test environment before a Test
Case starts.

8

1/6/2006 15© LES/PUC-Rio

Approach’s Participants

• Agent Under Test (AUT):

– is the agent whose behavior is verified by a Test Case.

• Mock Agent:

– consists in a fake implementation of a real agent (class),
or part thereof, that would interact with the AUT in the
operational MAS.

– Its purpose is to simulate a real agent (class) strictly for
testing the AUT.

• Agent Monitor:

– is responsible for monitoring interaction of the agents in
order to inform the Test-Case when this interaction
finishes.

1/6/2006 16© LES/PUC-Rio

Agent's platform

 Running
Agents

1

Work_Done
Agents

AUT

Test Suite

Test Case 1

Test Case 2

4

Legend:

Message sending

Method invocation

Aspect interception

Notification

Mock Agents

2
3

 Created
Agents

AgentMonitor

Plans
(Test Scripts)

Agent's platform

 Running
Agents

1

Work_Done
Agents

AUT

Test Suite

Test Case 1

Test Case 2

4

Legend:

Message sending

Method invocation

Aspect interception

Notification

Mock Agents

2
3

 Created
Agents

AUT_id
Mock2_id
Mock1_id

AgentMonitor

Plans
(Test Scripts)

Unit Tests Common Structure

Agent's platform

 Created
Agents

5
6

AUT

Test Suite

Test Case 1

Test Case 2

Legend:

Message sending

Method invocation

Aspect interception

Notification

Mock Agents

Work_Done
Agents

AUT_id
Mock2_id
Mock1_id

 Running
Agents

AgentMonitor

Plans
(Test Scripts)

Agent's platform

 Running
Agents

 Created
Agents

AUT

Test Suite

Test Case 1

Test Case 2

Legend:

Message sending

Method invocation

Aspect interception

Notification

Mock Agents

7

Work_Done
Agents

8

AUT_id Mock1_id
Mock2_id

AgentMonitor

Plans
(Test Scripts)

9

1/6/2006 17© LES/PUC-Rio

Unit Tests Common Structure

• According to our approach:

– The plan of a Mock Agent comprises the logic of the test.

– Each Test Case just starts the AUT and the
corresponding Mock Agent(s);

– Than, the Test Case waits for a notification from the
Agent Monitor informing that the interaction between
the agents has finished;

– Finally, Test Case asks the Mock Agent(s) whether or not
the AUT acted as expected.

1/6/2006 18© LES/PUC-Rio

Designing Effective Test Cases

• A very important consideration in program testing is the
design of effective test cases;

• Testing:

– Cannot guarantee the absence of all errors;

– It just shows the presence of them;

– Complete testing is impossible for most of the programs

• certainly is for agents

What subset of all possible test cases has the highest
probability of detecting most of the errors?

Myers, G. J. The Art of Software Testing. Wiley, second edition. 2004.

10

1/6/2006 19© LES/PUC-Rio

Test Case Design

• The least effective technique of all is: to arbitrarily
choose a set of test cases.

– As current MASs testing approaches usually do.

• We propose an error-guessing technique for Test Case
Design.

– similar to risk based testing

• The basic idea of an error-guessing technique is:

– to enumerate a list of possible error-prone situations;

– And than write test cases based on this list.

Myers, G. J. The Art of Software Testing. Wiley, second edition. 2004.

1/6/2006 20© LES/PUC-Rio

Test Suite Design Technique

1. For each agent to be tested

- List the set of roles that it plays.

2. For each role played by the AUT

- List the set of roles of other agents that

interacts with it.

3. For each interacting role:

- Implement in a Mock Agent a “plan” that

codifies a successful scenario.

- List possible exceptional scenarios in which
the Mock Agent can take part.

- Implement in the Mock Agent an extra plan that

codifies each exceptional scenario.

11

1/6/2006 21© LES/PUC-Rio

Test Suite Design

• In order to define unit tests according to this technique,

useful sources of information are:

– sequence diagrams;

– and the specification of protocols that regulate the
interaction between MAS roles.

• Each Mock Agent exercises just one role of the AUT, rather
than the wide interface that comprises all the features
provided by it:

– We call this approach “Role Driven Unit Testing”.

1/6/2006 22© LES/PUC-Rio

Agents Monitor Aspect

• To prevent monitoring concern from becoming:

– scattered across multiple platform modules;

– and tangled with other application concerns.

• The Agent Monitor is built upon the facilities of Aspect
Oriented Software Development.

– Represented as an Aspect.

– That crosscuts platform

components to access

specific information.

Agent's platform

 Running
Agents

 Created
Agents

Work_Done
Agents

AUT

Test Suite

Test Case 1

Test Case 2

Legend:

Aspect interception

Mock Agents

AgentMonitor

Plans
(Test Scripts)

12

1/6/2006 23© LES/PUC-Rio

Outline

1. Multi Agent Systems

– What is a Multi-Agent System?

– When do we need to use agents?

2. Testing Multi Agent Systems

3. Our Approach

– Overview

– Implementing our approach on top of JADE

4. Conclusions & Next Steps

1/6/2006 24© LES/PUC-Rio

Applying our Approach on Top of JADE

• JADE is an object-oriented framework for developing
agent applications;

• An agent in the JADE platform:

– Extends the base Agent class

(hot spot);

– Contains its own thread of
execution;

– Defines a set of behaviors
(equivalent to a plan);

13

1/6/2006 25© LES/PUC-Rio

Applying our Approach on Top of JADE

• Instead of creating a unit testing tool
from scratch:

– We decided to extend JUnit
framework to support JADE
agents’ tests.

• The reason for that is:

– to lower the developers’ learning
curve providing a simple, and
widely used testing framework
architecture.

– possibly used while unit testing
the components of the agent.

JUnit Framework

TestSuite
<<hot spot>>

TestCase
<<hot spot>>

TestResult

JADETestCase

createEnvironment()
createAgent()

Test
<<Interface>>

TestRunner

runs

1/6/2006 26© LES/PUC-Rio

JADE Agent Monitor

JADE Framework

JADEMockAgent

sendMessage()
receiveMessage()
extraMessageValidation()

TestResultReporter

setTestResult()
getTestResult()

<<Interface>>

Lis t

AgentMonitor

waitUntilTestFinishes(String agentID)
waitUntilAgentDie(String agentID)
waitUntilAllAgentsDie()

<<aspect>>

33
AgentManager

waitUntilTestFinishes(String agentID)
waitUntilAgentDie(String agentID)
waitUntilAllAgentsDie()

<<crosscut>>

Agent
<<hot spot>>

<<crosscut>>

AgentController

<<crosscut>>

ContainerController

<<crosscut>>

• The Agent Monitor was developed in AspectJ - an aspect-
oriented extension to the Java programming language.

14

1/6/2006 27© LES/PUC-Rio

JADE Mock Agent

• According to our approach:

– The plan of a Mock Agent comprises the logic of the test.

– The Mock Agent needs to report the result of a test to
the Test Case (step 8)

Agent's platform

 Running
Agents

 Created
Agents

AUT

Test Suite

Test Case 1

Test Case 2

8

Legend:

Message sending

Method invocation

Aspect interception

Notification

Mock Agents

7

Work_Done
Agents

"Mock object's ID"

AgentMonitor

Plans
(Test Scripts)

1/6/2006 28© LES/PUC-Rio

Worked Example

• An Application of book-
trading;

• Two roles:

– BookSeller

– BookBuyer

• In JADE:

– BookSellerAgent

– BookBuyerAgent

• Let`s Test:

– BookSellerAgent

15

1/6/2006 29© LES/PUC-Rio

Worked Example

• Following the unit test case design technique:

A BookBuyer agent can send a “cfp”
message requesting a specific book,
and afterwards send a purchase
message trying to buy a different book.

Exceptional Scenario

BookSellerAgent sells a book to an
agent playing BookBuyer role.

Successful Scenario
BookBuyerInteracting Roles
BookSellerRoles

BookSellerAgentAgent

1/6/2006 30© LES/PUC-Rio

Partial Code of a JADE Mock Agent

1. public class MockBookBuyerAgent extends JADEMockAgent {
2. ...
3. protected void setup() {
4. ...
5. addBehaviour(new TestScenario());
6. }
7.}
8. private class TestScenario extends OneShotBehaviour {
9. public void action(){
10. try {

...
11. sendMessage(msgType.CFP,sellerID, bookTitle);
12. reply = receiveReply(6000, msgType.PROPOSE);
13. sendMessage(msgType.Accept,sellerID,otherTitle);
14. reply2 = receiveReply(6000, msgType.FAIL);
15. } catch (ReplyReceptionFailed e) {
16. setTestResult(prepareMessageResult(e));
17. }
18. setTestResult("OK");
19. }
20.}

16

1/6/2006 31© LES/PUC-Rio

Partial Code of a JADE Test Case

1. public class BookSellerTestCase extends JADETestCase {
2. ...
3. public void testBookSelling_Success(){
4. …
5. createAgent("seller","BookSellerAgent",argS);
6. createAgent("buyer","MockBookBuyerAgent",argB)
7. AgentsManager.waitUntilTestFinishes("buyer");
8. mockAg=environment.getLocalAgent("buyer");
9. res=((TestReporter) mockAg).getTestResult();
10. if(!res.equals(“OK”))){
11. fail(res);
12. }
13. }
14. }

1/6/2006 32© LES/PUC-Rio

Outline

1. Multi Agent Systems

– What is a Multi-Agent System?

– When do we need to use agents?

2. Testing Multi Agent Systems

3. Our Approach

– Overview

– Implementing our approach on top of JADE

4. Conclusions & Next Steps

17

1/6/2006 33© LES/PUC-Rio

Conclusions & Next Steps

• We presented a unit testing approach for MASs.

• Our approach aims at helping MASs developers in testing
each agent individually.

• It relies on the use of Mock Agents to guide the design and
implementation of agent unit test cases.

• In order to monitor and control the execution of tests cases
we used the facilities provided by Aspect OSD.

1/6/2006 34© LES/PUC-Rio

Conclusions & Next Steps

• Our work represents an initial step in the definition of a
complete MAS testing process:

– which will provide strategies to the integration and system
testing levels.

• We also intend to address, in future work, the integration of
this testing process with existing development
methodologies.

18

1/6/2006 35© LES/PUC-Rio

Conclusions & Next Steps

• Finally, we are also investigating the complete specification
of a generative approach:

– which can generate from interaction protocols part of the
source code of Mock Agents, Test Suites and Test Cases.

• The definition of this generative approach can:

– improve the productivity of our agent unit testing approach;

– and motivate even more MAS developers to use it.

1/6/2006 36© LES/PUC-Rio

Questions?

19

1/6/2006 37© LES/PUC-Rio

References

• Avizienis, A; Laprie, J-C; Randell, B; Landwehr, C. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing 1(1), pp. 11-
33, 2004.

• Beck, K. Extreme Programming Explained. Reading, MA: Addison-
Wesley, 2000

• Bellifemine, F., Poggi, A., Rimassa, G. JADE - A FIPA2000
Compliant Agent Development Environment. In Proc. Agents Fifth
International Conference on Autonomous Agents, pp. 216-217,
2001.

• Binder, R. Testing object-oriented systems: models, patterns, and
tools.Addison-Wesley Longman Publishing Co., Inc., 1999

• Caire, G. et al. Multi-agent systems implementation and testing.
In Proc. Of 4th International Symposium - From Agent Theory to
Agent Implementation (AT2AI-4), 2004.

• Cernuzzi, L., Cossentino, M., Zambonelli, F. Process Models for
Agent-based Development, Journal of Engineering Applications of
Artificial Intelligence, 18(2), 2005

1/6/2006 38© LES/PUC-Rio

References

• Czarnecki, K. and Eisenecker, U. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000

• DeLoach, S., Wood, M. and Sparkman, C. Multiagent Systems
Engineering. International Journal of Software Engineering and
Knowledge Engineering, vol. 11, No. 3, pp. 231-258, 2001.

• Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect-Oriented
Software Development. Addison-Wesley, 2005.

• Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

• Gamma, E. and Beck K. JUnit: A regression testing framework.
http://www.junit.org, 2000.

• Garcia, A., Lucena, C., Cowan D. Agents in Object-Oriented
Software Engineering. Software Practice & Experience, Elsevier, 34
(5), pp. 489-521, 2004.

• Iglesias, C. et al. Analysis and Design of Multiagent Systems using
MAS-CommonKADS. Springer, LNCS 1365, pp. 312-328, 1997.

20

1/6/2006 39© LES/PUC-Rio

References

• Jonker, C.M., and Treur, J. Compositional Verification of Multi-
Agent Systems: a Formal Analysis of Pro-activeness and
Reactiveness. Proc. of COMPOS’97, Springer, LNCS 1536, 1998.

• Kiczales, G. et al. Aspect-Oriented Programming. European
Conference on Object-Oriented Programming (ECOOP), Springer,
LNCS (1241), 1997.

• Kiczales, G. et al. Getting Started with AspectJ. Communication of
the ACM, 44(10), pp. 59-65, 2001.

• Knublauch, H. Extreme programming of multi-agent systems. In
Proc. 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 704 – 711, 2002.

• Mackinnon, T., Freeman, S., and Craig, P. EndoTesting: Unit
Testing with Mock Objects. Proc. of XP2000, 2000.

• McConnell, Code Complete, 2nd Ed., Microsoft Press, 2004.

• Myers, G. J. The Art of Software Testing. Wiley, second edition.
2004.

