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ABSTRACTReynolds has developed a logi for reasoning about muta-ble data strutures in whih the pre- and postonditions arewritten in an intuitionisti logi enrihed with a spatial formof onjuntion. We investigate the approah from the pointof view of the logi BI of bunhed impliations of O'Hearnand Pym. We begin by giving a model in whih the law ofthe exluded middle holds, thus showing that the approahis ompatible with lassial logi. The relationship betweenthe intuitionisti and lassial versions of the system is es-tablished by a translation, analogous to a translation fromintuitionisti logi into the modal logi S4. We also on-sider the question of ompleteness of the axioms. BI's spa-tial impliation is used to express weakest preonditions forobjet-omponent assignments, and an axiom for alloatinga ons ell is shown to be omplete under an interpretationof triples that allows a ommand to be applied to states withdangling pointers. We make this latter a feature, by inor-porating an operation, and axiom, for disposing of memory.Finally, we desribe a loal harater enjoyed by spei�a-tions in the logi, and show how this enables a lass of frameaxioms, whih say what parts of the heap don't hange, tobe inferred automatially.
1. INTRODUCTIONPointers are an extremely powerful and exible program-ming mehanism, useful for manipulating linked data stru-tures and for providing strutured aess to data in memory.They are also extremely dangerous. Pointer-manipulatingprograms are notoriously diÆult to get right, and even leadto runtime safety violations (suh as from dereferening nilor a disposed pointer) whih lie beyond the range of onven-tional type systems. An e�etive program-proving formal-ism for dealing with pointers would be most welome.But pointers have also always been one of the thornypathes of program proving. The most immediate issue tofae is that the Hoare substitution-oriented treatment of as-
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signment fP [E=x℄gx := EfPgdoes not ope with omponent assignments of the formE:i :=E0 (or E ! i = E0 in C syntax) that alter the heap. Otherissues are raised by operations for alloating and, espeially,disposing of memory. A number of researhers have devel-oped program-proving formalisms for pointers (e.g., [16, 30,23, 17, 22, 3, 6℄), but no de�nitive solution has emerged asof yet. Most importantly, lying behind tehnialities withaxioms for assignment and storage management is a deeperdiÆulty, the \omplexity of pointer swing [15℄" that resultsfrom aliasing : there an be more than one pointer to a ellthat is altered, in whih ase assignment to the ell a�etsseemingly unrelated expressions. The real problem is to on-trol, or understand, this omplexity, rather than simply toaxiomatize it.A striking advane has been reently made by Reynolds[35℄, building on early work of Burstall [5℄. The main nov-elty is the use of a spatial form of onjuntion P � Q, thatsplits the heap into distint portions that the di�erent on-junts talk about. In addition, there is a form of assertion,the points-to relation 7!, whih is used to make statementsabout the ontents of heap ells. For instane, the spatialonjuntion (x 7! 3; y) � (y 7! 4; x) says that x and y denotedistint loations, where the dr of x is a pointer to y, thedr of y is a pointer to x, and where the ar's ontain 3 and4.
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The ombination of � and 7! leads to remarkably simpleaxioms. In partiular, when an assertion of the form P �(x 7! a; b) holds prior to a omponent assignment x:1 := zwe know that the assignment annot a�et P , and so P �(x 7! z; b) will hold on onlusion. The logi of pointerswing is treated in a loal way that mirrors the intuitiveoperational loality of assignment.In this paper we investigate the approah from the pointof view of the logi BI of O'Hearn and Pym [25℄. The most



distintive feature of BI is its joint treatment of two implia-tion onnetives. One impliation,), is from standard intu-itionisti or lassial logi, while the other, �� , is the impli-ation for a basi substrutural logi. Reynolds's assertionlanguage is already substrutural: it adds a Contration-freeonjuntion, where P and P �P are not generally equivalent,to intuitionisti logi: BI's �� is related to � by the dedu-tion theorem, whih states that a onsequene A j= B��Cholds i� A � B j= C does. There is also a version of the de-dution theorem whih relates ) and the usual onjuntion^.The basi idea of BI's semantis is to allow statementsto be made about the world using familiar onnetives suhas ), : and ^, and then to ombine these statements in amodular way using � and �� . The key to this is the resoureinterpretation of the onnetives, where � deomposes theurrent resoure into piees and �� talks about new or freshresoure [25, 26℄. Substrutural logis may appear ratherexoti beasts. But the pointer models we present providea very onrete and, we believe, intuitive way of under-standing the onnetives, quite apart from overtly logialonerns.With this as bakground, we now desribe the main on-tributions of the paper. These fall under three headings: (i)Classial versus Intuitionisti; (ii) Completeness Issues; (iii)Loal Reasoning.Classial or Intuitionisti? . Reynolds used an intuition-isti interpretation of pre- and postonditions in his logi.This was presented in a possible worlds style, whih treatsnegation and impliation by quantifying over all extensionsto the urrent heap [19℄, and gives rise to a monotoniityproperty where all propositions are invariant under heapextension. Although the intuitionisti semantis is intu-itive, it seemed to us reasonable to ask: might the law ofthe exluded middle be ompatible with the axioms for as-signment and other statements? Reynolds gave an exam-ple whih indiates that his axioms are unsound under a\straightforward" lassial reading, but left open the ques-tion of whether a di�erent lassial semantis might be pos-sible.We answer by presenting a lassial model, whih is apossible worlds model of Boolean BI (where : and ) arelassial), and whih validates all of the axioms for Hoaretriples. In this model the worlds are heaps (olletions ofons ells in storage), and the onjuntion P �Q is true justwhen the urrent heap an be split into two omponents, oneof whih makes P true and the other of whih makes Q true.The impliation P��Q talks about new or fresh piees ofheap, disjoint from the urrent heap. It says that, wheneverwe are given new heap that makes P true, the ombined newand urrent heap will make Q true. The other onnetivesare interpreted pointwise in this model; for example :P istrue of a world just if P is not true of that world.Perhaps more signi�ant than exluded middle is that thelassial semantis is more expressive than the intuitionis-ti one. In partiular, it allows the spei�ation of exatproperties of the heap, suh as \the heap is empty", whihannot be expressed in the intuitionisti semantis beausethey are not invariant under heap extension.We work with the lassial semantis for most of the pa-per, but onsider the relation to the intuitionisti modelin Setion 9. We desribe a translation from intuitionistito lassial whih is similar to a standard translation from

intuitionisti logi to the modal logi S4, thereby showingthat all intuitionisti properties an be expressed within thelassial setup.Completeness Issues. Although the treatment of assign-ment given by Reynolds, and by Burstall, is very elegant, at�rst sight its simpliity appears to ome at the prie of for-ing assertions to be written in a stylized form, whih wouldnot allow ertain programs to be veri�ed. This would per-haps be a prie worth paying, but we show that the weakestpreondition an in fat be expressed. The ruial pointfor this is an interesting interation between the �� and �onnetives. For example, we will explain in Setion 3.1 how(x 7! 3; 5) � ((x 7! 7; 5)��P )says that x points to a ell holding h3; 5i, but also that ifwe update the ar to 7 then P will be true. We wouldexpet this to be a valid preondition for a postonditionP with assignment statement x:1 := 7, where the indiatedassignment sets the �rst omponent of (the ons ell denotedby) x to 7.We show how the weakest preondition for eah atomistatement an be expressed in the logi. The semantisused for this result is based on an interpretation of triplesthat allows ommands to be applied to states with danglingpointers. Dangling pointers also play an essential role in theinterpretations of �� and �. We make this a feature by on-sidering an operation that disposes of memory (thereby re-ating dangling pointers). Sine disposing memory is suh adevastatingly e�etive method of introduing programmingerrors, we were pleasantly surprised to �nd that the ap-proah allows for a simple axiom whih enables programswith disposal to be proven. The semantis of triples we useis one that supports the slogan well-spei�ed programs don'tgo wrong , where going wrong ould result from, say, deref-erening nil or a disposed pointer.The lassial semantis presented in this paper ame afterthe intuitionisti semantis, and we must admit that it tooksome time to get used to. (The intuitionisti semantis wasdisovered independently by us, while we were working froman early version of [35℄.) Ultimately, the lassial modelseemed natural only after we had the ourage to onsiderdisposal, where it is essential to be able to speify mem-ory utilization exatly. Reynolds has sine been braver still,working with a generalization of the logi that enompassespointer arithmeti [36℄.Loal Reasoning. Above we mentioned the loal way thatpointer swing is treated. We examine the sense in whihloal reasoning extends to larger-sale operations. In fat,one of the most promising suggestions in the approah ofReynolds and Burstall is that veri�ations might be donein a way that sales well, by loalizing the e�ets of heap-altering ommands to ertain of the onjunts in an assertionP1 � � � � � Pn.We investigate this idea by formulating a rule for auto-matially inferring ertain frame axioms, whih desribe in-variants of the heap. Traditionally, an inordinate amount ofe�ort needs to be spent speifying what a program doesn'thange, so muh so that these frame axioms distrat fromthe main onern { what hanges. In the absene of point-ers what doesn't hange an be suintly summarized usingmodi�es lauses [14℄, whih list the program variables orre-sponding to loations that an be altered by a program. Butfor pointers, whih may inlude links to ells not named by



variables in the program, the problem is muh more aute;we show how the onjuntion � an be used to derive suhaxioms. The point is that this allows spei�ations to bekept \small", where they desribe only the area of the heapthat a program atually ats on. Invariant properties forother areas of the heap ome for free.
2. COMMANDS AND BASIC DOMAINSThe imperative language that Reynolds deals with is asimple ommand language, with Lisp-like expressions for a-essing and reating ons ells. We will not give a full syntaxof ommands, as the treatment of onditionals and loopingstatements is standard. Instead, we will onentrate on as-signment statements, whih is where the main novelty of theapproah lies.The ommands we onsider are as follows.C ::= x := Ej x := E:ij E:i := E0j x := ons(E1; E2)j ...i ::= 1 j 2Here, eah of the E's is a pure expression; that is, E doesnot ontain a dot. In E:i the i is assumed to be one of theonstants 1 or 2 (the extension to varying length reords,or named alternatives, is straightforward). The seond andthird assignment statements read and update the heap, re-spetively. The fourth reates a new ons ell in the heap,and plaes a pointer to it in x.Notie that these ommands do not diretly handle double-dereferening, suh as x:1:2, where one looks more than one-deep into the heap. One would have to break a use of suhan expression, either on the left or right of :=, into severalsteps, possibly using auxiliary variables.1An expression an denote an integer, an atom, or a onsell. E ::= x Variablej 42 Integerj nil nilj a atomj � � �We have not given a full expression syntax; the only on-straint is that an expression an be interpreted in the se-manti domain spei�ed below.We use the following semanti domains, whih are as in[35℄ (exept for our restrition to binary ells, whih is notessential). V al = Int [Atoms [ LoS = V ar *fin V alH = Lo *fin V al� V alHere, Lo = f`; :::g is an in�nite set of loations, V ar =fx; y; :::g is a set of variables, Atoms = fnil; a; :::g is theset of atoms, and *fin is for �nite partial funtions. Weall an element s 2 S a stak, and h 2 H a heap. There1This restrition is similar to the form of assignment state-ments sometimes used in intermediate languages for statianalysis of pointer programs.

is a deliberate distintion between the two: stak variablesare maintained aording to a stak disipline and are notallowed to alias one another; heap variables or pointers donot obey a stak disipline. [We will not inlude an expliitoperation for alloating stak variables.℄We use dom(h) to denote the domain of de�nition of aheap h 2 H, and dom(s) to denote the domain of a staks 2 S.An expression is interpreted as a heap-independent value[[E℄℄s 2 V alwhere the dom(s) inludes the free variables of E.The ommands are interpreted using a relation; on on-�gurations, where the on�gurations inlude triples C; s; hand terminal on�gurations s; h, for s 2 S and h 2 H. Weassume the semantis of expressions to speify ;.In the following rules we use r to range over elementsof V al � V al, �ir for the �rst or seond projetion, and(r j i 7! v) to indiate the pair like r exept that the i'thomponent is replaed with v.[[E℄℄s = vx := E; s; h ; [s j x 7! v℄; h[[E℄℄s = ` 2 Lo h(`) = rx := E:i; s; h ; [s j x 7! �ir℄; h[[E℄℄s = ` 2 Lo h(`) = r [[E0℄℄s = v0E:i := E0; s; h ; s; [h j ` 7! (r j i 7! v0)℄` 2 Lo ` 62 dom(h) [[E1℄℄s = v1 ; [[E2℄℄s = v2x := ons(E1; E2); s; h ; [s j x 7! `℄; [h j ` 7! hv1; v2i℄The loation ` in the fourth ase is not spei�ed uniquely, soa new loation is hosen non-deterministially. We an alsoinlude typial rules for sequening, looping, et. The rela-tion ; is a one-step semantis, and these other onstrutswould give rise to non-terminal on�gurations. We say that� \C; s; h is stuk" in ase there is no on�guration Ksuh that C; s; h; K, and� \C; s; h is safe" in ase C; s; h;� K implies that K isa terminal on�guration s0; h0 or is not stuk.Being stuk is a kind of runtime error. For instane, a om-mand an get stuk by an attempt to dereferene nil or aninteger. Note also that the semantis allows dangling ref-erenes, as in the stak [x 7! `℄ with empty heap [℄. Theassignment x:1 := 2 is stuk for this stak and heap.This de�nition of safety is formulated with partial orret-ness in mind: with loops C; s; h ould fail to onverge to aterminal on�guration without beoming stuk.
3. A MODEL OF BOOLEAN BIThe pre- and postonditions for ommands will be writtenusing the following formulae.P;Q;R ::= � Atomi Formulaej false Falsityj P ) Q Classial Impliationj emp Empty Heapj P �Q Spatial Conjuntionj P��Q Spatial Impliationj 9x:P Existential Quanti�ation



This syntax di�ers from that of Reynolds in three ways.First, we onsider the substrutural impliation �� and unitemp from BI. The unit was not needed in [35℄ beause in theintuitionisti semantis the unit of � is true (this is beauseWeakening for � is present). Seond, we use the BI symbol� instead of & for the spatial onjuntion. Finally, beausewe are in a Boolean situation we an de�ne various otheronnetives as usual, rather than taking them as primitive::P = P ) false; true = :(false); P _Q = (:P )) Q;P ^Q = :(:P _ :Q); 8x: P = :9x::P .The set free(P ) of free variables of a formula is de�nedas usual, as is the apture-avoiding substitution P [E=x℄.The atomi formulae inlude an equality relation and thepoints-to relation.� ::= E = E0 Equalityj E 7! E1; E2 Points toj � � �In pratie, one would also want atomi prediates desrib-ing indutive properties of the heap, or a reursive failitywhih allows suh properties to be de�ned.
3.1 Semantic ClausesThe semantis of assertions is given by a foring relationof the form s; h j= Pwhih asserts that P is true of stak s 2 S and heap h 2 H.It is required that dom(s) � free(P ). The semantis isorganized in a possible worlds style, where the heaps are theworlds. We use the following notation in formulating thesemantis:� h#h0 indiates that the domains of heaps h and h0 aredisjoint;� h�h0 denotes the union of disjoint heaps (i.e., the unionof funtions with disjoint domains).Here are the semanti lauses.s; h j= E = E0 i� [[E℄℄s = [[E0℄℄ss; h j= E 7! E1; E2 i� f[[E℄℄sg = dom(h)and h([[E℄℄s) = h[[E1℄℄s; [[E2℄℄sis; h j= emp i� h = [℄ is the empty heaps; h j= P �Q i� 9h0; h1: h0#h1; h0 � h1 = h;s; h0 j= P and s; h1 j= Qs; h j= P��Q i� 8h0: if h0#h and s; h0 j= P thens; h � h0 j= Qs; h j= false nevers; h j= P ) Q i� if s; h j= P then s; h j= Qs; h j= 9x:P i� 9v 2 V al: [s j x 7! v℄; h j= PThe points-to relation E 7! E1; E2 looks one-deep into theheap. In the lassial semantis it is interpreted \exatly",by requiring that that E denotes the only ell in the urrentheap. The semantis is exible here, in allowing Ei in E 7!E1; E2 to denote a loation that is not in the domain of h.For example, in

[x 7! `; y 7! `0℄; [` 7! h2; `0i℄ j= (x 7! 2; y)the loation `0 is dangling, whih is to say that it is not inthe domain of the heap.The onjuntion P �Q is true just when the urrent heapan be deomposed into two onstituents in a way thatmakes P true of one onstituent and Q true of the other.With this de�nition, (x 7! 3; y) � (y 7! 4; x) orresponds tothe box-and-pointer diagram from the Introdution. Notiethe importane of dangling pointers here: the store orre-sponding to the left onjunt is
rr r?-?3

x y
while that for the right is
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This model di�ers from the one in [35℄ in three ways.First, the impliation ) is interpreted in a pointwise fash-ion, whih results in a lassial semantis. This is a seman-tis whih uses the boolean algebra struture of the powersetof H, rather than the 2-element boolean algebra. Seond,we inlude emp and �� . And third, the points-to relationis interpreted exatly, where s; h j= E 7! E1; E2 does notimply s; h0 j= E 7! E1; E2 whenever h0 is a bigger heap thanh (bigger in the sense of inlusion of partial funtions).We an express an inexat variant of points-to as followsE ,! E1; E2 = (true � E 7! E1; E2).Generally, true � P says that P is true of some heap on-tained in the urrent one. Conversely, if we were to take ,!as primitive then we ould de�ne 7! in terms of it using theformulaE ,! E1; E2 ^ :�(:emp) � (E ,! E1; E2)�.The di�erent way that the two onjuntions � and ^ be-have is illustrated by the following examples.1. (x 7! 1; 2) � (x 7! 1; 2) is never true, beause, howeverthe heap is split up, x will be left dangling in one ofthe onjunts.2. (x 7! 1; 2)^(x 7! 1; 2) is equivalent to x 7! 1; 2, and sois true in the singleton heap where x points to h1; 2i.3. (x 7! 1; 2) � :(x 7! 1; 2) an be true when x points toa ell holding h1; 2i in the urrent heap, beause theheap an then be split into a singleton where (x 7! 1; 2)and another heap where x is dangling, thus making:(x 7! 1; 2) true.



4. (x 7! 1; 2) ^ :(x 7! 1; 2) is never true.The di�erene between ,! and 7! shows up in the preseneor absene of Weakening for �.1. P � (x 7! 1; 2) ) (x 7! 1; 2) is not always true, forinstane when the anteedent is true of a heap withmore than one de�ned loation.2. P � (x ,! 1; 2)) (x ,! 1; 2) is always true.A ruial ingredient in the semantis of �� is the require-ment h0#h, whih has the e�et of ensuring that h0 is a newor fresh piee of heap. That is, its domain of de�nition mustbe disjoint from the domain of the urrent heap h.We an now explain the example(x 7! 3; 5) � �(x 7! 7; 5)��P �from the Introdution. We laim that this formula says thatx denotes a ell whih holds h3; 5i in the urrent heap, butalso that if we update the ar to 7 then P will be true. Tosee why, �rst note that the semantis of � splits the heap,say, '
&
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5 RestofHeapinto two portions, one where (x 7! 3; 5) holds and a seondheap where the loation denoted by x is dangling:'
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x RestofHeapWe have inluded a dangling pointer out of the rest of theheap here to emphasize that the loation might be refer-ened from within a heap ell, as well as from x. Beausethe assoiation (x 7! 3; 5) has been, in a sense, retrated bydeleting the assoiation from the heap in the right onjunt,this frees �� to extend the seond heap with a di�erent on-tents for the loation denoted by x. The semantis of ��and 7! then ensure that P must be true when this seondheap is extended by binding x's loation to h7; 5i.'
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So, the intuitive desription in terms of updating followsfrom several steps in the semantis, whih add up to \updateas deletion followed by extension". (We stress that x denotesthe same loation at eah step in this narrative , even whenthat loation is dangling; the update expressed is to theheap, not the stak.)
3.2 PropertiesThe semanti onsequene relation P j= Q between for-mulae is de�ned to hold i� for all s; h, if s; h j= P thens; h j= Q. This assumes that dom(s) � free(P ) [ free(Q).Proposition 1. The usual rules of lassial logi are soundfor j=, along with� is ommutative and assoiative, with unit empP 0 j= P Q0 j= QP 0 �Q0 j= P �QR � P j= QR j= P��Q R j= P��Q R0 j= PR �R0 j= QIn partiular, note that two versions of the dedution the-orem hold at the same time:R j= P��Q i� R � P j= QR j= P ) Q i� R ^ P j= Q:In [25℄, these properties were taken as the basis for anatural dedution presentation of BI, where ontexts werebunhes: trees built from two kinds of ombining operator,one orresponding to � and the other to ^. That presenta-tion is (after we add redutio ad absurdum) equivalent, interms of provability, to the bunh-free presentation statedin the proposition. The model in this setion is a possibleworlds model for Boolean BI [25, 26℄.Beause we do not have Weakening (P �Q j= P ) or Con-tration (P j= P �P ) for �, we are in the territory of substru-tural logi. To see why Contration fails, onsider x ,! 2; 3.It an be satis�ed in a heap with a ons ell whose ontentsis h2; 3i, but (x ,! 2; 3) � (x ,! 2; 3) is false for every heap.To see why Weakening fails, onsider (x 7! 2; 3)� (y 7! 4; 5).For this to be true the urrent heap must have size two, and(x 7! 2; 3) annot then hold beause it requires the urrentheap to have size one.The importane of restriting Contration was brought tothe fore by linear logi [12, 13℄. But it is important to realizethat BI takes a very di�erent approah to the surroundingadditive onnetives. To see this, onsider that P�ÆQ j=P ) Q always holds in linear logi, using the deompositionP ) Q = !P�ÆQ and the rule of Derelition for !. But here,(x 7! 1; 2)�� false 6j= (x 7! 1; 2)) falsebeause the anteedent an hold in a heap where x 7! 1; 2while the onsequent annot.This shows that there an be no ! whih deomposes P )Q into !P��Q in this model; this highlights the di�erenebetween the joint treatment of �� and ) in the model andthe approah of linear logi. Furthermore, it is not unusualto use additive impliations where 7! appears to the left.An example is when speifying that any de�ned loation inthe heap is reahable; suh a spei�ation would be of the



form 8x: (9ab: x 7! a; b) ) � � � ) (where to �ll in the � � � weould use an appropriate indutive de�nition).Next, we onsider the notion of purity.Purity . We say that an assertion is syntatiallypure if it does not ontain 7! or I.Reall that we do not have terms of the form E:i for �eldseletion within assertions: 7! is the only way that an as-sertion might look into the heap.Proposition 2. Any synatially pure assertion is inde-pendent of the heap: If P is a pure assertion thens; h j= P i� s; h0 j= P .As a result, pure assertions are ompletely additive: if Pand Q are pure, thenP �Q and P ^Q are equivalent;P��Q and P ) Q are equivalent.The �rst of these properties indiates a formal similarity be-tween purity and \!" in linear logi [12℄: we get ContrationP j= P �P and Weakening P �Q j= P for pure propositions.(This remark is independent of the issue of deomposing) into �� .) The seond property shows a further similar-ity with passivity in syntati ontrol of interferene [34℄,where additive and multipliative funtion type onstrutsagree on passive types [28℄.
3.3 Interpretation of TriplesHoare triples are of the form fPgC fQg, where P and Qare assertions as above and C is a ommand. We adopt aninterpretation whih ensures that well-spei�ed ommandsdo not get stuk.fPgCfQg is true just whenif s; h j= P then C; s; h is safe and ifC; s; h;� s0; h0 then s0; h0 j= Qfor all s; h where dom(s) � free(P ) [ free(Q).This is a partial orretness interpretation; with looping, itwould not guarantee termination. However, the safety re-quirement rules out ertain runtime errors and, as a result,we do not have that ftruegCftrueg holds for all ommands.For example, ftruegx := nil;x:1 := 3ftrueg fails. Gener-ally, if we an establish fPgCftrueg then we will know thatC is safe to exeute in any state satisfying P .
4. THE REYNOLDS AXIOMSWe start with standard Hoare rules for sequening, on-sequene and simple assignment.SequeningfPgCfQg fQgC0fRgfPgC;C0fRgConsequeneP j= P 0 fP 0gCfR0g R0 j= RfPgCfRgSimple AssignmentfP [E=x℄gx := EfPg

In the Consequene rule, j= refers to the semanti onse-quene relation for assertions. (Equivalently, we ould re-plae j= by ), and ask that the resulting impliations holdin every state in whih the stak omponent binds all vari-ables in the involved formulae.)The �rst heap-aessing ommand is the statement x :=E:i, whih an read from both the stak and the heap, butwhih only alters the stak. Here there are two things tokeep in mind. First, E will be a pure expression, whihdoesn't look into the heap. So, we will not onsider anassignment statement like x := y:1:2, whih would have tobe broken into two steps. Seond, we will expet E:i to bedetermined by an assertion of the form E ,! E1; E2, whihlets us �nd its value.Objet-omponent LookupSuppose that the variables x1; x2 are not free inE, and that x1 does not our free in P . Then�9x1: P [x1=x℄ ^ 9x2: E ,! x1; x2	x := E:1�P	The substitution in P [x1=x℄ is saying that P is true in thepostondition, similarly to the simple assignment axiom, butthere is also additional information to make sure that xi isthe proper value. The axiom for the seond seletion E:2 isobtained by rearranging x1 and x2 in the preondition.We have used ,! in this axiom, where Reynolds used 7!.In the intuitionisti semantis desribed later the two ver-sions of the axiom are equivalent, but in the lassial se-mantis the version with ,! is preferable. If we had used7! instead of ,! in the lassial ase then the heap in thepreondition would be fored to be a singleton. This wouldbe sound, but not very useful.Next,Objet-omponent AssignmentSuppose that the variables x1; :::; xm are not freein E or E0. Then�9x1; :::; xm: (E 7! E1; E2) � P	E:1 := E0�9x1; :::; xm: (E 7! E0; E2) � P	The simpliity of this axiom is remarkable, and is where thee�et of 7! and � is oming through. The idea is that wean simply slot E0 into the heap in the appropriate plae.The E:2 version has (E 7! E1; E0) in the postondition.Finally,ConsSuppose that the variables x1; :::; xm are not freein E1; E2, that x and x0 are distint from eahother and x1; :::; xm, that x0 is not free in E1; E2or P . Let X 0 denote the result of substituting x0for x in expression or assertion X. Then�9x1; :::; xm: P	x := ons(E1; E2)�9x0; x1; :::; xm: P 0 � (x 7! E01; E02)	



Here, a new ell is reated and a pointer to it is plaed intox; the newness of this ell is why it an be separated fromP 0 using �.The following proof outline, for a piee of ode for in-serting a ell in the middle of a linked list, exempli�es theworkings of the axioms for pointer swing and heap extension.f(x 7! a; z) � (y 7! ; w)gt := ons(b; y)f(x 7! a; z) � (y 7! ; w) � (t 7! b; y)gf(x 7! a; z) � (t 7! b; y) � (y 7! ; w)gx:2 := tf(x 7! a; t) � (t 7! b; y) � (y 7! ; w)gProposition 3. The Reynolds axioms are true in the las-sial semantis.
5. COMPLETENESS ISSUESWe begin by disussing the Component Assignment ax-iom. The way the axiom is formulated requires both thepreondition and the postondition to be of a speial shape,and this raises the question: an the axiom be applied gen-erally, or does it restrit our reasoning to situations wherethe assertions are of a spei� form?Before answering this question, we formulate a bakwardsaxiom with the help of the form of update that an be ex-pressed using � and �� .Bakwards Component AssignmentSuppose that variables x and y are distint andnot free in E, E0, or P . Then�9xy: (E 7! x; y) � ((E 7! E0; y)�� P )	E:1 := E0�P	The E:2 version is similar. The bakwards version an ob-viously be applied generally, sine it works for any poston-dition.In a draft version of this paper (dated 10 Marh, 2000),we made the erroneous laim that the bakwards axiom isstritly stronger than Component Assignment, beause ofthe latter's seemingly restrited form. However, Reynoldshas pointed out that the axioms are of equal strength, ifwe inlude the rule of onsequene and onsider an instaneof Component Assignment with an ourrene of �� to theright of �, using again the \update as deletion followed byextension" idea.�9xy: (E 7! x; y) � ((E 7! E0; y)�� P )	E:1 := E0�9xy: (E 7! E0; y) � ((E 7! E0; y)�� P )	�9xy:P	�P	The seond-last step uses the onsequene A � (A��P ) j=P , and the fat that onsequene is valid under 9. The9 an be eliminated in the �nal step beause x and y arenot free in P . So, although the bakwards form of the axiomexpresses the weakest preondition diretly, the two versionsare interderivable.We next disuss a urious point about the interpretationof triples. We have allowed ommands to be applied to stateswith dangling pointers, whih are states that mention loa-tions not in the domain of the urrent heap. In ontrast,

in [35℄ ommands are only applied to states in whih thereare no dangling pointers; dangling pointers arise only duringthe evaluation of assertions.The di�erene between these interpretations of triples issigni�ant in the ase of ons. For example,ftruegx := ons(1; 2)f:(x = y)gis true under a no-dangling interpretation of triples, but notunder the interpretation we have adopted. The reason isthat if there are no dangling pointers then the operationalrule for ons alloates a loation that is not the ontentsof any stak variable, but in the dangling ase a loationmight be alloated that is already the ontents of some stakvariable.This indiates that the Cons axiom is not omplete un-der the no-dangling interpretation of triples. (This remarkapplies equally to the lassial semantis and to the intu-itionisti semantis presented later.) For, the example tripleabove is not derivable from the forwards Cons axiom, whihsimply gives usftruegx := ons(1; 2)ftrue � x 7! 1; 2gthe postondition of whih is equivalent to x ,! 1; 2.One way to reat to this inompleteness is to say that sinedangling pointers never arise during program exeution (forthe programs onsidered so far), we should interpret the ruleof onsequene as an impliation whih holds in states wherethere is no dangling. That is, rule out dangling pointers atthe top level, so to speak, but allow them when delving intosubformulae involving � or �� . Another reation, whih wefollow up on here, is to see dangling pointers as a naturalharateristi of languages whih allow memory to be ma-nipulated on a low level; we elaborate on this point in thenext setion.To desribe a bakwards axiom for ons, suppose we aregiven an arbitrary postondition P . In the preondition wewould like to say that P will be true if we extend the heapwith a new loation, whih is initialized appropriately. Wean express this using 8 to quantify over loations, indiat-ing that any one will do, together with �� for guaranteeingnewness.Bakwards ConsSuppose that x0 is not free in E1; E2 or P . Then�8x0: (x0 7! E1; E2)��P [x0=x℄	x := ons(E1; E2)�P	In ase x is not free in E1 or E2 we an simply quantifyover x in the above. For example, 8x: (x 7! 1; 2)��P is thepreondition for x := ons(1; 2).If C is a ommand and Q a formula, then the weakestpreondition is de�ned as follows.s; h 2 wp(C;Q) just whenC; s; h is safe and if C; s; h ;� s0; h0then s0; h0 j= QWe are not extending the syntax of formulae here, but aresimply de�ning wp(C;Q) as a set of stak-heap pairs. (Withthis de�nition we should perhaps speak of weakest liberalpreonditions; but partial and total orretness oinide forthe basi ommands that we are onsidering.)



In the following result the \bakwards axioms" are on-sidered to be those from this setion, along with Simple As-signment and Objet-omponent Lookup.Theorem 4. The weakest preondition for eah atomistatement is expressed by the orresponding bakwards ax-iom.For a sequene C of assignment statements it follows thatfPgCfQg is derivable from the basi axioms (in either theReynolds or bakwards forms), Sequening, andConsequeneexatly when it is true. (Extending this result to loops wouldget us into the issue of expressiveness [10℄, whih is outsidethe sope of our onerns here.)The following notation will be onvenient: if ` 2 dom(h)then let h�` denote the singleton heap in whih ` is mappedto h(`); also, let h� ` denote the heap like h exept that itis unde�ned on `. It is evident that h = (h�`) � (h� `) when` 2 dom(h).Proof . We only give the proofs for the heap-altering om-mands E:i := E0 and x := ons(E1; E2).For soundness of Bakwards Component Assignment , as-sume that s; h satis�es the preondition. The preonditionensures [[E℄℄s = ` 2 dom(h) is a de�ned loation, and so theassignment statement does not get stuk. By the seman-tis of E:i := E0 we need to show that s; h0 j= P , whereh0 = [h j ` 7! h[[E0℄℄s; v2i℄ and h(`) = hv1; v2i. From theassumption and the semantis of 9 we get thats0; h j= (E 7! x; y) � ((E 7! E0; y)��P )for the extension s0 of s whih binds x to v1 and y to v2.Then, from the de�nitions of � and 7!, we get thats0; h�` j= (E 7! x; y)s0; h� ` j= (E 7! E0; y)��P:The semantis of �� then implies that s0; (h � `) � [` 7!h[[E0℄℄s; v2i℄ j= P and, sine h0 = (h�`) � [` 7! h[[E0℄℄s; v2i℄, weget s0; h0 j= P: The stak s0 an be replaed by s, beause xand y are not free in P , and we are done.For ompleteness, assume that s; h 2 wp(E:i := E0; P ).From the safety part of wp we get that [[E℄℄s = ` 2 Lo forsome ` 2 dom(h). Suppose h(`) = hv1; v2i. We laim that[s j x 7! v1; y 7! v2℄; h j= (E 7! x; y) � ((E 7! E0; y)��P )The singleton heap h�` makes the left onjunt true. Thath�` satis�es the right onjunt follows from the wp assump-tion, whih implies that P is true if we update the originalheap h by mapping the �rst omponent of ` to [[E0℄℄s. Thatis, the semantis of �� and of the instane of 7! to its leftonspire to ensure that h�` satis�es the right onjunt. Thelauses for 9 and � imply that s; h satis�es the preondition.For soundness of Bakwards Cons, assume that s; h satis-�es the preondition. By the operational rule for alloationwe need to show [s j x 7! `℄; [h j ` 7! hv1; v2i℄ j= P when` 62 dom(h), [[E1℄℄s = v1, and [[E2℄℄s = v2. We know that[s j x0 7! `℄; [h j ` 7! hv1; v2i℄ satis�es P [x0=x℄, from thede�nitions of �� , 7! and 8. The result then follows usingstandard lemmas about renaming variables and removingfrom a state those not appearing freely in an expression.For ompleteness, assume s; h 2 wp(x := ons(E1; E2); P ).From the operational rule for ons, we obtain that[s j x 7! `℄; [h j ` 7! h[[E1℄℄s; [[E2℄℄si℄ j= P

for any loation ` 62 dom(h) (non-determinism of; is beingused here). That s; h satis�es the preondition then followsimmediately from this and the de�nitions.End of Proof
6. DISPOSEAll of the axioms we have onsidered so far are ompatiblewith the presene of dangling pointers, and dangling point-ers play an important role in the interpretations of � and �� .We might as well push this further and onsider a ommanddispose(E) whih dealloates a loation (thereby reates adangling pointer).The semantis of dispose is a slippery subjet, and whathappens on subsequent attempts to dereferene a disposedloation tends to be \unde�ned" by programming languagede�nitions. Operationally, we take the position that disposesimply removes a loation from the heap.` 2 Lo ` 2 dom(h) [[E℄℄s = `dispose(E); s; h ; s; (h� `)Reall that h� ` is h with ` removed.We do not wish to enter into a ontroversy over how wellthis models \unde�ned". Indeed, there may be no de�nitiveoperational semantis of dispose, and it is perhaps bettertreated from an axiomati perspetive.DisposeSuppose that a; b are not free in E. Then,�P � 9ab: (E 7! a; b)	dispose(E)�P	This axiom takes the view that you simply shouldn't dependon what ontents the disposed loation might or might nothave in the postondition.Reasoning bakwards from true we an �nd irumstanesunder whih a program is safe to exeute. For a double dis-pose we obtain false as the preondition as expeted, indi-ating that the program is not safe to exeute for any startstate.ffalsegftrue � 9ab: (x 7! a; b) � 9d: (x 7! ; d)gdispose(x)ftrue � 9ab: (x 7! a; b)gdispose(x)ftruegProposition 5. The Dispose axiom expresses the weak-est preondition.Proof . For soundness, assume the preondition holds fors; h. The preondition ensures [[E℄℄s = ` 2 dom(h) is ade�ned loation, so the ommand does not get stuk. Theresult of the dispose statement is the pair s; h � `, and weneed to show that s; h � ` j= P . This follows using thede�nitions of 9, � and 7!,For ompleteness, assume s; h 2 wp(dispose(E); P ). Fromthe operational rule and the de�nition of wp, whih requiressafety, we obtain that [[E℄℄s = ` 2 dom(h) is a loation thatpoints to something, say hv1; v2i, and that s; h� ` j= P . Itis lear that[s j x 7! v1; y 7! v2℄; h�` j= E 7! x; y



so, by the semantis of 9 and �, and the assumption thatx; y 62 free(P ), we obtain that s; h satis�es the preonditionas required.End of Proof
7. A SMALL EXAMPLEWe give a small example: a program for disposing a list.To formulate the preondition, we use an indutive de�nitionof a prediate rep n E, whih says that E represents a listof size n.rep 0 E �() E = nil ^ emprep n+ 1 E �() 9xy: (E 7! x; y) � rep n y:Then E points to a non-irular linked list when rep n Eholds for some n, and we de�nenlistE �() 9n: rep n E:Note that this de�nition just says that E points to a list,and ignores head links; variations are possible.2The spei�ation for the program says that, if p pointsto a list to begin with, then the program will (assumingit terminates) delete all the ells, resulting in the emptyheap. (The presene of emp in the base ase of the indutivede�nition is neessary for this.)fnlist pgwhile p 6= nil doq := p; p := p:2; dispose(q)fempgNow, we use the usual Hoare partial-orretness rule forwhile loops, where we hoose the preondition as the invari-ant. A proof outline for the body isfp 6= nil ^ nlist pgf9p0: 9x: (p 7! x; p0) � nlist p0gf9p0:9x: (p ,! x; p0) ^ �(nlist p0) � 9ab: (p 7! a; b)�gq := pf9p0:9x: (p ,! x; p0) ^ �(nlist p0) � 9ab: (q 7! a; b)�gp := p:2f(nlist p) � 9ab: (q 7! a; b)gdispose(q)fnlist pgIn the seond line we have listed an intermediate step usedin applying the rule of onsequene.To omplete the proof, ombining the negation of p 6= nilwith the invariant we obtainp = nil ^ nlist pas a valid postondition for the whole program. This im-plies emp by the de�nition of rep and so, by the rule ofonsequene, we are done.
8. LOCALITY OF SPECIFICATIONS AND

REASONINGConsider again the spei�ation of the program to disposea list.2We have not inluded reursive de�nitions in the formalsyntax, but the intent should be lear. In any ase, we willbe somewhat less formal here, and in partiular use a 9n forquantifying over natural numbers only.

fnlist pg � � � fempgThe �rst thing to notie here is the exat nature of thepreondition: if nlist p is true then there an be no ellsin the urrent heap other than those in the list pointed toby p. That is, nlist p holds of a struturer r r? - -- nil.....
p

but not of a heap with additional nodes not in the list. It ispossible for one of the head nodes to ontain a pointer, butthat pointer must either be to one of the nodes in the listor be dangling.This exat nature omes about beause of the use of emp inthe base ase of rep, and also beause of the exat nature of7!. In fat, suh an exat spei�ation is neessary, beauseif there were \junk ells", ells in the heap but not in the list,then we ould not onlude emp on termination. Here \junk"is relative: it just means ells that are not relevant to theorret operating of the program, not neessarily garbageells.The seond thing to note is that these junk ells havebeen avoided without talking about them expliitly in thede�nition of nlist p. Normally, one would have to inludean auxiliary lause whih says \for all ells, if that ell is inthe heap it is in the list". But we did not need to.However, there appears to be a problem with the spei-�ation: what if we want to run the program when thereare extra ells around? The spei�ation appears not to bestrong enough. Intuitively, however, we have veri�ed ex-atly the orret property: the preondition mentions onlythose ells whih are aessed by the program during exeu-tion. Why should we have to mention others? This setionexplains why we don't have to.The basis for our approah is a loal property of spei�-ations, whih we state informally as follows.If fPgCfQg holds, then exeution of C in a statesatisfying P an attempt to dereferene only thoseheap ells guaranteed to exist by P .Conventionally, the assumption is that a pre/post spei�-ation makes a positive statement about alterations to thestore that an be made, but additional hanges are allowed:this leads to the need for expliit frame axioms, whih saywhat doesn't hange. The formalism here turns the situa-tion around, by restriting the alterations (to the heap) thatan be made to be those spei�ally mandated by the spe-i�ations. Expliit provision is then required to santionhanges, instead of to disallow them.In this setion we investigate these ideas by examining arule, Frame Axiom Introdution.
8.1 Local/Global InteractionThe disussion above is onerned exlusively with theheap. For all we know, if fx ,! 1; 2gCfx ,! 3; 2g holdsthen C might hange a stak variable z. For example, z :=7; x:1 := 3 satis�es the spei�ation. So, in order to state



the rule for frame axiom introdution, we need to keep trakof stak variables altered by a program. We do this with asyntati ondition.De�ne Modi�esOnly(C) to be the set of (free)variables appearing alone to the left of := in C.The quali�ation \alone" means, for example, that the setModi�esOnly(x:i := E) is empty: Modi�esOnly is onernedwith modi�ations to stak variables only here.Frame Axiom IntrodutionfPgCfQgfP � RgCfQ �Rg Modi�esOnly(C) \ free(R) = ;It is important to see that we annot use ^ instead of �,as the resulting rule is unsound. More positively, using thisrule we an perform an inferenef(x ,! 1; 2)gCf(x ,! 3; 2)gf(x ,! 1; 2) � (z ,! 7; 11)gCf(x ,! 3; 2) � (z ,! 7; 11)gas long as we know that C doesn't modify the stak variablez. We use � here to identify a portion of the heap that isnot modi�ed.The soundness of Frame Axiom Introdution an be shownfor assignment statements, sequening, looping, and ondi-tionals. A thorough theoretial aount of this rule and itsonsequenes will be presented in a future paper [27℄.
8.2 Framing Procedure SpecificationsFrame axioms take on greater importane in the preseneof proedures, where one wants to be able to speify a pro-edure without referring to its ode [2℄. We give a briefdisussion of proedures in light of the above.Let us regard the program for disposing a list as a pro-edure, parametri in p, and where the auxiliary variableq is loal. To speify DisposeList we should give not onlythe preondition and postondition, but also a Modi�esOnlylause.fnlist pg DisposeList(p) fempgModi�esOnly(DisposeList(p)) = fpgWe laim that just using the loal spei�ation, whih onlymentions those heap ells touhed by the program, we aninfer properties of alls in wider ontexts. A good example ofthis is when we hain two alls to DisposeList, to dispose oftwo di�erent lists. Then, using Frame Introdution togetherwith Sequening and Consequene, we an infer that the twoalls work properly, as long as the input lists don't overlap.�nlist p	DisposeList(p)�emp	�(nlist p) � (nlist q)	DisposeList(p)�emp � nlist q	�(nlist p) � (nlist q)	DisposeList(p)�nlist q	Then, the spei�ation �nlist q	DisposeList(q)�emp	 to-gether with the usual Hoare rule for sequening gives us�(nlist p)�(nlist q)	DisposeList(p);DisposeList(q)�emp	as desired. Conventionally, an expliit frame axiom wouldbe needed to santion a onlusion of this sort, beause oth-erwise we would have no way of knowing that DisposeList(p)doesn't alter the list pointed to by q. (For instane, if the

�rst all were to inorretly dispose of one of the nodes inq's list, then we would get a safety violation in the seond.)The same priniple works when we hain together alls todi�erent proedures, suh as proedures for inserting into,deleting from, or opying lists.It is important to realize that the use of � in the on-juntion (nlist p) � (nlist q) is not simply a reahabilityondition, whih states, say, that the ells reahable fromp and q are disjoint. For instane, (nlist p) � (nlist q)holds ofr
rr rrr rrr
?? - --- -- 66 nil4 nil
p

q
..........

Here, it is ertainly possible to reah one list from the other,by following head links, but this does not ause a runtimeerror in DisposeList(p); DisposeList(q).
9. THE INTUITIONISTIC SEMANTICSIn this setion we onsider an intuitionisti semantis. Allassertions will satisfy theMonotoniity Condition: If s; h j= P and h v h0then s; h0 j= P ,where h v h0 indiates that the graph of h is a subset of thegraph of h0. Formally, the intuitionisti language is obtainedby omitting emp, adding lauses for intuitionisti onnetivesthat annot be de�ned aways; h j= P ^Q i� s; h j= P and s; h j= Qs; h j= P _Q i� s; h j= P or s; h j= Qs; h j= 8x:P i� 8v 2 V al: [s j x 7! v℄; h j= Pand making two rede�nitions:s; h j= E 7! E1; E2 i� [[E℄℄s 2 dom(h)and h([[E℄℄s) = h[[E1℄℄s; [[E2℄℄sis; h j= P ) Q i� 8h0 w h :if s; h0 j= P then s; h0 j= Q:The other semanti lauses are as in Setion 3.1.3 To see whythe law of the exluded middle fails in this model, onsider3Intuitionisti 8 usually quanti�es over \future" possibleworlds, but in a �xed-domain semantis (where the sameindividuals exist at eah world) the pointwise de�nition re-mains adequate. Also, in the lause for � one might haveexpeted to see a ondition h0 � h1 v h instead of asking



(x 7! 2; 2) _ :(x 7! 2; 2), where :P = P ) false. If s is astak with sx = ` and [℄ is the empty heap, then s; [℄ 6j= x 7!2; 2. But we also have s; [℄ 6j= :(x 7! 2; 2), sine there is anextension [` 7! 2; 2℄ of [℄ where s; [` 7! 2; 2℄ j= x 7! 2; 2. Sos; [℄ 6j= (x 7! 2; 2) _ :(x 7! 2; 2).The semanti onsequene relation and interpretation oftriples are de�ned as before. Some of the basi properties ofthe logi are altered by the intuitionisti semantis.Proposition 6. Propositions 1 and 2 go through for theintuitionisti semanti of this setion, with the followinghanges:� The semantis validates intuitionisti rather than las-sial logi, so that exluded middle fails generally;� true is the unit of �;� Weakening for � holds: A �B j= A;� Exluded middle holds for pure assertions;� P �Q and P ^Q are equivalent if P is pure, even whenQ is not.A useful observation is that the lassial and intuitionis-ti interpretations behave similarly when 7! appears as animmediate onstituent of �. To formulate this, reall that if` 2 dom(h) then we use h�` to denote the singleton heapin whih ` is mapped to h(`) .Lemma 7. [Exatness Lemma℄s; h j= (E 7! E1; E2) � Pin the intuitionisti semantis i� there is some ` 2 dom(h)suh thats; h�` j= (E 7! E1; E2), ands; h� ` j= P .Thus, even though the intuitionisti semantis uses an in-exat interpretation of 7!, we an get away with the exatinterpretation when looking at one ourrene of 7! in anargument to �. This explains why it is possible to use ei-ther of the intuitionisti or lassial semantis for the sameprogram-proving axioms.Theorem 8. The weakest preondition results hold forthe intuitionisti semantis.Of ourse, this result has a di�erent import than the previ-ous ones, beause it refers exlusively to intuitionisti propo-sitions, that are invariant under heap extension. The onlyalterations to the previous proofs involve an appeal to theExatness Lemma in several plaes, and appeals to mono-toniity in some situations where it was not needed in theargument for lassial semantis (the ompleteness parts ofBakwards Cons and Bakwards Objet-omponent Assign-ment).We an ompare the two semantis by noting that we antranslate from the intuitionisti language into the lassialone using a modal translation. We do not atually need toextend the lassial language with an expliit modality to dothis, beause we an already express the neessity modalityfor heap extension. That is,for equality: but the monotoniity ondition, together withthe fat (true of the partiular model here) that h0 � h1 v hwhen h bounds eah, implies that the two de�nitions areequivalent.

s; h j= true��P i� 8h0 w h: s; h0 j= Pholds in the lassial semantis.The Modal Translation. The translation (�)Æ sendsE 7! E1; E2 to E ,! E1; E2P ) Q to true�� (P Æ ) QÆ)and everything else (indutively) to itself.4Proposition 9. s; h j= P in the intuitionisti semantisi� s; h j= P Æ in the lassial semantis.So, the lassial semantis is, in this sense, the more ex-pressive of the two. More to the point, the intuitionistisemantis has an additional ondition, monotoniity, andwe should ask whether there are any properties of interestthat do not satisfy it.It turns out that many natural pre- and postonditionsfor pointer algorithms do satisfy monotoniity. Often, onemakes a positive statement to the e�et that a olletion ofells in the heap represents some abstrat data struture,and these ells ontinue to represent the struture whenmore ells are added. Still, there are some natural prop-erties that do not satisfy monotoniity. An example is givenby the rep and nlist prediates from Setion 7. There, theuse of emp in the base ase of rep has the e�et of limiting aheap satisfying nlistE to exatly those ells reahable, byfollowing tail links, from E; this was essential for showingthat all of the ells were de-alloated. Other typial prop-erties of this sort are that there is a unique pointer (in theheap) to ons ell x, or that the heap has exatly 4 ons ells.Generally, non-monotone properties are useful in situationswhere one is onerned with lose ontrol over memory us-age, suh as when ensuring that there are no spae leaks.We onlude this setion by ontrasting the two semantisusing a subtle example from [35℄, the following instane ofthe Cons axiom:�:9x: x 7! 1; 2	y := ons(1; 2)�(:9x: x 7! 1; 2) � (y 7! 1; 2)	.At �rst sight it looks as if the triple should be false, beausethe postondition appears to be inonsistent. The intuition-isti semantis saves the situation by making the preon-dition inonsistent as well. To see why, onsider any s; h.We an extend h with a loation ` 62 dom(h), and obtain[h j ` 7! h1; 2i℄. Sine this heap extends h, the intuitionis-ti negation quanti�es over it. And in this extended heap,9x: x 7! 1; 2 is true.The same triple holds as well in the lassial semantis,but the reason now is not that the preondition is false, butrather that the postondition is not inonsistent. That is,:9x: x 7! 1; 2 may be true of a small world but false at abigger one, and the � in the postondition lets us pik thissmaller world out without inurring falsity at the big world.For example, in the singleton heap where the a loationdenoted by x has ontents h1; 2i the empty heap an be4This translation uses the indued modality less often thanone might have expeted. Normally, one would use themodality with 8 as well, and a bakwards modality in thease of �. It is spei� properties of the model (onstantdomain, bounding properties of �) that justify the simplertranslation.



seleted for :9x: x 7! 1; 2 and the singleton heap itself forx 7! 1; 2.The absene of Weakening in the lassial semantis issigni�ant here. For, if we had(:9x: x 7! 1; 2) � (y 7! 1; 2) j= :9x: x 7! 1; 2; and(:9x: x 7! 1; 2) � (y 7! 1; 2) j= y 7! 1; 2then we ould obtain(:9x: x 7! 1; 2) � (y 7! 1; 2) j= (:9x: x 7! 1; 2) ^ (y 7! 1; 2);the onsequent of whih is ontraditory.
10. SUMMARY AND RELATED WORKThe most relevant related work is ontained in the twomain preursors, the papers of Burstall and Reynolds [5, 35℄.To summarize our additions to [35℄, we have: (i) provided alassial model, and investigated the relation between lassi-al and intuitionisti variants; (ii) added BI's spatial impli-ation �� to the assertion language, and used it to expressweakest preonditions; (iii) given a treatment of dispose;and (iv) further expliated the form of loal reasoning madepossible by the spatial approah to pointer logi.There have been a number of papers on program-provingfor pointers ([16, 30, 23, 17, 22, 11, 3, 6℄ is a partial list).What sets the approah of Reynolds and Burstall apart isits loal treatment of assignment. In other approahes as-signment in the presene of aliasing tends to be dealt withusing global store parameters, or several global parameters,or with axioms that involve major surgery on formulae. Inontrast, in fP � (x 7! a; b)gx:1 := zfP � (x 7! z; b)g the op-erationally loal nature of assignment is mirrored beautifullyin the logi.There has been growing interest in using program logi forpointers in stati analysis and related problems, and someexellent results have been obtained [18, 24, 37, 40℄. Thework here appears to be largely omplementary. Indeed, al-though the devil is in the detail, it would be oneivable toombine one of these assertion languages with a substru-tural logi, in the style of BI. The main question is whethersuh a ombination would give rise to loal reasoning orspei�ations, in a way that does not interfere with the al-ready suessful properties of these languages.We desribed the loal harater of spei�ations in thelogi, and began an exploration of its onsequenes by on-sideration of the rule for introduing frame axioms. Thereare many vaguely related ideas in dozens of papers in the AI,modal and temporal logi of proesses, and program spei�-ation literatures; we annot do justie to these literatures inthis short spae (we mention only one from eah strand: [33,20, 1℄). The main point, however, is the impliit and suintway that behind-the-senes dependenies, whih arise frompointers that are not diretly named by program variables,are dealt with using �. We are not aware of a previous ap-proah that deals with these dependenies in a omparablemanner. That being said, there is muh more to be learntabout loal reasoning; some further developments will bepresented in a followup paper [27℄. In addition, it would beinteresting to attempt to apply these ideas in related situa-tions where aliasing is prevalent, suh as �-alulus or objetaluli.In the linear logi literature there have been numeroushints, suggesting that substrutural logi an be used to

speify and reason about ations loally (e.g. [13, 21℄).While this proposal was tantalyzing, it has not subsequentlybeen developed very far, ertainly not as far as a programlogi for pointers. (Enodings of the semantis of impera-tive languages, e.g. [9℄, are important and useful, but fallwell short of program logi.) The results of this paper mightbe interpreted as o�ering fresh justi�ation for those earlyhints, and in the demanding territory of pointers, albeit fora logi that is di�erent from linear logi in key respets.A feature of BI is that it o�ers a simple-minded treatmentof additive onnetives (based on lassial or intuitionistilogi) alongside substrutural ones; there is no \!", and noneed to stay within a onstrutive setup. This omparativesimpliity, as illustrated by the pointer model, is a key toappliations.There are two other losely related piees of work to reporton. The �rst is work of Cardelli and Gordon on AmbientLogi [8℄, a logi for mobile ambients. Their logi an beseen as an extension of Boolean BI; on the ommon onne-tives, the semanti models of Ambient Logi that have beenpresented are instanes of the possible worlds semantis ofBI �rst presented in [25℄ and further developed in [26, 32℄.Ambient logi also has a onnetive, the \ambient math",whih interats with � in a way that leads to pleasantlyompat and intuitive spei�ations of ertain properties ofmobile proesses.In an interesting further development, Cardelli and Ghellihave proposed a labelled tree model as a basis for a querylanguage for semi-strutured data [7℄. The tree model issimilar to the pointer model of BI, but for two main di�er-enes: the model here allows for irular strutures as wellas trees; and, the ombining operation here is partial, wherein the labelled tree model it is total. Partiality enables usto ensure that subheaps are disjoint, and this is essentialfor the soundness of the Hoare triple axioms. We speulatethat the ideas in this paper, espeially those involving theinteration between � and �� , might be adapted to aountfor update or reon�guration of semi-strutured data.The seond losely related work is that of Smith, Walker,and Morrisett on Alias types [38, 39℄. Alias types use type-theoreti ousins of the onjuntion � and points-to relation7! to state properties of data strutures. The resulting typ-ing rule for omponent assignment is very lose to (a CPSversion of) Reynolds's axiom, and their treatment of mem-ory disposal is very near to that here. Of ourse, the bene�tof a type system is that it is stati, while onversely logi ismore expressive. In any ase, the remarkable onvergene ofideas in spatial pointer logi and in Alias types might per-haps be taken as a positive indiation, of the naturalness ofthe approah.AknowledgementsWe are grateful to David Pym, Uday Reddy and JohnReynolds for advie and omments that helped to improvethe material in this paper. This researh was supported bya grant from the EPSRC.
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