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Abstract

In this paper, the notion of strongly GC -projective and injective modules is intro-
duced, where C is a semidualizing module. Using these modules we can obtain a new
characterization of GC -projective and injective modules, similar to the one of projective
modules by the free modules. We then define and study the global dimensions of rings
relative to a semidualizing module C, and prove that the global GC -projective dimension
of a ring R is equal to the global GC -injective dimension of R.

1. Introduction

Over a Noetherian ring, Foxby [5] introduced the notion of semidualizing modules, which

provided a common generalization of a dualizing module and a free module of rank one.

Golod [6] and Vasconcelos [13] furthered the study of semidualizing modules. By using these

modules, Golod defined the GC-dimension, a refinement of projective dimension, for finitely

generated modules. When C = R, this recovers the G-dimension introduced by Auslander

and Bridger in [1]. Motivated by Enochs and Jenda
′
s extensions in [4] of G-dimension, Holm

and Jφgensen [8] have extended the GC -dimension to arbitrary modules over a Noetherian

ring (where they used the name of C-Gorenstein projective dimension). This also enables

them to give the dual notion. ThenWhite [14] extended these concepts to the non-Noetherian

setting, named GC -projective and GC-injective dimension, and showed that they share many

common properties with the Gorenstein homological dimensions extensively studied in recent

decades.

It is well-known that, the classical global dimensions of rings play an important role in

the theory of rings. Recently, Bennis and Mahadou [3] defined the global Gorenstein projec-
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tive dimension of a ring R and the global Gorenstein injective dimension of R, and proved

that they are equal for any associative ring by using the properties of strongly Gorenstein

projective and injective modules. For more details of these two modules, see [2]. Based on

the above results, in this paper we mainly study the global dimensions of a ring R with

respect to a semidualizing module.

This paper is organized as follows.

In Section 2, we give some definitions and some preliminary results.

In Section 3, we introduce and study the strongly GC -projective and injective modules.

The main result of this section is that an R-module is GC -projective (resp. injective) if

and only if it is a direct summand of a strongly GC -projective (resp. injective) R-module.

We then give some equivalent characterizations of the strongly GC-projective and injective

modules, and show that the class of strongly GC -projective (resp. injective) modules is

between the class of projective, C-projective (resp. injective) modules and the class of GC-

projective (resp. injective) modules.

In Section 4, relative to a semidualizing module C, we firstly define the PC -projective

and IC-injective dimension of a ring R, and prove that they are both equal to the classical

global dimension of R. Next, we define and investigate the GC-projective and GC -injective

dimension of a ring R. The main result of this paper is that the GC -projective and GC-

injective dimension of a ring R coincide, and we call the common value the C-Gorenstein

global dimension of R. Then we discuss the relations between the C-Gorenstein global

dimension of a ring R with other global dimensions of R. At the end of this section, we

study the behavior of modules over rings of finite C-Gorenstein global dimension, and give

a partial answer to the question posed by Takahashi and White in [12].

2. Preliminaries

Throughout this work R is a commutative ring with unity. For an R-module M , we use

idR(M), pdR(M) and fdR(M) to denote the injective dimension, projective dimension and

flat dimension of M , respectively. We use gl.dim(R) to denote the classical global dimension

of R.

Semidualizing modules, defined next, form the basis for our categories of interest.

Definition 2.1 ([14]) An R-module C is semidualizing if

(a) C admits a degreewise finite projective resolution,

(b) The natural homothety map R → HomR(C,C) is an isomorphism, and

(c) ExtiR(C,C) = 0 for any i ≥ 1.
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From now on, C is a semidualizing module.

Definition 2.2 ([9]) An R-module is called C-projective if it has the form C⊗RP for some

projective R-module P . An R-module is called C-injective if it has the form HomR(C, I) for

some injective R-module I. Set

PC = PC(R) = {C ⊗R P |RP is projective}, and

IC = IC(R) = {HomR(C, I)|RI is injective}.

Let C be a subclass of R-modules. Recall that a sequence of R-modules L is called

HomR(−, C) (resp. HomR(C,−)) exact if the sequence HomR(L, C
′) (resp. HomR(C

′,L)) is

exact for any C ′ ∈ C.

Definition 2.3 ([14]) A complete PPC -resolution is a HomR(−,PC) exact exact sequence

of R-modules

X = · · · → P1 → P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·

with Pi and P i are projective R-modules. An R-module M is called GC-projective if there

exists a complete PPC-resolution as above with M ∼= Coker(P1 → P0). Set

GPC(R) = the class of GC-projective R-modules.

A complete ICI-resolution and GC -injective module are defined dually.

From [14, proposition 2.6], we know that every projective and C-projective R-module

are GC-projective. Now, we give a ”non-trivial” example of GC-projective R-module.

Example 2.4 AssumeR is a Gorenstein artin algebra with gl.dim(R) = ∞. Let C = ⊕Ij ,

where Ij are all the indecomposable and non-isomorphic direct summands of modules ap-

peared in the minimal injective resolution of R. Then C is a semidualizing module. In this

case, every finitely generated R-module is GC-projective. While the class of finitely gener-

ated C-projective R-modules is just the class of all finitely generated injective R-modules.

However, it is clear that there exists an R-module which is not projective and injective.

Let G2PC(R) = { A is an R-module | there exists a HomR(−,PC) exact exact sequence

of R-modules · · · → G1 → G0 → G0 → G1 → · · · with all Gi and Gi in GPC(R) and A ∼=

Im(G0 → G0)}.

The following result means that an iteration of the procedure used to define the GC-

projective modules yields exactly the GC-projective modules.

Lemma 2.5 ([10, Theorem 2.9]) G2PC(R) = GPC(R).
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Definition 2.6 ([14]) Let X be a class of R-modules and M an R-module. An X -

resolution of M is an exact sequence of R-modules as follows:

· · · → Xn → · · · → X1 → X0 → M → 0

with each Xi ∈ X for any i ≥ 0. The X -projective dimension of M is the quantity

X - pdR(M) = inf{sup{n ≥ 0|Xn 6= 0}|Xis an X -resolution of M}.

The X -coresolution and X -injective dimension ofM are defined dually. We writeGC - pdR(M)

= GPC(R)- pdR(M).

Lemma 2.7 If sup{GC- pdR(M)|M is an R-module} < ∞, then, for an integer n, the

following are equivalent:

(1) sup{GC- pdR(M)|M is an R-module} ≤ n,

(2) idR(N) ≤ n for every R-module N with finite PC-projective dimension.

Proof. Use [14, Proposition 2.12] and [11, Theorem 9.8]. �

Definition 2.8 ([8]) M is called GC-flat if there is an exact sequence of R-modules

X = · · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · ·

with Fi and F i are flat R-modules, such that M ∼= Coker(F1 → F0) and HomR(C, I)⊗RX is

still exact for any injective R-module I. We define GC- fdR(M) analogously to GC - pdR(M).

3. Strongly GC-projective and injective modules

We denote AddRM the subclass of R-modules consisting of all modules isomorphic to

direct summands of direct sums of copies of M . By [10, Proposition 2.4], PC = AddRC.

Definition 3.1 An R-module M is called strongly GC-projective, if there exists an exact

sequence of R-modules

D = · · ·
f

−→ D
f

−→ D
f

−→ D
f

−→ · · ·

with D ∈ AddR(C ⊕R), such that M ∼= Ker f and HomR(D,PC ) is still exact.

When C = R, it is just the strongly Gorenstein projective module introduced in [2].

Strongly GC -injective modules are defined dually. In the following, we only deal with the

strongly GC -projectivity of modules. The results about strongly GC -injective modules have

a dual version, and we omit them.

From definition, we immediately have:

Proposition 3.2 The class of strongly GC-projective modules is closed under direct sums.
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The principal role of these modules is to give a simple characterization of the GC-

projective modules, as follows:

Theorem 3.3 An R-module is GC-projective if and only if it is a direct summand of a

strongly GC-projective R-module.

Proof. (⇐) From Lemma 2.5 and [14, Proposition 2.6], it is easy to see that every strongly

GC -projective module is GC -projective. Since the class of GC-projective modules is closed

under direct summands by [14, Theorem 2.8], the assertion follows immediately.

(⇒) LetM be aGC -projective R-module. Then the definition gives rise to a HomR(−,PC)

exact exact sequence of R-modules:

X = · · · −→ C1
d1−→ C0

d0−→ C−1

d−1

−→ C−2 −→ · · ·

with all Ci ∈ AddR ∪AddC and M ∼= Im(C0 → C−1).

For each n ∈ Z, let ΣnX be the exact complex obtained from X by increasing all index

by n: (ΣnX)i = Xi−n and dΣ
nX

i = di−n for all i ∈ Z.

Then we obtain an exact complex

⊕
ΣnX = · · · −→ ⊕Ci

⊕di−→ ⊕Ci
⊕di−→ ⊕Ci

⊕di−→ ⊕Ci −→ · · ·

Clearly, ⊕Ci ∈ AddR(C ⊕ R). Since HomR(
⊕

ΣnX,PC) ∼=
∏

HomR(Σ
nX,PC ), the

complex
⊕

ΣnX is also HomR(−,PC) exact. Thus M is a direct summand of the strongly

GC -projective module Im(⊕di), as desired. �

The next result gives a simple characterization of the strongly GC -projective modules.

Proposition 3.4 For any R-module M , the following are equivalent:

(1)M is strongly GC-projective;

(2)There exists a short exact sequence 0 → M → D → M → 0, with D ∈ AddR(C ⊕R),

and Ext1R(M,J) = 0 for any R-module J with finite PC-projective dimension ( or for any

C-projective R-module J );

(3)There exists a short exact sequence 0 → M → D → M → 0, with D ∈ AddR(C ⊕R),

and ExtiR(M,J) = 0 for some integer i > 0 and for any R-module J with finite PC-projective

dimension.

Proof. (1) ⇒ (2) Follows from definition and [14, Proposition 2.12], and (2) ⇒ (3) is

trivial.

(3)⇒ (1) Let 0 → M → D → M → 0 be the short exact sequence withD ∈ AddR(C⊕R).

Then, for for any R-module J with finite PC-projective dimension and all j > 0, we have

the long exact sequence:

0 = ExtjR(D,J) → ExtjR(M,J) → Extj+1

R (M,J) → Extj+1

R (D,J) = 0

5



Then ExtiR(M,J) = 0 for some integer i > 0 implies ExtjR(M,J) = 0 for all j > 0. Gluing

the short exact sequence 0 → M → D → M → 0, we get that M is strongly GC -projective.�

Remark 3.5 From Theorem 3.3 and Proposition 3.4, we know that every projective

and C-projective module are strongly GC-projective. Indeed, suppose that M is projective

or C-projective, then it is clear that M ∈ AddR(C ⊕ R). Moreover, we have a split exact

sequence 0 → M → M ⊕M → M → 0.

4. Global dimensions of a ring relative to a semidualizing module

The PC-projective and IC-injective dimension of a ring R are defined as

PC-PD(R) = sup{PC - pdR(M)|M is an R-module}

IC-ID(R) = sup{IC - idR(M)|M is an R-module}.

When C = R, they are the classical homological dimensions of the ring R. It is natural

to ask whether the PC-projective and IC-injective dimension of a ring R are equal.

Proposition 4.1 For a ring R, PC-PD(R) = IC-ID(R) = gl.dim(R).

Proof. Let M be an R-module, then PC- pdR(M) = pdR(HomR(C,M)) from [12, The-

orem 2.11]. So PC-PD(R) ≤ gl.dim(R), and the converse holds true since pdR(M) =

PC- pdR(C ⊗R M). Therefore PC-PD(R) = gl.dim(R).

Similarly, we get IC-ID(R) = gl.dim(R). Thus PC-PD(R) = IC-ID(R). �

Then one can get a new characterization of semisimple rings in terms of C-projective and

C-injective modules.

Corollary 4.2 For a ring R, the following are equivalent:

(1) R is semisimple,

(2) Every R-module is C-projective,

(3) Every R-module is C-injective.

The GC -projective and GC-injective dimension of a ring R are defined as

GC -PD(R) = sup{GC - pdR(M)|M is an R-module}

GC -ID(R) = sup{GC - idR(M)|M is an R-module}.

The following lemma is useful in the proof of the main result, and its proof uses so-called

Bass class techniques. Recall from [14] that, the Bass class with respect to C, denoted

BC(R), consists of all R-modules N satisfying

(a) Exti≥1

R (C,N) = 0,

(b) TorRi≥1(C,HomR(C,N)) = 0, and
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(c) The evaluation map C ⊗R HomR(C,N) → N is an isomorphism.

Lemma 4.3 Let M be an R-module with idR(M) < ∞ and GC-pdR(M) < ∞. Then

PC- pdR(M) = GC- pdR(M) < ∞.

Proof. Since GC- pdR(M) is finite, by [10, Lemma 2.8], there is a short exact sequence

of R-modules

0 → M → N → G → 0 (∗)

such that PC- pdR(N) < ∞ and G is GC -projective.

We claim that Ext1R(G,M) = 0. In fact, as G is GC -projective, there exists an exact

sequence

X = 0 → G → C ⊗R P 0 → C ⊗R P 1 → · · ·

with P i projective. Set Gi = Ker(C ⊗R P i → C ⊗R P i+1) for each i ≥ 0. The finite-

ness of idR(M) implies that M ∈ BC(R) by [9, Corollary 6.6], and so Exti≥1

R (C,M) = 0.

Thus Exti≥1

R (C ⊗R P,M) ∼= HomR(P,Ext
i≥1

R (C,M)) = 0 for each projective R-module P

from [11, P.258, 9.20]. Applying HomR(−,M) to the sequence X, we have Ext1R(G0,M) ∼=

Extd+1
R (Gd,M) = 0 by dimension-shifting argument, where d = idR(M), as claimed.

This implies the sequence (∗) splits, then sup{PC - pdR(M),PC - pdR(G)} = PC- pdR(N) <

∞, and hence PC- pdR(M) < ∞. The equality PC - pdR(M) = GC - pdR(M) now follows from

the result [14, Proposition 2.16]. �

Theorem 4.4 For a ring R, GC-PD(R) = GC-ID(R).

Proof. Assume that GC-PD(R) is finite and not more than n for some integer n.

Firstly, suppose thatM is a stronglyGC -projective R-module. We claim thatGC - idR(M) ≤

n. By Proposition 3.4, there exists an exact sequence 0 → M → D → M → 0, with

D ∈ AddR(C ⊕ R). Let 0 → M → I0 → I1 → · · · be an injective resolution of M . By the

dual version of [11, Lemma 6.20], we have a commutative diagram

0 0 0
↓ ↓ ↓

0 → M → D → M → 0
↓ ↓ ↓

0 → I0 → I0 ⊕ I0 → I0 → 0
↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 → In−1 → In−1 ⊕ In−1 → In−1 → 0

↓ ↓ ↓
0 → Kn → G → Kn → 0

↓ ↓ ↓
0 0 0
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Because GC-PD(R) ≤ n, by Lemma 2.7, idR(C ⊗R P ) ≤ n for any projective module P .

It follows from [12, Theorem 2.11] that IC- idR(Q) = idR(C ⊗R Q) ≤ n for any projective

module Q. Thus GC- idR(C⊗RP ⊕Q) = sup{GC - idR(C⊗RP ), GC - idR(Q)} ≤ n since every

injective and C-injective module are both GC-injective. Therefore GC- idR(D) ≤ n, and so

G is GC -injective by the dual version of [14, Proposition 2.12].

So we obtain an exact sequence

Y = · · ·
f
→ G

f
→ G

f
→ G

f
→ · · ·

with G is GC -injective and Kn
∼= Ker f . Applying HomR(HomR(C, I),−) to the sequence Y

for any injective module I, we get ExtiR(HomR(C, I),Kn) ∼= Exti+1
R (HomR(C, I),Kn) for each

i > 0. Because I is injective and GC- pdR(I) ≤ n, Lemma 4.3 implies PC- pdR(I) ≤ n. Then

pdR(HomR(C, I)) = PC - pdR(I) ≤ n by [12, Theorem 2.11], and So Ext1R(HomR(C, I),Kn)

∼= Extn+1
R (HomR(C, I),Kn) = 0. Thus HomR(IC ,−) leaves the sequence Y exact, and hence

Kn is GC -injective by the injective version of Lemma 2.5. So GC - idR(M) ≤ n as claimed.

This yields, from [14, Proposition 2.11] and Theorem 3.3, that GC - idR(N) ≤ n for any

GC -projective R-module N .

Finally, let M be an arbitrary R-module. By hypothesis GC- pdR(M) ≤ n. We may

assume that GC- pdR(M) 6= 0. Then, there exists an exact sequence 0 → K → N → M → 0

such that N is GC -projective and PC- pdR(K) ≤ n− 1 from the proof of [14, Theorem 3.6].

By induction, GC - idR(K) ≤ n. It follows from the dual version of [10, Lemma 3.2] that

GC - idR(M) ≤ n since GC - idR(N) ≤ n.

Therefore, the right of the equality is not more than the left one, and the converse has a

dual proof. �

In the special case C = R, this recovers the main result of [3, Theorem 1.1]:

Corollary 4.5 sup{GpdR(M)|M is an R-module} = sup{GidR(M)|M is an R-module}.

We call the common value of the quantities in the theorem the C-Gorenstein global

dimension of R, and denote it by GC - gl.dim(R). Similarly, we set

GC -w gl.dim(R) = sup{GC - fdR(M)|M is an R-module}.

Corollary 4.6 The following inequalities hold:

(1) GC-w gl.dim(R) ≤ GC- gl.dim(R),

(2) GC- gl.dim(R) ≤ gl.dim(R), and the equality holds if gl.dim(R) < ∞.

Proof. (1) We may assume that GC - gl.dim(R) ≤ n. We claim that every GC -projective

R-module is GC-flat. Similarly to the proof of [7, Proposition 3.4], by [14, Proposition 2.12],
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it suffices to show that the character module, N+ = HomZ(N,Q/Z), of every C-injective

R-module N has finite C-projective dimension. Indeed, by the dual version of Lemma

2.7, pdR(N) ≤ n, and so fdR(N) ≤ n. Then idR(N
+) ≤ n from [11, Theorem 3.52]. It

follows from Lemma 4.3 that PC- pdR(N
+) ≤ n as desired. Therefore, GC-w gl.dim(R) ≤

GC- gl.dim(R).

(2) The inequality holds true since every projective module is GC -projective. If gl.dim(R)

< ∞, then by Proposition 4.1, PC-PD(R) = gl.dim(R) < ∞, the assertion follows from [14,

Proposition 2.16]. �

Now, we study the behavior of modules over rings of finite C-Gorenstein global dimension.

Proposition 4.7 Let R be a ring, and M be an R-module. If GC- gl.dim(R) < ∞, then

(1) PC-pdR(M) < ∞ ⇔ idR(M) < ∞.

(2) IC- idR(M) < ∞ ⇔ pdR(M) < ∞.

Proof. (1) Simply combine Lemma 2.7 with Lemma 4.3.

(2) has a dual proof. �

Remark 4.8 Takahashi and White [12] posed the following question: When R is a local

Cohen- Macaulay ring admitting a dualizing module and C is a semidualizing R-module, if

M is an R-module of finite depth such that PC- pdR(M) and IC- idR(M) are finite, must R

be Gorenstein? From Proposition 4.7 and the classical result, we know that for the rings of

finite C-Gorenstein global dimension, the question is positive.

Acknowledgements The research was supported by National Natural Science Founda-

tion of China (Grant No. 11126092) and Science Research Foundation of Hangzhou Dianzi

University (Grant No. KYS075610050).

References

[1] Auslander, M., Bridger, M. (1969). Stable module theory. Mem. Amer. Math. Soc. 94,

American Mathematical Society, Providence, Rhode Island.

[2] Bennis, D., Mahdou, N. (2007). Strongly Gorenstein projective, injective, and flat

modules. J. Pure Appl. Algebra 210: 437-445.

[3] Bennis, D., Mahdou, N. (2010). Global Gorenstein dimensions. Proc. Amer. Math. Soc.

138: 461-465.

9



[4] Enochs, E. E., Jenda, O. M. G. (1995). Gorenstein injective and projective modules.

Math. Z. 220: 611-633.

[5] Foxby, H.-B. (1972). Gorenstein modules and related modules. Math. Scand. 31: 267-

284.

[6] Golod, E. S. (1984). G-dimension and generalized perfect ideals. Trudy Mat. Inst.

Steklov. 165: 62-66, Algebraic geometry and its applications.

[7] Holm, H. (2004). Gorenstein homological dimensions. J. Pure Appl. Algebra 189: 167-

193.

[8] Holm, H., Jφrgensen, P. (2006). Semi-dualizing modules and related Gorenstein homo-

logical dimensions. J. Pure Appl. Algebra 205: 423-445.

[9] Holm, H., White, D. (2007). Foxby equivalence over associative rings. J. Math. Kyoto

Univ. 47: 781-808.

[10] Liu, Z. F., Huang, Z. Y. and Xu, A. M. (2012). Gorensten projective dimension relative

to a semidualizing bimodule. Comm. Algebra ( to appear ).

[11] Rotman, J. J. (1979). An Introduction to Homological Algebra. Academic Press, New

York.

[12] Takahashi, R., White, D. Homological aspects of semidualizing modules. Math. Scand.

(to appear), available from arXiv:math.AC/0703643.

[13] Vasconcelos, W. V. (1974). Divisor theory in module categories. North-Holland Publish-

ing Co., Am-sterdam, North-Holland Mathematics Studies. No. 14, Notas de Matem-

atica No. 53. [Notes on Mathematics, No. 53].

[14] White, D. (2010). Gorensten projective dimension with respect to a semidualizing

module. J. Comm. Algebra 2: 111-137.

10

http://arxiv.org/abs/math/0703643

