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Abstract

Our goal is to develop a visual monitoring system

that passively observes moving objects in a site and

learns patterns of activity from those observations.

For extended sites, the system will require multiple

cameras. Thus, key elements of the system are mo-

tion tracking, camera coordination, activity classi�ca-

tion, and event detection. In this paper, we focus on

motion tracking and show how one can use observed

motion to learn patterns of activity in a site.

Motion segmentation is based on an adaptive back-

ground subtraction method that models each pixel as a

mixture of Gaussians and uses an on-line approxima-

tion to update the model. The Gaussian distributions

are then evaluated to determine which are most likely

to result from a background process. This yields a sta-

ble, real-time outdoor tracker that reliably deals with

lighting changes, repetitive motions from clutter, and

long-term scene changes.

While a tracking system is unaware of the identity

of any object it tracks, the identity remains the same

for the entire tracking sequence. Our system leverages

this information by accumulating joint co-occurrences

of the representations within a sequence. These joint

co-occurrence statistics are then used to create a hi-

erarchical binary-tree classi�cation of the representa-

tions. This method is useful for classifying sequences

as well as individual instances of activities in a site.

Index Terms- Real-time visual tracking, adap-

tive background estimation, activity modeling, co-

occurrence clustering, object recognition, video

surveillance and monitoring(VSAM).

1 Introduction
The goal of this project is a vision system that mon-

itors activity in a site over extended periods of time,

i.e., that detects patterns of motion and interaction

demonstrated by objects in the site. The system:

� should provide statistical descriptions of typical

activity patterns, e.g., normal vehicular volume

or normal pedestrian traÆc paths for a given time

of day;

� should detect unusual events, by spotting activi-

ties that are very di�erent from normal patterns,

e.g., unusual volumes of traÆc, or a speci�c move-

ment very di�erent from normal observation; and

� should detect unusual interactions between ob-

jects, e.g., a person parking a car in front of a

building, exiting the car, but not entering the

building.

Because a site may be larger than can be observed

by a single camera, our system observes activities with

a \forest of sensors" distributed around the site. Ide-

ally, each sensor unit would be a compact packaging

of camera, on-board computational power, local mem-

ory, communication capability and possibly locational

instrumentation (e.g., GPS). Example systems exist

[10, 11, 17], and more powerful systems will emerge

as technology in sensor design, DSP processing, and

communications evolves. In a forest, many such sen-

sor units would be distributed around the site. For

outdoor settings, this would involve attaching them

to poles, trees, and buildings1. For indoor settings,

this would involve attaching to walls and furniture for

indoor sites, such as the Intelligent Room2. For this

article, we explore the monitoring of an outdoor site

by connecting a set of video cameras to an intercon-

nected suite of PCs, with each camera looking out a

di�erent window of a building, i.e., our focus is on the

algorithmic processing of the data, rather than on the

speci�c sensor packages.

The forest should learn patterns of activities in a

site, then monitor and classify activities based on these

learned patterns. A coordinated sensor forest needs:

� self-calibration { determine the positions of all the

cameras relative to one another;

1(see http://www.ai.mit.edu/projects/darpa/vsam/)
2(see http://www.ai.mit.edu/projects/hci/hci.html)



� construction of rough site models { determine the

ground plane, and mark occupied areas;

� detect objects in the site { extract information

about all moving objects in the site;

� classify detected objects { label detected objects

by common shape, appearance or motion;

� learn from extended observation (e.g. over a pe-

riod of weeks) { what are the common activity

patterns; and

� detect of unusual events in the site { mark activ-

ities that don't �t common patterns.

Our hypothesis is that these tasks can be accom-

plished simply by observing moving objects. To verify

this hypothesis, we need: a robust tracker that can

reliably detect moving objects and return an accurate

description of the observed object, both its motion pa-

rameters and its intrinsic parameters such as size and

shape; and methods that can use such tracking data to

accomplish the tasks listed above. In the following sec-

tions, we describe our tracking method [23], then out-

line our system for monitoring activities over extended

time periods by simply observing object motions. Cal-

ibration of cameras, and extraction of ground plane

information are covered separately in [18].

2 Building a Robust Motion Tracker
A robust video surveillance and monitoring system

should not depend on careful placement of cameras. It

should also be robust to whatever is in its visual �eld

or whatever lighting e�ects occur. It should be capa-

ble of dealing with movement through cluttered areas,

objects overlapping in the visual �eld, shadows, light-

ing changes, e�ects of moving elements of the scene

(e.g. swaying trees), slow-moving objects, and objects

being introduced or removed from the scene. Thus, to

monitor activities in real outdoor settings, we need ro-

bust motion detection and tracking that can account

for such a wide range of e�ects.

Traditional approaches based on backgrounding

methods typically fail in these general situations. Our

goal is to create a robust, adaptive tracking system

that is 
exible enough to handle variations in light-

ing, moving scene clutter, multiple moving objects and

other arbitrary changes to the observed scene. The re-

sulting tracker is primarily geared towards scene-level

video surveillance applications.

2.1 Previous work and current shortcom-
ings of motion tracking

Most researchers have abandoned non-adaptive

methods of backgrounding because of the need for

manual initialization. Without re-initialization, errors

in the background accumulate over time, making this

method useful only in highly-supervised, short-term

tracking applications without signi�cant changes in

the scene. It is possible to use a maximum interframe

di�erence[19], but this leaves \ghosts" where the ob-

ject was and leaves large regions of the object unde-

tected unless the object undergoes signi�cant motion

each frame.

Most backgrounding methods involve continuously

estimating a statistical model of the variation for each

pixel. A common method of adaptive backgrounding

is averaging the images over time, creating a back-

ground approximation which is similar to the current

static scene except where motion occurs. While this is

e�ective in situations where objects move continuously

and the background is visible a signi�cant portion of

the time, it is not robust to scenes with many mov-

ing objects particularly if they move slowly. It also

cannot handle bimodal backgrounds, recovers slowly

when the background is uncovered, and has a single,

predetermined threshold for the entire scene. One in-

teresting attempt to meet these diÆculties is W 4[9],

which combined its estimates of the minimum value,

maximum value, and maximum interframe di�erence

per pixel.

Ivanov[12] used disparity veri�cation to determine

moving regions in a scene. This showed invariance to

lighting variations but involved an costly, o�-line ini-

tialization. It primary application is for geometrically

static backgrounds. Recently, an eigenvector approx-

imation of the entire image was used to model the

background in outdoor scenes[20].

Changes in scene lighting can cause problems for

many backgrounding methods. Ridder et al.[21] mod-

eled each pixel with a Kalman Filter which made their

system more robust to lighting changes in the scene.

While this method does have a pixel-wise automatic

threshold, it still recovers slowly and does not han-

dle bimodal backgrounds well. Koller et al.[16] have

successfully integrated this method in an automatic

traÆc monitoring application.

P�nder[24] uses a multi-class statistical model for

the foreground objects, but the background model is

a single Gaussian per pixel. After an initialization pe-

riod where the room is empty, the system reports good

results. There have been no reports on the success of

this tracker in outdoor scenes.

Friedman and Russell[5] have recently implemented

a pixel-wise EM framework for detection of vehicles

that bears the most similarity to our work. Their

method attempts to explicitly classify the pixel values
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into three separate, predetermined distributions corre-

sponding to the road color, the shadow color, and col-

ors corresponding to vehicles. Their attempt to medi-

ate the e�ect of shadows appears to be somewhat suc-

cessful, but it is not clear what behavior their system

would exhibit for pixels which did not contain these

three distributions. For example, pixels may present

a single background color or multiple background col-

ors resulting from repetitive motions, shadows, or re-


ectances.

2.2 Our approach to motion tracking

Rather than explicitly modeling the values of all

the pixels as one particular type of distribution, we

simply model the values of a particular pixel as a mix-

ture of Gaussians. Based on the persistence and the

variance of each of the Gaussians of the mixture, we

determine which Gaussians may correspond to back-

ground colors. Pixel values that do not �t the back-

ground distributions are considered foreground until

there is a Gaussian that includes them with suÆcient,

consistent evidence supporting it to convert it to a new

background mixture.

Our system adapts to deal robustly with lighting

changes, repetitive motions of scene elements, track-

ing through cluttered regions, slow-moving objects,

and introducing or removing objects from the scene.

Slowly moving objects take longer to be incorporated

into the background, because their color has a larger

variance than the background. Also, repetitive vari-

ations are learned, and a model for the background

distribution is generally maintained even if it is tem-

porarily replaced by another distribution which leads

to faster recovery when objects are removed.

Our backgrounding method contains two signi�-

cant parameters { �, the learning constant and T, the

proportion of the data that should be accounted for

by the background. Without any alteration of pa-

rameters, our system has been used in an indoors,

human-computer interface application and, since Oc-

tober 1997, has been continuously monitoring outdoor

scenes.

3 Adaptive backgrounding for motion

tracking

If each pixel resulted from a single surface under

�xed lighting, a single Gaussian would be suÆcient to

model the pixel value while accounting for acquisition

noise. If only lighting changed over time, a single,

adaptive Gaussian per pixel would be suÆcient. In

practice, multiple surfaces often appear in the view

frustum of a particular pixel and the lighting condi-

tions change. Thus, multiple, adaptive Gaussians are

(a) (b)

(c) (d)

Figure 1: The execution of the program. (a) the cur-

rent image, (b) an image composed of the means of

the most probable Gaussians in the background model,

(c) the foreground pixels, (d) the current image with

tracking information superimposed. Note: while the

shadows are foreground in this case,if the surface was

covered by shadows a signi�cant portion of the time,

a Gaussian representing those pixel values may be sig-

ni�cant enough to be considered background.

required. We use an adaptive mixture of Gaussians to

approximate this process.

Each time their parameters are updated, the Gaus-

sians are evaluated using a simple heuristic to hypoth-

esize which are most likely to be part of the \back-

ground process." Pixel values that do not match one of

the pixel's \background" Gaussians are grouped using

connected components. Finally, the connected compo-

nents are tracked across frames using a multiple hy-

pothesis tracker. The process is illustrated in Figure

1.

3.1 Online mixture model

We consider the values of a particular pixel over

time as a \pixel process", i.e. a time series of scalars

for grayvalues or vectors for color pixel values. At

any time, t, what is known about a particular pixel,

fx0; y0g, is its history

fX1; :::; Xtg = fI(x0; y0; i) : 1 � i � tg (1)

where I is the image sequence. Some \pixel pro-

cesses" are shown by the (R,G) scatter plots in Fig-

ure 2 which illustrate the need for adaptive systems

with automatic thresholds. Figure 2(b) and (c) also

highlight a need for a multi-modal representation. In

each case, the ideal distribution of values should be a
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Figure 2: This �gure contains images and scatter plots

of the red and green values of a single pixel from the

image over time. It illustrates some of the diÆculties

involved in real environments. (a) shows two scatter

plots from the same pixel taken 2 minutes apart. This

would require two thresholds. (b) shows a bi-model dis-

tribution of a pixel values resulting from specularities

on the surface of water. (c) shows another bi-modality

resulting from monitor 
icker.

tight, Gaussian-like cluster around some point. The

fact that the cluster can shift dramatically over a pe-

riod of a few minutes, or that two or more processes

at the same pixel can result in several distinctive clus-

ters illustrates the need for an adaptive, multi-modal

representation.

We chose to model the recent history of each pixel,

fX1; :::; Xtg, as a mixture ofK Gaussian distributions.

The probability of observing the current pixel value is

P (Xt) =

KX
i=1

!i;t � �(Xt; �i;t;�i;t) (2)

where K is the number of distributions, !i;t is an esti-

mate of the weight (the portion of the data accounted

for by this Gaussian) of the ith Gaussian in the mix-

ture at time t, �i;t and �i;t are the mean value and

covariance matrix of the ith Gaussian in the mixture at

time t, and where � is a Gaussian probability density

function

�(Xt; �;�) =
1

(2�)
n

2 j�j
1

2

e�
1

2
(Xt��t)

T��1(Xt��t) (3)

K is determined by the available memory and compu-

tational power. Currently, from 3 to 5 are used. Also,

for computational reasons, the covariance matrix is

assumed to be of the form:

�k;t = �2kI (4)

This assumes that the red, green, and blue pixel values

are independent and have the same variances. While

this is certainly not the case, the assumption allows

us to avoid a costly matrix inversion at the expense of

some accuracy.

Thus, the distribution of recently observed values

of each pixel in the scene is characterized by a mixture

of Gaussians. A new pixel value will, in general, be

represented by one of the major components of the

mixture model and used to update the model.

If the pixel process could be considered a sta-

tionary process, a standard method for maximizing

the likelihood of the observed data is expectation

maximization[4]. Because there is a mixture model

for every pixel in the image, implementing an exact

EM algorithm on a window of recent data would be

costly. Also, lighting changes and the introduction or

removal of static objects suggest a decreased depen-

dence on observations further in the past. These two

factors led us to use the following on-line K-means

approximation to update the mixture model.

Every new pixel value, Xt, is checked against the

existing K Gaussian distributions, until a match is

found. A match is de�ned as a pixel value within 2.5

standard deviations of a distribution3. This threshold

can be perturbed with little e�ect on performance.

This is e�ectively a per pixel/per distribution thresh-

old. This is extremely useful when di�erent regions

have di�erent lighting (see Figure 2(a)), because ob-

jects which appear in shaded regions do not generally

exhibit as much noise as objects in lighted regions. A

uniform threshold often results in objects disappearing

when they enter shaded regions.

If none of the K distributions match the current

pixel value, the least probable distribution is replaced

with a distribution with the current value as its mean

value, an initially high variance, and low prior weight.

The prior weights of the K distributions at time t

are adjusted as follows

!k;t = (1� �)!k;t�1 + �(Mk;t) (5)

where � is the learning rate4 and Mk;t is 1 for the

3Depending on the kurtosis of the noise, some percentage
of the data points generated by a Gaussian will not \match".
The resulting random noise in the foreground image is easily
ignored by neglecting connected components containing only a
few pixels.

4While this rule is easily interpreted an an interpolation
between two points, it is often shown in the equivalent form:
!k;t = !k;t�1 + �(Mk;t � !k;t�1)
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model which matched and 0 for the remaining mod-

els. After this approximation, the weights are re-

normalized. 1/� de�nes the time constant which de-

termines the speed at which the distribution's param-

eters change. !k;t is e�ectively a causal low-pass �l-

tered average of the (thresholded) posterior probabil-

ity that pixel values have matched model k given ob-

servations from time 1 through t. This is equivalent

to the expectation of this value with an exponential

window on the past values.

The � and � parameters for unmatched distribu-

tions remain the same. The parameters of the dis-

tribution which matches the new observation are up-

dated as follows

�t = (1� �)�t�1 + �Xt (6)

�2t = (1� �)�2t�1 + �(Xt � �t)
T (Xt � �t) (7)

where

� = ��(Xtj�k; �k) (8)

is the learning factor for adapting current distribu-

tions5. This is e�ectively the same type of causal low-

pass �lter as mentioned above, except that only the

data which matches the model is included in the esti-

mation.

One of the signi�cant advantages of this method

is that when something is allowed to become part of

the background, it doesn't destroy the existing model

of the background. The original background color re-

mains in the mixture until it becomes the Kth most

probable and a new color is observed. Therefore, if an

object is stationary just long enough to become part

of the background and then it moves, the distribution

describing the previous background still exists with

the same � and �2, but a lower !, and will be quickly

re-incorporated into the background.

3.2 Background model estimation

As the parameters of the mixture model of each

pixel change, we would like to determine which of the

Gaussians of the mixture are most likely produced by

background processes. Heuristically, we are interested

in the Gaussian distributions which have the most sup-

porting evidence and the least variance.

To understand this choice, consider the accumu-

lation of supporting evidence and the relatively low

variance for the \background" distributions when a

static, persistent object is visible. In contrast, when

a new object occludes the background object, it will

not, in general, match one of the existing distributions

5In high dimensional spaces with full covariance matrices, it
is sometimes advantageous to use a constant � to reduce com-
putation and provide faster Gaussian tracking.

which will result in either the creation of a new dis-

tribution or the increase in the variance of an existing

distribution. Also, the variance of the moving object

is expected to remain larger than a background pixel

until the moving object stops. To model this, we need

a method for deciding what portion of the mixture

model best represents background processes.

First, the Gaussians are ordered by the value of

!=�. This value increases both as a distribution gains

more evidence and as the variance decreases. Af-

ter re-estimating the parameters of the mixture, it is

suÆcient to sort from the matched distribution to-

wards the most probable background distribution, be-

cause only the matched models relative value will have

changed. This ordering of the model is e�ectively an

ordered, open-ended list, where the most likely back-

ground distributions remain on top and the less prob-

able transient background distributions gravitate to-

wards the bottom and are eventually replaced by new

distributions.

Then the �rst B distributions are chosen as the

background model, where

B = argminb

 
bX

k=1

!k > T

!
(9)

where T is a measure of the minimum portion of the

data that should be accounted for by the background.

This takes the \best" distributions until a certain por-

tion, T , of the recent data has been accounted for. If

a small value for T is chosen, the background model

is usually unimodal. If this is the case, using only the

most probable distribution will save processing.

If T is higher, a multi-modal distribution caused

by a repetitive background motion (e.g. leaves on a

tree, a 
ag in the wind, a construction 
asher, etc.)

could result in more than one color being included in

the background model. This results in a transparency

e�ect which allows the background to accept two or

more separate colors.

3.3 Connected components

The method described above allows us to identify

foreground pixels in each new frame while updating

the description of each pixel's process. These labeled

foreground pixels can then be segmented into regions

by a two-pass, connected components algorithm [8].

Because this procedure is e�ective in determining

the whole moving object, moving regions can be char-

acterized not only by their position, but size, mo-

ments, and other shape information. Not only can

these characteristics be useful for later processing and

classi�cation, but they can aid in the tracking process.
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3.4 Multiple Hypothesis Tracking

Establishing correspondence of connected compo-

nents between frames is accomplished using a lin-

early predictive multiple hypotheses tracking algo-

rithm which incorporates both position and size. We

have implemented an online method for seeding and

maintaining sets of Kalman �lters.

At each frame, we have an available pool of Kalman

models and a new available pool of connected com-

ponents that they could explain. First, the models

are probabilistically matched to the connected regions

that they could explain. Second, the connected re-

gions which could not be suÆciently explained are

checked to �nd new Kalman models. Finally, mod-

els whose �tness (as determined by the inverse of the

variance of its prediction error) falls below a threshold

are removed.

Matching the models to the connected compo-

nents involves checking each existing model against

the available pool of connected components which are

larger than a pixel or two. All matches with rela-

tively small error are used to update the corresponding

model. If the updated models have suÆcient �tness,

they will be used in the following frame. If no match

is found a \null" match can be hypothesized which

propagates the model as expected and decreases its

�tness by a constant factor. If the object reappears

in a predictable region of uncertainty shortly after be-

ing lost, the model will regain the object. Because

our classi�cation system requires tracking sequences

which consist of representations of a single object, our

system generally breaks tracks when objects interact

rather than guessing at the true correspondence.

The unmatched models from the current frame and

the previous two frames are then used to hypothe-

size new models. Using pairs of unmatched connected

components from the previous two frames, a model is

hypothesized. If the current frame contains a match

with suÆcient �tness, the updated model is added

to the existing models. To avoid possible combina-

torial explosions in noisy situations, it may be desir-

able to limit the maximum number of existing models

by removing the least probable models when excessive

models exist. In noisy situations (e.g. ccd cameras in

low-light conditions), it is often useful to remove the

short tracks that may result from random correspon-

dences. Further details of this method can be found

at http://www.ai.mit.edu/projects/vsam/.

4 Performance of the tracker

On an SGI O2 with a R10000 processor, this

method can process 11 to 13 frames a second (frame

size 160x120 pixels). The variation in the frame rate is

due to variation in the amount of foreground present.

Our tracking system has been e�ectively storing track-

ing information for �ve scenes since 1997[7]. Figure

3 and �gure 4 show accumulated tracks in two scenes

over the period of a day. While quick changes in cloud

cover (relative to �, the learning rate) can sometimes

necessitate a new set of background distributions, it

will stabilize within 10-20 seconds and tracking will

continue unhindered.

The tracking system has the most diÆculty with

scenes containing high occurrences of objects that vi-

sually overlap. The multiple hypothesis tracker is not

extremely sophisticated about reliably disambiguating

objects which cross. Adding more complex dynamics

or appearance templates[?] could help in this regard.

This problem can be compounded by long shadows,

but for our applications it was much more desirable to

track an object and its shadow and avoid cropping or

missing dark objects than it was to attempt to remove

shadows. In our experience, on bright days when the

shadows are the most signi�cant, both shadowed re-

gions and shady sides of dark objects are black (not

dark green, not dark red, etc.).

The tracker was robust to all but relatively fast

lighting changes (e.g. 
ood lights turning on and

partly cloudy, windy days). It successfully tracked

outdoor scenes in rain, snow, sleet, hail, overcast, and

sunny days. It has also been used to track birds at

a feeder, mice at night using Sony NightShot, �sh in

a tank, people in a lab environment, and objects in

outdoor scenes. In these environments, it reduces the

impact of repetitive motions from swaying branches,

rippling water, specularities, slow moving objects, and

acquisition noise. The system has proven robust to

day/night cycles and long-term scene changes. More

recent results and project updates are available at

http://www.ai.mit.edu/projects/vsam/.

5 Improving the tracker

Although we �nd the results of the tracker encour-

aging, there are still opportunities for improvement.

As computers improve and parallel architectures

are investigated, this algorithm can be run faster, on

larger images, and using a larger number of Gaussians

in the mixture model. All of these factors will in-

crease performance. A full covariance matrix would

further improve performance. Adding prediction to

each Gaussian (e.g. the Kalman �lter approach), may

also lead to more robust tracking of lighting changes.

Beyond these obvious improvements, we are inves-

tigating modeling some of the inter-dependencies of

the pixel processes. Relative values of neighboring

pixels, correlations with neighboring pixel's distribu-
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(a) (b)

Figure 3: This �gure shows consecutive hours of track-

ing from 6am to 9am and 3pm to 7pm. (a) shows the

image at the time the template was stored and (b) show

the accumulated tracks of the objects over that time.

Color encodes object direction and intensity encodes

object size. The consistency of the colors within par-

ticular regions re
ects the consistency of the speed, di-

rection, and size parameters which have been acquired.

(a) (b)

Figure 4: This �gure shows consecutive intervals of

tracking on a di�erent scene than previous �gure.

Also, this particular day was foggy, then clear, then

overcast. As the templates show, the tracking was rel-

atively una�ected.
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tions, and simple texture measures may be useful in

this regard. This would allow the system to model

changes in occluded pixels by observations of some of

its neighbors.

Our method has been used on grayscale, RGB,

HSV, and local linear �lter responses. But this

method should be capable of modeling any streamed

input source in which our assumptions and heuristics

are generally valid. We are investigating use of this

method with frame-rate stereo, IR cameras, and in-

cluding depth as a fourth channel(R,G,B,D). Depth is

an example where multi-modal distributions are use-

ful, because while disparity estimates are noisy due

to false correspondences, those noisy values are often

relatively predictable when they result from false cor-

respondences in the background.

6 Interpreting the Motion Tracks

Our simple adaptive background tracker has

tracked over 10 million objects since 1997. As shown

in Figure 5, for every frame that an object is tracked,

its location (x,y), speed/direction (dx,dy), and size are

recorded. Also, an image of the object and a binary

motion silhouette are cropped from the original image

and the binary di�erence image respectively.

Because of the stability and completeness of the

representation it is possible to do some simple clas-

si�cation based on aspect ratio or size. Of more

interest is classi�cation based on the actual move-

ment or shape of the object. The two sets of experi-

ments discussed below perform classi�cation based on

the fx,y,dx,dy,sizeg representation and the binary mo-

tion silhouette representation using literally millions

of training examples. Rather than using sequences to

create a sequence classi�er (as is most common), we

are using the sequences to create an instance classi�er.

Our method involves developing a codebook of

representations using an on-line Vector Quantization

(VQ) on the entire set of representations acquired

by the tracker. Second, we accumulate joint co-

occurrence statistics over the codebook by treating the

set of representations in each sequence as an equiva-

lency multi-set. Finally, we perform hierarchical clas-

si�cation using only the accumulated co-occurrence

data.

6.1 Previous work in classi�cation

There are countless examples of tracking system

that perform predetermined classi�cation tasks on

tracked data, e.g. human vs. vehicle or walking

vs. running[2]; walking, marching, line-walking, and

kicking[3]; etc.

We are not interested in predetermined classi�ca-

tion tasks. Our method is most similar to the work

Figure 5: This �gure shows a single frame from a typ-

ical scene and the information which recorded for the

two moving objects. The �elds which are used for the

two classi�cation examples are labeled.

of Johnson and Hogg [13]. They begin their process

by on-line Vector Quantization on the input space.

They then quantize again into a predetermined num-

ber of probability distribution functions (pdfs) over

their discrete states. While a signi�cant number of

these pdfs will result in tight clusters of activity, it is

unclear how to relate two inputs that are grouped into

separate pdfs or to select the proper number of pdfs.

Our hierarchical classi�cation involves a step that

has the 
avor of Normalized Cuts and its many deriva-

tives (see [22]). It has discrete nodes (de�ned by the

codebook). It has edges which represent pair-wise dis-

tances (or dissimilarities or costs) between them. In

addition, the goal is to determine two sets of nodes

that are dissimilar. However, that is the extent of

the similarity. Our \costs" are probabilities, not \dis-

tances." Those similarities are not directly related to

the coordinates or properties of the nodes, but rather

are measured empirically from the data. Our \cut"

does not produce two discrete sets that minimize the

cut \similarities." It produces two distributions that

both explain the observed joint statistics and are rel-

atively dissimilar and match the co-occurrence data.

The following sections describe the method, show

two sets of results, discuss ways of improving this

method, and draw conclusions.

7 The Classi�cation Method

We assume that the tracker will produce a sequence

of representations of the same object. For example, a

person who is tracked through the scene for N frames

will produce N images, N binary silhouettes, N po-

sitions, N velocities, etc. Unless the tracker makes

a mistake in establishing correspondence, every repre-

sentation in a sequence should correspond to the same

underlying object. When developing a tracker for this

type of application, it is important to avoid tracking

errors involving false correspondences.

The following sections outline the basic process for

classi�cation. First, a codebook of prototype repre-
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sentations is generated using on-line Vector Quan-

tization(VQ). Second, the automatically tracked se-

quences are used to de�ne a co-occurrence matrix

over the prototypes in the codebook. Finally, the

co-occurrence data is used to probabilistically break

apart the prototypes in the codebook into a binary

tree representation. The result is a hierarchical clas-

si�er which can classify any individual representation

or sequences of representations.

7.1 Codebook generation

A codebook is a set of prototype representations

which approximate the density of the input represen-

tations. There are many methods of developing code-

books of prototypes (see [6] for a discussion).

For the quantity of data and the number of proto-

types we use, an o�-line method, such as K-means, is

not an option. The simplest method of on-line Vector

Quantization is to initialize the codebook randomly

with K prototypes centered at existing data points.

Then, take single data points, �nd the closest proto-

type in the codebook, and adapt that prototype to-

wards the data point using a learning factor, �. This

process is repeated for millions of data points as the

� value is slowly decreased until the prototypes are

stable and represent an equal amount of data. The

input spaces we dealt with did not require complex

annealing strategies.

We occasionally encountered an initialization prob-

lem. Prototypes seeded on outliers may be stranded

representing only that data point. We circumvented

this problem with a method used by Johnson and

Hogg[13] which enforces that each prototype repre-

sents the same amount of data. Over time, stranded

data points account for larger regions of the input

space until they represent new data points. The pro-

totypes are then adapted towards the new data points

until they represent as much data as all the other

points.

Once a codebook is generated, it is used as a lookup

table for incoming values, i.e., new values are repre-

sented by labels of nearby prototypes. Given the de-

sired size of the codebook, the goal of quantizing is

to determine a set of prototypes which best represents

the dataset. Our results were produced with code-

books of 400 prototypes. More complex spaces (e.g.

color image space) would necessitate either more pro-

totypes or more complex prototypes.

Depending on the complexity of the input space,

it may be diÆcult to create an e�ective codebook of

representations. If all the representations in the code-

book are equally likely to result from all the underlying

classes, this system will fail. For example, if none of

the representations in your codebook is more likely to

result from a person than a vehicle, there will be no

possibility of using those representations to di�eren-

tiate people and vehicles without additional informa-

tion.

While this may seem unsettling, we are encouraged

by our ability to generate large codebooks. Large

codebooks are usually troublesome because as the size

of the codebook, K, increases, the amount of data

needed for e�ective codebook generation increases on

the order of K. Also, the amount of data needed for

co-occurrence statistics accumulation increases on the

order of K2. Since our system automatically collects

and processes data, we have hundreds of gigabytes of

tracking data for future processing steps. And, our

method converges as the amount of data increases

rather than su�ering from over-�tting.

An area of high data point density may accumulate

a large portion of the prototypes, leaving few proto-

types for the rest of input space. In some cases, it may

be desirable to have a large number of prototypes in

the high-density areas because those regions may be

the most ambiguous regions of the input space (e.g.

traÆc at an intersection). In other cases, the areas of

high density may arise from uninteresting, repetitive

input data (e.g. scene clutter) and there is no ben-

e�t to wasting a large portion of your prototypes in

that region. We currently �lter most of the sequences

which are less than a few seconds in duration. This �l-

ters most of the repetitive motions in the scene before

the learning process.

7.2 Accumulating co-occurrence statis-
tics

Once the codebook has been generated, the input

space is no longer considered. Every input data point

is labeled as the most representative prototype { the

one that is nearest to it. So rather than considering

a sequence of images, binary silhouettes, positions, or

histograms, we convert to the codebook labels, then

only consider sequences of symbols, s1 through sK ,

corresponding to the K prototypes.

Further, our method disregards the order of the se-

quence and considers them as multi-sets of symbols. A

multi-set is a set which can contain multiple instances

of the same element. Each pair within a sequence

(excluding pairing a prototype label with itself) is evi-

dence that those two prototypes' appearances resulted

from the same underlying class.

The goal of this system is to produce a classi�ca-

tion system which can be given one or more observa-

tions (e.g. an image, a silhouette, etc.) of a partic-

ular object and classify it into a set of classes such

9



that the same type of object tends to be put in the

same class. This is in contrast to systems that are

speci�cally designed to recognize sequences (e.g. Hid-

den Markov Models). When the system has learned

to classify an object based on its motion silhouette,

color histogram, or size, it should be capable of do-

ing so with a single example. Of course, the system

should perform better if given multiple examples, but

it should not rely on seeing a complete sequence.

Our model for the production of the sequences is

simple. There are N underlying classes, each of which

occurs with some prior probability, �c. A class c, when

observed, has some probability distribution, pc(), of

producing each of the prototype's symbols. As long as

the object is observed, it will produce symbols given

the same distribution. This model re
ects our assump-

tion of the independence of samples in a sequence dis-

cussed earlier.

The multi-sets of prototypes are used to estimate a

co-occurrence matrix, C where ci;j is the estimated

probability that a sequence from the training se-

quences will contain an input represented by the ith

prototype and a separate input represented by the jth

prototype.

First, a matrix of the accumulated co-occurrences,

Ctotal
i;j , is initialized to zeros or a prior joint distribu-

tion (see Future work section). Given a multi-set, each

possible pair (excluding pairing symbols with them-

selves) is added to Ctotal weighted inversely by the

number of pairs in that sequence. Given a sequence,

S = fS1; S2; :::g, for each pair fSi; Sj where i 6= jg

Ctotal
i;j = Ctotal

i;j + 1=P (10)

where P = jSj2 � jSj is the number of valid pairs in

this sequence. Then the current joint co-occurrence

estimate, C, is Ctotal normalized

C = Ctotal=Z (11)

where Z is the number of sequences currently used to

estimate Ctotal.

If there was a single underlying class and in�nite

sequences to train, Ci;j would converge to p1(i)�p1(j).

In such a case, nothing can be said about the relative

relationships of the prototypes. With N underlying

classes,

lim
Z!1

Ci;j =

NX
c=1

�c � pc(i) � pc(j) (12)

Given enough synthetically produced data from a

system for which each class has one prototype for

which it is the sole producer, it is possible to solve

for all parameters of the model. Since this is a re-

strictive case, we will not pursue it here. The next

section outlines how our system extracts a hierarchi-

cal approximation to these classes.

7.3 Hierarchical classi�cation

Our classi�cation method takes the entire set of

prototypes and the co-occurrencematrix and attempts

to determine two distributions, or probability mass

functions(pmfs), across the prototypes of the code-

book that best explain the co-occurrence matrix.

Once these distributions are determined, each distri-

bution is treated as another set of prototypes and their

co-occurrence matrix is estimated. The process is re-

peated until a stopping criterion is reached.

The root of the tree represents the universal pmf

including every prototype in proportion to how often it

occurred. At each branch in the tree, the pmf is broken

into two separate pmfs that are relatively dissimilar.

This process does not necessarily guarantee that the

two pmfs will sum to the parent pmf.

At each branch, we initialize two random pmfs with

two priors, �1 and �2, use the pmfs and priors to create

an estimate of the co-occurrence matrix,

Ĉi;j =

NX
c=1

�c � pc(i) � pc(j) (13)

and iteratively re-estimate the parameters to minimize

the sum squared error6

E =
X
i;j

(Ci;j � Ĉi;j)
2 (14)

The update rules that minimize the error function

with respect to our model parameters are

�c = (1���)��c+(��)�
X
i;j

(Ci;j� Ĉi;j)�pc(i)�pc(j)

(15)

and

pc(i) = (1��p) � pc(i) + (�p) �
X
j

(Ci;j � Ĉi;j) � pc(j)

(16)

where c is the class(c 2 f0; 1g) and the learning factor

for the priors, ��, is higher than the learning factor for

the pmfs, �p. It is sometimes useful to put soft con-

straints on the priors to insure both distributions rep-

resent signi�cant portions of the co-occurrence data.

6Arguably, the

Kullback-Leibler (KL) distance, (
P

i;j
(Ci;j ln

Ci;j

Ĉi;j

)) would be

more appropriate in comparing distributions. We are currently
investigating this and other error functions and the update rules
which result.
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At each branch, the parent distribution is used

to estimate the co-occurrences that result from that

class. The co-occurrence for the left branch subprob-

lem would be derived from the original co-occurrence,

C, and the left pmf, p0(:) as follows

C0
i;j = Ci;j � p0(i) � p0(j) (17)

C0 is used to determine the children pmfs of p0(:),

p00(:) and p01(:). For example, if a pmf was uni-

form over half the prototypes, the co-occurrence ma-

trix used for its children would include only the co-

occurrences between those prototypes. If this was not

done, every branch may result in the same pmfs as the

initial branch.

Once the parameters for the pmfs have been de-

termined. Any exclusive set of them can be used as

classi�ers. An exclusive set of prototypes can be deter-

mined by using the leaf nodes of any pruned version

of the binary tree. We prune after any node whose

children's distributions similarity exceeds a threshold,

although Figure 7 shows a complete tree before the

pruning for evaluation purposes. All leaf nodes are

associated with a probability distribution across the

prototypes that can now be used to classify sequences.

7.4 Classifying a sequence

Each observation in a sequence is treated as an

independent observation. Thus the probability of a

particular class is the product of the probabilities of

that class producing each of the observations in the

sequence. This can be computed by using the dot

product of the log of the pmfs(with prior) with the

accumulated prototype histogram from the sequence.

Note that if the prototypes were split into two distinct

classes, even observations which mapped to extremely

ambiguous prototypes would count towards one class

or the other in equal proportion to the de�nitive ex-

amples.

7.5 A simple example

Figure 6 shows a synthetic example. Using the pre-

de�ned classes and priors, a root co-occurrence matrix

can be formed. At each branch the pmf is broken

into two pmfs which best explain the observed joint

co-occurrences. The classi�cation hierarchy behaves

as would be expected, �rst breaking apart the class

which never presents like the other two classes, then

breaking remaining two classes.

8 Results

The following two examples involve creating a clas-

si�cation hierarchy using the same number of proto-

types, the same learning parameters, and the same

sequences produced by our tracking system. The only

Figure 6: This �gure shows a synthetic classi�cation

example with three underlying classes shown in the up-

per left. The �rst branch separates the class whose pmf

doesn't have any overlap from the other two, p1. That

separable class cannot be further separated. The other

two class pmfs are separated at the next branch (into

p00and p01).

di�erence is that they use di�erent representations.

The �rst example classi�es activity based on a 5-tuple

(image position, speed, direction, and size). The sec-

ond example classi�es shape based on a 1024-tuple

(32x32 binary silhouettes).

8.1 Classifying activities

This example classi�es objects based on a repre-

sentation of their position, speed, direction and size

(x,y,dx,dy,s). First, four hundred representative pro-

totypes are determined. Each prototype represents

all the objects of a particular size that are seen in a

particular area of a scene moving in a particular direc-

tion. Co-occurrences are accumulated using 24 hours

of sequences from that scene. Finally, the universal

pmf (the true pmf of the entire set of sequences) is

probabilistically broken into two pmfs.

The process is repeated to produce a binary tree

of height 4 detailed in Figure 7. Figure 8 shows the

history of one particular day.

Note that the scene contains a road with adjacent

parking spots and a path through the grass near the

loading bay of our building. The binary tree shows

accumulated motion templates for each node of the

tree. The �rst break separates traÆc moving in one

direction around the building and traÆc moving in the

other direction, because objects in this scene did not

generally change their direction. The second break for

both branches separates traÆc on the road and traÆc

on the path. While there are some prototype states

which we common to both activities, these two activ-

ities were signi�cantly di�erent and accounted for a
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Figure 7: This �gure shows an image of the scene(upper left), the classi�cation hierarchy(center), and the co-

occurrence matrix and normalized pmfs(upper right) for each element of the tree. The scene contains a road with

adjacent parking spots and a path through the grass near the loading bay of our building. The binary tree shows

accumulated motion templates for each node of the tree. And the co-occurrence matrix and normalized pmfs show

which prototypes occurred within the same sequences and the probability distributions for each node in the tree

(ordered breadth-�rst). The �nal level of the tree speci�c classes including: pedestrians on the path (one class in

each direction); pedestrians and lawn-mowers on the lawn; activity near the loading dock. cars; trucks; etc. These

classes can be viewed in a Java 1.1 compatible browser at: http://www.ai.mit.edu/projects/vsam/Classi�cation/Cclasses/

. Note: the columns and rows of the co-occurrence matrix have been ordered to make some of its structure more

apparent.
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Figure 8: This �gure shows how many of the activities were detected on a particular day. The �rst two columns

correspond to the initial branch. The following four columns correspond to the next level of the binary classi�cation

tree. The last 8 columns are the leaf nodes of the classi�cation tree. Below some of the columns the primary type

of activity for that node is listed. Morning rush hour is highlighted in green(light gray) and shows traÆc moving

mostly in one direction. The lunch-time pedestrian traÆc is highlighted in red(gray). The evening rush hour is

highlighted in blue(dark gray) and shows more movement in the opposite direction as the morning rush hour.
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(a)

(b)

(c)

(d)

Figure 9: (a) shows the co-occurrence matrix and re-

sulting pmfs. Some of the prototypes from the person

class(b), vehicle class(c), and some prototypes which

were signi�cantly ambiguous(d). In C, the upper left

corresponds to silhouettes of people and the lower right

corresponds to silhouettes of vehicles. The vehicles

show less statistical independence because vehicles in

this particular scene were only scene as they passed

through particular orientations. If the scene contained

vehicles driving in circles, the corresponding proto-

types would exhibit more independence. Note: the co-

occurrence matrix has been ordered to make some of

its structure more apparent.

signi�cant amount of the data. Further bifurcations

result in classes for: pedestrians on the path; pedes-

trians and lawn-mowers on the lawn; activity near the

loading dock. cars; trucks; etc. These classes can be

viewed in a Java 1.1 compatible browser at:

http://www.ai.mit.edu/projects/vsam/Classi�cation/Cclasses/.

Figure 10 shows the distribution of events over a

24 hour period, highlighting the changes in density of

pedestrian and vehicular traÆc as a function of time.

8.2 Classifying motion silhouettes

While this example results in a rather simple clas-

si�cation, it illustrates an intended use for this type of

classi�cation. VQ resulted in 400 silhouettes of vehi-

cles and people. The �rst break broke the silhouettes

into two relatively discrete classes, people and vehi-

cles. Some of the more blurry prototypes remained

ambiguous because they matched both vehicles and

people. These prototypes were shared between the

two classes. Figure 9 shows the co-occurrence matrix,

the pmfs, and some examples of prototypes from both

classes.

Figure 10 shows classi�cation of a day of silhouette

sequences. After setting the similarity parameter for

pruning, the resulting classi�er �rst separated vehi-

cles as they were decisively di�erent from the other

silhouettes. This means that while vehicles appeared

at many di�erent angles within their sequences, few

sequences contained both vehicles and people. The

next break was individual pedestrians. Then the last

break removed groups of pedestrians from clutter and

lighting e�ects.

The daily activity histograms show some interest-

ing facts. The highest occurrences of people and cars

was in the morning and evening as expected. Groups

of people tended to occur most shortly after noon.

The clutter was primarily trees, garbage, and lighting

e�ects on the side of buildings. The histogram and

images show that it was a very windy morning and

the lighting e�ects occurred near dusk.

9 Detecting Unusual Events

Often a particular scene will contain events which

have never occurred or occur so rarely that they are

not represented in the clustered activities. In many

cases, it is these events that are of most interest.

Because we can build representations of common

patterns in a site, we are able to use that information

to detect uncommon patterns. We have done some

preliminary work on determining unusual activities as

they occur. Our system measures two aspects of how

usual each track is. First, it measures the typicality

of each of the instantaneous states using the codebook

as a density approximator. Second, it looks at the co-

occurrences exhibited by the sequence in relation to

the accumulated co-occurrence statistics. Both mea-

sures can provide evidence in support of an unusual

event, and we are currently developing this work and

determining methods by which to evaluate it.

10 Classi�cation shortcomings and fu-

ture work

Admittedly, the scene that these classi�ers were

derived from was well-suited to this problem. Some

scenes containing the same types of objects would have

resulted in classi�cation hierarchies without as much

structure. For example, if cars drove straight through

the scene on two separate roads, there may be no se-

quences of cars moving from one road to the other.

Without such evidence, there is no reason to expect

that the two resulting classes would be near each other

in the hierarchy. Unless the extended scene with mul-

tiple cameras is shown that two representations are

similar, it will have to be told by a short supervision

process following training.
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Figure 10: On the left is the 400 silhouette prototypes and the co-occurrence matrix that resulted from a day's

worth of tracking sequences. In the middle is the classi�cation hierarchy which resulted, images of all occurrences

of each class, and description of the classes as well as their performance relative to those descriptions. On the

right are 24 hour histograms of the occurrences of each class. See web page for more higher quality images.
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The most obvious weakness of this algorithm is the

need to discretize complex input spaces. We are cur-

rently investigating automatically deriving local fea-

ture sets using VQ on sub-images and learning those

features similarities using local (in time and space) co-

occurrence measurements. Doing this hierarchically

hold promise for learning useful feature sets and bet-

ter prototypes.

This could also be useful for texture segmentation.

For example, create 10,000 texture prototypes and

de�ne their similarity based on which prototypes oc-

cur near other prototypes (spatially and temporally).

Learning similarities this way, rather than attempting

to assert a prior for which textures are similar, takes

advantage of domain speci�c regularities and could de-

�ne regularities in domains where it is not certain how

similar two textures are.

Of course, assumed similarities are useful, particu-

larly in cases where there is not enough data. In such

cases, the Ctotal can be seeded with a co-occurrence

matrix. Hence, prototypes without suÆcient represen-

tation will assume the similarities they are given while

the similarities of the prototypes which are observed

often are determined by the data.

Finally, we are investigating using both the pro-

totypes and the co-occurrences to detect outliers. If

many data points in a sequence are not represented

by a prototype, it may be an unusual event. Also, if a

sequence's co-occurrences are very unlikely given the

joint co-occurrences, it is likely to be unusual.

Anomaly detection and classi�cation in general

would be greatly enhanced by learning context cycles.

If we could learn a traÆc light cycle, we could detect

that cars running the light are unusual even though

their pattern of activity was not. If we could learn

daily cycles, our models could contain speci�c proto-

types for day and night (e.g. headlights vs. full ve-

hicles). Also, only deliveries made at night may be

unusual.

11 Conclusions

This paper has shown a novel, probabilistic method

for background subtraction. It involves modeling each

pixel as a separate mixture model. We implemented

a real-time approximate method which is stable and

robust. The method requires only two parameters, �

and T. These two parameters are robust to di�erent

cameras and di�erent scenes.

This method deals with slow lighting changes by

slowly adapting the values of the Gaussians. It also

deals with multi-modal distributions caused by shad-

ows, specularities, swaying branches, computer moni-

tors, and other troublesome features of the real world

which are not often mentioned in computer vision. It

recovers quickly when background reappears and has a

automatic pixel-wise threshold. All these factors have

made this tracker an essential part of our activity and

object classi�cation research.

This system has been successfully used to track peo-

ple in indoor environments, people and cars in outdoor

environments, �sh in a tank, ants on a 
oor, and re-

mote control vehicles in a lab setting. All these situa-

tions involved di�erent cameras, di�erent lighting, and

di�erent objects being tracked. This system achieves

our goals of real-time performance over extended pe-

riods of time without human intervention.

We have also motivated and implemented a new

approach to automatic object classi�cation. This ap-

proach has shown promise with two contrasting clas-

si�cation problems. In one case, it produced a non-

parametric activity classi�er. In the other case, it pro-

duced an binary image-based classi�er. We are cur-

rently investigating many other possible uses for this

method.
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