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ABSTRACTReynolds has developed a logi
 for reasoning about muta-ble data stru
tures in whi
h the pre- and post
onditions arewritten in an intuitionisti
 logi
 enri
hed with a spatial formof 
onjun
tion. We investigate the approa
h from the pointof view of the logi
 BI of bun
hed impli
ations of O'Hearnand Pym. We begin by giving a model in whi
h the law ofthe ex
luded middle holds, thus showing that the approa
his 
ompatible with 
lassi
al logi
. The relationship betweenthe intuitionisti
 and 
lassi
al versions of the system is es-tablished by a translation, analogous to a translation fromintuitionisti
 logi
 into the modal logi
 S4. We also 
on-sider the question of 
ompleteness of the axioms. BI's spa-tial impli
ation is used to express weakest pre
onditions forobje
t-
omponent assignments, and an axiom for allo
atinga 
ons 
ell is shown to be 
omplete under an interpretationof triples that allows a 
ommand to be applied to states withdangling pointers. We make this latter a feature, by in
or-porating an operation, and axiom, for disposing of memory.Finally, we des
ribe a lo
al 
hara
ter enjoyed by spe
i�
a-tions in the logi
, and show how this enables a 
lass of frameaxioms, whi
h say what parts of the heap don't 
hange, tobe inferred automati
ally.
1. INTRODUCTIONPointers are an extremely powerful and 
exible program-ming me
hanism, useful for manipulating linked data stru
-tures and for providing stru
tured a

ess to data in memory.They are also extremely dangerous. Pointer-manipulatingprograms are notoriously diÆ
ult to get right, and even leadto runtime safety violations (su
h as from dereferen
ing nilor a disposed pointer) whi
h lie beyond the range of 
onven-tional type systems. An e�e
tive program-proving formal-ism for dealing with pointers would be most wel
ome.But pointers have also always been one of the thornypat
hes of program proving. The most immediate issue tofa
e is that the Hoare substitution-oriented treatment of as-
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signment fP [E=x℄gx := EfPgdoes not 
ope with 
omponent assignments of the formE:i :=E0 (or E ! i = E0 in C syntax) that alter the heap. Otherissues are raised by operations for allo
ating and, espe
ially,disposing of memory. A number of resear
hers have devel-oped program-proving formalisms for pointers (e.g., [16, 30,23, 17, 22, 3, 6℄), but no de�nitive solution has emerged asof yet. Most importantly, lying behind te
hni
alities withaxioms for assignment and storage management is a deeperdiÆ
ulty, the \
omplexity of pointer swing [15℄" that resultsfrom aliasing : there 
an be more than one pointer to a 
ellthat is altered, in whi
h 
ase assignment to the 
ell a�e
tsseemingly unrelated expressions. The real problem is to 
on-trol, or understand, this 
omplexity, rather than simply toaxiomatize it.A striking advan
e has been re
ently made by Reynolds[35℄, building on early work of Burstall [5℄. The main nov-elty is the use of a spatial form of 
onjun
tion P � Q, thatsplits the heap into distin
t portions that the di�erent 
on-jun
ts talk about. In addition, there is a form of assertion,the points-to relation 7!, whi
h is used to make statementsabout the 
ontents of heap 
ells. For instan
e, the spatial
onjun
tion (x 7! 3; y) � (y 7! 4; x) says that x and y denotedistin
t lo
ations, where the 
dr of x is a pointer to y, the
dr of y is a pointer to x, and where the 
ar's 
ontain 3 and4.
6& %rr r r?-?3 4
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The 
ombination of � and 7! leads to remarkably simpleaxioms. In parti
ular, when an assertion of the form P �(x 7! a; b) holds prior to a 
omponent assignment x:1 := zwe know that the assignment 
annot a�e
t P , and so P �(x 7! z; b) will hold on 
on
lusion. The logi
 of pointerswing is treated in a lo
al way that mirrors the intuitiveoperational lo
ality of assignment.In this paper we investigate the approa
h from the pointof view of the logi
 BI of O'Hearn and Pym [25℄. The most



distin
tive feature of BI is its joint treatment of two impli
a-tion 
onne
tives. One impli
ation,), is from standard intu-itionisti
 or 
lassi
al logi
, while the other, �� , is the impli-
ation for a basi
 substru
tural logi
. Reynolds's assertionlanguage is already substru
tural: it adds a Contra
tion-free
onjun
tion, where P and P �P are not generally equivalent,to intuitionisti
 logi
: BI's �� is related to � by the dedu
-tion theorem, whi
h states that a 
onsequen
e A j= B��Cholds i� A � B j= C does. There is also a version of the de-du
tion theorem whi
h relates ) and the usual 
onjun
tion^.The basi
 idea of BI's semanti
s is to allow statementsto be made about the world using familiar 
onne
tives su
has ), : and ^, and then to 
ombine these statements in amodular way using � and �� . The key to this is the resour
einterpretation of the 
onne
tives, where � de
omposes the
urrent resour
e into pie
es and �� talks about new or freshresour
e [25, 26℄. Substru
tural logi
s may appear ratherexoti
 beasts. But the pointer models we present providea very 
on
rete and, we believe, intuitive way of under-standing the 
onne
tives, quite apart from overtly logi
al
on
erns.With this as ba
kground, we now des
ribe the main 
on-tributions of the paper. These fall under three headings: (i)Classi
al versus Intuitionisti
; (ii) Completeness Issues; (iii)Lo
al Reasoning.Classi
al or Intuitionisti
? . Reynolds used an intuition-isti
 interpretation of pre- and post
onditions in his logi
.This was presented in a possible worlds style, whi
h treatsnegation and impli
ation by quantifying over all extensionsto the 
urrent heap [19℄, and gives rise to a monotoni
ityproperty where all propositions are invariant under heapextension. Although the intuitionisti
 semanti
s is intu-itive, it seemed to us reasonable to ask: might the law ofthe ex
luded middle be 
ompatible with the axioms for as-signment and other statements? Reynolds gave an exam-ple whi
h indi
ates that his axioms are unsound under a\straightforward" 
lassi
al reading, but left open the ques-tion of whether a di�erent 
lassi
al semanti
s might be pos-sible.We answer by presenting a 
lassi
al model, whi
h is apossible worlds model of Boolean BI (where : and ) are
lassi
al), and whi
h validates all of the axioms for Hoaretriples. In this model the worlds are heaps (
olle
tions of
ons 
ells in storage), and the 
onjun
tion P �Q is true justwhen the 
urrent heap 
an be split into two 
omponents, oneof whi
h makes P true and the other of whi
h makes Q true.The impli
ation P��Q talks about new or fresh pie
es ofheap, disjoint from the 
urrent heap. It says that, wheneverwe are given new heap that makes P true, the 
ombined newand 
urrent heap will make Q true. The other 
onne
tivesare interpreted pointwise in this model; for example :P istrue of a world just if P is not true of that world.Perhaps more signi�
ant than ex
luded middle is that the
lassi
al semanti
s is more expressive than the intuitionis-ti
 one. In parti
ular, it allows the spe
i�
ation of exa
tproperties of the heap, su
h as \the heap is empty", whi
h
annot be expressed in the intuitionisti
 semanti
s be
ausethey are not invariant under heap extension.We work with the 
lassi
al semanti
s for most of the pa-per, but 
onsider the relation to the intuitionisti
 modelin Se
tion 9. We des
ribe a translation from intuitionisti
to 
lassi
al whi
h is similar to a standard translation from

intuitionisti
 logi
 to the modal logi
 S4, thereby showingthat all intuitionisti
 properties 
an be expressed within the
lassi
al setup.Completeness Issues. Although the treatment of assign-ment given by Reynolds, and by Burstall, is very elegant, at�rst sight its simpli
ity appears to 
ome at the pri
e of for
-ing assertions to be written in a stylized form, whi
h wouldnot allow 
ertain programs to be veri�ed. This would per-haps be a pri
e worth paying, but we show that the weakestpre
ondition 
an in fa
t be expressed. The 
ru
ial pointfor this is an interesting intera
tion between the �� and �
onne
tives. For example, we will explain in Se
tion 3.1 how(x 7! 3; 5) � ((x 7! 7; 5)��P )says that x points to a 
ell holding h3; 5i, but also that ifwe update the 
ar to 7 then P will be true. We wouldexpe
t this to be a valid pre
ondition for a post
onditionP with assignment statement x:1 := 7, where the indi
atedassignment sets the �rst 
omponent of (the 
ons 
ell denotedby) x to 7.We show how the weakest pre
ondition for ea
h atomi
statement 
an be expressed in the logi
. The semanti
sused for this result is based on an interpretation of triplesthat allows 
ommands to be applied to states with danglingpointers. Dangling pointers also play an essential role in theinterpretations of �� and �. We make this a feature by 
on-sidering an operation that disposes of memory (thereby 
re-ating dangling pointers). Sin
e disposing memory is su
h adevastatingly e�e
tive method of introdu
ing programmingerrors, we were pleasantly surprised to �nd that the ap-proa
h allows for a simple axiom whi
h enables programswith disposal to be proven. The semanti
s of triples we useis one that supports the slogan well-spe
i�ed programs don'tgo wrong , where going wrong 
ould result from, say, deref-eren
ing nil or a disposed pointer.The 
lassi
al semanti
s presented in this paper 
ame afterthe intuitionisti
 semanti
s, and we must admit that it tooksome time to get used to. (The intuitionisti
 semanti
s wasdis
overed independently by us, while we were working froman early version of [35℄.) Ultimately, the 
lassi
al modelseemed natural only after we had the 
ourage to 
onsiderdisposal, where it is essential to be able to spe
ify mem-ory utilization exa
tly. Reynolds has sin
e been braver still,working with a generalization of the logi
 that en
ompassespointer arithmeti
 [36℄.Lo
al Reasoning. Above we mentioned the lo
al way thatpointer swing is treated. We examine the sense in whi
hlo
al reasoning extends to larger-s
ale operations. In fa
t,one of the most promising suggestions in the approa
h ofReynolds and Burstall is that veri�
ations might be donein a way that s
ales well, by lo
alizing the e�e
ts of heap-altering 
ommands to 
ertain of the 
onjun
ts in an assertionP1 � � � � � Pn.We investigate this idea by formulating a rule for auto-mati
ally inferring 
ertain frame axioms, whi
h des
ribe in-variants of the heap. Traditionally, an inordinate amount ofe�ort needs to be spent spe
ifying what a program doesn't
hange, so mu
h so that these frame axioms distra
t fromthe main 
on
ern { what 
hanges. In the absen
e of point-ers what doesn't 
hange 
an be su

in
tly summarized usingmodi�es 
lauses [14℄, whi
h list the program variables 
orre-sponding to lo
ations that 
an be altered by a program. Butfor pointers, whi
h may in
lude links to 
ells not named by



variables in the program, the problem is mu
h more a
ute;we show how the 
onjun
tion � 
an be used to derive su
haxioms. The point is that this allows spe
i�
ations to bekept \small", where they des
ribe only the area of the heapthat a program a
tually a
ts on. Invariant properties forother areas of the heap 
ome for free.
2. COMMANDS AND BASIC DOMAINSThe imperative language that Reynolds deals with is asimple 
ommand language, with Lisp-like expressions for a
-
essing and 
reating 
ons 
ells. We will not give a full syntaxof 
ommands, as the treatment of 
onditionals and loopingstatements is standard. Instead, we will 
on
entrate on as-signment statements, whi
h is where the main novelty of theapproa
h lies.The 
ommands we 
onsider are as follows.C ::= x := Ej x := E:ij E:i := E0j x := 
ons(E1; E2)j ...i ::= 1 j 2Here, ea
h of the E's is a pure expression; that is, E doesnot 
ontain a dot. In E:i the i is assumed to be one of the
onstants 1 or 2 (the extension to varying length re
ords,or named alternatives, is straightforward). The se
ond andthird assignment statements read and update the heap, re-spe
tively. The fourth 
reates a new 
ons 
ell in the heap,and pla
es a pointer to it in x.Noti
e that these 
ommands do not dire
tly handle double-dereferen
ing, su
h as x:1:2, where one looks more than one-deep into the heap. One would have to break a use of su
han expression, either on the left or right of :=, into severalsteps, possibly using auxiliary variables.1An expression 
an denote an integer, an atom, or a 
ons
ell. E ::= x Variablej 42 Integerj nil nilj a atomj � � �We have not given a full expression syntax; the only 
on-straint is that an expression 
an be interpreted in the se-manti
 domain spe
i�ed below.We use the following semanti
 domains, whi
h are as in[35℄ (ex
ept for our restri
tion to binary 
ells, whi
h is notessential). V al = Int [Atoms [ Lo
S = V ar *fin V alH = Lo
 *fin V al� V alHere, Lo
 = f`; :::g is an in�nite set of lo
ations, V ar =fx; y; :::g is a set of variables, Atoms = fnil; a; :::g is theset of atoms, and *fin is for �nite partial fun
tions. We
all an element s 2 S a sta
k, and h 2 H a heap. There1This restri
tion is similar to the form of assignment state-ments sometimes used in intermediate languages for stati
analysis of pointer programs.

is a deliberate distin
tion between the two: sta
k variablesare maintained a

ording to a sta
k dis
ipline and are notallowed to alias one another; heap variables or pointers donot obey a sta
k dis
ipline. [We will not in
lude an expli
itoperation for allo
ating sta
k variables.℄We use dom(h) to denote the domain of de�nition of aheap h 2 H, and dom(s) to denote the domain of a sta
ks 2 S.An expression is interpreted as a heap-independent value[[E℄℄s 2 V alwhere the dom(s) in
ludes the free variables of E.The 
ommands are interpreted using a relation; on 
on-�gurations, where the 
on�gurations in
lude triples C; s; hand terminal 
on�gurations s; h, for s 2 S and h 2 H. Weassume the semanti
s of expressions to spe
ify ;.In the following rules we use r to range over elementsof V al � V al, �ir for the �rst or se
ond proje
tion, and(r j i 7! v) to indi
ate the pair like r ex
ept that the i'th
omponent is repla
ed with v.[[E℄℄s = vx := E; s; h ; [s j x 7! v℄; h[[E℄℄s = ` 2 Lo
 h(`) = rx := E:i; s; h ; [s j x 7! �ir℄; h[[E℄℄s = ` 2 Lo
 h(`) = r [[E0℄℄s = v0E:i := E0; s; h ; s; [h j ` 7! (r j i 7! v0)℄` 2 Lo
 ` 62 dom(h) [[E1℄℄s = v1 ; [[E2℄℄s = v2x := 
ons(E1; E2); s; h ; [s j x 7! `℄; [h j ` 7! hv1; v2i℄The lo
ation ` in the fourth 
ase is not spe
i�ed uniquely, soa new lo
ation is 
hosen non-deterministi
ally. We 
an alsoin
lude typi
al rules for sequen
ing, looping, et
. The rela-tion ; is a one-step semanti
s, and these other 
onstru
tswould give rise to non-terminal 
on�gurations. We say that� \C; s; h is stu
k" in 
ase there is no 
on�guration Ksu
h that C; s; h; K, and� \C; s; h is safe" in 
ase C; s; h;� K implies that K isa terminal 
on�guration s0; h0 or is not stu
k.Being stu
k is a kind of runtime error. For instan
e, a 
om-mand 
an get stu
k by an attempt to dereferen
e nil or aninteger. Note also that the semanti
s allows dangling ref-eren
es, as in the sta
k [x 7! `℄ with empty heap [℄. Theassignment x:1 := 2 is stu
k for this sta
k and heap.This de�nition of safety is formulated with partial 
orre
t-ness in mind: with loops C; s; h 
ould fail to 
onverge to aterminal 
on�guration without be
oming stu
k.
3. A MODEL OF BOOLEAN BIThe pre- and post
onditions for 
ommands will be writtenusing the following formulae.P;Q;R ::= � Atomi
 Formulaej false Falsityj P ) Q Classi
al Impli
ationj emp Empty Heapj P �Q Spatial Conjun
tionj P��Q Spatial Impli
ationj 9x:P Existential Quanti�
ation



This syntax di�ers from that of Reynolds in three ways.First, we 
onsider the substru
tural impli
ation �� and unitemp from BI. The unit was not needed in [35℄ be
ause in theintuitionisti
 semanti
s the unit of � is true (this is be
auseWeakening for � is present). Se
ond, we use the BI symbol� instead of & for the spatial 
onjun
tion. Finally, be
ausewe are in a Boolean situation we 
an de�ne various other
onne
tives as usual, rather than taking them as primitive::P = P ) false; true = :(false); P _Q = (:P )) Q;P ^Q = :(:P _ :Q); 8x: P = :9x::P .The set free(P ) of free variables of a formula is de�nedas usual, as is the 
apture-avoiding substitution P [E=x℄.The atomi
 formulae in
lude an equality relation and thepoints-to relation.� ::= E = E0 Equalityj E 7! E1; E2 Points toj � � �In pra
ti
e, one would also want atomi
 predi
ates des
rib-ing indu
tive properties of the heap, or a re
ursive fa
ilitywhi
h allows su
h properties to be de�ned.
3.1 Semantic ClausesThe semanti
s of assertions is given by a for
ing relationof the form s; h j= Pwhi
h asserts that P is true of sta
k s 2 S and heap h 2 H.It is required that dom(s) � free(P ). The semanti
s isorganized in a possible worlds style, where the heaps are theworlds. We use the following notation in formulating thesemanti
s:� h#h0 indi
ates that the domains of heaps h and h0 aredisjoint;� h�h0 denotes the union of disjoint heaps (i.e., the unionof fun
tions with disjoint domains).Here are the semanti
 
lauses.s; h j= E = E0 i� [[E℄℄s = [[E0℄℄ss; h j= E 7! E1; E2 i� f[[E℄℄sg = dom(h)and h([[E℄℄s) = h[[E1℄℄s; [[E2℄℄sis; h j= emp i� h = [℄ is the empty heaps; h j= P �Q i� 9h0; h1: h0#h1; h0 � h1 = h;s; h0 j= P and s; h1 j= Qs; h j= P��Q i� 8h0: if h0#h and s; h0 j= P thens; h � h0 j= Qs; h j= false nevers; h j= P ) Q i� if s; h j= P then s; h j= Qs; h j= 9x:P i� 9v 2 V al: [s j x 7! v℄; h j= PThe points-to relation E 7! E1; E2 looks one-deep into theheap. In the 
lassi
al semanti
s it is interpreted \exa
tly",by requiring that that E denotes the only 
ell in the 
urrentheap. The semanti
s is 
exible here, in allowing Ei in E 7!E1; E2 to denote a lo
ation that is not in the domain of h.For example, in

[x 7! `; y 7! `0℄; [` 7! h2; `0i℄ j= (x 7! 2; y)the lo
ation `0 is dangling, whi
h is to say that it is not inthe domain of the heap.The 
onjun
tion P �Q is true just when the 
urrent heap
an be de
omposed into two 
onstituents in a way thatmakes P true of one 
onstituent and Q true of the other.With this de�nition, (x 7! 3; y) � (y 7! 4; x) 
orresponds tothe box-and-pointer diagram from the Introdu
tion. Noti
ethe importan
e of dangling pointers here: the store 
orre-sponding to the left 
onjun
t is
rr r?-?3

x y
while that for the right is

6& %
r r r?? 4
x y

This model di�ers from the one in [35℄ in three ways.First, the impli
ation ) is interpreted in a pointwise fash-ion, whi
h results in a 
lassi
al semanti
s. This is a seman-ti
s whi
h uses the boolean algebra stru
ture of the powersetof H, rather than the 2-element boolean algebra. Se
ond,we in
lude emp and �� . And third, the points-to relationis interpreted exa
tly, where s; h j= E 7! E1; E2 does notimply s; h0 j= E 7! E1; E2 whenever h0 is a bigger heap thanh (bigger in the sense of in
lusion of partial fun
tions).We 
an express an inexa
t variant of points-to as followsE ,! E1; E2 = (true � E 7! E1; E2).Generally, true � P says that P is true of some heap 
on-tained in the 
urrent one. Conversely, if we were to take ,!as primitive then we 
ould de�ne 7! in terms of it using theformulaE ,! E1; E2 ^ :�(:emp) � (E ,! E1; E2)�.The di�erent way that the two 
onjun
tions � and ^ be-have is illustrated by the following examples.1. (x 7! 1; 2) � (x 7! 1; 2) is never true, be
ause, howeverthe heap is split up, x will be left dangling in one ofthe 
onjun
ts.2. (x 7! 1; 2)^(x 7! 1; 2) is equivalent to x 7! 1; 2, and sois true in the singleton heap where x points to h1; 2i.3. (x 7! 1; 2) � :(x 7! 1; 2) 
an be true when x points toa 
ell holding h1; 2i in the 
urrent heap, be
ause theheap 
an then be split into a singleton where (x 7! 1; 2)and another heap where x is dangling, thus making:(x 7! 1; 2) true.



4. (x 7! 1; 2) ^ :(x 7! 1; 2) is never true.The di�eren
e between ,! and 7! shows up in the presen
eor absen
e of Weakening for �.1. P � (x 7! 1; 2) ) (x 7! 1; 2) is not always true, forinstan
e when the ante
edent is true of a heap withmore than one de�ned lo
ation.2. P � (x ,! 1; 2)) (x ,! 1; 2) is always true.A 
ru
ial ingredient in the semanti
s of �� is the require-ment h0#h, whi
h has the e�e
t of ensuring that h0 is a newor fresh pie
e of heap. That is, its domain of de�nition mustbe disjoint from the domain of the 
urrent heap h.We 
an now explain the example(x 7! 3; 5) � �(x 7! 7; 5)��P �from the Introdu
tion. We 
laim that this formula says thatx denotes a 
ell whi
h holds h3; 5i in the 
urrent heap, butalso that if we update the 
ar to 7 then P will be true. Tosee why, �rst note that the semanti
s of � splits the heap,say, '
&

r?? �3
x
5 RestofHeapinto two portions, one where (x 7! 3; 5) holds and a se
ondheap where the lo
ation denoted by x is dangling:'
&

r?? �
x RestofHeapWe have in
luded a dangling pointer out of the rest of theheap here to emphasize that the lo
ation might be refer-en
ed from within a heap 
ell, as well as from x. Be
ausethe asso
iation (x 7! 3; 5) has been, in a sense, retra
ted bydeleting the asso
iation from the heap in the right 
onjun
t,this frees �� to extend the se
ond heap with a di�erent 
on-tents for the lo
ation denoted by x. The semanti
s of ��and 7! then ensure that P must be true when this se
ondheap is extended by binding x's lo
ation to h7; 5i.'

&
r?? �7
x
5 RestofHeap

So, the intuitive des
ription in terms of updating followsfrom several steps in the semanti
s, whi
h add up to \updateas deletion followed by extension". (We stress that x denotesthe same lo
ation at ea
h step in this narrative , even whenthat lo
ation is dangling; the update expressed is to theheap, not the sta
k.)
3.2 PropertiesThe semanti
 
onsequen
e relation P j= Q between for-mulae is de�ned to hold i� for all s; h, if s; h j= P thens; h j= Q. This assumes that dom(s) � free(P ) [ free(Q).Proposition 1. The usual rules of 
lassi
al logi
 are soundfor j=, along with� is 
ommutative and asso
iative, with unit empP 0 j= P Q0 j= QP 0 �Q0 j= P �QR � P j= QR j= P��Q R j= P��Q R0 j= PR �R0 j= QIn parti
ular, note that two versions of the dedu
tion the-orem hold at the same time:R j= P��Q i� R � P j= QR j= P ) Q i� R ^ P j= Q:In [25℄, these properties were taken as the basis for anatural dedu
tion presentation of BI, where 
ontexts werebun
hes: trees built from two kinds of 
ombining operator,one 
orresponding to � and the other to ^. That presenta-tion is (after we add redu
tio ad absurdum) equivalent, interms of provability, to the bun
h-free presentation statedin the proposition. The model in this se
tion is a possibleworlds model for Boolean BI [25, 26℄.Be
ause we do not have Weakening (P �Q j= P ) or Con-tra
tion (P j= P �P ) for �, we are in the territory of substru
-tural logi
. To see why Contra
tion fails, 
onsider x ,! 2; 3.It 
an be satis�ed in a heap with a 
ons 
ell whose 
ontentsis h2; 3i, but (x ,! 2; 3) � (x ,! 2; 3) is false for every heap.To see why Weakening fails, 
onsider (x 7! 2; 3)� (y 7! 4; 5).For this to be true the 
urrent heap must have size two, and(x 7! 2; 3) 
annot then hold be
ause it requires the 
urrentheap to have size one.The importan
e of restri
ting Contra
tion was brought tothe fore by linear logi
 [12, 13℄. But it is important to realizethat BI takes a very di�erent approa
h to the surroundingadditive 
onne
tives. To see this, 
onsider that P�ÆQ j=P ) Q always holds in linear logi
, using the de
ompositionP ) Q = !P�ÆQ and the rule of Dereli
tion for !. But here,(x 7! 1; 2)�� false 6j= (x 7! 1; 2)) falsebe
ause the ante
edent 
an hold in a heap where x 7! 1; 2while the 
onsequent 
annot.This shows that there 
an be no ! whi
h de
omposes P )Q into !P��Q in this model; this highlights the di�eren
ebetween the joint treatment of �� and ) in the model andthe approa
h of linear logi
. Furthermore, it is not unusualto use additive impli
ations where 7! appears to the left.An example is when spe
ifying that any de�ned lo
ation inthe heap is rea
hable; su
h a spe
i�
ation would be of the



form 8x: (9ab: x 7! a; b) ) � � � ) (where to �ll in the � � � we
ould use an appropriate indu
tive de�nition).Next, we 
onsider the notion of purity.Purity . We say that an assertion is synta
ti
allypure if it does not 
ontain 7! or I.Re
all that we do not have terms of the form E:i for �eldsele
tion within assertions: 7! is the only way that an as-sertion might look into the heap.Proposition 2. Any syna
ti
ally pure assertion is inde-pendent of the heap: If P is a pure assertion thens; h j= P i� s; h0 j= P .As a result, pure assertions are 
ompletely additive: if Pand Q are pure, thenP �Q and P ^Q are equivalent;P��Q and P ) Q are equivalent.The �rst of these properties indi
ates a formal similarity be-tween purity and \!" in linear logi
 [12℄: we get Contra
tionP j= P �P and Weakening P �Q j= P for pure propositions.(This remark is independent of the issue of de
omposing) into �� .) The se
ond property shows a further similar-ity with passivity in synta
ti
 
ontrol of interferen
e [34℄,where additive and multipli
ative fun
tion type 
onstru
tsagree on passive types [28℄.
3.3 Interpretation of TriplesHoare triples are of the form fPgC fQg, where P and Qare assertions as above and C is a 
ommand. We adopt aninterpretation whi
h ensures that well-spe
i�ed 
ommandsdo not get stu
k.fPgCfQg is true just whenif s; h j= P then C; s; h is safe and ifC; s; h;� s0; h0 then s0; h0 j= Qfor all s; h where dom(s) � free(P ) [ free(Q).This is a partial 
orre
tness interpretation; with looping, itwould not guarantee termination. However, the safety re-quirement rules out 
ertain runtime errors and, as a result,we do not have that ftruegCftrueg holds for all 
ommands.For example, ftruegx := nil;x:1 := 3ftrueg fails. Gener-ally, if we 
an establish fPgCftrueg then we will know thatC is safe to exe
ute in any state satisfying P .
4. THE REYNOLDS AXIOMSWe start with standard Hoare rules for sequen
ing, 
on-sequen
e and simple assignment.Sequen
ingfPgCfQg fQgC0fRgfPgC;C0fRgConsequen
eP j= P 0 fP 0gCfR0g R0 j= RfPgCfRgSimple AssignmentfP [E=x℄gx := EfPg

In the Consequen
e rule, j= refers to the semanti
 
onse-quen
e relation for assertions. (Equivalently, we 
ould re-pla
e j= by ), and ask that the resulting impli
ations holdin every state in whi
h the sta
k 
omponent binds all vari-ables in the involved formulae.)The �rst heap-a

essing 
ommand is the statement x :=E:i, whi
h 
an read from both the sta
k and the heap, butwhi
h only alters the sta
k. Here there are two things tokeep in mind. First, E will be a pure expression, whi
hdoesn't look into the heap. So, we will not 
onsider anassignment statement like x := y:1:2, whi
h would have tobe broken into two steps. Se
ond, we will expe
t E:i to bedetermined by an assertion of the form E ,! E1; E2, whi
hlets us �nd its value.Obje
t-
omponent LookupSuppose that the variables x1; x2 are not free inE, and that x1 does not o

ur free in P . Then�9x1: P [x1=x℄ ^ 9x2: E ,! x1; x2	x := E:1�P	The substitution in P [x1=x℄ is saying that P is true in thepost
ondition, similarly to the simple assignment axiom, butthere is also additional information to make sure that xi isthe proper value. The axiom for the se
ond sele
tion E:2 isobtained by rearranging x1 and x2 in the pre
ondition.We have used ,! in this axiom, where Reynolds used 7!.In the intuitionisti
 semanti
s des
ribed later the two ver-sions of the axiom are equivalent, but in the 
lassi
al se-manti
s the version with ,! is preferable. If we had used7! instead of ,! in the 
lassi
al 
ase then the heap in thepre
ondition would be for
ed to be a singleton. This wouldbe sound, but not very useful.Next,Obje
t-
omponent AssignmentSuppose that the variables x1; :::; xm are not freein E or E0. Then�9x1; :::; xm: (E 7! E1; E2) � P	E:1 := E0�9x1; :::; xm: (E 7! E0; E2) � P	The simpli
ity of this axiom is remarkable, and is where thee�e
t of 7! and � is 
oming through. The idea is that we
an simply slot E0 into the heap in the appropriate pla
e.The E:2 version has (E 7! E1; E0) in the post
ondition.Finally,ConsSuppose that the variables x1; :::; xm are not freein E1; E2, that x and x0 are distin
t from ea
hother and x1; :::; xm, that x0 is not free in E1; E2or P . Let X 0 denote the result of substituting x0for x in expression or assertion X. Then�9x1; :::; xm: P	x := 
ons(E1; E2)�9x0; x1; :::; xm: P 0 � (x 7! E01; E02)	



Here, a new 
ell is 
reated and a pointer to it is pla
ed intox; the newness of this 
ell is why it 
an be separated fromP 0 using �.The following proof outline, for a pie
e of 
ode for in-serting a 
ell in the middle of a linked list, exempli�es theworkings of the axioms for pointer swing and heap extension.f(x 7! a; z) � (y 7! 
; w)gt := 
ons(b; y)f(x 7! a; z) � (y 7! 
; w) � (t 7! b; y)gf(x 7! a; z) � (t 7! b; y) � (y 7! 
; w)gx:2 := tf(x 7! a; t) � (t 7! b; y) � (y 7! 
; w)gProposition 3. The Reynolds axioms are true in the 
las-si
al semanti
s.
5. COMPLETENESS ISSUESWe begin by dis
ussing the Component Assignment ax-iom. The way the axiom is formulated requires both thepre
ondition and the post
ondition to be of a spe
ial shape,and this raises the question: 
an the axiom be applied gen-erally, or does it restri
t our reasoning to situations wherethe assertions are of a spe
i�
 form?Before answering this question, we formulate a ba
kwardsaxiom with the help of the form of update that 
an be ex-pressed using � and �� .Ba
kwards Component AssignmentSuppose that variables x and y are distin
t andnot free in E, E0, or P . Then�9xy: (E 7! x; y) � ((E 7! E0; y)�� P )	E:1 := E0�P	The E:2 version is similar. The ba
kwards version 
an ob-viously be applied generally, sin
e it works for any post
on-dition.In a draft version of this paper (dated 10 Mar
h, 2000),we made the erroneous 
laim that the ba
kwards axiom isstri
tly stronger than Component Assignment, be
ause ofthe latter's seemingly restri
ted form. However, Reynoldshas pointed out that the axioms are of equal strength, ifwe in
lude the rule of 
onsequen
e and 
onsider an instan
eof Component Assignment with an o

urren
e of �� to theright of �, using again the \update as deletion followed byextension" idea.�9xy: (E 7! x; y) � ((E 7! E0; y)�� P )	E:1 := E0�9xy: (E 7! E0; y) � ((E 7! E0; y)�� P )	�9xy:P	�P	The se
ond-last step uses the 
onsequen
e A � (A��P ) j=P , and the fa
t that 
onsequen
e is valid under 9. The9 
an be eliminated in the �nal step be
ause x and y arenot free in P . So, although the ba
kwards form of the axiomexpresses the weakest pre
ondition dire
tly, the two versionsare interderivable.We next dis
uss a 
urious point about the interpretationof triples. We have allowed 
ommands to be applied to stateswith dangling pointers, whi
h are states that mention lo
a-tions not in the domain of the 
urrent heap. In 
ontrast,

in [35℄ 
ommands are only applied to states in whi
h thereare no dangling pointers; dangling pointers arise only duringthe evaluation of assertions.The di�eren
e between these interpretations of triples issigni�
ant in the 
ase of 
ons. For example,ftruegx := 
ons(1; 2)f:(x = y)gis true under a no-dangling interpretation of triples, but notunder the interpretation we have adopted. The reason isthat if there are no dangling pointers then the operationalrule for 
ons allo
ates a lo
ation that is not the 
ontentsof any sta
k variable, but in the dangling 
ase a lo
ationmight be allo
ated that is already the 
ontents of some sta
kvariable.This indi
ates that the Cons axiom is not 
omplete un-der the no-dangling interpretation of triples. (This remarkapplies equally to the 
lassi
al semanti
s and to the intu-itionisti
 semanti
s presented later.) For, the example tripleabove is not derivable from the forwards Cons axiom, whi
hsimply gives usftruegx := 
ons(1; 2)ftrue � x 7! 1; 2gthe post
ondition of whi
h is equivalent to x ,! 1; 2.One way to rea
t to this in
ompleteness is to say that sin
edangling pointers never arise during program exe
ution (forthe programs 
onsidered so far), we should interpret the ruleof 
onsequen
e as an impli
ation whi
h holds in states wherethere is no dangling. That is, rule out dangling pointers atthe top level, so to speak, but allow them when delving intosubformulae involving � or �� . Another rea
tion, whi
h wefollow up on here, is to see dangling pointers as a natural
hara
teristi
 of languages whi
h allow memory to be ma-nipulated on a low level; we elaborate on this point in thenext se
tion.To des
ribe a ba
kwards axiom for 
ons, suppose we aregiven an arbitrary post
ondition P . In the pre
ondition wewould like to say that P will be true if we extend the heapwith a new lo
ation, whi
h is initialized appropriately. We
an express this using 8 to quantify over lo
ations, indi
at-ing that any one will do, together with �� for guaranteeingnewness.Ba
kwards ConsSuppose that x0 is not free in E1; E2 or P . Then�8x0: (x0 7! E1; E2)��P [x0=x℄	x := 
ons(E1; E2)�P	In 
ase x is not free in E1 or E2 we 
an simply quantifyover x in the above. For example, 8x: (x 7! 1; 2)��P is thepre
ondition for x := 
ons(1; 2).If C is a 
ommand and Q a formula, then the weakestpre
ondition is de�ned as follows.s; h 2 wp(C;Q) just whenC; s; h is safe and if C; s; h ;� s0; h0then s0; h0 j= QWe are not extending the syntax of formulae here, but aresimply de�ning wp(C;Q) as a set of sta
k-heap pairs. (Withthis de�nition we should perhaps speak of weakest liberalpre
onditions; but partial and total 
orre
tness 
oin
ide forthe basi
 
ommands that we are 
onsidering.)



In the following result the \ba
kwards axioms" are 
on-sidered to be those from this se
tion, along with Simple As-signment and Obje
t-
omponent Lookup.Theorem 4. The weakest pre
ondition for ea
h atomi
statement is expressed by the 
orresponding ba
kwards ax-iom.For a sequen
e C of assignment statements it follows thatfPgCfQg is derivable from the basi
 axioms (in either theReynolds or ba
kwards forms), Sequen
ing, andConsequen
eexa
tly when it is true. (Extending this result to loops wouldget us into the issue of expressiveness [10℄, whi
h is outsidethe s
ope of our 
on
erns here.)The following notation will be 
onvenient: if ` 2 dom(h)then let h�` denote the singleton heap in whi
h ` is mappedto h(`); also, let h� ` denote the heap like h ex
ept that itis unde�ned on `. It is evident that h = (h�`) � (h� `) when` 2 dom(h).Proof . We only give the proofs for the heap-altering 
om-mands E:i := E0 and x := 
ons(E1; E2).For soundness of Ba
kwards Component Assignment , as-sume that s; h satis�es the pre
ondition. The pre
onditionensures [[E℄℄s = ` 2 dom(h) is a de�ned lo
ation, and so theassignment statement does not get stu
k. By the seman-ti
s of E:i := E0 we need to show that s; h0 j= P , whereh0 = [h j ` 7! h[[E0℄℄s; v2i℄ and h(`) = hv1; v2i. From theassumption and the semanti
s of 9 we get thats0; h j= (E 7! x; y) � ((E 7! E0; y)��P )for the extension s0 of s whi
h binds x to v1 and y to v2.Then, from the de�nitions of � and 7!, we get thats0; h�` j= (E 7! x; y)s0; h� ` j= (E 7! E0; y)��P:The semanti
s of �� then implies that s0; (h � `) � [` 7!h[[E0℄℄s; v2i℄ j= P and, sin
e h0 = (h�`) � [` 7! h[[E0℄℄s; v2i℄, weget s0; h0 j= P: The sta
k s0 
an be repla
ed by s, be
ause xand y are not free in P , and we are done.For 
ompleteness, assume that s; h 2 wp(E:i := E0; P ).From the safety part of wp we get that [[E℄℄s = ` 2 Lo
 forsome ` 2 dom(h). Suppose h(`) = hv1; v2i. We 
laim that[s j x 7! v1; y 7! v2℄; h j= (E 7! x; y) � ((E 7! E0; y)��P )The singleton heap h�` makes the left 
onjun
t true. Thath�` satis�es the right 
onjun
t follows from the wp assump-tion, whi
h implies that P is true if we update the originalheap h by mapping the �rst 
omponent of ` to [[E0℄℄s. Thatis, the semanti
s of �� and of the instan
e of 7! to its left
onspire to ensure that h�` satis�es the right 
onjun
t. The
lauses for 9 and � imply that s; h satis�es the pre
ondition.For soundness of Ba
kwards Cons, assume that s; h satis-�es the pre
ondition. By the operational rule for allo
ationwe need to show [s j x 7! `℄; [h j ` 7! hv1; v2i℄ j= P when` 62 dom(h), [[E1℄℄s = v1, and [[E2℄℄s = v2. We know that[s j x0 7! `℄; [h j ` 7! hv1; v2i℄ satis�es P [x0=x℄, from thede�nitions of �� , 7! and 8. The result then follows usingstandard lemmas about renaming variables and removingfrom a state those not appearing freely in an expression.For 
ompleteness, assume s; h 2 wp(x := 
ons(E1; E2); P ).From the operational rule for 
ons, we obtain that[s j x 7! `℄; [h j ` 7! h[[E1℄℄s; [[E2℄℄si℄ j= P

for any lo
ation ` 62 dom(h) (non-determinism of; is beingused here). That s; h satis�es the pre
ondition then followsimmediately from this and the de�nitions.End of Proof
6. DISPOSEAll of the axioms we have 
onsidered so far are 
ompatiblewith the presen
e of dangling pointers, and dangling point-ers play an important role in the interpretations of � and �� .We might as well push this further and 
onsider a 
ommanddispose(E) whi
h deallo
ates a lo
ation (thereby 
reates adangling pointer).The semanti
s of dispose is a slippery subje
t, and whathappens on subsequent attempts to dereferen
e a disposedlo
ation tends to be \unde�ned" by programming languagede�nitions. Operationally, we take the position that disposesimply removes a lo
ation from the heap.` 2 Lo
 ` 2 dom(h) [[E℄℄s = `dispose(E); s; h ; s; (h� `)Re
all that h� ` is h with ` removed.We do not wish to enter into a 
ontroversy over how wellthis models \unde�ned". Indeed, there may be no de�nitiveoperational semanti
s of dispose, and it is perhaps bettertreated from an axiomati
 perspe
tive.DisposeSuppose that a; b are not free in E. Then,�P � 9ab: (E 7! a; b)	dispose(E)�P	This axiom takes the view that you simply shouldn't dependon what 
ontents the disposed lo
ation might or might nothave in the post
ondition.Reasoning ba
kwards from true we 
an �nd 
ir
umstan
esunder whi
h a program is safe to exe
ute. For a double dis-pose we obtain false as the pre
ondition as expe
ted, indi-
ating that the program is not safe to exe
ute for any startstate.ffalsegftrue � 9ab: (x 7! a; b) � 9
d: (x 7! 
; d)gdispose(x)ftrue � 9ab: (x 7! a; b)gdispose(x)ftruegProposition 5. The Dispose axiom expresses the weak-est pre
ondition.Proof . For soundness, assume the pre
ondition holds fors; h. The pre
ondition ensures [[E℄℄s = ` 2 dom(h) is ade�ned lo
ation, so the 
ommand does not get stu
k. Theresult of the dispose statement is the pair s; h � `, and weneed to show that s; h � ` j= P . This follows using thede�nitions of 9, � and 7!,For 
ompleteness, assume s; h 2 wp(dispose(E); P ). Fromthe operational rule and the de�nition of wp, whi
h requiressafety, we obtain that [[E℄℄s = ` 2 dom(h) is a lo
ation thatpoints to something, say hv1; v2i, and that s; h� ` j= P . Itis 
lear that[s j x 7! v1; y 7! v2℄; h�` j= E 7! x; y



so, by the semanti
s of 9 and �, and the assumption thatx; y 62 free(P ), we obtain that s; h satis�es the pre
onditionas required.End of Proof
7. A SMALL EXAMPLEWe give a small example: a program for disposing a list.To formulate the pre
ondition, we use an indu
tive de�nitionof a predi
ate rep n E, whi
h says that E represents a listof size n.rep 0 E �() E = nil ^ emprep n+ 1 E �() 9xy: (E 7! x; y) � rep n y:Then E points to a non-
ir
ular linked list when rep n Eholds for some n, and we de�nen
listE �() 9n: rep n E:Note that this de�nition just says that E points to a list,and ignores head links; variations are possible.2The spe
i�
ation for the program says that, if p pointsto a list to begin with, then the program will (assumingit terminates) delete all the 
ells, resulting in the emptyheap. (The presen
e of emp in the base 
ase of the indu
tivede�nition is ne
essary for this.)fn
list pgwhile p 6= nil doq := p; p := p:2; dispose(q)fempgNow, we use the usual Hoare partial-
orre
tness rule forwhile loops, where we 
hoose the pre
ondition as the invari-ant. A proof outline for the body isfp 6= nil ^ n
list pgf9p0: 9x: (p 7! x; p0) � n
list p0gf9p0:9x: (p ,! x; p0) ^ �(n
list p0) � 9ab: (p 7! a; b)�gq := pf9p0:9x: (p ,! x; p0) ^ �(n
list p0) � 9ab: (q 7! a; b)�gp := p:2f(n
list p) � 9ab: (q 7! a; b)gdispose(q)fn
list pgIn the se
ond line we have listed an intermediate step usedin applying the rule of 
onsequen
e.To 
omplete the proof, 
ombining the negation of p 6= nilwith the invariant we obtainp = nil ^ n
list pas a valid post
ondition for the whole program. This im-plies emp by the de�nition of rep and so, by the rule of
onsequen
e, we are done.
8. LOCALITY OF SPECIFICATIONS AND

REASONINGConsider again the spe
i�
ation of the program to disposea list.2We have not in
luded re
ursive de�nitions in the formalsyntax, but the intent should be 
lear. In any 
ase, we willbe somewhat less formal here, and in parti
ular use a 9n forquantifying over natural numbers only.

fn
list pg � � � fempgThe �rst thing to noti
e here is the exa
t nature of thepre
ondition: if n
list p is true then there 
an be no 
ellsin the 
urrent heap other than those in the list pointed toby p. That is, n
list p holds of a stru
turer r r? - -- nil.....
p

but not of a heap with additional nodes not in the list. It ispossible for one of the head nodes to 
ontain a pointer, butthat pointer must either be to one of the nodes in the listor be dangling.This exa
t nature 
omes about be
ause of the use of emp inthe base 
ase of rep, and also be
ause of the exa
t nature of7!. In fa
t, su
h an exa
t spe
i�
ation is ne
essary, be
auseif there were \junk 
ells", 
ells in the heap but not in the list,then we 
ould not 
on
lude emp on termination. Here \junk"is relative: it just means 
ells that are not relevant to the
orre
t operating of the program, not ne
essarily garbage
ells.The se
ond thing to note is that these junk 
ells havebeen avoided without talking about them expli
itly in thede�nition of n
list p. Normally, one would have to in
ludean auxiliary 
lause whi
h says \for all 
ells, if that 
ell is inthe heap it is in the list". But we did not need to.However, there appears to be a problem with the spe
i-�
ation: what if we want to run the program when thereare extra 
ells around? The spe
i�
ation appears not to bestrong enough. Intuitively, however, we have veri�ed ex-a
tly the 
orre
t property: the pre
ondition mentions onlythose 
ells whi
h are a

essed by the program during exe
u-tion. Why should we have to mention others? This se
tionexplains why we don't have to.The basis for our approa
h is a lo
al property of spe
i�-
ations, whi
h we state informally as follows.If fPgCfQg holds, then exe
ution of C in a statesatisfying P 
an attempt to dereferen
e only thoseheap 
ells guaranteed to exist by P .Conventionally, the assumption is that a pre/post spe
i�-
ation makes a positive statement about alterations to thestore that 
an be made, but additional 
hanges are allowed:this leads to the need for expli
it frame axioms, whi
h saywhat doesn't 
hange. The formalism here turns the situa-tion around, by restri
ting the alterations (to the heap) that
an be made to be those spe
i�
ally mandated by the spe
-i�
ations. Expli
it provision is then required to san
tion
hanges, instead of to disallow them.In this se
tion we investigate these ideas by examining arule, Frame Axiom Introdu
tion.
8.1 Local/Global InteractionThe dis
ussion above is 
on
erned ex
lusively with theheap. For all we know, if fx ,! 1; 2gCfx ,! 3; 2g holdsthen C might 
hange a sta
k variable z. For example, z :=7; x:1 := 3 satis�es the spe
i�
ation. So, in order to state



the rule for frame axiom introdu
tion, we need to keep tra
kof sta
k variables altered by a program. We do this with asynta
ti
 
ondition.De�ne Modi�esOnly(C) to be the set of (free)variables appearing alone to the left of := in C.The quali�
ation \alone" means, for example, that the setModi�esOnly(x:i := E) is empty: Modi�esOnly is 
on
ernedwith modi�
ations to sta
k variables only here.Frame Axiom Introdu
tionfPgCfQgfP � RgCfQ �Rg Modi�esOnly(C) \ free(R) = ;It is important to see that we 
annot use ^ instead of �,as the resulting rule is unsound. More positively, using thisrule we 
an perform an inferen
ef(x ,! 1; 2)gCf(x ,! 3; 2)gf(x ,! 1; 2) � (z ,! 7; 11)gCf(x ,! 3; 2) � (z ,! 7; 11)gas long as we know that C doesn't modify the sta
k variablez. We use � here to identify a portion of the heap that isnot modi�ed.The soundness of Frame Axiom Introdu
tion 
an be shownfor assignment statements, sequen
ing, looping, and 
ondi-tionals. A thorough theoreti
al a

ount of this rule and its
onsequen
es will be presented in a future paper [27℄.
8.2 Framing Procedure SpecificationsFrame axioms take on greater importan
e in the presen
eof pro
edures, where one wants to be able to spe
ify a pro-
edure without referring to its 
ode [2℄. We give a briefdis
ussion of pro
edures in light of the above.Let us regard the program for disposing a list as a pro-
edure, parametri
 in p, and where the auxiliary variableq is lo
al. To spe
ify DisposeList we should give not onlythe pre
ondition and post
ondition, but also a Modi�esOnly
lause.fn
list pg DisposeList(p) fempgModi�esOnly(DisposeList(p)) = fpgWe 
laim that just using the lo
al spe
i�
ation, whi
h onlymentions those heap 
ells tou
hed by the program, we 
aninfer properties of 
alls in wider 
ontexts. A good example ofthis is when we 
hain two 
alls to DisposeList, to dispose oftwo di�erent lists. Then, using Frame Introdu
tion togetherwith Sequen
ing and Consequen
e, we 
an infer that the two
alls work properly, as long as the input lists don't overlap.�n
list p	DisposeList(p)�emp	�(n
list p) � (n
list q)	DisposeList(p)�emp � n
list q	�(n
list p) � (n
list q)	DisposeList(p)�n
list q	Then, the spe
i�
ation �n
list q	DisposeList(q)�emp	 to-gether with the usual Hoare rule for sequen
ing gives us�(n
list p)�(n
list q)	DisposeList(p);DisposeList(q)�emp	as desired. Conventionally, an expli
it frame axiom wouldbe needed to san
tion a 
on
lusion of this sort, be
ause oth-erwise we would have no way of knowing that DisposeList(p)doesn't alter the list pointed to by q. (For instan
e, if the

�rst 
all were to in
orre
tly dispose of one of the nodes inq's list, then we would get a safety violation in the se
ond.)The same prin
iple works when we 
hain together 
alls todi�erent pro
edures, su
h as pro
edures for inserting into,deleting from, or 
opying lists.It is important to realize that the use of � in the 
on-jun
tion (n
list p) � (n
list q) is not simply a rea
hability
ondition, whi
h states, say, that the 
ells rea
hable fromp and q are disjoint. For instan
e, (n
list p) � (n
list q)holds ofr
rr rrr rrr
?? - --- -- 66 nil4 nil
p

q
..........

Here, it is 
ertainly possible to rea
h one list from the other,by following head links, but this does not 
ause a runtimeerror in DisposeList(p); DisposeList(q).
9. THE INTUITIONISTIC SEMANTICSIn this se
tion we 
onsider an intuitionisti
 semanti
s. Allassertions will satisfy theMonotoni
ity Condition: If s; h j= P and h v h0then s; h0 j= P ,where h v h0 indi
ates that the graph of h is a subset of thegraph of h0. Formally, the intuitionisti
 language is obtainedby omitting emp, adding 
lauses for intuitionisti
 
onne
tivesthat 
annot be de�ned aways; h j= P ^Q i� s; h j= P and s; h j= Qs; h j= P _Q i� s; h j= P or s; h j= Qs; h j= 8x:P i� 8v 2 V al: [s j x 7! v℄; h j= Pand making two rede�nitions:s; h j= E 7! E1; E2 i� [[E℄℄s 2 dom(h)and h([[E℄℄s) = h[[E1℄℄s; [[E2℄℄sis; h j= P ) Q i� 8h0 w h :if s; h0 j= P then s; h0 j= Q:The other semanti
 
lauses are as in Se
tion 3.1.3 To see whythe law of the ex
luded middle fails in this model, 
onsider3Intuitionisti
 8 usually quanti�es over \future" possibleworlds, but in a �xed-domain semanti
s (where the sameindividuals exist at ea
h world) the pointwise de�nition re-mains adequate. Also, in the 
lause for � one might haveexpe
ted to see a 
ondition h0 � h1 v h instead of asking



(x 7! 2; 2) _ :(x 7! 2; 2), where :P = P ) false. If s is asta
k with sx = ` and [℄ is the empty heap, then s; [℄ 6j= x 7!2; 2. But we also have s; [℄ 6j= :(x 7! 2; 2), sin
e there is anextension [` 7! 2; 2℄ of [℄ where s; [` 7! 2; 2℄ j= x 7! 2; 2. Sos; [℄ 6j= (x 7! 2; 2) _ :(x 7! 2; 2).The semanti
 
onsequen
e relation and interpretation oftriples are de�ned as before. Some of the basi
 properties ofthe logi
 are altered by the intuitionisti
 semanti
s.Proposition 6. Propositions 1 and 2 go through for theintuitionisti
 semanti
 of this se
tion, with the following
hanges:� The semanti
s validates intuitionisti
 rather than 
las-si
al logi
, so that ex
luded middle fails generally;� true is the unit of �;� Weakening for � holds: A �B j= A;� Ex
luded middle holds for pure assertions;� P �Q and P ^Q are equivalent if P is pure, even whenQ is not.A useful observation is that the 
lassi
al and intuitionis-ti
 interpretations behave similarly when 7! appears as animmediate 
onstituent of �. To formulate this, re
all that if` 2 dom(h) then we use h�` to denote the singleton heapin whi
h ` is mapped to h(`) .Lemma 7. [Exa
tness Lemma℄s; h j= (E 7! E1; E2) � Pin the intuitionisti
 semanti
s i� there is some ` 2 dom(h)su
h thats; h�` j= (E 7! E1; E2), ands; h� ` j= P .Thus, even though the intuitionisti
 semanti
s uses an in-exa
t interpretation of 7!, we 
an get away with the exa
tinterpretation when looking at one o

urren
e of 7! in anargument to �. This explains why it is possible to use ei-ther of the intuitionisti
 or 
lassi
al semanti
s for the sameprogram-proving axioms.Theorem 8. The weakest pre
ondition results hold forthe intuitionisti
 semanti
s.Of 
ourse, this result has a di�erent import than the previ-ous ones, be
ause it refers ex
lusively to intuitionisti
 propo-sitions, that are invariant under heap extension. The onlyalterations to the previous proofs involve an appeal to theExa
tness Lemma in several pla
es, and appeals to mono-toni
ity in some situations where it was not needed in theargument for 
lassi
al semanti
s (the 
ompleteness parts ofBa
kwards Cons and Ba
kwards Obje
t-
omponent Assign-ment).We 
an 
ompare the two semanti
s by noting that we 
antranslate from the intuitionisti
 language into the 
lassi
alone using a modal translation. We do not a
tually need toextend the 
lassi
al language with an expli
it modality to dothis, be
ause we 
an already express the ne
essity modalityfor heap extension. That is,for equality: but the monotoni
ity 
ondition, together withthe fa
t (true of the parti
ular model here) that h0 � h1 v hwhen h bounds ea
h, implies that the two de�nitions areequivalent.

s; h j= true��P i� 8h0 w h: s; h0 j= Pholds in the 
lassi
al semanti
s.The Modal Translation. The translation (�)Æ sendsE 7! E1; E2 to E ,! E1; E2P ) Q to true�� (P Æ ) QÆ)and everything else (indu
tively) to itself.4Proposition 9. s; h j= P in the intuitionisti
 semanti
si� s; h j= P Æ in the 
lassi
al semanti
s.So, the 
lassi
al semanti
s is, in this sense, the more ex-pressive of the two. More to the point, the intuitionisti
semanti
s has an additional 
ondition, monotoni
ity, andwe should ask whether there are any properties of interestthat do not satisfy it.It turns out that many natural pre- and post
onditionsfor pointer algorithms do satisfy monotoni
ity. Often, onemakes a positive statement to the e�e
t that a 
olle
tion of
ells in the heap represents some abstra
t data stru
ture,and these 
ells 
ontinue to represent the stru
ture whenmore 
ells are added. Still, there are some natural prop-erties that do not satisfy monotoni
ity. An example is givenby the rep and n
list predi
ates from Se
tion 7. There, theuse of emp in the base 
ase of rep has the e�e
t of limiting aheap satisfying n
listE to exa
tly those 
ells rea
hable, byfollowing tail links, from E; this was essential for showingthat all of the 
ells were de-allo
ated. Other typi
al prop-erties of this sort are that there is a unique pointer (in theheap) to 
ons 
ell x, or that the heap has exa
tly 4 
ons 
ells.Generally, non-monotone properties are useful in situationswhere one is 
on
erned with 
lose 
ontrol over memory us-age, su
h as when ensuring that there are no spa
e leaks.We 
on
lude this se
tion by 
ontrasting the two semanti
susing a subtle example from [35℄, the following instan
e ofthe Cons axiom:�:9x: x 7! 1; 2	y := 
ons(1; 2)�(:9x: x 7! 1; 2) � (y 7! 1; 2)	.At �rst sight it looks as if the triple should be false, be
ausethe post
ondition appears to be in
onsistent. The intuition-isti
 semanti
s saves the situation by making the pre
on-dition in
onsistent as well. To see why, 
onsider any s; h.We 
an extend h with a lo
ation ` 62 dom(h), and obtain[h j ` 7! h1; 2i℄. Sin
e this heap extends h, the intuitionis-ti
 negation quanti�es over it. And in this extended heap,9x: x 7! 1; 2 is true.The same triple holds as well in the 
lassi
al semanti
s,but the reason now is not that the pre
ondition is false, butrather that the post
ondition is not in
onsistent. That is,:9x: x 7! 1; 2 may be true of a small world but false at abigger one, and the � in the post
ondition lets us pi
k thissmaller world out without in
urring falsity at the big world.For example, in the singleton heap where the a lo
ationdenoted by x has 
ontents h1; 2i the empty heap 
an be4This translation uses the indu
ed modality less often thanone might have expe
ted. Normally, one would use themodality with 8 as well, and a ba
kwards modality in the
ase of �. It is spe
i�
 properties of the model (
onstantdomain, bounding properties of �) that justify the simplertranslation.



sele
ted for :9x: x 7! 1; 2 and the singleton heap itself forx 7! 1; 2.The absen
e of Weakening in the 
lassi
al semanti
s issigni�
ant here. For, if we had(:9x: x 7! 1; 2) � (y 7! 1; 2) j= :9x: x 7! 1; 2; and(:9x: x 7! 1; 2) � (y 7! 1; 2) j= y 7! 1; 2then we 
ould obtain(:9x: x 7! 1; 2) � (y 7! 1; 2) j= (:9x: x 7! 1; 2) ^ (y 7! 1; 2);the 
onsequent of whi
h is 
ontradi
tory.
10. SUMMARY AND RELATED WORKThe most relevant related work is 
ontained in the twomain pre
ursors, the papers of Burstall and Reynolds [5, 35℄.To summarize our additions to [35℄, we have: (i) provided a
lassi
al model, and investigated the relation between 
lassi-
al and intuitionisti
 variants; (ii) added BI's spatial impli-
ation �� to the assertion language, and used it to expressweakest pre
onditions; (iii) given a treatment of dispose;and (iv) further expli
ated the form of lo
al reasoning madepossible by the spatial approa
h to pointer logi
.There have been a number of papers on program-provingfor pointers ([16, 30, 23, 17, 22, 11, 3, 6℄ is a partial list).What sets the approa
h of Reynolds and Burstall apart isits lo
al treatment of assignment. In other approa
hes as-signment in the presen
e of aliasing tends to be dealt withusing global store parameters, or several global parameters,or with axioms that involve major surgery on formulae. In
ontrast, in fP � (x 7! a; b)gx:1 := zfP � (x 7! z; b)g the op-erationally lo
al nature of assignment is mirrored beautifullyin the logi
.There has been growing interest in using program logi
 forpointers in stati
 analysis and related problems, and someex
ellent results have been obtained [18, 24, 37, 40℄. Thework here appears to be largely 
omplementary. Indeed, al-though the devil is in the detail, it would be 
on
eivable to
ombine one of these assertion languages with a substru
-tural logi
, in the style of BI. The main question is whethersu
h a 
ombination would give rise to lo
al reasoning orspe
i�
ations, in a way that does not interfere with the al-ready su

essful properties of these languages.We des
ribed the lo
al 
hara
ter of spe
i�
ations in thelogi
, and began an exploration of its 
onsequen
es by 
on-sideration of the rule for introdu
ing frame axioms. Thereare many vaguely related ideas in dozens of papers in the AI,modal and temporal logi
 of pro
esses, and program spe
i�-
ation literatures; we 
annot do justi
e to these literatures inthis short spa
e (we mention only one from ea
h strand: [33,20, 1℄). The main point, however, is the impli
it and su

in
tway that behind-the-s
enes dependen
ies, whi
h arise frompointers that are not dire
tly named by program variables,are dealt with using �. We are not aware of a previous ap-proa
h that deals with these dependen
ies in a 
omparablemanner. That being said, there is mu
h more to be learntabout lo
al reasoning; some further developments will bepresented in a followup paper [27℄. In addition, it would beinteresting to attempt to apply these ideas in related situa-tions where aliasing is prevalent, su
h as �-
al
ulus or obje
t
al
uli.In the linear logi
 literature there have been numeroushints, suggesting that substru
tural logi
 
an be used to

spe
ify and reason about a
tions lo
ally (e.g. [13, 21℄).While this proposal was tantalyzing, it has not subsequentlybeen developed very far, 
ertainly not as far as a programlogi
 for pointers. (En
odings of the semanti
s of impera-tive languages, e.g. [9℄, are important and useful, but fallwell short of program logi
.) The results of this paper mightbe interpreted as o�ering fresh justi�
ation for those earlyhints, and in the demanding territory of pointers, albeit fora logi
 that is di�erent from linear logi
 in key respe
ts.A feature of BI is that it o�ers a simple-minded treatmentof additive 
onne
tives (based on 
lassi
al or intuitionisti
logi
) alongside substru
tural ones; there is no \!", and noneed to stay within a 
onstru
tive setup. This 
omparativesimpli
ity, as illustrated by the pointer model, is a key toappli
ations.There are two other 
losely related pie
es of work to reporton. The �rst is work of Cardelli and Gordon on AmbientLogi
 [8℄, a logi
 for mobile ambients. Their logi
 
an beseen as an extension of Boolean BI; on the 
ommon 
onne
-tives, the semanti
 models of Ambient Logi
 that have beenpresented are instan
es of the possible worlds semanti
s ofBI �rst presented in [25℄ and further developed in [26, 32℄.Ambient logi
 also has a 
onne
tive, the \ambient mat
h",whi
h intera
ts with � in a way that leads to pleasantly
ompa
t and intuitive spe
i�
ations of 
ertain properties ofmobile pro
esses.In an interesting further development, Cardelli and Ghellihave proposed a labelled tree model as a basis for a querylanguage for semi-stru
tured data [7℄. The tree model issimilar to the pointer model of BI, but for two main di�er-en
es: the model here allows for 
ir
ular stru
tures as wellas trees; and, the 
ombining operation here is partial, wherein the labelled tree model it is total. Partiality enables usto ensure that subheaps are disjoint, and this is essentialfor the soundness of the Hoare triple axioms. We spe
ulatethat the ideas in this paper, espe
ially those involving theintera
tion between � and �� , might be adapted to a

ountfor update or re
on�guration of semi-stru
tured data.The se
ond 
losely related work is that of Smith, Walker,and Morrisett on Alias types [38, 39℄. Alias types use type-theoreti
 
ousins of the 
onjun
tion � and points-to relation7! to state properties of data stru
tures. The resulting typ-ing rule for 
omponent assignment is very 
lose to (a CPSversion of) Reynolds's axiom, and their treatment of mem-ory disposal is very near to that here. Of 
ourse, the bene�tof a type system is that it is stati
, while 
onversely logi
 ismore expressive. In any 
ase, the remarkable 
onvergen
e ofideas in spatial pointer logi
 and in Alias types might per-haps be taken as a positive indi
ation, of the naturalness ofthe approa
h.A
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