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Abstract
In this paper we present a new framework for the analysis of scene visibility and radiosity complexity. We introduce
a number of complexity measures from information theory quantifying how difficult it is to compute with accuracy
the visibility and radiosity in a scene. We define the continuous mutual information as a complexity measure of a
scene, independent of whatever discretisation, and discrete mutual information as the complexity of a discretised
scene. Mutual information can be understood as the degree ofcorrelation or dependence between all the points or
patches of a scene. Thus, low complexity corresponds to low correlation and vice versa. Experiments illustrating
that the best mesh of a given scene among a number of alternatives corresponds to the one with the highest
discrete mutual information, indicate the feasibility of the approach. Unlike continuous mutual information, which
is very cheap to compute, the computation of discrete mutualinformation can however be quite demanding. We
will develop cheap complexity measure estimates and derivepractical algorithms from this framework in future
work.
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1. Introduction

Complexity reflects “the difficulty of describing a system,
the difficulty of reaching a goal, the difficulty of performing
a task, and so on”20. In this paper, we introduce complexity
measures, quantifying how difficult it is to compute with ac-
curacy the visibility and radiosity in a scene. The quantities
we propose can be interpreted as the degree of correlation or
dependence between all the points or patches of a scene.

The study of 3D scene visibility, in which only the mu-
tual visibility of surfaces in the scene is considered, is a first
step towards the study of 3D radiosity complexity, in which
also the illumination on the surfaces is taken into account.
The study of 3D scene visibility complexity is however also
an interesting topic on its own with potential applicationsin
fields such as AI, robotics and architectural design.

The framework in this paper will enable us to analyze
the difficulty of performing illumination computations using
Monte Carlo radiosity algorithms33; 9; 28; 29; 24; 3. Monte Carlo
radiosity algorithms are radiosity algorithms in which Monte

Carlo Markov chain techniques are used in order to solve the
radiosity problem. They are important because explicit form
factor computation and storage is avoided, yielding more re-
liable radiosity algorithms that are suited to visualize much
more complex scenes than possible with more traditional ra-
diosity algorithms16; 17; 6. Potential applications of the com-
plexity study presented in this paper include cost prediction
for radiosity computations and the development of meshing
strategies that are optimal in the sense that they will allow
lowest computational error for a given amount of work.

The organization of this paper is as follows. In section 2,
we describe the basic concepts of the framework for study-
ing scene visibility and radiosity complexity. This frame-
work is applied next (section 3) to the study of scene visibil-
ity complexity. Finally, in section 4, we show how some re-
sults obtained for scene visibility complexity can be also ex-
tended to take into consideration the illumination in a scene.
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2. A framework for the study of scene visibility and
radiosity complexity

2.1. Radiosity, form factors, visibility and random
walks

2.1.1. Radiosity and form factors

The radiosity equationsolves for the illumination in a dif-
fuse environment. It can be written in the form

B(x) = E(x)+R(x)ZS B(x0)V(x;x0)cosθcosθ0
πr2 dA0 (1)

whereB(x) is the radiosity,E(x) is the emittance,R(x) is
the reflectance,S is the set of surfaces that form the envi-
ronment,x;x0 are points on surfaces of the environment,dA0
is an area differential at pointx0, r is the distance between
x andx0, V(x;x0) is a visibility function equal to 1 ifx and
x0 are mutually visible and 0 otherwise,θ;θ0 are the angles
which the normals atx;x0 form with the line joining them,
andV(x;x0) cosθcosθ0

πr2 is the differential form factor between
x andx0.

To solve the radiosity equation we can use a finite el-
ement approach, and discretise the environment intonp

patches, considering the radiosities, emissivities and re-
flectances constant over the patches. In this way we trans-
form the integral equation into the radiosity system of equa-
tions16:

Bi = Ei +Ri

np

∑
j=1

Fi j B j (2)

where theform factors Fi j or coefficients of the radiosity
system are only dependent on the geometry of the scene:

Fi j = 1
Ai

Z
Ai

Z
A j

cosθi cosθ j

πr2 Vi j dAidAj= 1
Ai

Z
Ai

Z
Ω

cosθi

π
Vi j dωdAi : (3)

Ω is the hemisphere on patchi anddω is the differential of
solid angle. We have the following properties for the form
factors:

AiFi j = A jFji 8i; j (4)

np

∑
j=1

Fi j = 1 8i (5)

The form factorFi j describes what fraction of the energy
emitted by patchi will hit another patchj .

Consider a set of rays with origin uniformly distributed
over the surface ofi and directions distributed according to
the cosine w.r.t. the surface normal oni. The form factorFi j
can be interpreted as the fraction of such lines that havej as
the nearest patch intersected (see figure 1(a)). From integral
geometry, one knows that such lines can also be derived from
a uniform global distribution28 (see figure 1(b)). The form
factorFi j can thus be considered as the probability of a line

that exiting from or crossingi lands onj . If we identify the
lines connecting two patches with visibility, the form factor
will thus give us thevisibility between patches28; 31.

i

j

k

Fi j = 3/7 Fi k = 2/7

i

j

k

Fi j = 3/7 Fi k = 2/7 Fk j = 1/4

(a) (b)

Figure 1: Form factors can be computed with local (a) or
global lines (b).

2.1.2. Random walks

A random walk27 in a scene can be considered as aMarkov
chain23. This is a discrete stochastic process defined over a
set of statesSwhich can be described by atransition prob-
ability matrix P. This matrixP has one row and one column
for each state inS. The elementPjji in the matrixP is the
probability that the next visited state will bej , given that the
current state isi. Thus, for alli; j 2S, we have∑np

j=1 Pjji = 1,
and paths are followed from state to state according to the
given transition probabilities. A transition probabilitymatrix
is said to be aperiodic if it has no periodic state7. A periodic
state is a state that can be visited back by a path starting from
it only at multiples of a given period. A probability matrix is
said to be irreducible if there is always a path between any
two states.

The form factor matrix fulfills all required conditions to
be a valid transition matrix of a random walk. The states of
the random walk will correspond to the patches of a scene.
In order to determine the next state of a random walk, the
form factors with the current patch need to be sampled. For-
tunately, such sampling can be carried out easily without
having to compute the form factors explicitely33; 26; 9; 30. For
the purpose of this paper we are mainly interested in the fol-
lowing two properties31:� If the form factor matrix F is irreducible and aperiodic7,

then we have limn!1(Fn)i j ! A j

AT
for all thenp patches

of a scene, whereA j is the area of patch j andAT =
∑

np

i=1 Ai .
Thus, as the equilibrium distribution for a Markov chain is
defined as the limit of thenth power of the transition ma-
trix whenn grows to infinity, if we know the areas of the
patches, we also know the equilibrium distributionf Ai

AT
g

of the random walk. As a consequence, we have:� When the length of a random path with transition ma-
trix F grows to infinity, the number of hits on any patchi
gets proportional toAi

AT
, independently of where the path

started its trajectory.
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2.2. Complexity

Complexity is an active research area in many different
fields. But, what is a complexity measure? W. Li’s answer
is20: “The meaning of this quantity should be very close
to certain measures of difficulty concerning the object or
the system in question: the difficulty of constructing an ob-
ject, the difficulty of describing a system, the difficulty of
reaching a goal, the difficulty of performing a task, and so
on”. There are many definitions of complexity correspond-
ing with the different ways to quantify these difficulties and
“there is not yet a consensus on a precise definition”2.

In the two last decades, several complexity measures have
been proposed from different fields to quantify the degree
of structure or correlation of a system12; 21. Feldman and
Crutchfield12 propose to call them “measures ofstatistical
complexity”. This is the concept of complexity that we have
considered in this paper. Let us emphasize that this notion of
complexity is different to computational complexity and to
Kolmogorov-Chaitin complexity22. And concretely we will
study statistical complexity from the view point of informa-
tion theory.

In previous work1; 10, we applied the concept of entropy as
defined in information theory to study of 3D scene visibility.
We examined the relationship between the entropy of scene
visibility and the expected value of the mean squareerror on
the form factors when computed using random walk tech-
niques as described above.

In this paper, we propose the application of other results
from information theory to the problem of quantifying the
complexityof 3D scenes. We consider two cases: 3D scene
visibility complexity, when only visibility of the surfaces is
taken into account, and 3D scene radiosity complexity, when
also diffuse illumination is taken into account. This approach
to scene complexity is different from the ones taken in5,
where the study was based on integral geometry results, in
18, where it was shown that the average number of intersec-
tions of the global lines with the objects of a scene was not
a good complexity measure, and in25, based on the reacha-
bility graph.

2.3. Information theory

In this section, we present some basic concepts of informa-
tion theory4; 8. TheShannon entropy Hof a discrete random
variableX with values in the setfa1;a2; : : :;ang is defined
as

H(X) =� n

∑
i=1

pi logpi (6)

where pi = Pr[X = ai ], the logarithms are taken in base 2,
and whenpi = 0 we takepi logpi = 0. As� logpi repre-
sents theinformationassociated with the resultai , the en-
tropy gives the average information or theuncertaintyof a
random variable. The unit of information is calledbit.

If we consider another random variableY with probabil-
ities qi corresponding to values in the setfb1;b2; : : :;bmg,
the joint entropyof X andY is defined as

H(X;Y) =� n

∑
i=1

m

∑
j=1

pi j logpi j (7)

wherepi j = Pr[X = ai ;Y = b j ], and theconditional entropy
is defined as

H(XjY) =� m

∑
j=1

n

∑
i=1

pi j log pij j (8)

where pij j = Pr[X = ai jY = b j ]. The Bayes theorem ex-
presses the relation between the different probabilities:pi j =
q j pij j = pi p jji . If X andY areindependents, we havepi j =
piq j . The conditional entropy can be thought of in terms of
a channelwhose input is the random variableX and whose
output is the random variableY. H(XjY) corresponds to the
uncertainty in the channel input from the receiver’s point of
view.

Themutual informationbetween two random variablesX
andY is defined as

I(X;Y) = H(X)�H(XjY) (9)

From the above definitions, we can obtainI(X;Y) � 0 and
I(Y;X) = I(X;Y). The mutual information represents the
amount of information that one random variable, the out-
put of the channel, gives about a second random variable,
the input of the channel.I(X;Y) is a measure of the shared
information betweenX andY.

The relative entropyor Kullback-Leibler distancebe-
tween two probability distributionsp = fpig andq = fqig,
that are defined over the same setS= f1; : : : ;ng, is defined
as

DKL(pkq) = n

∑
i=1

pi log
pi

qi
(10)

The relative entropy satisfiesDKL(pkq) � 0 , with equality
only if p= q. It is also known asdiscriminationand it is not
strictly a distance. Moreover, we want to emphasize that the
mutual information can be expressed as

I(X;Y) = DKL(fpi j gkfpiq jg) (11)

The joint entropy ofn random variables is defined as

H(X1; : : :;Xn) = H(X1)+H(X2jX1)+ : : :+H(XnjX1; : : :;Xn�1) (12)

and theentropy rateor entropy densityof a chain of random
variables is defined by

h = lim
n!1 1

n
H(X1;X2; : : :;Xn)= lim

n!1H(XnjXn�1; : : :;X1) (13)

representing the average information content per output
symbol. It is the uncertainty associated with a given symbol
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if all the preceding symbols are known and can be viewed as
the intrinsicunpredictabilityor the irreduciblerandomness
associated with the chain”14.

In particular, a Markov chain can be considered as a chain
of random variables complying with

H(XnjX1;X2; : : :;Xn�1) = H(XnjXn�1) (14)

An important result is the following theorem: A Markov
chain with equilibrium distribution has entropy rate or in-
formation content

h = lim
n!1 1

n
H(X1;X2; : : :;Xn)= H(YjX) =� n

∑
i=1

wi

n

∑
j=1

Pjji logPjji (15)

wherewi is the equilibrium distribution.

Finally, we define theexcess entropyof an infinite chain
as

E = lim
n!1(H(X1;X2; : : :;Xn)�nh) (16)

whereh is the entropy rate of the chain andn is the length
of this chain. The excess entropy can be interpreted as the
mutual information between two semi-infinite halves of the
chain.

3. Scene visibility complexity

In this section we study the complexity of a scene from the
point of view of visibility, applying the basic concepts ex-
posed in the above section.

3.1. Discrete mutual information

3.1.1. Definitions

We can consider10 a random walk in a discretised scene as
a Markov chain wherePjji = Fi j , n = np, wi = Ai

AT
andX,Y

are dependent random variables taking values over the set of
patchesS= f1;2; : : :;npg with f Ai

AT
g as probability distri-

bution. Thus, we define thescene visibility entropy rate, or
simplyscene visibility entropy, as

Hs = H(YjX) =� np

∑
i=1

Ai

AT

np

∑
j=1

Fi j logFi j (17)

It is important to emphasize thata scene can be considered
as a channel with input (source) X and output (destination)
Y , where X and Y take values over the set of patches withf Ai

AT
g as probability distribution and the channel transition

matrix is the form factor matrix. Thus,Hs measures the av-
erage uncertainty that remains about the destination patch
when the source patch is known.

The Bayes theorem can be expressed by the property of
the form factors

pi j = Ai

AT
Fi j = A j

AT
Fji (18)

and from this we obtainH(YjX) = H(XjY), and thus the
symmetry or reversibility of the channel is shown. Also, we
define thepositional entropyas

Hp = H(X) = H(Y) =� np

∑
i=1

Ai

AT
log

Ai

AT
(19)

and may be interpreted as the uncertainty on the position
(patch) of a particle travelling an infinite random walk.

Thediscrete scene visibility mutual informationis defined
as

Is = I(X;Y) = H(Y)�H(YjX)= � np

∑
i=1

Ai

AT
log

Ai

AT
+ np

∑
i=1

Ai

AT

np

∑
j=1

Fi j logFi j (20)

and can be interpreted as the amount of information that the
destination patch conveys about the source patch, and vice
versa. Consequently,Is is a measure of the average infor-
mation transfer in a scene. It is interesting to remember that
mutual information can be defined as a Kullback-Leibler dis-
tance (section 2.3):

I(X;Y) = DKL(fpi j gkfpiq jg)
Thus, Is is the “distance” or discrimination between the
scene probability distributionfpi j g = f Ai

AT
Fi jg and its inde-

pendence distributionfpiq jg= fAiA j

A2
T
g and can be expressed

as

Is = np

∑
i=1

np

∑
j=1

AiFi j

AT
log

AiFi j
AT

AiA j

A2
T= np

∑
i=1

np

∑
j=1

AiFi j

AT
log

Fi j AT

A j
(21)

Consequently, discrete mutual information can be inter-
preted as a “distance” to independence.

3.1.2. Discussion

In a 3D scene context, it is especially interesting to ask about
the extremal cases of maximum and minimum visibility en-
tropy, which correspond to the maximum disorder (unpre-
dictability or randomness in the ray path) and the maximum
order (predictability), respectively. We must remark herethat
the concepts of order and disorder are not directly referred
to the collocation of objects in space, but to visibility crite-
ria. Maximum unpredictability is obtained in scenes with no
privileged visibility directions, and maximum predictability
in the contrary case.

Both cases can be illustrated with the following two ex-
amples:� The maximum entropy is exemplified by the interior of

an empty sphere divided into equal area patches. Here all
form factors are equal and the uncertainty of the desti-
nation patch is maximum (no visibility direction is privi-
leged). The information transfer is zero:Is= 0. The sphere

c
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represents equilibrium or uniformity and can be consid-
ered as a channel where the variablesX andY are indepen-
dent, because in a sphereFi j = A j

AT
and thuspi j = Ai

AT
Fi j =

Ai
AT

A j
AT

= pi p j . This is the expression ofindependencein
a scene. Thus, if independence is represented by a sphere,
discrete mutual information expresses the “distance” be-
tween a discretised scene and a discretised sphere with the
same number of patches and the same area distribution of
the patches.� The minimum entropy is represented by a scene with al-
most touching objects, as for instance two very nearby
concentrical spheres which are discretised in an identical
manner. There are strongly privileged visibility directions
(for each patch one form factor is near 1). The information
transfer is maximum.

In scenes with the same discretisation (as in figure 2, where
we have a cubical enclosure with 512 interior cubes), and
consequently with the sameHp, we can observe (table 1)
that the increase ofHs remains compensated for a decrease
of Is, and vice versa.

(a) (b) (c)

Figure 2: Random (a) and clustered configurations (b,c)
with 512 cubes.

Scene Lines Hs Is E(MSE)
Fig.2a 106 6.370 5.171 1284.6

Fig.2a 107 6.761 4.779 1286.7

Fig.2b 106 5.072 6.469 949.3

Fig.2b 107 5.271 6.270 950.1

Fig.2c 106 4.674 6.867 898.8

Fig.2c 107 4.849 6.692 900.9

Table 1: Results for the three cubical enclosures with 512
small cubes (figures 2a, 2b and 2c). The E(MSE) is normal-
ized to a single line. For each scene, Hp = 11:541 and106

and107 lines have been cast.

What is the accuracy of the values presented in the dif-
ferent tables? The error in these values, which is manifested

when the number of casting lines is increased, is directly
related to error in form factor computation. In this paper,
the form factors have been computed with the Monte Carlo
method described in28; 31. If we study10 the relationship be-
tween the entropyHs and the mean square error of all form
factorsE(MSE):

E(MSE) = 1
N
(np�∑

i
∑

j
F2

i j ) (22)

whereN is the total lines cast, we can observe (table 1) that
the larger the entropy the larger the error in form factors
computation. This means that, for a given computational er-
ror, we need to cast more lines for a scene with more entropy.
It is also shown that the increase in the number of lines in-
creases the entropy estimation and, logically, decreases the
mutual information estimation.

3.1.3. Complexity proposal

Frequently, the concept of entropy has been used as a starting
point in order to study complexity12; 13; 21; 34; 35. But, from the
viewpoint of statistical complexity, entropy, although related
to complexity, is not accepted as an adequate measure of the
complexity of a system12; 34: “it has become more broadly
understood that a system’s randomness and unpredictability
fail to capture its patterns and correlational structure”13.

Mutual information however, which expresses the infor-
mation transfer between variables or the average informa-
tion conveyed by a random walk, has been proposed20; 34 as
a complexity measure and, according to W. Li19, is consid-
ered as a correlation measure of a system. On the other hand,
the excess entropy, which has been given other names such
as “stored information” or “effective measure complexity”
14, is probably the most accepted complexity measure from
the information theory approach and it is a form of mutual
information. In our case, mutual information is equal to ex-
cess entropy:

Proposition 1 In the context of scene visibility, the excess
entropy turns into the mutual information.

Proof: From (12) and (14), we have

H(X1; : : :;Xn) = H(X1)+ : : :+H(XnjX1; : : :;Xn�1)= H(X1)+H(X2jX1)+ : : :+H(XnjXn�1)= Hp+(n�1)Hs

Thus

E = limn!1(Hp+(n�1)Hs�nHs) =Hp�Hs= Is 2
This proposition and the meaning of mutual information

enable us to suggest thatmutual information of scene visi-
bility can be considered as a complexity measure of scene
visibility.

c
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3.2. Continuous mutual information

3.2.1. Definitions

By discretising a scene into patches, a distortion or error is
introduced. In a way, to discretise means to equalize. Obvi-
ously, the maximum accuracy of the discretisation is accom-
plished when the number of patches tends to infinity. How
does mutual information behave in that limit case?

According to information theory8, mutual information
between two continuous random variablesX andY is the
limit of the mutual information between their discretised
versions. Entropy of a continuous random variable however
does not equal the entropy of the discretised random vari-
able in the limit of finer discretisation14. Thus, in our case,
discrete mutual informationIs converges to continuous mu-
tual informationIc

s when the number of patches tends to in-
finity: Ic

s = limnp!1 Is. Below we will see that this fact is
very important for us because it will enable us to calculate
a relative distance to the ideal discretisation, represented by
the continuous mutual information. Scene visibility entropy
however tends to infinity when the number of patches tends
to infinity.

We will obtain the continuous expression for all formulae
using the following substitutions:� Each summatory by an integral. For instance,

∑np

i=1 ∑np

j=1 Fi j by
R

x2S
R
y2SF(x;y)dxdy, whereS stands

for the surfaces in the scene.� Ai
AT

by 1
AT

. This means to substitute the discrete proba-
bility of taking patchi by the continuous probability of
selecting any point.� Fi j by F(x;y). This means to substitute a patch-to-patch
form factor by a point-to-point one. Remember that the
value ofF(x;y) is cosθxcosθy

πd(x;y)2 for mutually visible points,
zero otherwise, beingθx andθy the angles which the nor-
mals atx, y form with the segment joiningx andy, and
d(x;y) the distance betweenx andy.

Thus, the above discrete formulae convert into the following:

Hc
p =�Z

x2S

1
AT

log
1

AT
dx= logAT (23)

Hc
s =�Z

x2S

Z
y2S

1
AT

F(x;y) logF(x;y)dxdy (24)

Ic
s = logAT +Z

x2S

Z
y2S

1
AT

F(x;y) logF(x;y)dxdy= Z
x2S

Z
y2S

1
AT

F(x;y) log(ATF(x;y))dxdy (25)

where Hc
p is the continuous positional entropy,Hc

s is the
continuous scene visibility entropy andIc

s is the continuous
scene visibility mutual information. In the particular case of
a sphere, as any pair(x;y) fulfills F(x;y) = 1

AT
, the result

obtained is, as expected,Ic
s = 0. Remember that in a sphere

Is = 0 and thus limnp!1 Is = 0. Next, we will pay attention
to continuous mutual information. Continuous entropy will
be studied in future work.

3.2.2. Computation

The continuous mutual information integral can be easily
solved by Monte Carlo integration. Let us reparametrize the
integral:

Ic
s = Z

x2S

Z
y2S

1
AT

F(x;y) log(ATF(x;y))dxdy= Z
x2S

Z
ω2Ω

1
πAT

cosθxlog(ATF(x;y(x;ω)))dxdω

(26)

wherey(x;ω) is the point visible fromx in the ω direction.
We will use now 1

πAT
cosθx as probability density function

(we are considering here as integration variablesx andω). It
is easy to check that

R
x2S

R
ω2Ω

1
πAT

cosθxdxdω = 1. Draw-
ing samples according to this distribution means simply se-
lecting first a random point in the scene upon the area and
a direction upon the form factor distribution. This can be
achieved withlocal lines or, easier, withglobal lines. This
is because the global lines are naturally distributed upon ar-
eas and form factors. The result obtained is

Ic
s � 1

N

N

∑
k=1

log(ATF(xk;yk(xk;ωk))= 1
N

N

∑
k=1

log(ATcosθxcosθy

πd(x;y)2 ) (27)

In the global line case,N stands for the total number of pairs
of points considered, which is the total number of intersec-
tions divided by two.

As we can see in tables 2 and 3, corresponding to figure
3 and 2(a) respectively, the computation cost ofIc

s is much
lower than the one ofIs: with few linesIc

s can be computed
with enough precision, unlikeIs which needs a lot of lines to
get a precise measurement.

(a) (b) (c)

Figure 3: Three empty cubical enclosures with their faces
discretised into (a) 10x10, (b) 20x20 and (c) 30x30 patches.

3.2.3. Discussion

The following proposition will enable us to analyze better
the relationship betweenIc

s andIs:
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Scene Lines Hs Is Ic
s

Fig.3a 105 6.482 2.747 1.610

Fig.3a 107 7.821 1.408 1.612

Fig.3a 109 7.838 1.391 1.610

Fig.3b 105 5.342 5.887 1.608

Fig.3b 107 9.420 1.809 1.611

Fig.3b 109 9.731 1.498 1.610

Fig.3c 105 4.313 8.086 1.610

Fig.3c 107 9.684 2.715 1.611

Fig.3c 109 10.852 1.547 1.610

Table 2: Results for the cubical enclosure with differ-
ent discretisations of its faces (figure 3a:10x10, figure
Fig.3b:20x20 and figure Fig.3c:30x30). For each scene,105,
107 and109 lines have been cast.

Lines 104 105 106 107

Is 8.773 6.398 5.171 4.779

Ic
s 5.650 5.636 5.631 5.632

Table 3: Results for the random configuration with 512
cubes (figure 2a).

Proposition 2The continuous scene visibility mutual infor-
mation is the least upper bound to the discrete scene visibil-
ity mutual information.

Proof: We know thatIc
s = limnp!1 Is. Thus, we must only

show thatIc
s is an upper bound toIs. Let us imagine a dis-

cretised scene with discrete mutual informationIs. It is suf-
ficient to show that, if any patch is divided into two patches,
the discrete mutual informationI 0s of the new scene fulfills
I 0s� Is� 0. This can be proved11 with the properties of the
form factors and the concavity of the logarithm function for
non-negative numbers. 2

In conclusion, continuous mutual informationIc
s , which is

independent of the discretisation, expresses with maximum
accuracy the information transfer or correlation in a scene.
This is anabsolutemeasure of the complexity of scene visi-
bility. On the other hand, discrete mutual informationIs ex-

presses the complexity of a discretised scene, which is al-
ways lower than the correspondingIc

s .

As an example,Ic
s of platonic solids and Cornell box (see

figure 10) has been computed. In table 4, we can observe that
the minimum complexity corresponds to a sphere and the
maximum complexity to a tetrahedron. As we expected, the
polyhedra that are nearer to the sphere (independence) are
less complex (less correlation). Thus, complexity appearsto
be inversely proportional with the number of faces.Ic

s of
Cornell box is clearly greater than just the empty cube, as
we have increased its complexity by introducing objects in
its interior.

Also, in table 5, we show the complexity for the scenes
of figure 4. In figure 4a, an object formed by a table and
four chairs is situated in the middle of a room. In figures
4b and 4c, arrays of such objects have been situated in the
middle of the same room. In figures 4d, 4e and 4f, the same
16 objects have been distributed in different ways. We can
see that the introduction of objects increases the complexity
and that the scenes with the same objects (4c, 4d, 4e and
4f) show similar complexities. In this case, the increase of
complexity is produced when there are objects near the walls
because this fact increases correlation in the scene.

Scene Ics

sphere 0

icosahedron 0.5428

dodecahedron 0.8254

octahedron 1.2583

cube 1.6093

tetrahedron 2.6227

Cornell box 2.800

Table 4: CMI of platonic solids and Cornell box. For each
scene,106 lines have been cast.

Scenes 4a 4b 4c 4d 4e 4f

Ic
s 3.837 4.102 5.023 5.043 5.044 5.089

Table 5: Continuous mutual information for the scenes of
figure 4. For each scene,106 lines have been cast.
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(a) (b) (c)

(d) (e) (f)

Figure 4: An object formed by a table and four chairs (a)
and an array of 2x2 objects with the same composition (b)
have been situated in the middle of a room. Also, the same
16 objects have been distributed in four different ways (c, d,
e and f).

3.3. Discretisation accuracy

Proposition 2 suggests that the ratio of continuous and dis-
crete mutual information may yield information about the
error which occurs in the discretisation process and the dif-
ficulty in getting a precise discretisation. We make two fun-
damental proposals which will be contrasted with the results
of various sample scenes:� From the fact that the ideal discretisation, represented by

Ic
s, is the one that captures all the information transfer in

a scene, we can confirm that between different discretisa-
tions of the same scene the most precise one will be the
one that has a higherIs, i.e., the one that best captures
information transfer. From this statement, we express the
discretisation accuracyas the quotientIsIc

s
and thediscreti-

sation relative erroras the quotientI
c
s�Is
Ic
s

.� We conjecture thatIc
s expresses the difficulty of discreti-

sation. The higher theIc
s, i.e., when there is more infor-

mation transfer in a scene, the more difficult it is to obtain
an accurate discretisation and probably more refinements
will be necessary to achieve a given precision. According
to this, the difficulty in discretising a sphere is null. And
the polyhedra that are nearer to the sphere are less com-
plex and so easier to discretise.

These proposals can be analyzed from the results shown in
tables 6 and 7 and on the graphics of figures 7 and 8, which
have been obtained from figures 5 and 6. Initially, 64 cubes
are grouped very closely together in the center of the cubi-
cal enclosure. Little by little they are separated and moved
outwards until they almost touch the walls. Complexity has
been calculated for this sequence of scenes. Figure 7, show-
ing continuous versus discrete mutual information, indicates
that according to our definitions the more complex scenes
are those that have surfaces closer to one another (figures a,f
and b).

This sequence of scenes has been discretised in two dif-
ferent ways with the same number of patches. In the first
sequence (figure 5), the discretisation of the cubes is finer
whereas in the second (figure 6) the discretisation of the
walls is finer. The accuracy of the discretisation appears tobe
higher in the “middle” scenes (b, c, d and e) and lower in the
“extremal” scenes (a and f). Scenes a and f are the most com-
plex scenes. Consequently, these scenes should have a finer
discretisation in order to obtain greater accuracy. In other
words, these scenes are the ones most difficult to discretise.
Comparing alternative discretisations (figure 5a and 6a) for
the scene shown in figure 8, the best discretisation appears to
correspond to 5a because the discretisation is finer in the nar-
row spaces between the cubes. In contrast, when the cubes
are near the walls, greater precision is obtained when the
discretisation of the walls is finer.

These experiments suggest that discretisation accuracy
may be used to choose a better discretisation from several
alternatives and, while computational error is deeply related
to entropy, discretisation error is related to mutual informa-
tion. In future work, the relationship between both kinds of
errors will be studied.

(a) (b) (c)

(d) (e) (f)

Figure 5: 64 cubes are grouped very closely together in the
center of the cubical enclosure and they are separated and
moved outwards until they almost touch the walls. The dis-
cretisation of the cubes (1536 patches) is finer than the one
of the walls (384 patches).

4. Towards scene radiosity complexity

So far, we have only considered visibility of a scene. In this
section we will make a leap forward and will set the basis
for the study of radiosity complexity.

4.1. Transition matrix for radiosity

The research on visibility presented in the previous section
has been based on the existence of a Markov chain (form
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(a) (b) (c)

(d) (e) (f)

Figure 6: 64 cubes are grouped very closely together in the
center of the cubical enclosure and they are separated and
moved outwards until they almost touch the walls. The dis-
cretisation of the walls (1536 patches) is finer than the one
of the cubes (384 patches).

Scene Fig.5a Fig.5b Fig.5c Fig.5d Fig.5e Fig.5f

Is 5.492 5.054 4.672 4.395 4.356 4.775

Ic
s 6.430 5.678 5.177 4.867 5.015 6.055

Is=Ic
s 0.854 0.890 0.902 0.903 0.869 0.789

Table 6: Results for the scenes of figure 5. For each scene,
108 lines have been cast.

Scene Fig.6a Fig.6b Fig.6c Fig.6d Fig.6e Fig.6f

Is 5.110 4.809 4.543 4.348 4.483 4.932

Ic
s 6.430 5.678 5.177 4.867 5.015 6.055

Is=Ic
s 0.795 0.847 0.878 0.893 0.894 0.814

Table 7: Results for the scenes of figure 6. For each scene,
108 lines have been cast.

4

4,5

5

5,5

6

6,5

a b c d e f

Figure 7: Continuous (triangles) and discrete mutual infor-
mation in vertical axis for the scenes of figures 5 (diamonds)
and 6 (squares).

0,72

0,74

0,76

0,78

0,8

0,82

0,84

0,86

0,88

0,9

0,92

a b c d e f

Figure 8: Discretisation accuracy in vertical axis for the
scenes of figures 5 (diamonds) and 6 (squares).

factors) and the knowledge of its equilibrium distribution.
Thus, to study the complexity of a scenewith illumination,
we need to find an analog of the form factor matrix for the
radiosity setting. This analog appears naturally when the null
variance probability transition matrix

p jji = RiFi j B j

Bi �Ei

is considered32. This matrix corresponds to the transition
probabilities that lead to null variance estimators. The null
variance matrix must have a preferred position between the
different possible transition matrices. To obtain the equilib-
rium distribution is not difficult. Using the left eigenvalue
property7, we obtain (without normalization)

pi = Ai
(Bi �Ei)

Ri
Bi = AiB

in
i Bout

i (28)

whereBin
i = (Bi�Ei)

Ri
is incoming radiosity andBout

i = Bi is
the outgoing one. It is immediate to check that these proba-
bilities fulfill pi p jji = q j pij j , this is

Ai
(Bi �Ei)

Ri
Bi

RiFi j B j

Bi �Ei
= A j

(B j �E j)
Rj

B j
RjFji Bi

B j �E j
(29)
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which is an extended reciprocity relation (see equation (4)).
Thus, the analogy is complete.

The entropy, mutual information and other quantities can
be defined straightforwardly for the radiosity setting using
this analogy. We defineAi = Ai

(Bi �Ei)
Ri

Bi (30)AT = ∑
i
Ai (31)Fi j = RiFi j B j

Bi �Ei
(32)

These definitions can be interpreted as a mapping of a given
scene into a new (imaginary) scene, transforming the ar-
eas and the visibility channels according to formulae (30).
Studying the radiosity complexity of the original scene cor-
responds to studying the visibility complexity of the new
scene. According to section 3, the entropy and mutual in-
formation are Hp =� np

∑
i=1

AiAT
log

AiAT
(33)Hs =� np

∑
i=1

AiAT

np

∑
j=1

Fi j logFi j (34)Is = np

∑
i=1

np

∑
j=1

AiFi jAT
log

AiFi jATAiA jA2
T

(35)

4.2. Discussion

As a first example, let us consider the case where the result-
ing radiosity is constant for all patches. This should not in-
troduce any complexity to the visibility case, thus the trans-
formation considered above should result into the identity
transformation. To obtain constant radiosityB everywhere,
it is easily found that we must haveB = RiB+Ei , for all i.
But, thenBin

i = B�Ei
Ri

= RiB
Ri

= B, and this means thatAiAT
= AiB

2

ATB2 = Ai

AT
(36)Fi j = RiFi j B j

Bi �Ei
= Fi j (37)

We have computed the visibility and radiosity complexity
for the labyrinth scene (see figure 9), withRi +Ei = 1 for
each patch, and thus radiosity is equal to 1 everywhere. The
results shown in table 8 confirm the theoretical prediction.

As a second experiment, we have computed the radiosity
complexity of the boxes scene shown in figure 10. Six dif-
ferent discretisations have been generated: three rough and
three finer ones. Each rough discretisation contains almost

Hp Hs Is

Visibility 10.6883 6.47804 4.21022

Radiosity 10.6842 6.47833 4.20591

Table 8: Results for the labyrinth scene of figure 9, with con-
stant radiosity everywhere. For this case both visibility and
radiosity complexity are the same.

Figure 9: Labyrinth scene used to show the equivalence of
visibility and radiosity complexity when radiosity is constant
everywhere (see table 8).

the same number of patches and so does each fine discreti-
sation. Three meshing strategies have been tried out: qual-
ity triangulation yielded a uniform mesh, hierarchical refine-
ment radiosity with refinement based on transported power
as well as smoothness of received radiosity yielded adap-
tively refined meshes. The continuous mutual information
(not computed) is identical in all cases. The discrete mutual
information in table 9 reflects that a finer mesh is indeed a
better mesh. Among equally fine meshes, the uniform mesh
is quantified to be the worst.

Unlike previously developed error estimates in radiosity,
discrete radiosity mutual information reflects both computa-
tional and discretisation error at the same time. The precise
interplay between these two important sources of error in the
discrete radiosity mutual information however remains to be
investigated in more detail.

5. Conclusions and future research

We have presented in this paper an information theory ap-
proach for the analysis of scene visibility and radiosity com-
plexity. The measures we propose for complexity are contin-
uous and discrete mutual information. We have proved that
continuous mutual information is the least upper bound of
the discrete one. Discrete mutual information gives the in-
formation transfer or correlation in a discretised scene and,
thus, continuous mutual information is the maximum pos-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Cornell box scene with different discretisations
used to show the increase of mutual information for a finer
and more accurate meshing. Results are in table 9.

Fig. Mesh Patches Lines(106) Hp Hs Is

a uniform 464 16:5 6.94 2.52 4.42

b power 453 16:5 8.46 2.59 5.87

c smooth 459 16:5 7.51 2.56 4.94

d uniform 1146 41:2 8.30 2.75 5.55

e power 1143 41:2 9.80 2.82 6.98

f smooth 1146 41:2 8.98 2.80 6.18

Table 9: Results for the Cornell box scene (figure 10) with
different discretisations.

sible information transfer or correlation. On the other hand,
continuous mutual information also expresses how difficult
it is to discretise a scene to compute with accuracy the visi-
bility and radiosity, and discrete mutual information gives us
a measure of how well we have done it. In this direction we
have shown that the best discretisation into equal number of
patches is the one with higher discrete mutual information.

Although continuous mutual information is very cheap to
compute, a drawback for the practical use of our results is
the high computing cost of an accurate value for discrete
mutual information. We will look then in our future work for
cheaper alternatives. A possible alternative is thedistance to
independence, a complexity measure introduced by Solé et
al. 35.

The precise interplay between computational and discreti-
sation error in the discrete radiosity mutual information re-
mains to be investigated in more detail. This paper is a first
step, paving the way for the development of practical algo-
rithms and strategies for cost prediction and optimal mesh-
ing, which will be undertaken in our future work.
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