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ABSTRACT 

 

Intrauterine growth restriction (IUGR) is the failure of the fetus to achieve his/her 

intrinsic growth potential, due to anatomical and/or functional disorders and diseases 

in the feto-placental-maternal unit. IUGR results in significant perinatal and long-term 

complications, including development of insulin resistance/metabolic syndrome in 

adulthood. 

 The thrifty phenotype hypothesis holds that intrauterine malnutrition leads to an 

adaptive response that alters the fetal metabolic and hormonal milieu designed for 

intrauterine survival. This fetal programming predisposes to an increased 

susceptibility for chronic diseases. Although the mechanisms controlling intrauterine 

growth are poorly understood, adipose tissue may play an important role in linking 

poor fetal growth to the subsequent development of adult diseases.  Adipose tissue 

secretes a number of hormones, called adipocytokines, important in modulating 

metabolism and recently involved in intrauterine growth. 

This review aims to summarize reported findings concerning the role of 

adipocytokines [leptin, adiponectin, ghrelin, tumor necrosis factor-alpha (TNF-a), 

interleukin-6 (IL-6), visfatin, resistin, apelin] in early life, while attempting to 

speculate mechanisms through which differential regulation of adipocytokines in 

IUGR may influence the risk for development of chronic diseases in later life.  

 

 

 

 

Key words: intrauterine growth restriction, adipocytokines, adipose tissue, metabolic 

syndrome, adult disease  
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INTRAUTERINE GROWTH RESTRICTION 

 

Intrauterine growth restriction (IUGR) is the failure of the fetus to achieve his/her 

intrinsic growth potential, due to anatomical and/or functional disorders and diseases 

in the feto-placental-maternal unit [1]. IUGR is characterized a) as symmetrical if 

weight, length and head circumference are low, usually indicative of a process 

originating early in pregnancy, b) as asymmetrical when brain sparing takes place and 

the head circumference is within normal limits, indicative of a process occurring as 

gestation advances [1].  

Asymmetrical IUGR is usually related to impaired uteroplacental function or nutrient 

deficiency [1]. In these cases, fetal growth is normally evolving until growth rate 

exceeds substrate provision, generally during the third trimester [1]. Even a slight 

decrease in energy substrate limits fetal glycogen and fat formation, as well as muscle 

growth [2]. Bone growth -and thus fetal length- are less affected, whereas 

redistribution of cardiac output leads to preferential substrate delivery to the brain [1, 

2]. Therefore, asymmetric IUGR represents an adaptation to an unfavorable 

intrauterine environment and results in significant perinatal and long-term 

complications [1, 3-5]. 

 

THE DEVELOPMENTAL ORIGINS OF ADULT DISEASE 

Since the late 1980s numerous epidemiological studies demonstrated a strong 

association between IUGR and the later development of the metabolic syndrome, 

comprising arterial hypertension, coronary heart disease, dyslipidemia, visceral 

obesity, impaired glucose tolerance, type 2 diabetes mellitus and many other diseases, 

including osteoporosis [6]. This association, described in various populations, is 
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unrelated to age, sex and ethnic origin, and occurs independently of current weight 

and level of exercise [6, 7].   

The thrifty phenotype hypothesis proposes that the association between poor fetal 

growth and subsequent development of type 2 diabetes/metabolic syndrome results 

from the effects of poor intrauterine nutrition, producing permanent changes in 

glucose-insulin metabolism [8]. These changes include reduced capacity for insulin 

secretion and insulin resistance [8]. 

In this respect, alterations in fetal nutrition may result in developmental adaptations 

that permanently change the physiology and metabolism of the offspring, thereby 

predisposing individuals to metabolic, endocrine and cardiovascular disorders [8, 9]. 

This phenomenon, termed “fetal programming”, has led to the “fetal origins of adult 

disease” theory [10, 11].  

The fetus adapts to an adverse intrauterine milieu by optimizing the use of a reduced 

nutrient supply to ensure survival. Therefore, blood flow redistribution in favour of 

vital organs and changes in the production of fetal and placental hormones, 

controlling fetal growth, take place [10]. Although this topic has been controversial, 

recent epidemiological, clinical and animal studies support the theory of the 

“developmental origins of adult disease” [12-14]. 

On the other hand, the fetal insulin hypothesis proposes that genetically determined 

insulin resistance could result in low insulin-mediated fetal growth and insulin 

resistance in childhood and adulthood [15]. Insulin is one of the major growth factors 

in fetal life, and monogenic disorders that affect fetal insulin secretion and resistance 

also affect fetal growth [16, 17]. However, such mutations are rare, and no analogous 

common allelic variation has been discovered.   
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Mechanisms 

Underlying molecular and cellular mechanisms of metabolic programming are not 

clear, but may include reprogramming of the hypothalamic-pituitary-adrenal axis and 

insulin-signaling pathways [18]. In many instances, the metabolic and other disorders 

associated with IUGR have an endocrine origin and are accompanied by changes in 

hormone bioavailability in adulthood [19]. Abnormalities in the circulating 

concentrations of insulin, catecholamines, cortisol, growth hormone (GH) and insulin-

like growth factors (IGFs) have been observed in children and adults being born 

IUGR [18, 20]. These observations have led to the hypothesis that adult disease arises 

in utero, in part, as a result of changes in the development of key endocrine axes 

during suboptimal intrauterine conditions [19]. Thus, a thrifty phenotype results to 

increased sensitivity of the peripheral tissues to metabolic hormones, such as 

glucocorticoids and insulin, a condition that ensures survival and maximizes growth 

and fuel deposition, given  that nutritional conditions improve after birth [19]. If 

postnatal nutrient availability is greater than prenatally predicted, enhanced postnatal 

growth and fat deposition will occur. In turn, this increased adiposity will lead to adult 

insulin resistance [21]. Certainly, the risk of developing adult metabolic syndrome is 

greatest, when poor prenatal growth is coupled with rapid catch-up growth during 

childhood [22].  

In this respect, a study conducted in a Finish cohort in 1999 revealed a possible link 

between catch-up growth and insulin resistance, reporting that IUGR individuals 

experiencing rapid catch-up growth had the highest mortality from coronary heart 

disease [23]. Since then many researchers have illustrated this link in children and 

young adults born IUGR [24-26]. Furthermore, the work of Colle et al. first 

established that glucose-stimulated plasma insulin concentrations in infants and 
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children born small-for-gestational-age (SGA) were higher during catch-up growth 

[27]. This and other studies have emphasized that insulin resistance is an early 

manifestation of the mechanisms by which catch-up growth may predispose to adult 

disease [26, 28].  

 

THE ROLE OF ADIPOSE TISSUE    

A growing body of evidence recently suggests that the adipose tissue may also play a 

major role in linking poor fetal growth to subsequent development of adult diseases 

[29]. Insulin resistance, obesity-related diabetes and accompanying metabolic 

disorders are strongly associated with increased visceral fat mass [30].  

IUGR is known to alter the development of fetal adipose tissue [31]. IUGR fetuses 

show a marked reduction in body fat mass, which mainly reflects a decreased 

accumulation of lipids in the adipocytes. However, although total body fat percentage 

is reduced, visceral adipose tissue is relatively increased [31]. In this respect, IUGR 

children with rapid catch-up growth in infancy present with increased and more 

centralized distributed fat mass [29], even if they are not overweight [32]. Moreover, 

their abdominal adipose tissue shows hyperresponsiveness to catecholamines [33] and 

early insulin resistance [21].  

Interestingly, polymorphisms in the gene encoding the peroxisome-proliferator-

activated receptor γ2 (PPARγ2), which is involved in the development and metabolic 

function of adipose tissue, modulate the susceptibility of IUGR subjects to develop 

insulin resistance in adulthood [34]. This polymorphism is responsible for higher risk 

of type 2 diabetes only in IUGR cases [34].  

Since the discovery of adipocyte-derived hormones, collectively called 

adipocytokines, the adipose tissue is no longer considered an inactive fat store tissue, 

Page 6 of 46



 7 

but an endocrine organ, secreting a variety of bioactive molecules, which regulate 

body metabolism and energy homeostasis. Furthermore, adipocytokines have been 

recently implicated in fetal growth [35-40].  

Given the importance of adipose tissue and its hormones in fetal growth and 

maturation for both survival at birth and overall health, it is of interest to explore the 

physiology of adipocytokines in early life, as well as those factors that may perturb 

the balance of these hormones in the IUGR state with pathological consequences in 

terms of confining an increased risk for adult disease.  

 

Leptin in IUGR 

Leptin, the product of the obesity (ob) gene, is a hormone of 16 kDa comprising 167 

aminoacids [41]. The central source of leptin is the adipose tissue (white and brown), 

although it can also be produced in other sites, including the placenta [35, 36]. It 

mainly acts by binding to specific central and peripheral receptors in the 

hypothalamus, adipose tissue, liver and pancreatic β-cells [42]. Leptin stimulates a 

negative energy balance by increasing energy expenditure and reducing food intake 

[43]. Rodents and humans lacking leptin or functional leptin receptors develop severe 

obesity and hyperphagia [44]. However, endogenous hyperleptinemia fails to 

stimulate body weight loss in obese individuals, suggesting that a state of leptin 

resistance is linked to the development of obesity [45]. 

Leptin seems to be a critical factor for overall fetal development [46, 47]. The 

hormone is produced in both maternal and fetal adipose tissues and the placenta [46, 

48], while its receptors are abundant in the uterine endometrium, trophoblast and the 

fetus [49]. Fetal adipose tissue is an important source of leptin and fetal leptin levels 

are strongly related to birth weight and fetal adiposity [37, 50-53]. Furthermore, a 
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strong association between neonatal leptin levels, bone mineral content and estimated 

bone density has been confirmed, supporting a role for leptin in the process of fetal 

bone remodeling [54].  

Recent data suggest that prenatal undernutrition associated with IUGR can shape 

future susceptibility to obesity, obesity-related disorders and osteoporosis through 

alterations in the regulation of leptin secretion and sensitivity [45, 46, 54, 55]. Thus, 

leptin may play a role in the control of substrate utilization and in the maintenance 

and functional characteristics of fat mass before birth, producing permanent changes, 

concerning adiposity and body composition in adult life [55, 56]. Moreover, 

accumulating evidence indicates that the risk of osteoporosis may also be determined 

by factors acting on intrauterine bone development via alterations in leptin dynamics 

[54, 57].  

Several studies demonstrated lower circulating leptin concentrations in IUGR 

neonates at birth, due to reduced fat mass [58-72] and/or decreased placental 

production [73-75]. In some of these studies, fetal leptin levels per kilogram of fetal 

weight, as well as fetal leptin levels before 34 weeks of gestation, were not 

significantly different in IUGR, indicating that leptin secretion is mainly associated 

with adipose tissue accumulation [61-64]. However, other investigators suggested that 

low fetal leptin levels in IUGR are associated with reduced placental production, 

since leptin levels dramatically decrease shortly after birth [73-75]. Nevertheless, 

these reduced fetal concentrations increase and become higher in IUGR infants, 

children and adults, compared to normal birth weight controls, regardless of body 

mass index (BMI) [76-78], suggesting either an adaptive leptin resistance beneficial 

for catch-up growth, or an adipocyte dysfunction associated with IUGR [76]. 

Therefore, leptin may represent one of the mechanisms whereby intrauterine factors, 
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which affect weight and adiposity at birth, could influence postnatal levels of satiety, 

metabolism and weight gain [46, 55, 79]. 

Although most studies suggest that fetal leptin levels are lower in IUGR [58-75], 

other investigators determined similar [80] and also higher [81] leptin concentrations. 

In this respect, a recent study from our group demonstrated lack of significant 

differences in fetal leptin concentrations between characteristic IUGR (birth-weight 

<3
rd

 customized centile) cases and appropriate-for-gestational-age (AGA) controls, 

possibly due to a more active production of leptin by visceral fat in the former [80]. 

Furthermore, higher fetal leptin concentrations in IUGR in an older report [81] may 

be attributed to differences in the fetal oxygenation status, since leptin gene is highly 

sensitive to oxygen abundance [82] and IUGR fetuses exhibiting severe distress have 

significantly higher leptin concentrations per kilogram of weight [64]. The authors 

suggest that the persistence of such adaptation within the adipocyte may predispose to 

excess fat deposition in later life [81]. Nevertheless, more studies are needed to 

evaluate the role of fetal leptin secretion patterns in different types of IUGR.  

In order to investigate the role of leptin in fetal programming, the maternal protein-

restricted rat model of IUGR has been used [79, 83, 84]. In this respect, numerous 

studies indicated that prenatal exposure to maternal undernutrition lead to 

development of diet-induced obesity, hyperleptinemia, hyperinsulinism and 

hypertension in the rat offspring [85-90]. Suggested underlying mechanisms include 

pre-existing fetal leptin resistance [87], excessive fetal exposure to glucocorticoids 

associated with IUGR [88] and permanent dysregulation of the adipoinsular feedback 

system, leading to hyperinsulinism and compensatory leptin production by pancreatic 

delta-cells [89] or adipose tissue [90]. Desai et al. [91, 92] documented reduced leptin 

levels in IUGR neonates and impaired anorexigenic response to leptin in the central 

Page 9 of 46



 10 

satiety pathway, contributing to programmed obesity in the rat offspring, while 

Delahaye et al. [93] showed that IUGR drastically reduces the postnatal surge of 

plasma leptin, particularly disturbing the gene expression of the anorexigenic neurons. 

Moreover, leptin administration to low-protein dams reverses the reduction in fetal 

IGF-1 levels in the IUGR offspring and significantly elevates both IGF-2 and fetal 

leptin levels, which affect the fetal development of key endocrine organs, e.g. the 

pancreas [83, 84]. Thus, maternal leptin administration results in an increase of fetal 

pancreatic insulin content and provides long-term protection from type 2 diabetes and 

obesity [83, 84].  

On the other hand, leptin levels were elevated in the IUGR ovine fetus and inversely 

related to uterine blood flow and fetal/placental weight, suggesting that fetal leptin 

may be involved in an adaptive response [94]. Interestingly, altered hypothalamic 

leptin receptor distribution has been very recently showed in IUGR piglets, while 

leptin supplementation partially reversed the IUGR phenotype, by correcting growth 

rate and body composition in the offspring [95]. Furthermore, in the sheep fetus, 

moderate maternal undernutrition does not seem to influence fetal plasma leptin 

levels, while severe maternal undernutrition leads to suppression of fetal leptin 

synthesis, secondary to profound fetal hypoglucemia or hypoinsulinemia [96, 97]. It is 

possible that IUGR may alter the expression of appetite-stimulating neuropeptides in 

the fetal brain, programming susceptibility to adult obesity [55].  

 Taken together, these data indicate that intrauterine exposure to either intrauterine 

hypo- or hyperleptinemia may programme central or peripheral energy-regulating 

systems, predisposing to postnatal obesity.  

 

Adiponectin in IUGR 
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Adiponectin is one of the most abundant adipose tissue-specific proteins and is 

predominantly expressed and secreted from adipose tissue [98]. Adiponectin is 

postulated to play a role in the modulation of glucose and lipid metabolism in insulin-

sensitive tissues [99]. Circulating adiponectin concentrations decrease in insulin-

resistant states, including type 2 diabetes [99, 100]. Unlike leptin, adiponectin 

concentrations are inversely correlated with body weight and the amount of fat mass 

[101]. Moreover, recent findings indicate that adiponectin has antiatherogenic and 

antiinflammatory properties [102]. 

In addition to regulating body metabolism, adiponectin is also produced within the 

intrauterine environment [52, 103-105]. The findings that adiponectin is present in 

cord blood [103], positively correlates with birth-weight [52, 104] and is highly 

produced by both the placenta and the fetus [52, 105], suggest that this adipocytokine 

may play a key role in fetal growth, probably enhancing the growth-promoting effect 

of insulin through its insulin-sensitizing action [52]. The high fetal adiponectin 

concentrations may be attributed to lack of negative feedback on adiponectin 

production, resulting from lack of adipocyte hypertrophy, low percentage of body fat, 

or a different distribution of neonatal fat depots [106, 107]. On the contrary, other 

investigators failed to demonstrate a relation between fetal adiponectin and birth 

weight [103].  

Given the significance of glucose and insulin in fetal growth [108] and the 

fundamental role of adiponectin in insulin metabolism [99, 100], it is reasonable to 

assume that adiponectin may play a regulatory role in IUGR. A number of studies [71, 

103, 106], including our published data [80], demonstrated lack of significant 

differences in fetal adiponectin concentrations between IUGR cases and AGA 

controls, probably due to lack of insulin resistance, present in early life. However, 
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SGA fetuses have been recently reported to shift their adiponectin pattern towards the 

high-molecular-weight isoform (which specifically correlates with insulin sensitivity), 

thus sensitizing their body to insulin and preparing for neonatal catch-up growth 

[109]. By contrast, two previous studies demonstrated lower adiponectin 

concentrations in IUGR and proposed that this down-regulation may be a 

predisposing factor for later development of insulin resistance/metabolic syndrome 

[110, 111]. Interestingly, in support of this view, adiponectin levels in IUGR children 

were particularly low in those who showed postnatal catch-up growth, compared to 

levels in IUGR children who remained small during childhood [112, 113]. This may 

indicate that the low adiponectin levels in IUGR infants may actually predict the 

subsequent development of visceral fat and insulin resistance [112]. On the contrary, 

limited number of human and animal studies has revealed normal adiponectin levels 

in SGA prepubertal children, despite the fact that they were more insulin resistant, 

probably responding to a mechanism aiming at improving insulin sensitivity [114-

116]. On the other hand, normal or higher adiponectin concentrations in IUGR 

insulin-resistant children have been recently reported [117]. A possible explanation 

for these contradictory results may rely on the fact that all above studies have not 

consistently characterized IUGR. Alternatively, discrepancies could be, to a large 

extent, explained by differences in specific methodological aspects. 

Taken together, these data imply that adiponectin deficiency may be a plausible and 

attractive explanation for the metabolic abnormalities observed in IUGR children and 

adults. However, the association between IUGR and postnatal circulating adiponectin 

is not constant, indicating that the modifying effects of early and late postnatal growth 

characteristics may not completely explain the variability in adiponectin 

concentrations [118]. 
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Ghrelin in IUGR 

     

Ghrelin, an endogenous ligand of the GH secretagogue receptor, is an acylated 28-

amino acid peptide that is predominantly produced by the stomach [119], but also by 

many other tissues, including the pituitary and the placenta [120]. It has potent 

orexigenic, adipogenic and GH-releasing properties that facilitate food intake and 

increase fat storage [121, 122]. In this respect, ghrelin concentrations have been 

shown to increase with fasting and decrease following feeding in humans and rats 

[123]. These data suggest that ghrelin may be an important link between nutrition and 

growth. The presence of significant immunoreactive ghrelin concentrations in human 

cord blood and their inverse correlation with fetal growth-related parameters, 

including birth weight, have recently been demonstrated [39, 124]. A small number of 

studies documented higher fetal ghrelin concentrations in IUGR [39, 125, 126]. This 

finding was attributed to the state of undernutrition of these fetuses and a role for 

ghrelin in fetal adaptation to intrauterine malnutrition has been proposed [125, 126]. 

Furthermore, fasting is known to stimulate GH release in infants with IUGR, who 

characteristically show elevated basal levels of GH [127]. Therefore, the augmented 

ghrelin concentrations in IUGR may consequently lead to elevated GH 

concentrations, as ghrelin has a potent GH-releasing activity [122]. Eventually, the 

higher ghrelin concentrations may serve to stimulate appetite, resulting in higher 

nutritional intake by the IUGR neonate after birth [126]. In agreement, both higher 

ghrelin levels and hyperphagia have postnatally been demonstrated in human and 

animal IUGR subjects, suggesting a role for ghrelin in postnatal catch-up growth [91, 

128, 129]. 

 

Tumor necrosis factor-alpha (TNF-a) and Interleukin-6 (IL-6) in IUGR 
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Adipose tissue monocytes and macrophages produce inflammatory cytokines, such as 

TNF-a and IL-6, which may eventually lead to insulin resistance [130]. TNF-a and 

IL-6 are also produced by the placenta during pregnancy [131], but very few and 

contradictory data exist in the literature, regarding the IUGR state. In this respect, 

reduced [132, 133] and also increased [134] fetal IL-6 levels have been documented 

in IUGR, possibly due to impaired trophoblast function and severe placental 

insufficiency in the former and to hypoxia and/or nutrient deficiency in the latter, 

supporting the hypothesis that IL-6 may be related to fetal growth in the fetomaternal 

interface. On the other hand, normal [132] and also decreased [135] fetal TNF-a 

levels have been demonstrated, proposing a role for TNF-a in the pathogenesis of 

IUGR. On the other hand, upregulation of TNF-a has been postulated to be a survival 

mechanism in the IUGR fetus, by inducing muscle insulin resistance, thus enabling 

glucose to be spared for brain metabolism [136]. It would be reasonable to suggest 

that perinatal stressors could lead to reprogramming of TNF-a regulation with 

overproduction that persists in postnatal life and causes insulin resistance. However, 

low TNF-a levels have been reported in SGA insulin-resistant children [137]. The 

authors speculate that down-regulation of TNF-a may be one of the mechanisms 

leading to insulin resistance in these subjects [137]. Furthermore, Casano-Sancho et 

al. reported that SGA children show increased frequency of the TNF-308G allele, that 

is associated with prenatal growth and postnatal insulin resistance [138]. This 

polymorphism may be implicated in the metabolic abnormalities that characterize 

SGA children [138].  

Nevertheless, IUGR is a heterogeneous state, including cases of fetal malformations, 

infections or placental insufficiency due to preeclampsia [1]. This fact, as well as 
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differences in disease severity, might explain the contradictory results of the above 

studies.  

Novel adipocytokines in IUGR 

Given the documented importance of fetal adipose tissue and its hormones in fetal 

growth for both survival at birth and overall health, a number of very recent studies 

from our group [139-143] investigated the implication of newly discovered adipose-

derived hormones in fetal growth and IUGR, in terms of confining their potential 

association with an increased risk for adult disease.  

Specifically, resistin, a newly discovered metabolic hormone secreted by human 

adipocytes and mononuclear cells, has been postulated to play important roles in 

regulating energy homeostasis [144]. Resistin impairs glucose metabolism and 

opposes the action of insulin in peripheral tissues [144, 145]. Higher serum resistin 

concentrations have been documented in obese subjects and resistin has been 

suggested to link obesity to insulin resistance [144, 145]. Furthermore, resistin is 

expressed in the human placenta and has been postulated to play a role in regulating 

energy metabolism in pregnancy [146, 147]. Recent reports, including our data [40, 

139, 148], have also demonstrated the presence of markedly high concentrations of 

resistin in umbilical plasma samples, indicating the potential role of this 

adipocytokine in controlling fetal energy homeostasis and affecting deposition of 

adipose tissue in utero.  

Apelin is a novel bioactive peptide, identified as the endogenous ligand of the orphan 

G protein-coupled receptor, APJ [149]. Ιt has a widespread pattern of expression in 

human tissues and it is produced in several organs, including brain, lung, lactating 

breast and gastrointestinal tract [150].
 
Embryonic expression studies indicated that 

apelin is an angiogenic factor required for normal blood vessel growth and endothelial 
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cell proliferation [151]. Moreover, the presence of apelin has been documented in 

human placental tissue, indicating an important role of this peptide in fetal 

development [152]. We recently demonstrated the presence of markedly high 

concentrations of apelin in umbilical plasma samples and suggested a potential role of 

this peptide in intrauterine growth [140]. Furthermore, apelin has been identified as a 

novel adipocytokine, secreted in substantial amounts by adipose tissue in a regulated 

manner [153]. In this respect, apelin is up-regulated by obesity and hyperinsulinemia 

in both humans and mice [153]. Thus, current research focuses on the potential link of 

apelin with obesity-associated insulin resistance [154].       

Recent studies from our group, investigating resistin and apelin concentrations in the 

IUGR state, demonstrated lack of differences in resistin and apelin concentrations 

between IUGR cases and AGA controls and lack of correlation between resistin, as 

well as apelin with insulin concentrations, as well as customized centiles (adjusted 

birth-weights) of the studied infants [139, 140]. We speculate that resistin and apelin 

may not be directly involved in the regulation of insulin sensitivity and adipogenesis 

in the perinatal period [139, 140].  

Visfatin, a 52-kD protein, has been recently identified as a visceral fat-specific   

adipocytokine [155], probably linking the expansion of adipose depot to insulin 

resistance [156]. Visfatin was initially thought to be upregulated in obesity and in 

states of insulin resistance, while exerting insulin mimetic effects in various tissues 

[155]. However, subsequent studies have generated disparate findings with regard to 

the role of visfatin in obesity and insulin resistance and the pathophysiological role of 

visfatin in humans remains controversial and largely unknown [157, 158].  

Visfatin is identical to pre-B-cell colony enhancing factor (PBEF), a cytokine 

involved in B-cell precursor maturation [155].
 
The

 
PBEF protein is immunolocalized 
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in both normal and infected human fetal membranes and is significantly up-regulated 

by labor [159]. Moreover, data of a recent study from our group indicate that visfatin 

is present in cord blood in substantial amounts, probably due to placental production 

[141, 142]. 
 

Of particular interest are our results regarding visfatin concentrations in the IUGR 

state [143]. In this respect, higher visfatin concentrations were found in IUGR 

neonates compared to AGA counterparts, probably due to increased visceral adiposity 

or altered fetal development of adiposity in IUGR subjects [29, 31], which may 

predispose to the later development of insulin resistance [143]. We hypothesize that 

higher visfatin concentrations
 
in IUGR could probably serve as an early marker with 

prognostic value for the later development of the metabolic syndrome in this 

population [143]. By contrast, a recent study concluded that visfatin may not be 

involved in the disturbed glucose metabolism of the IUGR rat offspring and may only 

represent a marker of fat accumulation [86].  

Table 1 summarizes the results of major articles investigating circulating 

concentrations of adipocytokines in IUGR versus AGA subjects.  

 

 CONCLUSIONS 

Differential regulation of adipocytokines in the IUGR state may be predictive of adult 

disease occurrence. The inability to undertake longitudinal studies from early to adult 

life makes it difficult to directly evaluate the existence of such associations. 

Nevertheless, a role of leptin, adiponectin, ghrelin and visfatin appears likely, 

although at this stage, it is difficult to document whether this is a major regulating role 

or a reflection of other more critical endocrine and growth-related processes. Most 

studies indicated lower leptin, normal or lower adiponectin and higher ghrelin, as well 
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as visfatin fetal/neonatal concentrations in the IUGR state, probably holding 

implications for susceptibility to long-term development of obesity and insulin 

resistance. Further understanding of the changes in body fat distribution and adipocyte 

maturation during early postnatal development will surely help to explain the complex 

associations between IUGR, rapid postnatal weight gain and adult disease risk. In 

addition, a deeper understanding of how prenatal and postnatal nutrition interact and 

influence molecular pathways involved in the development of obesity, will support 

the development of more effective preventive strategies and therapeutic approaches to 

curb the worldwide epidemic of type 2 diabetes and obesity. 
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Table 1. Results of major articles investigating circulating concentrations of 

adipocytokines in intrauterine growth restricted (IUGR) versus (vs) appropriate for 

gestational age (AGA) subjects.  

 

ADIPOCYTOKINE 

(concentrations) 

SPECIES RESULTS 

(IUGR vs AGA) 

REFERENCES 

Leptin  Human fetus/neonate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Higher  

Koistinen et al. (1997) [63] 

Matsuda et al. (1997) [69] 

Tamura et al. (1998) [66] 

Jaquet et al. (1998) [61] 

Marchini et al. (1998) [67] 

Varvarigou et al. (1999) [60] 

Shaarawy et al. (1999) [70] 

Cetin  et al. (2000) [64] 

Lea et al. (2000) [73] 

Lepercq et al. (2001) [65] 

Ben et al. (2001) [75] 

Yildiz et al. (2002) [59] 

Lepercq et al. (2003) [74] 

Pighetti et al. (2003) [58] 

Arslan et al. (2004) [62] 

Martinez-Cordero et al. (2006) [71] 

Koklu et al. (2007) [68] 

Valuniene et al. (2007) [72] 

Shekawat et al. (1998) [81] 
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Human infant/child 

 

 

 

Rat newborn 

 

 

Rat offspring 

 

 

 

 

 

 

 

 

Ovine fetus 

 

 

Similar 

Higher 

 

 

 

Lower 

 

 

Higher 

 

 

 

 

 

 

 

 

Higher  

 

 

Kyriakakou et al. (2008) [80] 

Ong et al. (1999) [77] 

Jaquet et al. (1999) [76] 

 

 

Desai et al. (2005) [91] 

Desai et al. (2007) [92] 

Delahaye et al. (2008) [93] 

Vickers et al. (2000) [85] 

Sudgen et al. (2001) [88] 

Vickers et al. (2001) [89] 

Holness et al. (2001) [90] 

Krechowec et al. (2006) [87] 

Nusken et al. (2008) [86] 

 

 

 

Buchbinder et al. (2001) [94] 

 

 

Adiponectin Human fetus/neonate 

 

 

 

 

Similar 

 

 

 

Lower 

Lindsay et al. (2003) [103] 

Kotani et al. (2004) [106] 

Martinez-Cordero et al. (2006) [71] 

Kyriakakou et al. (2008) [80] 

Kamoda et al. (2004) [110] 
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Human child 

 

 

 

 

 

Rats 

 

 

Lower 

 

Similar  

 

Similar or higher 

 

Similar 

Takaya et al. (2007) [111] 

 

Cianfarani et al. (2004) [112] 

Sancakli et al. (2008) [113] 

Lopez-Bermejo et al. (2004) [114] 

Iniguez et al. (2004) [115] 

Evagelidou et al. (2007) [117] 

 

Chen et al. (2003) [116] 

Ghrelin Human fetus/neonate 

 

 

 

 

Rat offspring 

Higher  

 

 

 

 

 

 

 

 

Higher 

Kitamura et al. (2003) [39] 

Farquhar et al. (2003) [125] 

Medez-Ramirez et al. (2008) [128] 

Iniguez et al. (2002) [129] 

Onal et al. (2004) [126] 

Desai et al. (2005) [91] 

TNF-α Human fetus/neonate 

 

 

Human child 

Similar 

Lower 

Higher 

Lower 

Opsjon et al. (1995) [132] 

Schiff et al. (1994) [135] 

Fernandez-Real et al. (1999) [136] 

Jefferies et al. (2004) [137] 

IL-6 Human fetus/neonate Lower 

 

Higher 

Opsjon et al. (1995) [132] 

Odegard et al. (2001) [133] 

Street et al. (2006) [134] 

 

Resistin Human fetus/neonate Similar Briana et al. (2008) [139] 

Apelin Human fetus/neonate Similar Malamitsi et al. (2008) [140] 
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Visfatin Human neonate 

Rat offspring 

Higher  

Similar 

Malamitsi et al. (2008) [143] 

Nusken et al. (2008) [86] 
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