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ABSTRACT
A distinguishing characteristic of wireless sensor networks is the
opportunity to exploit characteristics of the application at lower
layers. This approach is encouraged by device resource constraints,
and acceptable because devices are inexpensive and numerous
enough that they can be dedicated to specific applications. Many
data dissemination protocols have been proposed for multi-hop
communication in sensor networks, each evaluated in some sce-
nario. The premise of this paper is that, if protocols are designed
to exploit application requirements, then no one protocol can be
optimized for all applications. Instead, a family of protocols are
needed, with guidance to match protocol to application. We show
through field experiments with two tracking applications that choice
of diffusion algorithm can affect application performance by 40–
60%. These applications motivate the design of two new diffu-
sion algorithms: push and one-phase pull diffusion. We describe
these algorithms in comparison to previous algorithms, then sys-
tematically explore their performance as the number of sinks and
sources, the traffic rate and node placement varies, and with and
without geographic proximity in node placement and with and
without geographically scoped communication. We characterize
algorithm performance and highlight the effect of the choice of al-
gorithm parameters. The end result of this work are guidelines to
help application developers to match dissemination algorithms to
application performance requirements.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; D.4.4 [Operating Systems]: Communications Management;
C.4 [Performance of Systems]
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1. INTRODUCTION
Data dissemination approaches in sensor networks have adopted

application-specific, data-centric communications protocols to re-
duce overhead by avoiding levels of abstraction and to support ap-
plication involvement in communication. This opportunity and
flexibility has prompted exploration of an even wider range of
data dissemination protocols, from protocols supporting attribute-
addressed, peer communication (such as directed diffusion [17])
to protocols supporting tree-based communication to a single sink
with an SQL abstraction [23]. Optimizations now being consid-
ered include geographic routing [18, 30], multipath routing (for
example, see [13]), rendezvous-based approaches [3, 25], and many
others.

Application involvement in sensor-network communications is
an important complement to basic dissemination algorithms. App-
lication-specific constraints and optimizations greatly reduce com-
munications cost by replacing communication with computation
in the network. As sensor network deployment grows, we ex-
pect to see a growing range of application techniques. Today, a
common class of applications uses a sensor net to communicate
data from the net to a single sink, possibly with opportunistic data
processing along the way [17, 23]. More complex applications
do controlled in-network processing, for purposes such as col-
laborative signal processing [27], or to localize computation with
nested queries [15], or to place or control database operators [2,
23]. Other applications involve increasingly sophisticated oper-
ation, with multiple kinds of distributed interaction and commu-
nication, including point-to-point state transfer and region-based
suppression [22].

As the choices of protocols and the sophistication of applica-
tions grows, an important problem is selection of which commu-
nications algorithms best match applications, and how the two in-
teract. In some cases semantics decide the question, for example,
if the application requires geographic routing, GPSR’s “route to
node nearest this point” is a good match. But when multiple im-
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plementations provide similar semantics, other factors dominate
the choice.

Originally directed diffusion implied both a programming in-
terface and a specific routing implementation [17]. Since then,
a programming interface has been defined that separates the API
and naming abstraction from the routing implementation [15]. We
are beginning to explore multiple different kinds of routing algo-
rithms underneath this common API. The original directed diffu-
sion algorithm employed flooding of interests with localized al-
gorithms [17]. While appropriate to applications with a relatively
small number of data receivers, its overhead becomes high when
many nodes become interested in data since each one sends its
interests throughout the network, and since receivers also send
exploratory data throughout the network. Motivated by applica-
tion performance requirements, we have developed two new al-
gorithms that support the diffusion API: push diffusion, an al-
gorithm optimized for many receivers but few senders, and one-
phase pull, an algorithm optimized for many senders and few re-
ceivers. Additional work has explored augmenting this mecha-
nisms with geographic scoping [30], and explored rendezvous-
based approaches [3, 25].

In these cases, multiple implementations provide similar se-
mantics, and so performance considerations dominate the choice
of algorithm. Although documentation provides brief descriptions
of the algorithms, in practice we have observed that it is often
difficult for application developers to match communication algo-
rithms to their needs. Application developers are not networking
experts, and evaluation of alternative dissemination algorithms is
difficult to do in the field where configuration constraints, limited
debugging tools, developing applications, and limited time pre-
clude systematic comparisons. Yet we have observed that a care-
ful choice of algorithm can cut overall traffic in half relative to
alternatives.

This paper is motivated by this combination of large perfor-
mance gains possible from carefully matching algorithm and ap-
plication, and by the corresponding difficult and limited informa-
tion about how to make this choice. We highlight algorithm differ-
ences that affect performance (Section 2) and describe field exper-
iments that show the performance gains of 40–60% from improved
algorithm choices (Section 3). We then systematically compare
how algorithm performance changes as a function of the num-
ber of sources and sinks, geographic proximity and geographically
scoped communication, and sending rate (Section 4). By emulat-
ing a radio network and evaluating real implementations of these
algorithms we identify cases where asymptotic performance is not
predictive of algorithm performance over typical sensor network
sizes. For example, even though the overhead of push diffusion
grows linearly with the number of sources, constant factors make
push control overhead one-third that of one-phase pull with five
sources and five sinks (Section 4.2).

The key contributions of this paper are to demonstrate the im-
portance of matching dissemination algorithm to application, to
describe push and one-phase pull, two new implementations of
the diffusion API that are tuned to match two new classes of ap-
plications, and to offer guidelines about matching algorithms to
applications with a thorough evaluation of implementation perfor-
mance.

2. SUMMARY OF DIFFUSION
ALGORITHMS

Early visions [12] of directed diffusion identified its key char-
acteristics: localized algorithms, named data, and support for in-
network processing. Diffusion adopted a declarative, publish/sub-
scribe API that isolates data producers and consumers from the
details of the underlying data dissemination algorithms [7]. The
key abstraction of this API is that data is identified by a set of at-
tributes, data producers (or sources) generate data it by publishing,
data consumers (or sinks) subscribe to data, and it is the business
of the diffusion implementation to insure that data travels from
publisher to subscriber efficiently. Diffusion encourages applica-
tions to influence data flow through the use of filters [16] and in-
network processing, but many applications require only attribute-
selected data and allow diffusion to completely control routing.

Many different algorithms can match publishers and subscribers
without change to the high-level API or semantics. Initial work
with diffusion used an algorithm we would now call two-phase
pull [17] where data consumers seek out data sources, and then
sources search to find the best possible path back to subscribers.
GEAR optimizes the process of finding sources by using geo-
graphic information to constrain the search process [30].

While we found these protocols ideal for some applications,
increasing experience with a broader range of applications sug-
gested that two-phase pull, is a poor match for some applications.
As described in Section 3, some applications have many sources
and sinks cross-subscribed to each other, a case that results in a
large amount of control traffic, even with geographic scoping. To
address this problem, this paper introduces push diffusion, an al-
gorithm that reverses the role of data publishers and subscribers,
causing data sources to actively search for consumers.

An advantage of push is that it requires only one phase where
control traffic needs to be widely disseminated to find sinks, unlike
the two phases needed in two-phase pull. Inspired by this observa-
tion, we developed one-phase pull, a third diffusion algorithm that
simplifies two-phase pull by eliminating one side of the search.

We briefly review two-phase pull and GEAR and then introduce
push and one-phase pull below. A basic comparison of the one
and two-phase pull, and one-phase push diffusion algorithms is
illustrated on table 1. Note that two-phase pull floods both interest
and exploratory data messages before getting a reinforced path and
unicast data. One-phase pull only floods interest messages, while
push floods exploratory data messages only.

2.1 Two-phase pull diffusion
Initial work with diffusion used an algorithm we would now

call two-phase pull [17]. A subscriber, or data sink, identifies data
by a set of attributes. This information propagates through the
network in an interest message. In principle, information cached
from prior runs, other constraints (such as geographic informa-
tion as in GEAR), or application-specific filters can can be used
to optimize the distribution of interests. Without such informa-
tion, however, interests must be flooded throughout the network
to find any data sources. As they are distributed, nodes establish
gradients, state indicating the next-hop direction of other nodes
interested in the data.

When an interest arrives at a data producer, that source begins
producing data. (To conserve power, nodes may avoid produc-
ing data before being triggered, or they may produce and store
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protocol sink source
two-phase interest*
pull (every interest interval)

exploratory data*
(every exploratory interval)

positive reinforcement
(response to exp. data)

data
(rate defined by app.)

one-phase interest*
pull (every interest interval)

data
push exploratory data*

(every exploratory interval)
positive reinforcement
(response to exp. data)

data

Table 1: Comparison of interactions in diffusion algorithms.
Asterisks (*) indicate messages that are sent to all nodes
(flooded or geographically scoped). All algorithms also have
negative reinforcement messages.

such data locally.) The first data message sent from the source
is marked as exploratory1 and is sent to all neighbors that have
matching gradients. As with interest messages, this transfer could
be limited using additional information or application involve-
ment, but by default it is sent to all nodes. When exploratory data
reaches the sink, the sink reinforces its preferred neighbor, estab-
lishing a reinforced gradient towards the sink. (Preference being
given to the lowest latency neighbor, possibly modified by other
concerns such as link quality or energy.) The reinforced neighbor
reinforces its neighbor in turn, all the way back to the data source
or sources, resulting in a chain of reinforced gradients from all
sources to all sinks.

Subsequent data messages are not marked exploratory, and are
sent only on reinforced gradients rather than to all neighbors.

Nodes can also generate negative reinforcements if they receive
data that is not relevant to them. Typically this occurs when topol-
ogy changes and multiple gradients accidentally point to the same
node. A negative reinforcement corrects this situation.

Gradients are managed as soft-state, thus both interests and ex-
ploratory data occur periodically to refresh this state. Interests are
sent every interest interval, exploratory data every exploratory in-
terval. In the basic implementation, the interest interval is 30s,
the exploratory interval 90s. Since application data is marked ex-
ploratory (rather than there being an explicit exploratory control
message), if the application send rate is lower than one event ev-
ery 90s, the exploratory rate will also be reduced.

2.2 Geographically scoped data with GEAR
The physical nature of a sensor network’s deployment makes

geographically scoped queries natural. If nodes know their loca-
tions, then geographic queries can influence data dissemination,
limiting the need for flooding to the relevant region.

GEAR (Geographic and Energy-Aware Routing) extends diffu-
sion when node locations and geographic queries are present [30].
GEAR is an extension to an existing diffusion algorithm that re-

1Prior work [17] used the term “low-rate” data for this concept.

places network-wide communication with geographically con-
strained communication. When added to two-phase pull diffu-
sion, GEAR’s subscribers actively send interests into the network.
However, queries expressing interest in a region are sent towards
that region using greedy geographic routing (with support for rout-
ing around holes); flooding occurs only when interests reach the
region rather than sent throughout the whole network. Exploratory
data is sent only on gradients set up by interests, so the limited dis-
semination of interests also reduces the cost of exploratory data.

GEAR provides a first example of application-specific diffu-
sion. It optimizes diffusion for applications and networks that have
geographically scoped queries. GEAR-extended versions of push
and one-phase pull are also available and described below.

2.3 Push diffusion
Two-phase pull works well for applications where a small num-

ber of sinks collects data from the sensor net, for example, a user
querying a network for detections of some tracked object. An-
other class of applications involves sensor-to-sensor communica-
tion within the sensornet. A simple example of this class of ap-
plication might have sensors operating at a low duty cycle most of
the time, but when one sensor detects something it triggers nearby
sensors to become more active and vigilant. This problem was de-
scribed by researchers at Sensoria, University of Wisconsin, and
PARC. A characteristic of this class of application is that there
are many sensors interested in data (activation triggers), and many
that can publish such data, but the frequency of triggers actually
being sent is fairly rare. Two-phase pull diffusion behaves poorly
for this application, because all sensors actively send interests and
maintain gradients to all other sensors even though nothing is de-
tected.

Push diffusion was designed for this application. Although the
API is the same as two-phase diffusion (except for a flag to indi-
cate “push”), in the implementation, the roles of the source and
sink are reversed. Sinks become passive, with interest information
kept local to the node subscribing to data. Sources become active;
exploratory data is sent throughout the network without interest-
created gradients. As with two-phase pull, when exploratory data
arrives at a sink a reinforcement message is generated and it re-
cursively passes back to the source creating a reinforced gradient,
and non-exploratory data follows only these reinforced gradients.
Push can also take advantage of GEAR-style geographic optimiza-
tions.

Push is thus optimized for a different class of applications from
two-phase pull: applications with many sources and sinks, but
where sources produce data only occasionally. Push is not a good
match for applications with many sources continuously generat-
ing data since such data would be sent throughout the network
even when not needed.

2.4 One-phase pull diffusion
A benefit of push diffusion compared to two-phase pull is that

it has only one case where information is sent throughout the net-
work (exploratory data) rather than two (interests and exploratory
data). In large networks without geographically scoped queries,
minimizing flooding can be a significant benefit. Inspired by effi-
ciency of pull for some applications, we revisited two-phase pull
to eliminate one of its phases of flooding.

One-phase pull is a subscriber-based system that avoids one of
the two phases of flooding present in two-phase pull. As with
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two-phase pull, subscribers send interest messages that dissem-
inate through the network, establishing gradients. Unlike two-
phase pull, when an interest arrives at a source it does not mark
its first data message as exploratory, but instead sends data only
on the preferred gradient. The preferred gradient is determined by
the neighbor who was the first to send the matching interest, thus
suggesting the lowest latency path. Thus one-phase pull does not
require reinforcement messages, the lowest latency path is implic-
itly reinforced.

One-phase pull has two disadvantages compared to two-phase
pull. First, it assumes symmetric communication between nodes
since the data path (source-to-sink) is determined by lowest la-
tency in the interest path (sink-to-source). Two-phase pull re-
duces the penalty of asymmetric communication since choice of
data path is determined by lowest-latency exploratory messages,
both in the source-to-sink direction. However, two-phase pull still
requires some level of symmetry since reinforcement messages
travel reverse links. Although link asymmetry is a serious prob-
lem in wireless networks, many other protocols require link sym-
metry, including 802.11 and protocols that use link-level acknowl-
edgments. We assume that the MAC layer will allow diffusion to
identify asymmetric links.

Second, one-phase pull requires interest messages to carry a
flow-id. Although flow-id generation is relatively easy (unique-
ness can be provided by MAC-level addresses or probabilistically
with random assignment and periodic reassignment), this require-
ment makes interest size grow with number of sinks. By com-
parison, though, with two-phase pull the number of interest mes-
sages grows with proportion to the number of sinks, so the cost
here is lower. Second, the use of end-to-end flow-ids means that
one-phase pull does not use only local information to make data
dissemination decisions.

2.5 Rendezvous approaches
Push and pull diffusion have active sources and sinks, respec-

tively. When a scenario has groups involving a mixed number of
sources and sinks, one would like a middle ground where each do
some of the work. Rendezvous protocols share the effort by ar-
ranging for sources and sinks to meet in some predetermined way.

In the Internet multicast domain [10], distance-vector-based pro-
tocols such as DVMRP have actives sources, link-state-based pro-
tocols such as MOSPF have active sinks, and protocols such as
PIM-SM adopt a rendezvous approach [8]. In sensor networks,
protocols such as GHT adopt a physically distributed rendezvous
point for sensor data storage [25], while approaches such as ru-
mor routing exploit physical properties (the intersection of two
non-parallel lines) for a different kind of rendezvous [3].

Largely unexplored is the ability to accomplish rendezvous at
the application-level, possibly exploiting application-specific con-
straints. Nested queries [15] represent one approach to this, as
does application-level clustering (for one example, see [21]).

Because rendezvous approaches are quickly evolving we do not
examine them more closely in this paper, but identify this class of
protocols as an area for future work.

3. APPLICATION PERFORMANCE WITH
DIFFERENT DIFFUSION ALGORITHMS

We have just described a series of diffusion algorithms that were
designed in response to application needs. This section describes
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Figure 1: Push vs. two-phase pull diffusion with a cross-
subscription application.

two applications developed or inspired by other researchers that
benefit from push and GEAR, and it quantifies the performance
gains in switching diffusion algorithms.

3.1 Push vs. two-phase pull diffusion
Our first application considers trade-offs in push against two-

phase pull versions of diffusion. In two-phase pull, data sinks
are active, sending out interests, while sources are passive until
interests arrive. By contrast, with push, data sources are active,
sending out data when it arrives. Push is designed for the case
when there are many active sinks (listening for data), but relatively
few nodes actually generating data. A common case of this kind
of application is where many nodes are cross-subscribed to each
other but mostly quiescent, all waiting for a triggering event to
happen.

We explored this kind of application in the BAE sensor net-
work testbed composed of 15 Sensoria WINSng 2.0 nodes. (These
are 32-bit embedded computers with megabytes of memory and
two independent, frequency-hopping radios that send data at about
20kb/s.) The application was inspired by applications at Uni-
versity of Wisconsin and PARC that employ cross-subscription.
However, because those applications were not available to us at
the time, we implemented a comparable application with a field
of seven sensor nodes, all cross-subscribed to each other. When
any one sensor changes state, all sensors send their readings to a
triggered node that aggregates these readings and sends the ag-
gregated result to the user. To control traffic, sensors were set to
generate readings every 5s and to change state every minute.

Figure 1 shows a trace of communication rates across this ex-
periment, where each point represents the number of packets sent
over the last 30s. Two things stand out about this graph. First, the
application’s traffic is quite bursty. Second, push (the dotted line)
is able to consistently out-perform two-phase pull (the solid line),
transferring the same data with about 60% fewer messages.

Part of the saving in this experiment is because push is better
suited to this application than two-phase pull. With many nodes
cross-subscribed to each other, each will be frequently sending out
interested messages to the network. With push, these interests are
not sent; the only flooded messages are exploratory data.

If the sensors pushed relatively few detection events, the bene-
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fits of push would be greater still. In this case, data is sent every
5s from each sensor to the others and so sensors are not quies-
cent. We examine the effect of data generation rate in Section 4.5,
but as an area of future work we plan to redo this experiment in
simulation to verify our intuition.

3.2 Geographic constraints
Researchers at Xerox PARC have suggested Information Driven

Sensor Querying [6], an information-theoretic approach to sensor-
net tracking. With their approach, one node (the leader) keeps
track of the current target estimate. It periodically computes which
other sensor can add the most information about the target loca-
tion and then transfers leadership to that node through a process
called state transfer. To keep system state consistent, leader elec-
tion includes a suppression process where a leader informs other
nodes not to become active, duplicate leaders themselves. Sup-
pression messages are sent when the target is first detected and as
it moves through the network. State transfer messages occur twice
each second.

This application should benefit from push in the same way as
the previous application (Section 3.1). In addition, suppression
and state transfer are both geographically-scoped actions. To in-
vestigate the benefits of geographically scoped communications
jointly with them we evaluated this application both with and with-
out GEAR [30]. This application runs over 18 WINSng 2.0 nodes
in a testbed with nodes from PARC and ISI. Sensor data in this
case is generated by one or two human pulling a cart with pre-
recorded acoustic data mimicking a large vehicle. The first simu-
lated vehicle starts at 120s, the second at about 170s.

Figure 2 shows the message rates for this application. As can be
seen, geographic scoping reduces message counts by 40%. This
reduction is due to scoping of suppression messages. State transfer
messages in this application are sent to a single point and so are
also geographically directed, however this early implementation
of push with GEAR did not support constraint of messages to a
single point, only to regions, and so state transfer messages were
flooded. We would expect a larger reduction in control overhead
now that push with GEAR constrains control traffic directed to a
point.

3.3 Discussion
These case studies illustrate the importance of matching the ap-

plication to an appropriate data dissemination algorithm.
They also illustrate the complexity of selecting the best algo-

rithm for a given application. Application designers are experts in
their field, not networking, and so do not always have the best per-
spective to chose between several similar algorithms. The effects
of selecting a diffusion algorithm can easily be masked by appli-
cation errors. Our comparison of algorithms below is a first step to
provide guidance to application designers, but an important area
of future work is tools to help visualize and debug communication
patterns in distributed, sensor-network applications.

In some ways it is a misstatement to suggest that there is a best
algorithm for a single application. A sophisticated application like
IDSQ has different patterns of communication at different times,
and so requires different diffusion algorithms for different parts of
the application. This supports our claim that a range of general
and application-specific communication protocols are required for
efficient data dissemination in sensor networks, both for different
applications, and even in a single application.

A more specific result of these field studies concerns the ap-
propriate means to select between algorithms. We had originally
assumed that diffusion could infer the correct algorithm from the
user’s commands. For example, if geographic information was
present, GEAR optimizations would be used. This approach proved
too fragile for several reasons. First, it is prone to error. A mis-
configured set of attributes can be syntactically correct but will not
select the intended algorithm. The application will still run, but at
greatly reduced performance. This problem is quite difficult to
identify and correct, because performance of a distributed system
can be difficult to measure, poor performance can be due to many
causes, and the difference between correct code and incorrect is
subtle. Second, as the number of alternative algorithms grow, it is
no longer possible to distinguish between them automatically. Of-
ten the choice between algorithms depends on characteristics of
the application known only to the programmer such as the com-
munications patterns. A self-tuning system would be ideal, but
collecting information for tuning requires communication itself
and so will add its own overhead. For these reasons we now select
algorithms explicitly as an attribute to publish and subscribe calls.
We view the algorithm attribute as a programmer-provided asser-
tion, much as annotations are used in distributed-shared-memory
systems (for example, Munin [5]).

4. SYSTEMATIC COMPARISON
Data from previous experiments described in Section 3 sug-

gested that algorithm choice can make a large difference in per-
formance. However, the mechanics of doing field experiments are
too cumbersome to allow a thorough comparison of algorithms.
To provide guidance for future application designers, we used an
emulation platform to characterize wide range of application and
environmental configurations. After describing this methodology,
the next several sections explore these key research questions: Do
one-phase pull and push diffusion provide good performance to
complementary applications? What implementation issues affect
their relative performance? How does sending rate affect perfor-
mance? What are the benefits of geographic optimizations?

4.1 Methodology
Although early field experiments motivated this work, we could

not explore the range of scenarios needed to understand these re-
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search questions in that context. Instead we used the EmStar sim-
ulation/emulation environment [11] to quickly explore a range of
configurations. EmStar provides an emulation environment where
real application code runs on a single machine inside a simulated
framework of communication devices and radio channels. Since
the scenario is controlled by a simple configuration file, rather than
physically moving nodes, we were able to explore many scenarios
quickly.

Our experiments place 60 nodes randomly in a square area 50m
on a side. Nodes do not move once placed. Because random
topologies vary greatly in level of connectivity, we took two steps
to reduce the effect of topology variation on the results. First, each
experiment uses “paired” topologies. Each data point on a graph
represents the mean of five simulation runs (95% confidence inter-
vals are also shown). For any set of parameters, we vary one pa-
rameter and hold the topologies identical across the five runs. For
example we generated 5 different topologies with different node
locations for 1 source and 1 sink, then varied choice of push and
one-phase pull in each topology to get the two left-most points on
each line of Figure 4(a). Second, before using any topology, we
check it for rough connectedness between all sources and sinks.
Rough connectedness is defined as there being a path from ev-
ery source to every sink that uses hops within partial radio range
(12m). We discard any topologies that have sources or sinks that
are not roughly connected.

Source and sinks are placed randomly in each topology. By
default, both sources and sinks are clustered by being selected to
be geographically close to each other. To select n clustered nodes
we pick a point randomly and then pick the nodes closest to that
point until n nodes have been selected. To ensure that sources and
sinks are not intermixed, points for sinks are selected from the
lower left sixteenth of the graph, and the central point for sources
from the upper right sixteenth. For unclustered cases, we simply
pick n nodes randomly for the parameter being varied (sources
or sinks) while the other parameter (sink or source) is clustered
as before. Figure 3 shows a sample clustered topology with five
sources and sinks.

Each source generates traffic with an exponential inter-generation
time with a fixed mean rate. In most cases we use an equalized
traffic model, where we hold the aggregate event rate constant with
a mean of one event every 2s over the entire network. Since the

number of sources varies, we adjust each source’s individual event
rate to 1

n th the total rate. We also use two other traffic models. In
Figure 7 we use a proportional traffic model, where each source
generates data at with a mean inter-generation time of 10s. With
this model the number of events grows in proportion to the num-
ber of sources. Section 4.5 uses the proportional model but varies
the mean. Although many sensor networks generate traffic at fixed
intervals, we adopted an exponential inter-event time to avoid syn-
chronization effects. (This approach may be useful in sensor-net
applications that can tolerate non-uniform data sampling periods
as well.) Table 2 shows the sizes of interests and data. For one-
phase pull, data sizes grow with the number of sinks. Exploratory
data messages are the same size as regular data messages. Push
does not have interests, while one-phase pull does not have re-
inforcements. GEAR messages sizes are larger than non-GEAR
messages to include location information.

Although prior work has emphasized the role of application-
specific, in-network processing [17] we did not do aggregation or
duplicate suppression in these experiments so that we could under-
stand basic performance. Exploration of these aspects of diffusion
is an area of future work.

We configured EmStar to use a very simple radio model. We as-
sume 100% packet reception to a distance of 8m and then a linear
fall-off of reception probability to 0% at 12m. On one hand, the
lossy part of this model has a shallower fall-off than our testbed
radios [29], and so this model presents a more challenging target
than reality. On the other hand, this simple model does not exhibit
complexities observed in real radios such as asymmetric links, in-
terference, and strongly time-varying communication. We plan to
explore the sensitivity of our experiments to radio model in future
work, by using more challenging radio models and by communi-
cating over real (but fixed location) radios.

An important metric of sensor network communication is the
energy consumed. Previous work suggests that energy consump-
tion from the radio will be a significant component of system en-
ergy consumption [24]. Unfortunately our emulated system does
not currently model radio energy, so we approximate that by bytes
received, normalized by the number of events generated.

There are several parameters to the diffusion algorithms that
affect performance. We held these constant in these experiments,
with the interest interval set to 30s, the exploratory data interval at
90s.

There are several other parameters we either held fixed or varied
in some experiments, including the number of sink nodes (ranging
from 1 to 15), the number of sources, sensor nodes generating
data (same range), and the data dissemination algorithm (typically
either one-phase pull or push). Although by default both sources
and sinks were geographically clustered, in some experiments we
left one group unclustered.

4.2 Algorithm performance with different
numbers of sources and sinks

Our first goal is to understand the differences between diffusion
algorithms as the mix of senders and receivers varies. The designs
of pull is optimized for a few sinks, while push is optimized for
a few active sources. Field experiments (Section 3.1) have shown
performance differences, but not carefully explored the trade-offs.
Our first experiment therefore is designed to evaluate these algo-
rithms experimentally over a wide range of parameters.

Figure 4 compares push and one-phase pull where we fix the
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protocol interest data reinforcements
push — 84B 104B
one-phase pull 68B 92B + 4B/sink —
push with GEAR — 120B 140B
one-phase pull with GEAR 116B 108B + 4B/sink —

Table 2: Sizes of control and data messages
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Figure 4: Varying numbers of sources and sinks with push and one-phase-pull.

number of sources at 1 and vary the number of sinks, and vice
versa. Several observations can be made from these experiments.
First, the shape of the graphs are consistent with our expectations.
When we vary the number of sources (Figure 4(a)), the per-event
overhead for one-phase pull remains constant, while the overhead
for push grows linearly. Similarly, varying the number of sinks
(Figure 4(b)) shows a linear increase in one-phase pull overhead
and constant push overhead.

Because these are simple one-source/one-sink scenarios, we can
also use them to evaluate the absolute cost of routing. Consider
the one-source, one-sink data point on the left-most part of Fig-
ure 4(a). Push costs about 1500B/event and one-phase pull about
2500B/event. To put this into perspective, the basic message size
is 84–96B (Table 2) and a typical distance across the network is 11
hops, so the minimum possible cost to handle an event, assuming
an external, omniscient routing scheme, is about 924B/event for
push and 1056B/event for OPP. The observed control overheads
are thus about 1.5–2.5× this minimum cost. This seems consistent
to a comparison of data rates to control rates. For one-phase pull,
interest messages are the primary control traffic, occurring at one-
third the rate of message traffic (every 30s compared to every 2s).
For push, control traffic is dominated by exploratory data which
occurs every 90s. The costs of a flood are proportional to the size
of the network. The costs of a flood of the entire network are about
4.5× the cost of sending a message from source to sink. There-
fore we would approximate compute one-phase pull cost at about
1625B/event and push cost at about 1180B/event, slightly lower
than we observe. This simple model gives us confidence that our
simulations and understanding are consistent. It also demonstrates
that the amount of control traffic is strongly dependent upon the

data send rate, numbers of sources, and numbers of sinks. Varying
control traffic is an area for future work; in the following sections
we vary each of the other parameters.

Although the trend clearly shows that one-phase pull dominates
push performance as the number of sources grow, for small net-
works push performs better. This difference is due to the relative
frequency of control traffic, with one-phase pull’s interest mes-
sages occurring every 30s and push’s exploratory data every 90s.
Thus we expect them to show equal overhead when control traffic
rates are equal at three sources, as occurs in Figure 4(a).

4.3 Varying the number of sinks with one-
phase pull

Section 4.2 suggests that the relative performance of one-phase
pull and push perform similarly for small numbers of sources and
sinks. Since the amount of control traffic in one-phase pull is pro-
portional to the number of sinks, this trade-off can easily shift even
over small changes in configuration.

For example, Figure 5 compares the two algorithms with 5 sinks,
a varying number of sources, and equalized loads. In this case, the
constant cost of more frequent control traffic in one-phase pull
leaves push more efficient over this traffic mix. As expected, over-
head is on par at 15 sources. An experiment with 10 sinks provides
a similar result: push outperforms one-phase pull, with parity pro-
jected at 30 sources.

Figure 6 systematically compares the overhead of one-phase
pull as a function of the number of sources and sinks. As can
be seen, overhead is roughly linear with the number of sinks (Fig-
ure 6(b)) independent of the number of sources (Figure 6(a)).

We normalize cost to the number of events, so we expect the rel-
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Figure 6: Varying the number of sources and sinks with one-phase pull.
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Figure 5: Comparison of push and one-phase pull at 5 sinks
and varying numbers of sources.

ative overhead of one-phase pull to strongly depend on aggregate
event rates. Figure 7 shows the relative overhead as the number
of sources grow with the proportional traffic and each source adds
to the traffic load. Overhead drops with more sources because the
fixed cost of one-phase pull control traffic can be amortized across
a larger number of events.

4.4 Cost of adding more sinks with push
Section 4.3 suggests that constant factors make a large differ-

ence with one-phase pull. To understand if push has complemen-
tary performance, Figure 8 presents push performance as sinks and
sources vary.

The primary overhead in push is due to exploratory data which
must be sent throughout the network if geographic information
is not available. As expected, Figure 8(a) therefore shows a lin-
early increasing cost with number of sources. We note that there
is also a smaller linear trend as the number of sinks increase (Fig-
ure 8(b)). This is due to reinforcement messages which must travel
from each sink back to sources. Reinforcements are not flooded,
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Figure 7: Comparison of one-phase pull with different num-
bers of sinks and sources.

but they do show a noticeable cost proportional to the number
of sinks, with slope proportional to the number of sources. For
moderate-to-large networks, we expect that this cost will be dom-
inated by exploratory messages.

4.5 Varying traffic rates
We previously observed that the event rate can have a strong

effect on relative overhead (in Section 4.3 and Figure 7).
Even with one source and sink there are interactions between

the sending rate and diffusion algorithms. Figure 9 shows the rel-
ative per-event overhead for different event generation rates. The
important relationship here is between event generation rate and
exploratory data rate. Recall that with push diffusion, after each
exploratory period, the next event is marked exploratory and sent
throughout the network (if GEAR is not used). Other events are
sent only on reinforced paths. Thus more frequent events dis-
tribute the cost of control overhead.

We can see this effect in Figure 9. The exploratory period is
every 90s, so with 5 sources there is a clear knee in the curve at
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Figure 8: Varying the number of sources and sinks with push.
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Figure 9: Varying the event generation rate with 1 sink and 1
or 5 sources with push.

90s. At this point all data messages are exploratory and flooded
throughout the network; sending data slower than this rate incurs
no additional overhead. Below this rate, overhead falls off as con-
trol overhead is spread across more useful data. This effect is less
pronounced with only one source.

This analysis indicates that it is currently much more expensive
to send data at low rates (less than the exploratory period) than at
higher rates. This suggests several areas for future work. First,
some applications may wish to control the frequency of control
messages, allowing them to match control overhead to applica-
tion needs. Second, the motivation for periodic control messages
and soft-state is to deal with network dynamics. Unlike ad hoc
networks, sensor networks nodes often are stationary and so only
changes in radio connectivity affect connectivity. Thus sensor net-
works may benefit from much less frequent path computation than
would be needed in a network with mobile nodes. A priori proto-
cols analogous to DSDV or TORA may also have a larger role in
sensor networks than in ad hoc networks. We expect that sensor-

network specific MAC-level protocols [26, 28] will play an in-
creasing roll in ensuring that radio communications are fair and
reliable even in the face of occasional channel noise.

4.6 Using geographic information
Exploiting geographic information to limit control overhead is

an important optimization for sensornets where location is avail-
able.

To evaluate the benefit of GEAR and geographic scoping, Fig-
ure 10 compares push and one-phase pull with and without GEAR.
Figure 10(a) examines push as the number of sources rise. With-
out geographic scope, push overhead rises steeply as the number
of sources increase and each source generates more flooded ex-
ploratory traffic. With geographic scoping, control overhead is
greatly reduced because control traffic is sent directly to the target
region and need not be flooded. In fact, in absolute terms, control
overhead of push with GEAR is lower than one-phase pull in Fig-
ure 4(a), although push-with-GEAR will still grow linearly with
the number of sources. Figure 10(b) shows that one-phase pull
benefits from GEAR in a similar way as the number of sinks rise.

Figure 10(a) also includes one additional experiment: the “push
unclustered” represents the case where sources are not clustered
but are randomly distributed across the entire network. Perfor-
mance in this case is statistically equivalent to the clustered-source
case. The reason for this result is that our experiments do not do
in-network data aggregation. In systems that use aggregation or
duplicate suppression (such as [17]), source clustering allows re-
duction in the amount of data returned to the user.

Performance with GEAR is quite good because both sources
and sinks are clustered. If sinks were randomly distributed or
were more widely distributed then push-with-GEAR performance
would degrade to push-without-GEAR in proportion to the area of
sink dispersal.

4.7 Summary of guidelines
To summarize our results:
• Push works best with many sinks and few active sources.
• One-phase pull works best with many sources and few sinks.
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Figure 10: Push and one-phase pull performance with and without GEAR and geographically constrained control messages.

• The break-even point between these algorithms depends upon
specific control message frequency (such as interest send
rate and exploratory data rate), as well as application data
rates. For example, in Figure 4, for 1 source and 1 sink, push
performs better than one-phase pull. As we increase the
number of sources, we can see that one-phase pull performs
better than push for scenarios with more than 5 sources. The
break-even point can be quite different for other scenarios,
though, for example adding more sinks (Figure 5) moves
equilibrium to 16 sources.

• In networks with more than a few dozen nodes, the ben-
efits of geographically-scoped queries outweigh other al-
gorithmic choices. However, algorithm choice still matters
(for example, one and two-phase-pull algorithms will incur
gradient maintenance overhead by sending periodic interest
messages even when sources have no data to send for long
periods of time).

• As seen in Figure 9, sending at very low data rates (for ex-
ample, with an sending rate lower than once every 90s) has
a relatively high control overhead, unless geographic scope
or control rates are changed.

5. RELATED WORK
This paper builds upon prior work in evaluation of ad hoc rout-

ing protocols, multicast protocols, and sensor network routing pro-
tocols. We review each of these areas in turn.

Ad hoc routing protocols are related to data dissemination in
sensor networks. A critical question in ad hoc routing has been
choice between on-demand and a priori route computation. Broch
et al. compare four ad hoc routing protocols and examine this
question [4], while other researchers have proposed hybrid schemes
merging the two approaches (for example, ZRP [14]. Barrett et
al. instead provide a strong statistical comparison of the effects of
interactions between ad hoc routing protocol, MAC protocol, and
mobility model [1]. Like this prior work, we seek to put several
routing algorithms into context, however, for sensor networks, the
primary question is the interaction of application with source- or

sink-driven routing algorithms. IP-based ad hoc routing protocols
do not face this question at the IP-layer, since sinks there are al-
ways passive. The question may arise when resource discovery
and applications are considered, but to our knowledge there are no
studies of multi-hop, ad hoc networks consider resource discovery.

Multicast protocols in wired networks have similar trade-offs to
data dissemination protocols that match sources to sinks in sensor-
nets. Deering and Cheriton characterized multicast routing proto-
cols with costs proportional to the numbers of sources and
sinks [10], while later protocols such as PIM-SM adopted ren-
dezvous approaches as a middle ground [9]. Unlike this prior
work, diffusion can exploit application-specific information such
as geographic information, and the use of diffusion in ad hoc net-
works presents quite different topologies and constraints. We ex-
plore these issues in this paper. Moreover, most multicast appli-
cations were both sources and sinks of data, so the variations in
numbers of sources and sinks we explore have not been previously
explored in the context of multicast.

A number of sensor-network-specific routing protocols have been
proposed. Although some have been evaluated in absolute terms,
or relative to optimal protocols, or to flooding, but comparisons
of multiple protocols have been rare. Data-centric storage work
has provided analysis showing when rendezvous-like protocols are
important [25]. Analysis have compared address-centric and data-
centric protocols [19], and more recent analytic work has begun to
explore trade-offs with different diffusion algorithms [20]. To our
knowledge, our work is the first to suggest that sensor network
applications will be matched to the data dissemination protocol,
and thus no one protocol will be appropriate for all situations. Our
work complements the analysis in [20] by considering implemen-
tation constraints and effects (such as those in Section 4.3).

6. FUTURE WORK
We have touched upon future work several times in this paper.

We highlight several directions we are planning to pursue here.
We plan to review the results of this paper in light of explicit en-

ergy consumption models, and with different kinds of radio model.
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Addition of a rendezvous-based approach to push and one-phase
pull may provide good performance for cases with mixed numbers
of sources and sinks. An important question though is understand-
ing the system costs at defining and meeting at a rendezvous point.

Also important are the impact of application-specific in-network
processing. Previous research has found in-network processing
techniques such as duplicate suppression central to good perfor-
mance [17]. We plan to explore the impact of in-network process-
ing on these results, and the use of nested queries as a rendezvous
mechanism.

A second direction to explore is the optimization of data dis-
semination for relatively static networks. One approach would be
to automatically vary control traffic rates relative to network sta-
bility.

Section 4 has considered only simple applications that send di-
rectly too each other. More complicated applications, such those
employing nested or clustered computation deserve more analy-
sis since they make exhibit different kinds of spatial locality. In
such cases, the combination of in-network processing, small clus-
ters, and geographic routing would greatly reduce network activ-
ity. With clustering and nested queries, the amount of traffic be-
tween different parts of the network is reduced by aggregation at
cluster heads. Then, with addition of geographic routing, mes-
sage flooding (interest for pull and exploratory data for push) is
eliminated, improving energy efficiency of these protocols.

Finally, there is a strong need for better performance debugging
tools in distributed sensor networks.

7. CONCLUSIONS
In our work applying diffusion in real applications we found

that a single algorithm performed well with some applications but
poorly with others. Exploiting the abstract, publish/subscribe na-
ture of the diffusion API, we developed two new algorithms that
work with existing diffusion applications: push, and one-phase
pull. We demonstrated that these can offer significant performance
benefits to some applications, but found that simple descriptions
of the algorithms did not offer sufficient guidance to their use in
new applications. To address this problem we systematically ex-
plored performance of these algorithms over a different numbers
of sinks, sources, with and without geographic optimizations, and
at with different traffic placement and rates. We demonstrated
that push and one-phase pull can serve complementary applica-
tions, but that implementation details such as the rate of control
messages must be considered when evaluating algorithm trade-
off. While our focus has been specific to diffusion, the need for a
family of protocols applies to all general-purpose sensor-network
communications frameworks.
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