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Abstract

In this paper we present a new framework for the analysisafiswisibility and radiosity complexity. We introduce
a number of complexity measures from information theonntifyang how difficult it is to compute with accuracy
the visibility and radiosity in a scene. We define the comtisumutual information as a complexity measure of a
scene, independent of whatever discretisation, and desoneitual information as the complexity of a discretised
scene. Mutual information can be understood as the degreerdlation or dependence between all the points or
patches of a scene. Thus, low complexity corresponds todowlation and vice versa. Experiments illustrating
that the best mesh of a given scene among a number of altezsatbrresponds to the one with the highest
discrete mutual information, indicate the feasibility b&tapproach. Unlike continuous mutual information, which
is very cheap to compute, the computation of discrete minfigimation can however be quite demanding. We
will develop cheap complexity measure estimates and dpragtical algorithms from this framework in future
work.

Keywords: rendering, radiosity, Monte Carlo, information theorytrepy, mutual information

1. Introduction Carlo Markov chain techniques are used in order to solve the
radiosity problem. They are important because explicitrfor
factor computation and storage is avoided, yielding more re
liable radiosity algorithms that are suited to visualizeamu
more complex scenes than possible with more traditional ra-
diosity algorithmsl® 17.6_ Potential applications of the com-

rplexity study presented in this paper include cost prealicti
for radiosity computations and the development of meshing
strategies that are optimal in the sense that they will allow

The study of 3D scene visibility, in which only the mu-  owest computational error for a given amount of work.
tual visibility of surfaces in the scene is considered, isst fi

step towards the study of 3D radiosity complexity, in which
also the illumination on the surfaces is taken into account.
The study of 3D scene visibility complexity is however also
an interesting topic on its own with potential applicatiams
fields such as Al, robotics and architectural design.

Complexity reflects “the difficulty of describing a system,
the difficulty of reaching a goal, the difficulty of perforngn

a task, and so or?®. In this paper, we introduce complexity
measures, quantifying how difficult it is to compute with ac-
curacy the visibility and radiosity in a scene. The quaediti
we propose can be interpreted as the degree of correlation o
dependence between all the points or patches of a scene.

The organization of this paper is as follows. In section 2,
we describe the basic concepts of the framework for study-
ing scene visibility and radiosity complexity. This frame-

The framework in this paper will enable us to analyze work is applied next (section 3) to the study of scene visibil
the difficulty of performing illumination computations usj ity complexity. Finally, in section 4, we show how some re-
Monte Carlo radiosity algorithm® 928 29243 Monte Carlo sults obtained for scene visibility complexity can be algo e
radiosity algorithms are radiosity algorithms in which Men tended to take into consideration the illumination in a gcen
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2. A framework for the study of scene visibility and
radiosity complexity

2.1. Radiosity, form factors, visibility and random
walks

2.1.1. Radiosity and form factors

The radiosity equatiorsolves for the illumination in a dif-
fuse environment. It can be written in the form
/
B — E(X)+ R | COTE IR ()
whereB(x) is the radiosityE(X) is the emittanceR(x) is
the reflectanceS is the set of surfaces that form the envi-
ronmentx, X' are points on surfaces of the environmeta
is an area differential at poind, r is the distance between
x andx, V(x,x') is a visibility function equal to 1 ik and
X' are mutually visible and 0 otherwis®, 8’ are the angles
which the normals ax,x' form with the line joining them,
andV (x, X )C"SecoSe is the differential form factor between
xandx'.

B(X )V (x,X) dA

To solve the radiosity equation we can use a finite el-
ement approach, and discretise the environment o
patches, considering the radiosities, emissivities and re

flectances constant over the patches. In this way we trans-

form the integral equation into the radiosity system of equa
tions16:
Np
B =E+R ) FjB (2
=1
where theform factors ki or coefficients of the radiosity
system are only dependent on the geometry of the scene:

cose,coseI
—————VijdAdA|
A|/~/ﬁ:\ ijdAdA;

E/A/Qcose.

- VijdodA.
Q is the hemisphere on patclanddw is the differential of
solid angle. We have the following properties for the form
factors:

Fij

(©)

AiFij = AjFji Vi, j (4)
Np
S FRi=1 Vi )
=

The form factorF;j describes what fraction of the energy
emitted by patch will hit another patch.

Consider a set of rays with origin uniformly distributed
over the surface of and directions distributed according to
the cosine w.r.t. the surface normal iofThe form factorF;
can be interpreted as the fraction of such lines that hHas
the nearest patch intersected (see figure 1(a)). From aitegr
geometry, one knows that such lines can also be derived from
a uniform global distributior?8 (see figure 1(b)). The form
factor Fj can thus be considered as the probability of a line

that exiting from or crossinglands onj. If we identify the
lines connecting two patches with visibility, the form fact
will thus give us thevisibility between patche 31,

1/4

Fij=3/7 Fik=2/7

@)

Fij=3/7 Fik=2/7 F«j=
(b)

Figure 1: Form factors can be computed with local (a) or
global lines (b).

2.1.2. Random walks

A random wallk?” in a scene can be considered adarkov
chain23, This is a discrete stochastic process defined over a
set of state$ which can be described byteansition prob-
ability matrix P. This matrixP has one row and one column
for each state irs The elemen®;;; in the matrixP is the
probability that the next visited state will jegiven that the
current state is. Thus, for alli, j € S, we havez?il Pii=1,

and paths are followed from state to state according to the
given transition probabilities. A transition probabilityatrix

is said to be aperiodic if it has no periodic staté periodic
state is a state that can be visited back by a path starting fro
it only at multiples of a given period. A probability matrig i
said to be irreducible if there is always a path between any
two states.

The form factor matrix fulfills all required conditions to
be a valid transition matrix of a random walk. The states of
the random walk will correspond to the patches of a scene.
In order to determine the next state of a random walk, the
form factors with the current patch need to be sampled. For-
tunately, such sampling can be carried out easily without
having to compute the form factors explicitefy26 930, For
the purpose of this paper we are mainly interested in the fol-
lowing two properties!:

e If the form factor matrix F is irreducible and aperiodic

then we have lim_ oo (F")ij — % for all thenp patches
of a scene, wherd\; is the area of patch j andy =

Mp
Jiz1iA-
Thus, as the equilibrium distribution for a Markov chain is
defined as the limit of thaeth power of the transition ma-
trix when n grows to infinity, if we know the areas of the
patches, we also know the equilibrium distributi{)ﬁif}
of the random walk. As a consequence, we have:
When the length of a random path with transition ma-
trix F grows to infinity, the number of hits on any patch
gets proportional t(‘%’, independently of where the path
started its trajectory.

(© The Eurographics Association and Blackwell Publishers 1999.
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2.2. Complexity

Complexity is an active research area in many different
fields. But, what is a complexity measure? W. Li's answer
is?20; “The meaning of this quantity should be very close
to certain measures of difficulty concerning the object or
the system in question: the difficulty of constructing an ob-
ject, the difficulty of describing a system, the difficulty of
reaching a goal, the difficulty of performing a task, and so
on”. There are many definitions of complexity correspond-
ing with the different ways to quantify these difficultiesdan
“there is not yet a consensus on a precise definitfon”

In the two last decades, several complexity measures have

been proposed from different fields to quantify the degree
of structure or correlation of a syste#21. Feldman and
Crutchfield!? propose to call them “measures sthtistical
complexity. This is the concept of complexity that we have
considered in this paper. Let us emphasize that this nofion o
complexity is different to computational complexity and to
Kolmogorov-Chaitin complexity2. And concretely we will
study statistical complexity from the view point of informa
tion theory.

In previous work 10, we applied the concept of entropy as
defined in information theory to study of 3D scene visibility

We examined the relationship between the entropy of scene

visibility and the expected value of the mean squarer on
the form factors when computed using random walk tech-
niques as described above.

In this paper, we propose the application of other results
from information theory to the problem of quantifying the

complexityof 3D scenes. We consider two cases: 3D scene

visibility complexity, when only visibility of the surfaceis

taken into account, and 3D scene radiosity complexity, when as

also diffuse illumination is taken into account. This amo
to scene complexity is different from the ones taker,in

where the study was based on integral geometry results, in
18, where it was shown that the average number of intersec-

tions of the global lines with the objects of a scene was not
a good complexity measure, and?m based on the reacha-
bility graph.

2.3. Information theory

In this section, we present some basic concepts of informa-

tion theory# 8. TheShannon entropy téf a discrete random
variableX with values in the sefaj,ap,...,an} is defined

as
n
— pilogpi
I; | |

where p; = Pr[X = &/, the logarithms are taken in base 2,
and whenp; = 0 we takep;logp; = 0. As —logp; repre-
sents thanformation associated with the resudt, the en-
tropy gives the average information or thacertaintyof a
random variable. The unit of information is callbd.

(6)

(© The Eurographics Association and Blackwell Publishers 1999.

If we consider another random variabfewith probabil-

ities g; corresponding to values in the sgt, by, ..., bm},
thejoint entropyof X andY is defined as
n m
H(X,Y) = (1)

- 21 > pijlogpij
Sy

wherep;j = Pr[X = &,Y = bj], and theconditional entropy
is defined as
m

H(X]Y) = z Zip” log Pij 8
where pj; = Pr[X = &Y = bj]. The Bayes theorem ex-
presses the relation between the different probabilitigs:
ajpij = pip;ji- If X andY areindependentswe havep;; =
pigj. The conditional entropy can be thought of in terms of
achannelwhose input is the random variabkeand whose
output is the random variab¥. H(X]|Y) corresponds to the
uncertainty in the channel input from the receiver’s point o
view.

Themutual informatiorbetween two random variables
andY is defined as

1(X,Y)=H(X)—H(X]Y) 9

From the above definitions, we can obt&{X,Y) > 0 and
1(Y,X) = I(X,Y). The mutual information represents the
amount of information that one random variable, the out-
put of the channel, gives about a second random variable,
the input of the channel(X,Y) is a measure of the shared
information betweerX andY.

The relative entropyor Kullback-Leibler distancebe-
tween two probability distributionp = {p;} andq= {q;},
that are defined over the same Set {1,...,n}, is defined

Drw(Pll) = 3 log & (10)

The relative entropy satisfid® | (p||g) > 0, with equality
only if p=q. Itis also known asliscriminationand it is not
strictly a distance. Moreover, we want to emphasize that the
mutual information can be expressed as

[(X,Y) = Dxc({pij HI{piaj})
The joint entropy of random variables is defined as
H(Xy,.... Xn) = H(X1) + H(Xa[X1) +
+H(Xn| X1, ..., Xn-1) 12)

and theentropy rateor entropy densityf a chain of random
variables is defined by

(11)

1
h = nllamocﬁH(xl’XZ"”’Xn)
lim H(Xn|Xn—1,-..,X1)
n—oo

representing the average information content per output
symbol. It is the uncertainty associated with a given symbol

(13)
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if all the preceding symbols are known and can be viewed as
the intrinsicunpredictabilityor the irreduciblerandomness
associated with the chaifd*.

In particular, a Markov chain can be considered as a chain
of random variables complying with

H(Xn| X1, X2, ..., Xn—1) = H(Xn|Xn—1) (14)

An important result is the following theorem: A Markov
chain with equilibrium distribution has entropy rate or in-
formation content

h = nll)mOOﬁH(X].vXZv"'aXn)
n n
= HY|X)=—=Sw S PjlogP  (15)
i; 'j; ili ili

wherew; is the equilibrium distribution.

Finally, we define thexcess entropgf an infinite chain
as
E = (H(Xg, X2, ...

;%n) —nh) (16)

lim
n—oo

whereh is the entropy rate of the chain ands the length

of this chain. The excess entropy can be interpreted as the

mutual information between two semi-infinite halves of the
chain.

3. Scene visibility complexity

In this section we study the complexity of a scene from the
point of view of visibility, applying the basic concepts ex-
posed in the above section.

3.1. Discrete mutual information
3.1.1. Definitions

We can considel® a random walk in a discretised scene as
a Markov chain wher@”i = Fj,n=np, W AA# andX,)Y

are dependent random variables taking values over the set of

patchesS= {1,2,...,np} with {A%} as probability distri-
bution. Thus, we define th&cene visibility entropy rateor
simply scene visibility entropyas

Np Np

Ho—HIYIX) == 3 2 5 FijlogF

(17

It is important to emphasize thatscene can be considered
as a channel with input (source) X and output (destination)
Y, where X and Y take values over the set of patches with
{AﬁT'} as probability distribution and the channel transition
matrix is the form factor matrixThus,Hs measures the av-
erage uncertainty that remains about the destination patch
when the source patch is known.

The Bayes theorem can be expressed by the property of
the form factors

. /\
Pij :%Hj :A*;Fji (18)

and from this we obtaiH(Y|X) = H(X|Y), and thus the
symmetry or reversibility of the channel is shown. Also, we
define thepositional entropyas
® A, A
Ho=HX)=H({Y)=-Y —log— 19
p=H(X) =H(Y) i;ATgAT (19)
and may be interpreted as the uncertainty on the position
(patch) of a particle travelling an infinite random walk.

Thediscrete scene visibility mutual informatigdefined
as

1(X,Y) = H(Y) —H(Y|X)
Np . . np o

T A AL EAL

= i; Ar log A7 +i; Ar jZlF” logFj (20)

and can be interpreted as the amount of information that the
destination patch conveys about the source patch, and vice
versa. Consequentlys is a measure of the average infor-
mation transfer in a scenét is interesting to remember that
mutual information can be defined as a Kullback-Leibler dis-
tance (section 2.3):

1(X,Y) = DxL({pij HI{ pigj})

Thus, Is is the “distance” or discrimination between the
scene probability distributiofipij } = {AA#F,J-} and its inde-
A

~

Is

pendence distributiofipid; } = {
as

} and can be expressed

Np Np

22
np Np

22

Consequently, discrete mutual information can be inter-
preted as a “distance” to independence.

AFj
At

z
FijA

AFj
——lo
Aj

At

g (21)

3.1.2. Discussion

In a 3D scene context, itis especially interesting to askiibo
the extremal cases of maximum and minimum visibility en-
tropy, which correspond to the maximum disorder (unpre-
dictability or randomness in the ray path) and the maximum
order (predictability), respectively. We must remark bt

the concepts of order and disorder are not directly referred
to the collocation of objects in space, but to visibilityteri

ria. Maximum unpredictability is obtained in scenes with no
privileged visibility directions, and maximum predictétyi

in the contrary case.

Both cases can be illustrated with the following two ex-
amples:

e The maximum entropy is exemplified by the interior of
an empty sphere divided into equal area patches. Here all
form factors are equal and the uncertainty of the desti-
nation patch is maximum (no visibility direction is privi-
leged). The information transfer is zete:= 0. The sphere

(© The Eurographics Association and Blackwell Publishers 1999.
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represents equilibrium or uniformity and can be consid-
ered as a channel where the variat{eendY are indepen-
dent, because in a sphefg = A—T‘ and thusp;j = %F.j =
%% = pipj. This is the expression dhdependencen

a scene. Thus, if independence is represented by a sphere
discrete mutual information expresses the “distance” be-

tween a discretised scene and a discretised sphere with the

same number of patches and the same area distribution of
the patches.

e The minimum entropy is represented by a scene with al-
most touching objects, as for instance two very nearby
concentrical spheres which are discretised in an identical
manner. There are strongly privileged visibility direct®
(for each patch one form factor is near 1). The information
transfer is maximum.

In scenes with the same discretisation (as in figure 2, where
we have a cubical enclosure with 512 interior cubes), and
consequently with the sarrtdp, we can observe (table 1)
that the increase dfis remains compensated for a decrease
of Is, and vice versa.

S=——=erc=

i

=

(b)

Figure 2: Random (a) and clustered configurations (b,c)
with 512 cubes.

Scene  Lines H Is E(MSE)
Fig2a 16 6.370 5171  1284.6
Fig2a 10 6.761 4.779  1286.7
Fig2b 16 5.072 6.469  949.3
Fig2b 10 5.271 6.270  950.1
Fig2c 16 4.674 6.867 898.8
Fig.2c 10  4.849 6.692  900.9

Table 1: Results for the three cubical enclosures with 512
small cubes (figures 2a, 2b and 2c). ThH@VESE) is normal-
ized to a single line. For each scenep H 11541 and 1¢°
and 10’ lines have been cast.

What is the accuracy of the values presented in the dif-
ferent tables? The error in these values, which is manifieste

(© The Eurographics Association and Blackwell Publishers 1999.

when the number of casting lines is increased, is directly
related to error in form factor computation. In this paper,
the form factors have been computed with the Monte Carlo
method described i#f 3L. If we study© the relationship be-
tween the entropys and the mean square error of all form
factorsE(MSE):

EMSE = y(m-3 ¥ R 22)
whereN is the total lines cast, we can observe (table 1) that
the larger the entropy the larger the error in form factors
computation. This means that, for a given computational er-
ror, we need to cast more lines for a scene with more entropy.
It is also shown that the increase in the number of lines in-
creases the entropy estimation and, logically, decredmes t

mutual information estimation.

3.1.3. Complexity proposal

Frequently, the concept of entropy has been used as a gtartin
pointin order to study complexii# 13 21. 34 35 But, from the
viewpoint of statistical complexity, entropy, althoughated

to complexity, is not accepted as an adequate measure of the
complexity of a system? 34: “it has become more broadly
understood that a system’s randomness and unpredicgabilit
fail to capture its patterns and correlational structufe”

Mutual information however, which expresses the infor-
mation transfer between variables or the average informa-
tion conveyed by a random walk, has been propé8étias
a complexity measure and, according to W14,iis consid-
ered as a correlation measure of a system. On the other hand,
the excess entropy, which has been given other names such
as “stored information” or “effective measure complexity”

14 is probably the most accepted complexity measure from
the information theory approach and it is a form of mutual

information. In our case, mutual information is equal to ex-

cess entropy:

Proposition 1 In the context of scene visibility, the excess
entropy turns into the mutual information.

Proof: From (12) and (14), we have

H(Xl,...,Xn) = H(X]_)-I—-I—H(Xn‘Xl,,xn,l)
= H(X1) +H(Xz[X1) + ...+ H(Xn[%n-1)
= Hp+(n—1)H5

Thus

E:"mn_)oo(Hp-l—(n*l)Hs*an):Hp*HSZIS O

This proposition and the meaning of mutual information
enable us to suggest thedutual information of scene visi-
bility can be considered as a complexity measure of scene
visibility.
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3.2. Continuous mutual information
3.2.1. Definitions

By discretising a scene into patches, a distortion or egor i
introduced. In a way, to discretise means to equalize. Obvi-
ously, the maximum accuracy of the discretisation is accom-
plished when the number of patches tends to infinity. How
does mutual information behave in that limit case?

According to information theory, mutual information
between two continuous random variabkésandY is the
limit of the mutual information between their discretised
versions. Entropy of a continuous random variable however
does not equal the entropy of the discretised random vari-
able in the limit of finer discretisatiot. Thus, in our case,
discrete mutual informatiohy converges to continuous mu-
tual informationl$ when the number of patches tends to in-
finity: I§ = limn,— oo Is. Below we will see that this fact is
very important for us because it will enable us to calculate
a relative distance to the ideal discretisation, represehy
the continuous mutual information. Scene visibility epiro
however tends to infinity when the number of patches tends
to infinity.

We will obtain the continuous expression for all formulae
using the following substitutions:

e Each summatory by an integral. For instance,
zin:"lz?illi,j by [ieslyesF (X y)dxdy, whereS stands
for the surfaces in the scene.

. A% by A—lT. This means to substitute the discrete proba-
bility of taking patchi by the continuous probability of
selecting any point.

e Fj by F(x,y). This means to substitute a patch-to-patch
form factor by a point-to-point one. Remember that the
value of F(x,y) is % for mutually visible points,
zero otherwise, bein@x'andey the angles which the nor-
mals atx, y form with the segment joining andy, and
d(x,y) the distance betweenandy.

Thus, the above discrete formulae convert into the follgwin

1 1
HC:—/ = Jog—dx— logA 23
P xes AT gAT 9AT 3
HE=— [ [ CFxylogF(xyydxdy  (24)
Ixeslyes At
c 1
1§ = logAr+ [ [ S Fixy)logF(xy)dxdy
Ixestyes At

1
L), o ar FixylontarF(ey)dxdy  (25)

where Hg is the continuous positional entropkS is the
continuous scene visibility entropy amlis the continuous
scene visibility mutual information. In the particular easf
a sphere, as any paik,y) fulfills F(xy) = Al? the result

obtained is, as expecte§, = 0. Remember that in a sphere
Is =0 and thus lim,— .« Is = 0. Next, we will pay attention
to continuous mutual information. Continuous entropy will
be studied in future work.

3.2.2. Computation

The continuous mutual information integral can be easily
solved by Monte Carlo integration. Let us reparametrize the
integral:

1
|°:/ / = F(x,y)log(ATF(x,y))dxd
S = Jeeshesar T Y I0QATF (xy))dxdy

N /XES/weQ TB‘%TCOﬁXlOg(AT F(x y(x, 0)))dxdw
(26)

wherey(x, w) is the point visible fronx in the w direction.

We will use nowm%Tcosax as probability density function
(we are considering here as integration variablasdw). It

is easy to check thaf s fco ﬁ,i;cosﬁxdxdu) = 1. Draw-

ing samples according to this distribution means simply se-
lecting first a random point in the scene upon the area and
a direction upon the form factor distribution. This can be
achieved witHocal lines or, easier, witlglobal lines. This

is because the global lines are naturally distributed ugon a
eas and form factors. The result obtained is

l N
IS ~ 5 Y 109(ATF (X V(X )
k=1

1 N Arcodxcosy
- |Og )
N2, ey

In the global line case\ stands for the total number of pairs
of points considered, which is the total number of intersec-
tions divided by two.

@7)

As we can see in tables 2 and 3, corresponding to figure
3 and 2(a) respectively, the computation costois much
lower than the one df: with few linesl$ can be computed
with enough precision, unlike which needs a lot of lines to
get a precise measurement.

A

=

@) (b)
Figure 3: Three empty cubical enclosures with their faces
discretised into (a) 10x10, (b) 20x20 and (c) 30x30 patches.

(©

3.2.3. Discussion

The following proposition will enable us to analyze better
the relationship betwed§ andls:

(© The Eurographics Association and Blackwell Publishers 1999.
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Scene  Lines H Is 1$

Fig.3a 16  6.482 2747 1.610
Fig.3a 10  7.821 1.408 1.612
Fig.3a 16 7.838 1.391 1.610
Fig.3b 16 5.342 5887 1.608
Fig.3b 10  9.420 1.809 1.611
Fig.3b 10  9.731 1.498 1.610
Fig.3c 16  4.313 8.086 1.610
Fig.3c 16  9.684 2715 1.611
Fig.3c 10  10.852 1547 1.610

Table 2: Results for the cubical enclosure with differ-
ent discretisations of its faces (figure 3a:10x10, figure
Fig.3b:20x20 and figure Fig.3c:30x30). For each SCEI®,

10" and10° lines have been cast.

Lines 10¢ 100 10° 107
Is 8.773 6.398 5.171 4.779
1S 5650 5.636 5.631 5.632

Table 3: Results for the random configuration with 512
cubes (figure 2a).

Proposition 2 The continuous scene visibility mutual infor-
mation is the least upper bound to the discrete scene visibil
ity mutual information.

Proof: We know thatl$ = limn,— oo Is. Thus, we must only
show thatl$ is an upper bound t&s. Let us imagine a dis-
cretised scene with discrete mutual informatlenit is suf-
ficient to show that, if any patch is divided into two patches,
the discrete mutual informatiold of the new scene fulfills
1§ —1s > 0. This can be prove#t with the properties of the
form factors and the concavity of the logarithm function for
non-negative numbers. |

In conclusion, continuous mutual informatitf) which is

independent of the discretisation, expresses with maximum

accuracy the information transfer or correlation in a scene
This is anabsolutemeasure of the complexity of scene visi-
bility. On the other hand, discrete mutual informatigrex-

(© The Eurographics Association and Blackwell Publishers 1999.

presses the complexity of a discretised scene, which is al-
ways lower than the correspondihf

As an examplelS of platonic solids and Cornell box (see
figure 10) has been computed. In table 4, we can observe that
the minimum complexity corresponds to a sphere and the
maximum complexity to a tetrahedron. As we expected, the
polyhedra that are nearer to the sphere (independence) are
less complex (less correlation). Thus, complexity app&ars
be inversely proportional with the number of facé$.of
Cornell box is clearly greater than just the empty cube, as
we have increased its complexity by introducing objects in
its interior.

Also, in table 5, we show the complexity for the scenes
of figure 4. In figure 4a, an object formed by a table and
four chairs is situated in the middle of a room. In figures
4b and 4c, arrays of such objects have been situated in the
middle of the same room. In figures 4d, 4e and 4f, the same
16 objects have been distributed in different ways. We can
see that the introduction of objects increases the contpglexi
and that the scenes with the same objects (4c, 4d, 4e and
4f) show similar complexities. In this case, the increase of
complexity is produced when there are objects near the walls
because this fact increases correlation in the scene.

Scene §

sphere 0
icosahedron 0.5428

dodecahedron  0.8254
octahedron 1.2583
cube 1.6093

tetrahedron 2.6227
Cornell box 2.800

Table 4: CMI of platonic solids and Cornell box. For each
scenel(® lines have been cast.

Scenes 4a 4b 4c 4d 4e 4f

I$ 3.837 4102 5.023 5.043 5.044 5.089

Table 5: Continuous mutual information for the scenes of
figure 4. For each scendo6 lines have been cast.
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g — — This sequence of scenes has been discretised in two dif-
55 %% ferent ways with the same number of patches. In the first

sequence (figure 5), the discretisation of the cubes is finer

_ _ _ whereas in the second (figure 6) the discretisation of the

@ (b) © walls is finer. The accuracy of the discretisation appeaeto
higher in the “middle” scenes (b, c, d and e) and lower in the

— “extremal” scenes (a and f). Scenes a and f are the most com-
=3 i

o ‘5 3‘ o 5@7 *‘%E plex scenes. Consequently, these scenes should have a finer
* lad %é discretisation in order to obtain greater accuracy. In othe

_ _ _ words, these scenes are the ones most difficult to discretise
(d) (e) ® Comparing alternative discretisations (figure 5a and 6a) fo

) . ) the scene shown in figure 8, the best discretisation appears t
Figure 4: An object formed by a table and four chairs (&)  ¢orrespond to 5a because the discretisation is finer in the na

and an array of 2x2 objects with the same composition (b) o, spaces between the cubes. In contrast, when the cubes
have been situated in the middie of a room. Also, the same 4e near the walls, greater precision is obtained when the

16 objects have been distributed in four different ways (¢, d  giscretisation of the walls is finer.
e and f).

These experiments suggest that discretisation accuracy
may be used to choose a better discretisation from several
alternatives and, while computational error is deeplytesla

3.3. Discretisation accuracy to entropy, discretisation error is related to mutual infiar

tion. In future work, the relationship between both kinds of
Proposition 2 suggests that the ratio of continuous and dis- grrors will be studied.

crete mutual information may yield information about the

error which occurs in the discretisation process and the dif S = —
ficulty in getting a precise discretisation. We make two fun- nnnnEmEE)) I i i | e
damental proposals which will be contrasted with the rasult i '
of various sample scenes: H | i

|1
Jr.
|
L
JET T

T

e kaad
i

sy

i
I
\
T
I
T

e From the fact that the ideal discretisation, represented by = = JE==22 \ 1E
I$, is the one that captures all the information transfer in )
a scene, we can confirm that between different discretisa- (@) (b) (©
tions of the same scene the most precise one will be the |[] == ‘ i
one that has a highdg, i.e., the one that best captures ]
information transfer. From this statement, we express the ||| Ul
discretisation accuracgs the quotien% and thediscreti-

sation relative erroras the quotienglg—'s. == ;

¢ We conjecture thal expresses the difficulty of discreti- (d) (e)
sation. The higher thé&, i.e., when there is more infor-
mation transfer in a scene, the more difficult it is to obtain
an accurate discretisation and probably more refinements
will be necessary to achieve a given precision. According
to this, the difficulty in discretising a sphere is null. And
the polyhedra that are nearer to the sphere are less com-
plex and so easier to discretise.

Figure 5: 64 cubes are grouped very closely together in the
center of the cubical enclosure and they are separated and
moved outwards until they almost touch the walls. The dis-
cretisation of the cubes (1536 patches) is finer than the one
of the walls (384 patches).

These proposals can be analyzed from the results shown in
tables 6 and 7 and on the graphics of figures 7 and 8, which
have been obtained from figures 5 and 6. Initially, 64 cubes
are grouped very closely together in the center of the cubi- So far, we have only considered visibility of a scene. In this
cal enclosure. Little by little they are separated and moved section we will make a leap forward and will set the basis
outwards until they almost touch the walls. Complexity has for the study of radiosity complexity.

been calculated for this sequence of scenes. Figure 7, show-
ing continuous versus discrete mutual information, inisa
that according to our definitions the more complex scenes
are those that have surfaces closer to one another (figdires a, The research on visibility presented in the previous sactio
and b). has been based on the existence of a Markov chain (form

4. Towards scene radiosity complexity

4.1. Transition matrix for radiosity

(© The Eurographics Association and Blackwell Publishers 1999.
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Figure 7: Continuous (triangles) and discrete mutual infor-
mation in vertical axis for the scenes of figures 5 (diamonds)
(d) (e) and 6 (squares).

Figure 6: 64 cubes are grouped very closely together in the
center of the cubical enclosure and they are separated and

00932 T
moved outwards until they almost touch the walls. The dis- oms | . . .
cretisation of the walls (1536 patches) is finer than the one omes | : 5 ’
of the cubes (384 patches). omes L :
00884 T °
00832 T o
0®B8 T o
omgs T :
Scene Fig.5a Fig.5b Fig.5c Fig.5d Fig.5e Fig.5f omes T
omas T
Is 5.492 5.054 4.672 4.395 4.356 4.775 omz2

a b < a Y £

1§ 6430 5678 5177 4867 5.015 6.055 Figure 8: Discretisation accuracy in vertical axis for the
scenes of figures 5 (diamonds) and 6 (squares).

Is/IS 0.854 0.890 0.902 0.903 0.869 0.789

Table 6: Results for the scenes of figure 5. For each scene,

1¢% lines have been cast. factors) and the knowledge of its equilibrium distribution
Thus, to study the complexity of a scewéh illumination,
we need to find an analog of the form factor matrix for the
radiosity setting. This analog appears naturally when thie n
Scene Fig6a Fig.6b Fig6c Figbd Fig.6e Fig.ef varance probability transition matrix

. _ RiFjB;
ls 5110 4.809 4543 4.348 4483 4932 Pii = B_E

1 6.430 5678 5177 4867 5015 6055 IS considered?? This matrix corresponds to the transition
probabilities that lead to null variance estimators. Th#é nu
Is/IS 0795 0847 0878 0893 0894 0814 vgriance matr_ix must h_a_ve a pre_ferred positiqn betw_eer_l the
different possible transition matrices. To obtain the i
rium distribution is not difficult. Using the left eigenvalu
property’, we obtain (without normalization)

(Bi—E)
R

Table 7: Results for the scenes of figure 6. For each scene,
10® lines have been cast.

p=A Bi — A BB (28)

whereBI" = (BiR‘;_Ei) is incoming radiosity an®’"" = B; is

the outgoing one. It is immediate to check that these proba-
bilities fulfill pip;; = qjpy;, thisis

B —E) ., RFijB Bi—Ej) . RF;iB
Bi-E)g lJl:Aj(J i) g RiFiiBi

AR B-E Ri B'ijEj

(© The Eurographics Association and Blackwell Publishers 1999.
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which is an extended reciprocity relation (see equatioh (4)
Thus, the analogy is complete.

The entropy, mutual information and other quantities can
be defined straightforwardly for the radiosity setting @gsin
this analogy. We define

A=A (B'%J Bi (30)
At = Z.Ai (31)
Fy - o2 32)

These definitions can be interpreted as a mapping of a given
scene into a new (imaginary) scene, transforming the ar-

eas and the visibility channels according to formulae (30).
Studying the radiosity complexity of the original scene-cor
responds to studying the visibility complexity of the new
scene. According to section 3, the entropy and mutual in-
formation are

Z Iog (33)
Z\A' z]:l]k)g]:l] (34)

ne Np Afu
B33 e @)

T

4.2. Discussion

Hp Hs Is
Visibility ~ 10.6883  6.47804  4.21022
Radiosity 10.6842 6.47833  4.20591

Table 8: Results for the labyrinth scene of figure 9, with con-
stant radiosity everywhere. For this case both visibilihda
radiosity complexity are the same.

Figure 9: Labyrinth scene used to show the equivalence of
visibility and radiosity complexity when radiosity is ctenst
everywhere (see table 8).

the same number of patches and so does each fine discreti-
sation. Three meshing strategies have been tried out: qual-
ity triangulation yielded a uniform mesh, hierarchical nefi

ment radiosity with refinement based on transported power

as well as smoothness of received radiosity yielded adap-
tively refined meshes. The continuous mutual information

As a first example, let us consider the case where the result- (not computed) is identical in all cases. The discrete niutua

ing radiosity is constant for all patches. This should net in
troduce any complexity to the visibility case, thus the $ran
formation considered above should result into the identity
transformation. To obtain constant radiosByeverywhere,

it is easily found that we must ha&= R;B+ E;, for all i.

But, thenB!" = 5&,—5 - %,‘—3 — B, and this means that
A AB® A
A _A 36
At ArB? At (36)
RFiB;
ij = BI 4 E|J ij (37)

We have computed the visibility and radiosity complexity
for the labyrinth scene (see figure 9), wigh+ E; = 1 for

each patch, and thus radiosity is equal to 1 everywhere. The

results shown in table 8 confirm the theoretical prediction.

information in table 9 reflects that a finer mesh is indeed a
better mesh. Among equally fine meshes, the uniform mesh
is quantified to be the worst.

Unlike previously developed error estimates in radiosity,
discrete radiosity mutual information reflects both conaput
tional and discretisation error at the same time. The peecis
interplay between these two important sources of errorén th
discrete radiosity mutual information however remainseo b
investigated in more detail.

5. Conclusions and future research

We have presented in this paper an information theory ap-
proach for the analysis of scene visibility and radiosityneo

plexity. The measures we propose for complexity are contin-
uous and discrete mutual information. We have proved that

As a second experiment, we have computed the radiosity continuous mutual information is the least upper bound of
complexity of the boxes scene shown in figure 10. Six dif- the discrete one. Discrete mutual information gives the in-
ferent discretisations have been generated: three rough an formation transfer or correlation in a discretised sceng, an
three finer ones. Each rough discretisation contains almost thus, continuous mutual information is the maximum pos-

(© The Eurographics Association and Blackwell Publishers 1999.
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(@) (b)
SRR

(c)

(e) (

Figure 10: Cornell box scene with different discretisations
used to show the increase of mutual information for a finer
and more accurate meshing. Results are in table 9.

Fig. Mesh  Patches Lines(®) Hp, Hs Is
a uniform 464 16 6.94 252 4.42
b power 453 16 8.46 259 587
c smooth 459 16 751 256 494
d uniform 1146 412 830 275 555
e power 1143 4P 980 282 6.98
f smooth 1146 4P 8.98 280 6.18

Table 9: Results for the Cornell box scene (figure 10) with
different discretisations.

(© The Eurographics Association and Blackwell Publishers 1999.

sible information transfer or correlation. On the other dhan
continuous mutual information also expresses how difficult
it is to discretise a scene to compute with accuracy the visi-
bility and radiosity, and discrete mutual information gives

a measure of how well we have done it. In this direction we
have shown that the best discretisation into equal number of
patches is the one with higher discrete mutual information.

Although continuous mutual information is very cheap to
compute, a drawback for the practical use of our results is
the high computing cost of an accurate value for discrete
mutual information. We will look then in our future work for
cheaper alternatives. A possible alternative isdiséance to
independencgea complexity measure introduced by Solé et
al.ss,

The precise interplay between computational and discreti-
sation error in the discrete radiosity mutual informatiea r
mains to be investigated in more detail. This paper is a first
step, paving the way for the development of practical algo-
rithms and strategies for cost prediction and optimal mesh-
ing, which will be undertaken in our future work.
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