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Abstract

Remotely sensed images have already attained an important role in a wide spec-

trum of tasks ranging from weather forecasting to battlefield reconnaissance. One

of the most promising remote sensing technologies is the imaging radar, known as

synthetic aperture radar (SAR). SAR overcomes the nighttime limitations of optical

cameras, and the cloud-cover limitations of both optical and infrared imagers. In

current systems, techniques such as the polar format algorithm are used to form

images from the collected SAR data. These images are then interpreted by human

observers. However, the anticipated high data rates and the time critical nature of

emerging SAR tasks motivate the use of automated processing or decision-making

techniques in information extraction from the reconstructed images. The success of

such automated decision-making (e.g. object recognition) depends on how well SAR

images exhibit certain features of the underlying scene. Unfortunately, current SAR

image formation techniques have no explicit means to highlight features useful for

automatic interpretation. Furthermore, these techniques are usually not robust to

reduced quality or quantity of data.

We have developed a mathematical foundation and associated algorithms for

feature-enhanced SAR imaging to address such challenges. Our framework is based

on a regularized reconstruction of the scattering field which combines a tomographic

vi



model of the SAR observation process with prior information regarding the nature of

the features of interest. We demonstrate the inclusion of prior information through a

variety of non-quadratic potential functions. Efficient and robust numerical solution

of the optimization problems posed in our framework is achieved through novel exten-

sions of half-quadratic regularization methods to the complex-valued SAR problem.

We have established a methodology for quantitative evaluation of a SAR image

formation technique based on recognition-oriented features. Through qualitative

and quantitative analyses on large sets of real and synthetic SAR images, we have

demonstrated the benefits provided by feature-enhanced imaging. These benefits

include increased resolution, ease of region segmentation, sidelobe reduction, and

speckle suppression, which are important attributes for automated decision-making.

Furthermore, we have demonstrated the potential of feature-enhanced SAR imag-

ing to improve automated decision-making performance, through classification exper-

iments on automatic target recognition (ATR) systems.
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Chapter 1

Introduction

This dissertation presents a new approach to the problem of synthetic aperture radar

(SAR) image reconstruction. SAR is a sensor that has become increasingly popular in

recent years in a variety of remote sensing applications. The purpose of this chapter is

to: 1) introduce the problem addressed in this dissertation; 2) summarize the current

state of SAR technology, and within this context discuss the needs for new image

formation techniques; 3) provide a concise description of the approach taken in this

work by pointing out the main contributions and an outline of the dissertation.

1.1 The Synthetic Aperture Radar Imaging Prob-

lem

In the past few decades, remote sensing of man-made objects or natural phe-

nomena on the earth’s surface has enjoyed a growing amount of attention due to

a variety of emerging military and civilian objectives. Depending on the objective,

remote sensing tasks differ in many ways. For example, the ground region of interest

may be as small as the area around a military vehicle or as large as a whole continent.
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The sensor may be mounted on an airplane flying a few kilometers above ground, or

on a satellite in orbit. However, there are some common desirable properties of such

a remote sensing device, such as day and night capability and all-weather operation.

One of the most promising remote sensing modalities which possesses these properties

is the imaging radar, known as synthetic aperture radar (SAR). SAR is an active

sensor using its own “illumination,” hence it can operate any time of the day. Since it

works in the microwave regime, it avoids weather-related limitations like cloud-cover

or rainfall. The resolution achieved by a SAR sensor is largely independent of the

distance to the target region of interest.

SAR uses a sensor carried on a platform (aircraft or satellite) which travels along

a path transmitting microwave pulses towards the ground, as illustrated in Figure 1.1.

Some of the transmitted microwave energy is reflected back towards the sensor where

it is received as a signal. This signal first undergoes some pre-processing, involving

demodulation. The SAR image formation problem is the problem of reconstruction

of a spatial reflectivity distribution of the scene from the pre-processed SAR returns.

1.2 Current State of SAR Technology

Due to the expected key advantages offered by SAR in the realm of remote

sensing, many experimental SAR systems have been built [1–3], and the hardware

associated with these systems has improved considerably in the last two decades.

One example is the Advanced Detection Technology Sensor (ADTS) [3], which is

an airborne SAR sensor operated by the MIT Lincoln Laboratory. The SAR image

of a military vehicle produced by the ADTS system is shown in Figure 1.2. The

resolution of this image is 0.3 m. In order to achieve this level of precision and

quality in SAR systems, much effort has been spent on the development and reliable

operation of the radar device itself. One major concern has been resolution. Achieving
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Figure 1.1: Simple illustration of data collection by synthetic aperture radar. (Image
obtained from the web site of Sandia National Laboratories.)

high resolution depends on transmitting a high-frequency, high-bandwidth signal.

Because of this fact, considerable effort has been spent on the choice and generation

of appropriate waveforms [4]. Another concern has been reliably relating the collected

data to physical locations on the ground. A SAR sensor is mounted on a moving

platform, and reliable imaging depends on knowing the exact position of the sensor

with respect to the imaged ground region at every instant of data collection. As a

result, much effort has been spent on motion compensation for SAR, both through the

use of inertial navigation systems and through data-driven autofocus techniques [5,6].

Recently, SAR technology has reached a mature level in terms of these concerns,

and consequently the data collection has achieved high enough reliability and quality

that the demand for using SAR in a variety of applications is increasing. For military

purposes SAR is evolving to become an indispensable reconnaissance tool. There are a
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Figure 1.2: SAR image of a military vehicle with 0.3 m resolution.

variety of potential earth-science related applications such as mapping and monitoring

vegetation and sea-ice, finding minerals, and assessment of environmental damages [7].

NASA has used SAR on a number of missions including the Apollo 17 lunar mission,

JPL’s SEASAT oceanographic satellite, the Spaceborne Imaging Radar (SIR), and

the Magellan mission to Venus [8]. New and interesting application areas for SAR

are emerging every day. For example, in [9] the use of SAR for automatic aircraft

landing has been proposed. The emergence of lower cost electronics is beginning to

make SAR technology economical for small scale uses as well. Based on the current

trend, it would not be unrealistic to say that in the very near future SAR systems

will be ubiquitous, working on many different kinds of platforms and tasks. Such

use of SAR will create an explosion in the amount of collected SAR data. Currently,

the coverage rates of an airborne SAR system are capable of exceeding 1 km2/s at a

resolution of 1 m2, thus producing over one million pixels each second. Furthermore,

in most of the applications, the environment is not very structured and cooperating.

As a result, the collected data will almost inevitably be noisy, and sometimes be

incomplete due to limitations such as observation time. Hence the collected data will

carry a reduced representation of the underlying scene, rather than a complete one.

4



� � � � � � � � � � 	 � 
 � � � � � �  � � �

� � �  � � 
 � �

� � � � � � � � � � � 
 � � �

� � � � � 	 
 � 
 � �

Figure 1.3: Stages of a typical future SAR system.

Reduction in quality or quantity of the data will force systems to provide same or

improved performance with worse data.

The anticipated high data rates and the time critical nature of emerging SAR

tasks motivate the use of automated processing techniques in extracting information

from a SAR image for an accurate and efficient interpretation of the scene. There

is growing interest in such techniques, wherein features extracted from the formed

imagery are used for tasks such as automatic target detection and recognition. With

the inclusion of these techniques, most SAR systems will then contain the stages

shown in the block diagram of Figure 1.3.

1.3 The Need for Enhanced SAR Image Formation

Techniques

The preceding discussion about current directions in the use of SAR in reduced

data environments, in conjunction with automated decision-making techniques trig-

gers the question of whether the current signal processing methods used for SAR

image formation can face the associated challenges.

As we mentioned before, up to the present most of the efforts in SAR systems have

been targeted to the device, for solving “hardware” related issues, and considerable

improvements have been achieved. However, in terms of the processing of SAR

returns, improvements have only been minor. This is mostly due to the logical

way of technology development: the primary concerns were to get the SAR systems
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“working”, before using them in advanced tasks. Another observation regarding the

SAR problem is that the field has been dominated by researchers in physics, elec-

tromagnetics and radar engineering for more than two decades. A signal processing

view has been formulated only in the mid 80’s [10–12].

In current SAR systems, image formation is achieved through a Fourier transform-

based algorithm. This technique has been developed with the clean and complete,

rather than the reduced data situation in mind. Furthermore, this kind of processing

does not take into account either any contextual information we have, or the final

objectives of the SAR mission regarding the automated decisions or interpretations

to be made. The conventional image formation method is basically only data driven

and this limits the output quality.

The ADTS SAR image in Figure 1.2 has been formed by such processing. This

image has been collected for the task of automatic target recognition (ATR). ATR is

aimed at reducing the workload for human operators (e.g. image analysts, pilots) who

are tasked with a large scope of other activities. Its need is dictated by large volumes

of data requiring analysis and by the short timelines required by target acquisition

scenarios [13]. ATR algorithms need to use certain features in the SAR image for

recognition. Accurate and efficient extraction of such features from conventional

SAR images is complicated by a number of factors. First, the resolution of the formed

images is limited by the SAR system bandwidth. This complicates point scatterer

localization for ATR tasks. In addition, such images suffer from speckle and sidelobe

artifacts. These artifacts complicate region segmentation for shape-based recognition.

Furthermore, there is no explicit mechanism in the image formation process to deal

with limited quantity or quality of the observations.

Therefore, in order for SAR systems to meet the challenges of future tasks, new

processing techniques which are geared towards the final objectives of the mission,

and which are robust to reduced data domains are required.
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1.4 Contributions of this Dissertation

The first major contribution of this dissertation is the formulation of the SAR

imaging problem within a model-based, regularized, feature-enhanced image recon-

struction framework. This framework provides mechanisms for achieving robustness

to limited and noisy data, for taking into account the observation geometry and

parameters, and for enhancing features in the scene which are important for the final

objectives of the SAR mission. In this framework, the image formation problem is

solved through the minimization of an objective function. This objective function

requires a discrete observation model and potential functions for regularization and

feature enhancement. For the observation model, we have exploited the tomographic

structure of SAR and introduced the concept of a SAR projection matrix. We have

demonstrated the use of a variety of potential functions in this framework.

The second major contribution of this dissertation is the extension of a robust

regularization technique, known as half-quadratic regularization to complex-valued,

random-phase fields. The resulting technique is an effective, computationally efficient

iterative algorithm for complex-valued image formation. Although this algorithm has

been developed primarily for SAR imaging, the technique is general enough to be

used in other signal restoration and reconstruction problems involving complex-valued

quantities, such as those arising in inverse scattering.

The third contribution of this dissertation is the extension of our SAR image

formation framework to include more general variational formulations, such as the

Mumford-Shah function [14] developed for segmentation applications.

The fourth contribution of this dissertation is the demonstration of the applica-

tion of our SAR image formation approach in signal reconstruction problems arising

in another type of radar, known as high range-resolution (HRR) radar.

The fifth contribution of this dissertation is the establishment of a framework for
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quantitative evaluation of a SAR image formation technique based on recognition-

oriented features. For this purpose, we have proposed new evaluation criteria and

utilized previously existing criteria. We have carried out such evaluation experiments

for our image reconstruction approach. Based on this analysis, practical outcomes of

the feature-enhanced SAR imaging framework developed in this dissertation include

superresolution, sidelobe and clutter reduction, speckle suppression, and easy-to-

segment regions.

The final contribution of this dissertation is a practical one. We have constructed

ATR systems to characterize the end-to-end impact of feature-enhanced SAR imaging,

and have demonstrated its potential for improved recognition performance.

Overall, this dissertation proposes a new, effective and efficient framework for

inverse problems with complex-valued data. The use of this approach in SAR results

in images which lend themselves to robust, accurate, efficient feature-extraction.

Consequently, the approach developed here is a promising SAR technology especially

for tasks involving automated decision-making.

1.5 Organization

This dissertation is organized as follows. In Chapter 2, we review the principles

of SAR. This includes an introduction of the main concepts involved, a mathematical

description of the pre-processing of the collected data, the important issue of res-

olution, and a brief discussion of the similarity of SAR and computed tomography

(CT), as well as synthetic examples highlighting some central issues in SAR. After

this overview, Chapter 3 describes conventional, as well as recently proposed relevant

SAR image reconstruction methods. In Chapter 4, we review regularization methods

with an emphasis on their use in inverse problems arising in image processing. This

is the final chapter covering background material in this dissertation.
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Chapter 5 describes our framework for regularized, feature-enhanced SAR image

formation. The chapter contains detailed descriptions of how we build the discrete

observation model, and the potential functions for robust regularization, as well as

a statistical interpretation of the resulting optimization problems. In Chapter 6,

we propose an efficient numerical solution technique for the problem formulated in

the previous chapter. This chapter also establishes the tie between this technique

and half-quadratic regularization, which is a method that has been used in various

domains for robust image restoration and reconstruction. Lastly, the chapter contains

experimental results, where various aspects of the numerical scheme and the resulting

reconstructions are investigated. Chapter 7 generalizes the approach developed in

the previous two chapters to other feature-preserving potential functions, which have

successfully been used in image restoration before. Chapter 8 provides yet another

extension of feature-enhanced SAR imaging to include a class of objective functions

which contain explicit terms for more effective feature preservation. In Chapter 9,

we propose criteria for evaluating SAR images in terms of the degree of preservation

of recognition-oriented features, and present the results of evaluation experiments

performed on a large set of conventional and feature-enhanced images. Chapter 10

contains the description and results of recognition experiments based on three different

classifiers to investigate the impact of feature-enhanced imaging on the success of

automated decision-making. In Chapter 11, we demonstrate the application of the

methods developed for SAR imaging in another sensor, the HRR radar, and illustrate

the potential benefits. Finally, Chapter 12 summarizes the results we have obtained,

and suggests a number of topics that emerge from this work as potential future

research directions.
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Chapter 2

Principles of Synthetic Aperture

Radar

In this chapter, we provide background information on SAR, that will be useful in

the rest of this dissertation. We describe the basic principles for SAR imaging, and

present a mathematical description of data collection and pre-processing in SAR. We

then discuss the resolution properties of SAR, and the relationship between SAR and

computed tomography. Finally, we present some simulated examples to illustrate

some of the concepts and issues discussed.

2.1 Overview of SAR Technology

Radars have the ability to distinguish between targets (reflectors) that are sep-

arated in range from the radar. Anyone who has shouted across a canyon and

listened for the returning echo of his/her own voice has used the basic principle

employed by radars for ranging. The concept of echo-ranging simply states that

to know an echo signal’s round trip flight time and its speed of propagation is to

10



know the range from the signal source to the target. In radar systems this basic

principle is implemented by transmitting high-bandwidth pulses and then using pulse

compression techniques [15–17]. In this way, points in a scene can be discriminated

based on their distance. In order to visualize or distinguish targets in a 2-D scene

however, having resolving power in the range direction only is not sufficient; we also

need to be able to separate points in the scene that are at the same distance from the

radar, but are in slightly different directions. To achieve such cross-range resolving

capability, we - in principle - need to be able to transmit a narrow beam to illuminate a

narrow strip of the ground. This problem is essentially the standard aperture problem

also encountered in optical imaging. The discriminatory power of an optical system,

in all directions in the scene, is proportional to the lens size. In radars, the resolution

in the range direction in the scene is not related to the aperture problem, since it is

based on echo-ranging as discussed before. On the other hand, cross-range resolution

in radars and the resolution in optical systems (which is all cross-range-based) are

analogous. In particular, both the cross-range resolution for conventional radars and

the resolution for optical systems are on the order of

ρ =
λR

d
(2.1)

where λ is the wavelength of the illuminating source, R is the target range, and d is the

width of the antenna aperture or the diameter of the lens. Given that the wavelength

of microwaves is approximately 104 times that of visible light, a conventional radar

would have to use an impractically large antenna in order to achieve the same level of

resolution as that of an optical system. To demonstrate this, let us consider a radar

operating at a nominal range to the ground patch of 50 kilometers. Suppose that

we desire a radar image for which the resolution is 1 meter. This level of resolution

would be required, for example, in order to count the number of vehicles (trucks,

tanks, aircraft, etc.) present in a scene. Let us assume that we use a wavelength λ of

11



0.03 m, which is a typical wavelength for X-band radar. Then the required width of

the antenna on board the aircraft would be

d =
λR

ρ
=

0.03 · (50 · 103)
1

= 1500 m. (2.2)

The width of the physical antenna required is 1.5 kilometers! Because carrying such

a structure on board is clearly impractical, an ordinary radar in this scenario is

incapable of attaining the desired cross-range resolution of 1 meter.

Synthetic aperture radar solves this problem by sending multiple pulses from a

number of observation points, and then focusing the received information coherently

to obtain a high-resolution 2-D description of the scene. Hence it synthesizes the

effect of a large antenna, using multiple observations from a small antenna. In order

to resolve points separated in range, it uses the same techniques as an ordinary radar

(which do not depend on aperture size). But its cross-range resolving capability

makes it a promising means of constructing high resolution microwave images, using

antennas of reasonable size. Actually current SAR systems can produce imagery with

a spatial resolution that begins to approach that of remote optical imagers, while

avoiding their shortcomings such as nighttime and cloud-cover limitations. Because

of that, synthetic aperture radar imaging is rapidly becoming a key technology in the

world of modern remote sensing.

There are two distinct modes in which a SAR imaging system can operate:

stripmap-mode SAR, and spotlight-mode SAR. In stripmap-mode SAR, the antenna

remains fixed with respect to the radar platform so that the antenna beam sweeps

out a strip on the ground. In spotlight-mode, the antenna is steered to continuously

illuminate a single spot of terrain. We will be focusing on this latter type of SAR.

There is extensive literature on stripmap-mode SAR [12,15,18], which we will not be

concentrating on here. Spotlight-mode SAR is able to provide higher resolution of

12
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Figure 2.1: Ground-plane geometry for data collection in spotlight-mode SAR.

a more limited area than stripmap-mode SAR, because by steering the antenna, the

same terrain portion can be observed through a wider range of angles as compared

to that in stripmap-mode SAR.

The geometry for data collection in a spotlight-mode SAR is shown in Figure 2.1.

The x − y coordinate system (denoting range and azimuth coordinates respectively)

is centered on a relatively small patch of ground illuminated by a narrow RF beam

from the moving radar. As the radar traverses the flight path, the radar beam is

continuously pointed in the direction of the ground patch. At points corresponding

to equal increments of θ (the angle between the x-axis and u-axis in Figure 2.1),

high-bandwidth pulses (such as linear FM) are transmitted to the ground patch and

echoes are then received and processed.

As we will illustrate in the following sections, demodulated SAR returns at each

observation point (after some pre-processing and certain approximations) are related

to a particular projectional view of the underlying scene, and the full set of returns

provide a band-limited spatial frequency domain description of the scene.

13



2.2 Basic Spotlight-Mode SAR Signal Pre-processing

In this section, we explain the pre-processing of the received echoes in spotlight-

mode SAR, based on the derivation in [11]. Let us model the reflectivity density of the

ground patch by the complex function f(x, y), and assume that f(x, y) is constant

over the range of frequencies and the range of viewing angles θ employed by the

radar. Note that this is an approximation, and there are cases where the dependence

of the reflectivity on frequency or aspect angle is important and must be taken into

account [19].

The most commonly transmitted pulses in SAR are linear FM chirp signals:

s(t) =


 ej(ω0t+αt2), |t| ≤ Tp

2

0, otherwise
(2.3)

where ω0 is the carrier frequency and 2α is the chirp rate. Suppose the radar transmits

the real part of such a signal, 
(s(t)), at the instant when the angle between the u

axis and the x axis in Figure 2.1 is θ. The return signal ν(θ,x0,y0)(t) from a differential

area centered on the point (x0, y0) at a distance R0 from the radar will be

ν(θ,x0,y0)(t) = |f(x0, y0)| cos
(
ω0

(
t− 2R0

c

)
+ α

(
t− 2R0

c

)2
+ \f(x0, y0)

)
dx dy

(2.4)

where c is the speed of light, and 2R0/c accounts for the two-way travel time from

radar to target. Here, we have completely neglected the effect of propagation atten-

uation, since it can in practice be compensated for, and therefore is not critical

for our analysis. Note that the complex-valued nature of f(x, y) captures both

amplitude scaling and phase shifting of the transmitted waveform by the scatterers.

The amplitude scaling occurs because only a fraction of the incident radiation is
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reflected back to the radar. The phase shift of the reflected wave may be caused by

several factors; foremost is the shift at the air/target interface due to the difference

between the dielectric constants of air and the target material. The phase shift is also

due to the tendency of the RF radiation to creep around target surfaces and its ability

to penetrate soft objects and be reflected from within [11]. For most SAR scenes the

phase of the reflectivity at a certain location can be modeled to be random, with a

uniform probability density, and uncorrelated with the phase at other locations [20].

The return ν(θ,x0,y0)(t) can be more simply written as

ν(θ,x0,y0)(t) = 

{
f(x0, y0)s

(
t− 2R0

c

)}
dx dy. (2.5)

Now let us consider the return from a continuum of scatterers which are at the same

distance to the radar. The return from such scatterers will be received by the radar

at precisely the same time. Let R be the distance from the radar to the center of the

scene1, and L be the radius of the ground region of interest, as shown in Figure 2.1.

Points in the ground patch equidistant from the radar lie on an arc, but for a typical

system R � L, so that this arc is nearly a straight line. This is illustrated in

Figure 2.2. This inequality is related to two conditions that must be satisfied, so that

we can assume points at the same range lie on a line (i.e. so that curvature of the

wavefront can be neglected). First, the range error due to this assumption for any

point in the ground patch must be less than a resolution cell:

L2

2R
<

c

2B
= ρx, (2.6)

where ρx is the range resolution (to be introduced in Section 2.3), and B is the band-

width of the transmitted waveform. Second, the range error due to this assumption

1Note that the value of R actually depends on the particular observation angle θ, however we
suppress this dependence for the sake of notational simplicity.
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Figure 2.2: Illustration of the approximation of an arc (which contains points equidis-
tant to the platform at a particular observation angle) by a line.

at a particular point must not vary much through the aperture:

L2 sin(2θmax)

R
� c

2ω0
, (2.7)

where θmax is the maximum look angle. The derivations of these conditions can be

found in [11]. We will assume that the combined return from such an “equidistant”

set of scatterers is the sum of the returns that would be received from each individual

scatterer. This assumption of superposition is a common and reasonable one, about

which the discussion in [21] states: “When an arbitrary target complex is illuminated

by a radar, the backscattered signal will consist of the superposition of the returns

from a multitude of scattering centers.” Let us take qθ(u) to be such a sum of

reflectivities (i.e. a line integral) at distance R + u to the radar, from observation

angle θ. Then, we can write the relationship between the projection qθ(u) and the

field f(x, y) as [22]:

qθ(u) =

∫ ∫
x2+y2≤L2

δ(u− x cos θ − y sin θ)f(x, y) dx dy (2.8)
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This is the standard Radon transform. With this definition, the return signal from a

differential line of scatterers normal to the u axis at u = u0 is given by

ν(θ,u0)(t) = 

{
qθ(u0)s

(
t− 2(R + u0)

c

)}
du. (2.9)

This is the contribution to the received signal of all scatterers at range R+ u0. Then

the return from the entire ground patch (which is what the sensor actually receives)

at observation angle θ is given by the integral of ν(θ,u) over u

νθ(t) = 

{∫ L

−L
qθ(u)s

(
t− 2(R + u)

c

)
du

}
. (2.10)

Taking into account that s(·) is a chirp pulse, we have

νθ(t) = 

{∫ L

−L
qθ(u) exp

{
j

[
ω0

(
t− 2(R + u)

c

)
+ α

(
t− 2(R + u)

c

)2]}
du

}
(2.11)

on the interval

−Tp
2

+
2(R + L)

c
≤ t ≤ Tp

2
+

2(R− L)

c
. (2.12)

Letting τ0 = 2R/c be the round-trip delay to the center of the ground patch and

mixing (multiplying) νθ(t) with the reference chirp

exp
[
−j

(
ω0(t− τ0) + α(t− τ0)

2
)]

(2.13)

and then low-pass filtering yields the complex signal2

rθ(t) =

∫ L
−L

qθ(u) exp

{
j
4αu2

c2

}
· exp

{
−j

2

c
(ω0 + 2α(t− τ0))u

}
du. (2.14)

So rθ(t) is the demodulated observation signal at platform position θ, as a function of

2We neglect a constant factor of 1/2 here.
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time. In practice, the mixing operation described above is carried out by multiplying

νθ(t) with the in phase and quadrature (i.e. real and imaginary) components of the

reference chirp separately. Also note, we assume here that τ0 is known. In practice

it is only known imperfectly and this makes it necessary to have a post-processing

technique in SARs known as autofocus or automatic phase-error correction [17].

We will assume that the effect of the quadratic phase term exp{j4αu2/c2} in

(2.14) can be neglected. This is a reasonable approximation for most situations, since

usually it is true that 4αu2 � c2. For a more detailed analysis of this approximation,

see [17]. The observed signal, after this approximation is given by:

rθ(t) =

∫ L
−L

qθ(u) exp

{
−j

2

c
(ω0 + 2α(t− τ0))u

}
du

=

∫ L
−L

qθ(u) exp {−jΩ(t)u} du. (2.15)

This signal can be identified as the Fourier transform of the projection qθ(u) where

the spatial frequency variable is Ω(t) = 2
c
(ω0 + 2α(t− τ0)). Note Ω(t) is limited to a

finite spatial frequency interval, because the observation duration t is limited, and the

chirp rate α is finite (equivalently s(t) is narrow-band). Also Ω(t) is offset from the

origin of the spatial frequency plane due to ω0. In summary, at least within the time

interval considered, the processed return signal rθ(t) carries band-pass information

related to a particular line integral of the reflectivity field.

Now, let us derive the relationship between the field f(x, y) and the demodulated

observed signal rθ(t). To this end, we substitute (2.8), in the observation relationship

(2.15), to obtain
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rθ(t) =

∫
|u|≤L

∫ ∫
x2+y2≤L2

δ(u− x cos θ − y sin θ)f(x, y) exp {−jΩ(t)u} dx dy du

=

∫ ∫
x2+y2≤L2

f(x, y) exp {−jΩ(t)(x cos θ + y sin θ)} dx dy. (2.16)

Hence, rθ(t) is a finite (i.e. band-limited) slice at angle θ from the 2-D Fourier

transform of the field f(x, y). Here Ω(t) serves as the radial spatial frequency. So,

we have two interpretations for rθ(t): a 1-D Fourier transform of the projections

(based on (2.15)), and a slice through the 2-D Fourier transform of the field (based

on (2.16)). This equivalence is essentially a band-limited version of the projection

slice theorem [22] from computed tomography (CT). The data rθ(t) collected from

all observation angles, are usually called the phase histories.

2.3 Range and Azimuth Resolution

Since each return rθ(t) is a radial slice at a particular angle in the frequency

domain, the complete data from a pre-specified diversity of angles (i.e. full-aperture)

lie in an annular region like that shown in Figure 2.3. Note that at this stage of

our development, the data are still continuous in the radial direction, nevertheless we

present a discrete illustration in Figure 2.3.

Now, let us try to relate the achievable resolution of the SAR image to the

dimensions of this annulus, which is determined by system parameters. A definition

of resolution in the image domain can be motivated by assuming this annulus can be

approximated by a rectangle of width ∆Ωx and height ∆Ωy. If we consider a point

reflector in the scene and compute its Fourier transform limited to this rectangular

region, and then compute an inverse Fourier transform, the output will be a two-
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Figure 2.3: Graphical representation of an annulus segment containing known samples
of the Fourier transform of the reflectivity density.

dimensional sinc function. The wider the support of the rectangular region, the

narrower the mainlobe of this sinc, and hence the better the resolution of the formed

image will be. More explicitly, the first zero crossings of the sinc occur at 2π/∆Ωx and

2π/∆Ωy. Therefore, as a rough guide, the resolution of two point reflectors having

equal reflectivity requires that the reflectors be separated by more than ρx = 2π/∆Ωx

in the x (range) dimension and ρy = 2π/∆Ωy in the y (cross-range) dimension.3

First, we will consider range resolution. Let us take the width of the rectangle,

∆Ωx, to be equal to the radial width of the annulus, which is essentially the spatial

frequency bandwidth of each return. The lower and upper limits of the radial extent

can be determined by substituting the limits for the observation time t from (2.12)

into the definition of Ω(t) to find the lowest and highest spatial frequencies:

3Note that we leave the possible coherence between the two point reflectors out of consideration
here.
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Ωxl
=

2

c

(
ω0 − αTp +

4αL

c

)

Ωxh
=

2

c

(
ω0 + αTp −

4αL

c

)
. (2.17)

For a typical spotlight-mode SAR, we have Tp � 4L/c. So we can deduce that

∆Ωx = Ωxh
−Ωxl

≈ 4αTp
c

=
4πB

c
, (2.18)

where we have used the fact that the bandwidth of the transmitted pulse (in Hz) is

given by B = αTp/π.

Next, we will consider the cross-range resolution, which is determined by ∆Ωy.

Let us use the geometry to find ∆Ωy. From Figure 2.3:

sin

(
∆θ

2

)
≈ ∆Ωy/2

Ω0
. (2.19)

Here Ω0 = 2ω0/c. Hence for ∆θ � 1, we have

∆Ωy ≈
2ω0∆θ

c
. (2.20)

Finally, noting that the wavelength of the transmitted pulse is given by λ =

2πc/ω0, the following range and cross-range resolution relationships for the system

can be obtained:

ρx ≈
c

2B
(2.21)

ρy ≈
πc

ω0∆θ
=

λ

2∆θ
(2.22)
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Hence the resolution in the range direction, ρx, depends on the bandwidth of

the pulse used for transmission, whereas the azimuth resolution, ρy, depends on the

angular diversity of observations and the central frequency (equivalently wavelength)

of the transmitted chirp.

Here we have used the classical Rayleigh resolution criterion in our discussion,

which is the most commonly used criterion for SAR imaging [17]. For a survey of

alternative resolution criteria used in various applications, please see [23].

Before leaving the discussion on resolution, there is one final point we want

to mention. In the radar community, cross-range resolving properties of SAR has

usually been formulated with reference to Doppler shifts. This might lead to some

confusion, and needs clarification. As the aircraft moves with respect to the target

patch, the received signal undergoes a slight Doppler shift which varies according to

the observation angle. The SAR imaging equations can be derived as a function of

either the Doppler shift or the underlying change in viewing angle. It is important to

emphasize, however, that the imaging principle employed in spotlight mode SAR is

tomographic, rather than Doppler-based. That is, although the radar antenna must

be moved from point to point to obtain different viewing angles, successful imaging

is not dependent on a difference in relative velocity between the antenna and ground

patch during pulse transmission and reception. As far as the imaging mechanism is

concerned, the aircraft could completely stop at each transmission point in space and

the SAR would still work properly [11].

2.4 Relation to Computed Tomography

Another imaging modality which constructs high-resolution images by processing

data obtained from many different perspective views of a target area is computed

tomography (CT). The CT scan is an X-ray technique which enables the imaging of
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Figure 2.4: Data collection geometry in CT.

two-dimensional cross sections of solid objects. It has been shown that spotlight-mode

SAR can be considered as a narrow-band version of CT [11]. Although this similarity

has been known for some time now, its exploitation for the SAR problem has only been

limited to unrealistic cases, e.g. involving real-valued fields. Throughout our work, we

aim to exploit this close relationship between the two imaging modalities, and carry

our tomographic insights to the SAR problem. However we should note, due to the

differences in the observation geometries, the portion of the electromagnetic spectrum

used for sensing, and the properties of the underlying physical objects present in the

two modalities and also due to the fact that SAR is a coherent sensor, SAR presents

itself as a demanding cousin of CT, rather than its exact replica.

The observation geometry for CT is shown in Figure 2.4. The relationship

between the CT observations qθ(u) and the corresponding underlying field f(x, y) is

again governed by the integral equation given in (2.8). Note that in an actual system

the observations would be band-limited, sampled versions of these projections.
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A major difference between the two modalities is the following. The SAR data

obtained through an angular diversity of a few degrees are usually sufficient to

reconstruct a high cross-range resolution SAR image. On the other hand, a practical

discrete-data CT system requires a much larger angular range to form a satisfactory

image. To better understand this difference, note that, if we define resolution in

relation to the width of the mainlobe of the impulse response function as we did

in Section 2.3, then resolution is purely a function of the bandwidth available in

Fourier space. In order to compare the two modalities in terms of bandwidth, note

that the SAR frequency region is offset from the origin as in Figure 2.3, but the CT

frequency region is not. If we treat the Fourier space in Figure 2.3 as a circular pie,

the observation angles determine the sides of a slice from the pie. The pie slice widens

as we move away from the center, that is as we increase frequency. A wider piece of

the slice means wider frequency support, hence better spatial resolution. Since SAR

operates with a high offset frequency, sufficient bandwidth can be achieved with a

small angular diversity. However, since CT operates at baseband, it must subtend a

much wider range of viewing angles, in order to have a comparable bandwidth. Hence,

observing projectional information at a high frequency rather than at the baseband is

really the key behind our ability to obtain high cross-range resolution in SAR with a

range of look angles of only a few degrees [24]. This notion is illustrated in Figure 2.5.

Independent of the discussion on bandwidth (or resolution), however there’s the

issue of image quality. It might seem intriguing that a Fourier-offset imaging system

like SAR can produce high quality images. Indeed high-quality reconstructions of

real-valued images are generally impossible from offset Fourier data. For example, a

high-pass filter (an example of Fourier-offset reconstruction) applied to a real image

produces a scene of poor quality consisting mainly of edges. Note that the field

(attenuation) in CT is real-valued, but the field (reflectivity) in SAR is complex-

valued. It has been shown in [20] that high-quality reconstructions from frequency-
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Figure 2.5: An abstract illustration of the data support for CT and SAR in a limited
angle scenario. The offset SAR data has higher bandwidth in cross-range, which
provides a good cross-range resolution despite the limitation in angular diversity.

offset data are possible for complex-valued fields so long as the phase of the field is

random and spatially uncorrelated. It has been argued this is due to the fact that the

uncorrelated phase will help distribute information about the magnitude of the field

all over the frequency plane, and even a high frequency portion will carry magnitude

information. Hence the quality of SAR reconstructions from Fourier-offset data is

related to the random phase nature of the underlying fields.

2.5 Examples

We will present a number of simple synthetic examples to illustrate some basic

properties of SAR. This includes the demonstration of the structure of the simulated

sampled phase history data for point scatterers, and the effect of system parameters

on the resolution of the images reconstructed from such data.

Figure 2.6 shows two scenes with point scatterers displaced from the scene center

in the range and cross-range directions respectively, and the corresponding phase

histories. For the phase histories, we plot only the real parts. The observation angles

for this example are centered at 0◦, and cover a width of 22◦. This is a much larger
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angular span than that will be used in most synthetic and real examples in this

dissertation, however we would like to make the role of observation angles noticeable

in our simulated phase histories here. First, consider the scene in Figure 2.6(a). The

scatterer in this scene is located entirely in the range dimension of the imaged patch.

If we took a rectangular 2-D discrete Fourier transform (DFT) of this image (using the

scene center as the origin), we would obtain a complex sinusoid with frequency only

in the range dimension. The SAR phase history data should be similar. However, as

the observation angle in SAR changes, the range of the scatterer as measured by the

sensor also changes slightly. This results in the type of oscillations shown in the phase

history of Figure 2.6(b). Note that we created the phase history corresponding to this

scatterer location and placed the sampled returns in a rectangular array on a pulse-

by-pulse basis, without any polar-to-rectangular resampling here. Next, consider the

cross-range-displaced scatterer in Figure 2.6(c). The corresponding phase history in

Figure 2.6(d) has a predominant sinusoidal structure in the vertical (i.e. cross-range)

dimension.

Now, let us examine the effect of system parameters on the data support in the

spatial frequency domain, and consequently on the resolution of the reconstructed

images. Table 2.1 contains a set of parameters we will use in this example, as well

as in some of our other spotlight-mode SAR system simulations in this dissertation.

With these parameters, the bandwidth of the transmitted signal is 0.4 GHz, implying

a range resolution of 0.375 m. If we choose to set the azimuth resolution equal to

the range resolution, this requires an angular observation interval of 2.3 degrees. The

angular measurements can be taken symmetrically around θ = 0◦, or at another

angle. In the former case the SAR would be operating in a side-looking mode, and

in the latter case it would be operating in a squint mode. We will take them around

θ = 0◦. The data sampling rate should be chosen according to fs ≥ 4Lα/(πc) to

prevent aliasing in the reconstructed image.
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carrier frequency (ω0) 2π × 1010 rad/s
chirp rate (2α) 2π × 1012 rad/s2

pulse duration (Tp) 4× 10−4 sec.
angular range (∆θ) 2.3◦

Table 2.1: Sample SAR system parameters.

With the above choice of parameters, the data lie in the spatial-frequency region

shown in the top plot in Figure 2.7. Since the angular observation range is quite

small in this example, the annulus is very close to a rectangle. In the same figure,

we show the frequency support with two different parameter choices for comparison.

When we decrease the chirp carrier frequency ω0 to one half its original value, keeping

everything else the same, the data samples lie in the region shown in the middle plot.

Obviously this system would suffer from lower azimuth (cross-range) resolution. Now,

if we want to gain back the original azimuth resolution with this choice of ω0, the

angular observation range can be doubled, which results in the data support shown

in the bottom plot.

Finally, let us observe the relationship between data support and resolution

through some sample reconstructions. For image reconstruction, we will use the

conventional techniques, as will be described in Chapter 3. Figure 2.8(a) shows

the reconstruction of two point scatterers (separated in cross-range) by a simulated

SAR system which has the data support shown in the uppermost plot in Figure 2.7.

The bandwidth in this case is enough to resolve the scatterers. The reduced cross-

range bandwidth (middle plot in Figure 2.7) on the other hand, is not sufficient to

distinguish these scatterers, as shown in Figure 2.8(b). The reduction in resolution is

due to the lower central frequency used by the SAR system in this case. Operating at

that frequency, the required cross-range bandwidth can be recovered through a wider

range of observation angles as previously shown in the bottom plot of Figure 2.7.
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Consequently, the reconstruction with this increased angular observation interval,

can resolve the scatterers, as shown in Figure 2.8(c).
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Figure 2.6: Simulated phase history data for single point scatterers. (a) Scene
containing a point scatterer displaced from the scene center in the range direction.
(b) Real part of the phase history data (in a rectangular grid) corresponding to the
range-displaced scatterer. (c) Scene containing a point scatterer displaced from the
scene center in the cross-range direction. (d) Real part of the phase history data (in
a rectangular grid) corresponding to the cross-range-displaced scatterer.
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Figure 2.7: Spatial frequency domain data support for SAR systems with various
parameter choices. Top: ω0 = 2π × 1010 rad/s, ∆θ = 2.3◦. Middle: ω0 = π × 1010

rad/s, ∆θ = 2.3◦. Bottom: ω0 = π × 1010 rad/s, ∆θ = 4.6◦.

(a) (b) (c)

Figure 2.8: Sample reconstructions of two synthetic point scatterers using the three
parameter choices in Figure 2.7. (a) ω0 = 2π×1010 rad/s, ∆θ = 2.3◦. (b) ω0 = π×1010

rad/s, ∆θ = 2.3◦. (c) ω0 = π × 1010 rad/s, ∆θ = 4.6◦.
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Chapter 3

Current SAR Image

Reconstruction Methods

The problem of SAR image reconstruction is to obtain an estimate of the reflectivity

density f(x, y) based on the observed, pre-processed SAR data. In this chapter,

we briefly discuss conventional, as well as recently proposed relevant SAR image

reconstruction methods.

3.1 Polar Format Algorithm

As discussed in Section 2.2, the spotlight-mode SAR observation kernel consists

of a band-pass Fourier transform of the reflectivity field to be imaged. As a conse-

quence of this, the standard image formation algorithm has been the polar format

algorithm [10,25] based on the two-dimensional fast Fourier transform (FFT). There

is no known fast FFT-type algorithm for computing approximate samples of f(x, y)

from polar samples of its Fourier transform. As a result, in the case of SAR, the known

data samples are first interpolated to a Cartesian grid, assuming unknown samples
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(those outside the annulus segment in Figure 2.3 to be zero. After interpolation, an

inverse 2-D FFT is employed and the magnitude of the reconstructed complex image

is displayed for viewing. Before FFT processing, the data can be windowed to reduce

sidelobe levels. This is the algorithm used in essentially all SAR systems today.

3.2 Filtered Backprojection

Another image reconstruction method, suggested by the tomographic formulation

of SAR [11], is the filtered backprojection (FBP) algorithm [11, 22, 26]. FBP can be

derived by writing the 2-D inverse Fourier transform in polar coordinates. The radial

slices in the frequency domain are then recognized as 1-D Fourier transforms of the

projections of the field at the corresponding angle, by virtue of the projection slice

theorem [22]. This reduces the double Fourier integral to two sequential operations:

first the data at each observation angle are filtered by a ramp (i.e. |Ω|, where Ω denotes

frequency) filter, and then the results are backprojected to obtain a reconstruction.

FBP is the algorithm that is currently used in commercial CT scanners.

One might ask why FBP is the preferred technique for CT, whereas the 2-D FFT-

based polar format algorithm has been the choice for SAR. Comparing CT and SAR

reconstruction problems, there is a considerable difference between the shapes of the

Fourier sampling grids. In CT, the sensor moves all around the object to be imaged.

This produces Fourier samples in a disk shaped region rather than an annular region

as in SAR. The nearly Cartesian nature of the grid in SAR makes interpolation

more accurate than that in the case of CT, so that the polar format algorithm is

attractive in SAR. In CT, however, interpolation is much more difficult, due to the

circular distribution of the data, hence the FBP algorithm which does not require

interpolation in the Fourier domain is preferred. In [27], it has been shown that for

the CT problem, the computational effort required by an FFT-based method with
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interpolation is larger than that required by the FBP method for a comparable level of

quality. It has also been argued that for the SAR problem the polar format algorithm,

even with simple interpolation methods, produces high-quality reconstructions.

Both the polar format and the FBP algorithms are based on the inverse operator

for the case when perfect data are available throughout the spatial frequency domain.

These methods have no explicit mechanism to counter any imperfection in the data.

Although there are algorithmic differences between the two methods, the reconstruc-

tions they produce are very similar. We will call these methods the conventional

methods for SAR image formation.

3.3 Spectral Estimation-based Methods

Recently there have been steps towards alternative algorithms for SAR image

formation. The motivation for a class of these new approaches has been increasing

the resolution of SAR images beyond the Fourier limit.

In conventional methods, image resolution is limited by the system bandwidth.

Let us consider the observed signal from a synthetic aperture, which is a collection

of received returns rθ(t), as shown in Figure 2.3. Note that this 2-D signal is in the

spatial frequency domain, hence its spectrum is in the spatial domain. Since peaks

in the spectrum of this signal correspond to strong point scatterers in the scene, one

idea to overcome the resolution limit of conventional techniques is to use modern

2-D spectral estimation methods [28] rather than a Fourier transform for forming

the SAR image [29–34] (assuming that polar to rectangular resampling has already

been done). Algorithms based on this idea are usually termed “superresolution”

methods, and have become increasingly popular. For example, the Lincoln Labora-

tory baseline ATR system for SAR data currently uses a superresolution technique

known as high-definition vector imaging (HDVI) [32, 35]. In addition to resolution
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improvement, other motivations suggested for the application of these methods are to

remove sidelobe artifacts, and to reduce speckle [29]. When applied to SAR imaging,

spectral estimation-based methods are quite successful in preserving gain on ideal

point scatterers, reducing sidelobes and reducing mainlobe widths, however most

spectral estimation-based methods reduce gain on non-pointlike scatterers such as

trees, and they usually fail to improve the quality of images containing objects with

distributed features.

Spectral estimation-based methods implicitly incorporate some prior information

into their processing, and can produce better results by virtue of that. The problem

with these approches is that they are not very flexible in the form of the prior

information provided to the algorithm. Hence, these methods provide no explicit

means to accentuate one type of feature over another. A comprehensive comparison

of various spectral estimation methods in SAR can be found in [29].

Spectral estimation-based SAR imaging methods require the estimation of a

correlation matrix of the collected radar returns. This estimation is the most compu-

tationally intensive part of the methods. Since the amount of data from a typical SAR

scene is quite big, this is done in the following manner. First a SAR image is formed

using the 2-D FFT processing, then small chips from that image are transformed

back to the Fourier domain, and a correlation matrix is estimated for each of these

downsampled signal histories corresponding to each image chip. Finally the imaging

algorithm is applied on these signal histories, and the formed images are mosaiced

together to form the full scene. The method generally used for the correlation matrix

estimate is the modified covariance method [36].
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3.4 Data Extrapolation-based Methods

Another way of increasing the resolution beyond the Fourier limit is to expand

the support of the data in the frequency domain, by estimating samples outside

the annular data region by linear prediction filters [37–39]. There has also been

some recent limited attempt to compare the performance of spectral estimation-based

methods with data extrapolation-based methods. For example in [40], it has been

reported that spectral estimation based techniques have a degraded performance with

real world targets (unlike with point targets), and may cause some loss of information

about the target, whereas data extrapolation techniques offer increased resolution

and better overall performance in these cases. On the other hand, according to [41],

data extrapolation-based methods do not yield particularly good results, since they

introduce significant amounts of noise.

3.5 Estimation-Theoretic and Entropy-basedMeth-

ods

There also exists some limited previous work taking an estimation-theoretic ap-

proach to the problem. These methods are closest in spirit to our perspective. In [42],

a regularized inversion method has been proposed for stripmap-mode SAR, which

involves deconvolution of the projections of the field by Tikhonov-type regularization,

followed by backprojection. In [43], an estimation-theoretic �1-norm-based approach

has been proposed for imaging closely-spaced multiple moving scatterers over a given

spatial region. In [44] and [45], a stochastic inverse approach which seeks the best

linear estimate of the reflectivity field in a stochastic least-squares sense has been

proposed. This method starts from blurred image domain observations rather than

projectional SAR data. A method similar in spirit to that in [44,45], which considers
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incorporating prior knowledge about the property of targets being limited in spatial

extent has been introduced in [46]. Finally, a class of approaches for SAR imaging

based on entropy methods has been developed [47–51]. These methods appear to offer

good noise suppression properties, however the experimental results in published work

are too limited to show other possible advantages over conventional methods. Rather

than realistic SAR scenes, most results involve simple examples, such as two isolated

point scatterers [47], a synthetic scene with reflectivity 1− j in the target region and

zero in the background (hence not random phase) [49,50], and a small scene consisting

of straight lines and isolated point scatterers [51]. The method in [49,50] also requires

post-processing (median filtering) to reduce some of the artifacts. The recent entropy-

based work in [51] considers the problem of imaging extended (distributed) targets,

however the method uses smoothness constraints which are built on the real and

imaginary components of the field, rather than on the magnitudes directly, unlike our

approach, as will be described in subsequent chapters.

3.6 Conclusion

In this chapter, we have provided brief descriptions of the conventional and some

of the recently proposed techniques for SAR image reconstruction. A number of these

recent techniques share some of our objectives for SAR imaging, such as increasing

the resolution, or decreasing sidelobe and speckle artifacts. However, most of these

techniques achieve (a subset of) such objectives by the implicit structure of the image

formation algorithm. In contrast, our goal is to pose the image reconstruction problem

in such a way to explicitly express the (potentially multiple and variable) feature-

enhancement objectives up-front. This can be done in a regularized image recon-

struction framework. The discussion in [52] regarding some current issues in SAR

image reconstruction has also underlined the need for such regularized approaches
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for the complex-valued inverse problems arising in SAR. In Chapter 4, we provide a

general introduction to the use of regularization methods in image processing. We

then propose a regularization-based framework for SAR imaging in Chapter 5.
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Chapter 4

Regularization Methods in Image

Processing

In this chapter, we provide a brief overview of regularization methods for inverse

problems in image processing, such as restoration and reconstruction. The discussion

here is not a comprehensive one, but is just aimed at presenting some preliminaries

relevant to the approach that will be taken in the following portions of this dissertation

for SAR imaging. Our coverage is mostly based on the reviews of the subject matter

in [53] and [54].

4.1 The Need for Regularization

Restoration and reconstruction of images can be defined as the general problem

of estimating a 2-D field f(x, y) from some form of indirect observations related to

this field. Although the problem arises in various branches of engineering and applied

physics, most image restoration and reconstruction methods have a common esti-

mation structure, and they present some common practical limitations. By virtue of
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these commonalities, regularization has emerged as a central concept in the solution of

image restoration and reconstruction problems in various fields and sensor modalities.

We will concentrate on problems where the mathematical relationship between

the measurements and the field f(x, y) is governed by a linear integral equation. The

discretized version of such a relationship, taking into account the measurement noise

as well, is given by:

g = Tf +w (4.1)

where g and f are vectors representing the sampled data, and the unknown field,

respectively, w is the noise, and T is a known matrix which models the measurement

or degradation mechanism. Although this is a simple observation model, it captures

many situations of engineering interest. The image restoration or reconstruction

problem is then one of solving for the unknown vector f , given the observation vector

g. One may initially think that a simple matrix inverse can be used to find an estimate

f̂ of f , but that certainly is not possible in general. There are four basic issues that

must be taken into account before any inversion can be done [53]:

1. Due to the presence of noise, an exact solution to the linear set of equations

may not exist.

2. There may be more than one field which satisfy these equations, hence the

solution may not be unique.

3. It is desirable to have a “stable” inversion mechanism, i.e. f̂ should be relatively

insensitive to perturbations in the data.

4. It is desirable to include any a priori information about f in the inversion

process.
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A solution to the first problem mentioned above can be obtained through a least-

squares solution:

f̂LS = argmin
f

‖g−Tf‖22 (4.2)

where ‖ · ‖2 denotes the �2-norm. However, when the null-space of T is not empty,

the least-squares solution is not unique. A common approach to address this problem

is to choose the field with minimum norm, among the set of least-squares solutions,

as the estimate of the true field f :

f̂+ = argmin
f̂LS

‖f̂LS‖2 (4.3)

The resulting estimate f̂+ is called the generalized solution. The generalized solution

provides, a simple, reasonable way to deal with the first two issues mentioned in the

list above. However, it does not directly address the third and fourth issues. The

generalized solution is unstable in the face of perturbations to the data. Basically,

this behavior is due to the fact that the main focus of the generalized solution is to

reduce the data fit error. Naturally, when the data is noisy, the generalized solution

will unfortunately fit to the noise components. Since T is most often ill-conditioned,

these noise components will usually be unacceptably amplified in the generalized

solution. A detailed explanation of the reasons of this behavior can be found in [53]

or [54]. The generalized solution does not allow the inclusion of any prior information

about f , either.

These difficulties, which the generalized solution cannot address, can be resolved

by what is known as regularization. The purpose of regularization is to allow the

inclusion of prior information to stabilize the solution in the presence of noisy data,

and allow reasonable estimates. The basic idea is to constrain the solution such that

the amplified noise effects are avoided.
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4.2 Tikhonov Regularization

Tikhonov regularization [55,56] is probably the most commonly used regulariza-

tion method. Tikhonov method incorporates prior information about the field f by

augmenting the least-squares cost function with an additional term as follows:

f̂Tik = argmin
f

‖g −Tf‖22 + λ2‖Pf‖22 (4.4)

where P is a matrix, and λ is a scalar parameter.1 The first term in (4.4) is a data

fidelity term. The second term is called the “regularizer,” and prior information

about f is incorporated through this term. The regularization parameter λ controls

the tradeoff between the two terms.

The simplest choice for P is an identity matrix. In this case, the role of the

regularizer term is to penalize large values in the reconstruction and hence reduce po-

tential noise amplification (as happens in the generalized solution). Another common

choice for P is a 2-D derivative (gradient) operator. For a discussion of the structure

of such discrete derivative operators, see Appendix A.1. In this case, the regularizer

imposes a roughness penalty on the solution, and thus captures the prior belief that

the field we want to reconstruct is smooth.

When we take the gradient of (4.4) with respect to f , and set it equal to zero,

we obtain the following set of linear equations for the Tikhonov solution:

(TTT+ λ2PTP)f̂Tik = TTg. (4.5)

When the null spaces of T and P are distinct, there exists a unique, closed-form

solution to (4.5).

1The variable λ we use for the regularization parameter here, and the variable λ we have used
for the wavelength in Chapter 2 are not related, and should not be confused.

41



An important problem in Tikhonov and other regularization methods is the

choice of the regularization parameter λ, as in (4.4), and any other hyperparame-

ters that might appear in other regularization methods. Automated choice of these

parameters based on data is still an open research problem. For a survey of current

techniques for hyperparameter choice, please see [53,57].

4.3 Non-Quadratic Regularization

The Tikhonov cost function (4.4) is a quadratic function of f . Consequently, the

optimality condition (4.5) is a linear function of f . This leads to linear processing

of the data g for image restoration or reconstruction. While such linear processing

is desirable, since it leads to straightforward and reasonably efficient computation

methods, it is also limiting, in that far more powerful results are possible if non-linear

methods are allowed [53]. To this end, let us consider more general problems of the

following form:

f̂NQ = argmin
f

‖g−Tf‖22 + λ2
M∑
i=1

ψ((Pf)i) (4.6)

where M is the length of the vector Pf , and (Pf)i denotes its i-th element. Note

that when ψ(x) = x2, (4.6) reduces to the Tikhonov cost function in (4.4), however in

general ψ(x) is non-quadratic. The formulation of (4.6) includes well-known regular-

ization approaches such as the maximum entropy [58], and the total variation [59,60]

methods.

Unlike the Tikhonov case, (4.6) does not lead to a closed-form solution in general,

so numerical techniques must be used to find f̂NQ. Here, we will consider a particular

approach, known as half-quadratic regularization [61,62], for this solution. The reason

we consider this particular method is that our approach for SAR image reconstruction
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is related to it, as we will show in Chapter 6. Let us represent the cost function in

(4.6) as:

J(f) = ‖g−Tf‖22 + λ2
M∑
i=1

ψ((Pf)i). (4.7)

The basic idea in half-quadratic regularization is to introduce a new cost function,

which has the same minimum as J(f), but one which can be manipulated with linear

algebraic methods. To this end, let us consider a new function K(f ,b), which is

quadratic in f (hence the name half-quadratic), and where b is an auxiliary vector,

such that

inf
b

K(f ,b) = J(f). (4.8)

One particular way to construct the augmented half-quadratic cost function K(f ,b)

is the following [61]:

K(f ,b) = ‖g−Tf‖22 + λ2
M∑
i=1

[
bi
(
(Pf)2i

)
+ η(bi)

]
(4.9)

where ψ(·) of (4.6), and η(·) of (4.9) are related through convex duality relations as

follows:

ψ(x) = inf
ω
(ωx2 + η(ω))

η(ω) = sup
x

(ψ(x)− ωx2) (4.10)

Minimizing K(f ,b) rather than J(f) may have some structural advantages. In

particular, one can benefit from the half-quadratic structure by using alternating

updates of f given b, and of b given f . This can be done through an iterative block
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coordinate descent method as follows [63]:

b̂(n+1) = argmin
b

K(f̂ (n),b) (4.11)

f̂ (n+1) = argmin
f

K(f , b̂(n+1)) (4.12)

where n denotes the iteration number. The aim is to take advantage of such coordinate

descent steps, where each of these steps is a simple enough operation. We know that

when b is fixed, K(f ,b) is quadratic in f , hence (4.12) is simple. To investigate a

typical structure for (4.11), let us consider a specific non-quadratic cost function. A

non-quadratic regularizer that has achieved popularity in recent years is the total

variation measure [59, 60]. The idea is to use ψ(x) = |x|, i.e. penalize the absolute

value of the argument, unlike the Tikhonov approach which penalizes its square.

The matrix P used in total variation is a derivative operator. The total variation

of a signal is just the total amount of change the signal goes through and can be

thought as a measure of signal variability. One important advantage of total variation

regularization over Tikhonov regularization is that the total variation solutions can

contain localized steep gradients, so that edges are better preserved than that in

Tikhonov solutions. To overcome the problem of non-differentiability of the absolute

value function around the origin, a smooth approximation to the total variation

regularizer can be used: ψ(x) =
√
x2 + ε, where ε is a small smoothing constant.

This yields the following pair of functions for total variation, based on the convex

duality relationships of (4.10):

ψ(x) =
(
x2 + ε

)1/2
η(ω) = ωε+

1

4ω
(4.13)
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Then the cost function J(f) for the total variation problem, and its augmented, half-

quadratic version K(f ,b) are as follows:

J(f) = ‖g−Tf‖22 + λ2
M∑
i=1

[
(Pf)2i + ε

]1/2
(4.14)

K(f ,b) = ‖g −Tf‖22 + λ2
M∑
i=1

[
bi
(
(Pf)2i + ε

)
+

1

4bi

]
(4.15)

Using (4.11),(4.12) we then obtain the following coordinate descent steps for the

minimization of K(f ,b) in (4.15):

b̂
(n+1)
i =

1

2
[
(Pf̂ (n))2i + ε

]1/2 (4.16)

f̂ (n+1) =


2TTT+ λ2PTdiag


 1[

(Pf̂ (n))2i + ε
]1/2


P



−1 (

2TTg
)

(4.17)

where diag{·} is a diagonal matrix whose i-th diagonal element is given by the

expression inside the brackets. Hence both of the coordinate descent steps required

are simple operations. Note that we have substituted the result of (4.16) into (4.17)

above, so the algorithm required for total variation regularization consists of just the

fixed-point iterative scheme of (4.17).

Our discussion of half-quadratic regularization was aimed only at providing a

flavor of the method, so it is not comprehensive. Consequently, some issues on the

reader’s mind may have remained unresolved. Please see [61–64] for a more detailed

treatment of this topic.
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Chapter 5

A Regularization-based Framework

for SAR Imaging

In this chapter, we describe our framework for regularized, feature-enhanced SAR

image formation. The first major contribution of this chapter is an explicit projection-

type complex-valued forward operator for SAR. This operator (projection matrix)

not only opens the door to exploiting the similarities with the projectional operator

in CT, but also provides a new perspective to explore and interpret interesting

properties of the SAR phenomenology. The second major contribution of this chapter

is the proposal and setup of a specific optimization problem for SAR imaging. This

optimization-based approach addresses the issue of robustness to noisy or limited

data, through a regularized objective function in a model-based framework. This

objective function extends the use of feature-preserving potential functions to the

SAR imaging problem. In doing this extension, we focus on particular features

important for automated interpretation of SAR imagery. Unlike standard image

processing problems, SAR involves complex-valued and random-phase reflectivities, as

we have seen in Chapter 2. This complex-valued, random-phase nature of SAR scenes
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makes extension and application of real-valued regularization methods challenging.

We formulate the objective function in such a way to address these challenges. We

also provide a statistical interpretation of our approach.

5.1 Discrete Observation Model

Most standard SAR image formation methods have only an implicit dependence

on the SAR observation relationship developed in Section 2.2, i.e. an inverse relation-

ship based on the continuous, complete-data problem formulation is developed, and

then applied to the particular discrete problem. An explicit discrete model of the

particular SAR sensor and observation geometry is generally not used in practice.

Using an explicit discrete forward model however, can facilitate incorporation of

information about properties of the SAR sensor and measurement parameters into

the processing. A model-based approach may offer a number of advantages for the

SAR problem:

• It lets us handle limitations in data quantity more effectively. Examples of such

limitations are angular diversity limitations (e.g. due to sensor re-tasking),

resolution limitations, and missing observations.

• The model-based approach ties readily into the statistical processing methods.

This lets us handle limitations in data quality more effectively, through a noisy

observation model.

• When the particular data relationship deviates significantly from the Fourier

model, a model-based approach can readily take this into account. An example

for this situation is when the quadratic phase term in (2.14) cannot be neglected.

• Since the model can be built for the polar-sampled data, polar to rectangular

interpolation in the data domain, as required for example in the polar format
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algorithm, is not required.

In this section we will briefly explain the discrete observation model we use,

and also demonstrate how we can obtain a projection-like data relationship. Let us

consider the second relationship in (2.16), which we repeat here for convenience:

rθ(t) =

∫ ∫
x2+y2≤L2

f(x, y) exp(−jΩ(t)(x cos θ + y sin θ)) dx dy (5.1)

where rθ(t) is the demodulated received signal at observation angle θ, f(x, y) is the

underlying unknown reflectivity field to be reconstructed, Ω(t) is the spatial frequency

in the radial direction, and L is the radius of the ground patch to be imaged. We

can compactly write the above relationship as rθ(t) = (Cθf(x, y))(t), where Cθ is the

continuous observation kernel.

In practice, the observations at the i-th observation angle θi are samples rθi(tj)

of the continuous received signal rθi(t) at sampling times tj. This sampling in the

time domain results in sampling of the spectrum of the underlying reflectivity field.

Sampling places a limit on the maximum allowable scene size that can be imaged

without aliasing (in the spatial domain).

Let rθi be the vector of these observed samples, Cθi be a discretized approxi-

mation to the continuous observation kernel Cθi and f be a vector representing the

unknown sampled reflectivity image. Then, overall, we can write:




rθ1

rθ2
...

rθP




︸ ︷︷ ︸
=




Cθ1

Cθ2
...

CθP




︸ ︷︷ ︸
f

r = C f (5.2)
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where P is the total number of angular observation points. The data in r are the

sampled phase histories, and are confined to an annular region in the spatial frequency

plane as shown in Figure 2.3. In practice, we formC by calculating the sampled phase

history corresponding to unit reflectivity point targets in the scene. In doing this, we

take into account the particular system parameters, such as those shown in Table 2.1

before.

In Section 2.2, we have seen that the observed signal rθ(t) can also be identified

as a band-pass filtered Fourier transform of the projections qθ(u) of the field:

rθ(t) =

∫
|u|≤L

qθ(u) exp {−jΩ(t)u} du (5.3)

We will now exploit this relationship to obtain a discrete projectional data

relationship, between the sampled field f and band-pass filtered projections, similar

to the one in CT data collection. In particular, we can obtain samples of the band-

pass projectional information by an inverse discrete Fourier transform (IDFT) of the

sampled data rθi, i ∈ {1, ..., P}, at each observation angle:




qθ1

qθ2
...

qθP


 =




F−1

F−1

. . .

F−1







rθ1

rθ2
...

rθP
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qθ1

qθ2
...

qθP




︸ ︷︷ ︸
=




F−1

F−1

. . .

F−1







Cθ1

Cθ2
...

CθP




︸ ︷︷ ︸
f

q = T f (5.4)

Here F is the DFT matrix, and T represents a complex-valued discrete “SAR

projection operator”. The data q obtained in this way are the range profiles. Note

that in the formation of qθ, we have taken into account the band-pass structure of the

observations as well, so qθ is not just a baseband sampled version of qθ(u) of (2.8).

In the presence of noise, our model of the SAR range profile observations becomes:

g = Tf +w (5.5)

wherew accounts for additive measurement noise. This is the observation relationship

we will use throughout our development in this chapter. A similar observation

relationship could also be written in terms of the phase histories r, and the matrix

C, however we will mostly use (5.5) in our experiments, since the sparser nature of T

offers computational advantages. Note that, since this system model relates reflectiv-

ities to measurements directly, we will not require polar to rectangular resampling.

5.2 Properties of the SAR Projection Matrix

The matrix T obtained as described in the previous section resembles the pro-

jection matrix commonly used in CT. The CT projection matrix would be a discrete

approximation to the kernel in (2.8). The similarity of the structure of the discrete

CT and SAR projection operators for two SAR data collection geometries is shown
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Figure 5.1: The grayscale plot (black corresponds to the maximum value and white
to the minimum) of the magnitude of the elements in the projection matrices for CT
and SAR for a 32× 32 field. (a) CT, ∆θ = 2.3◦. (b) SAR, f0 = 10 GHz, ∆θ = 2.3◦.
(c) CT, ∆θ = 23◦. (d) SAR, f0 = 1 GHz, ∆θ = 23◦.

in Figure 5.1. The images in this figure are grayscale plots of the magnitudes of

the elements of the corresponding projection matrices. Here an underlying field of

32 × 32 pixels, and projectional data of length 32 at each of 32 angular observation

points have been assumed. Figure 5.1(a) and (b) contain the CT and SAR projection

matrices respectively, for an angular observation range of ∆θ = 2.3◦. For SAR, the

central frequency is f0 = ω0/2π = 10 GHz. Based on (2.22), this results in a cross-

range (azimuth) resolution of 0.375 m. We choose the bandwidth of the chirp pulse,

based on (2.21) such that range resolution is also 0.375 m. We will call this specific
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Figure 5.2: The grayscale plot of the magnitude of the elements in the SAR high-
resolution-field to low-resolution-data projection matrix for a 32×32 field. f0 = 5 GHz,
∆θ = 2.3◦, pixel-spacing = 0.375 m, resolution = 0.75 m.

SAR projection matrix T1. Next, we form projection matrices with different sensor

parameters. We reduce the SAR central frequency to f0 = 1 GHz, and keep the

previous cross-range resolution. This then requires an angular observation range of

∆θ = 23◦. The resulting SAR projection matrix, T2, is shown in Figure 5.1(d).

The CT projection matrix for ∆θ = 23◦ is shown in Figure 5.1(c) for comparison.

The structural similarity of the magnitude of the CT and SAR projection matrices

is evident. For the SAR projection matrices in this figure, we have assumed that the

pixel spacing in the field is equal to the resolution supported by the data, and that the

number of data samples is equal to the number of pixels (hence a square projection

matrix). Neither of these has to be the case. In Figure 5.2, we show a SAR projection

matrix, T3, where the pixel spacing is 0.375 m, the (range and cross-range) resolution

is 0.75 m, the angular range is ∆θ = 2.3◦, the central frequency is f0 = 5 GHz, and

the number of data samples is half the number of pixels.

We will provide some insight into the tomographic behavior of these matrices

by examining their rows and columns. One row of T represents the contribution of

all points in the scene to one particular data sample. When a row is reshaped and

its magnitude is viewed as an image, the bright points in this image correspond to

locations in the scene which have a large contribution to that data sample. In the

context of SAR, this indicates a line integral over points which are equidistant to the
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sensor. Figure 5.3 shows the magnitudes of such images for one of the data samples

at an observation angle of θ = 0.7◦, for the projection matrix T1 in (a), and for T2

in (b). These two images are identical, since the line integral path is determined by

the observation angle. In Figure 5.3(c), we show a similar image for T2, this time at

an observation angle of θ = 10◦. As expected, the line integral is now over a tilted

path in the scene, based on the observation angle of 10◦.

A different kind of intuition can be obtained by inspecting the columns of T.

The columns indicate the contribution of a single pixel in the scene to the entire

data collected through the synthetic aperture. We can reshape the columns and

display them as images, where the vertical direction corresponds to the range bins

(hence data samples collected at a particular observation angle), and the horizontal

direction corresponds to the observation angles. The resulting image is a trace of the

varying range of a location in the scene as a function of the observation angle. Such

plots are analogous to sinograms used in CT, where rotating the sensor around the

scene to collect data through a 360◦ range of observation angles produces one period

of a sinusoid in such a plot. In SAR, the range of observation angles is limited, hence

these plots produce what looks like portions of a sinusoid. Such plots are shown in

Figure 5.4 for a cross-range displaced point in the scene. Note that the plot for T2

shows a greater variability than that of T1 in the angular direction. This is simply

because the angular observation range for T2 is ten times that of T1 (23
◦ versus 2.3◦).

So far, we have investigated the magnitude of the SAR projection matrices.

However, the SAR projection matrices are in general complex-valued, whereas the CT

projection matrices are real-valued. To understand this, note that the components of

the SAR projection matrix T at each angle are composed of two cascade operations:

finding an offset Fourier transform slice of the rectangularly sampled field, followed by

a 1-D inverse DFT. Due to the radial frequency offset inherent in the first operation,

the generated Fourier domain signal is not necessarily conjugate symmetric at all
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(a) (b) (c)

Figure 5.3: Magnitude of the rows of the SAR projection matrices, reshaped as
images. These images indicate the points in the scene contributing to a particular
data sample at observation angle θ. (a) T1, θ = 0.7◦. (b) T2, θ = 0.7◦. (c) T2,
θ = 10◦.

observation points, consequently the inverse DFT does not yield a real-valued signal.

Let us now revisit Figure 5.3(a) and (b), where we have observed that the magnitude

of a row of T1 and T2 at a particular observation angle produced identical plots of

a line integral path. Note that the matrices T1 and T2 were based on sensors with

different central frequencies (10 GHz versus 1 GHz). This information can be brought

out by examining the real and imaginary parts of the matrices. In Figure 5.5, we show

the mesh plots of the real parts of the reshaped rows corresponding to the magnitude

images shown in Figure 5.3(a) and (b). The difference in the structure of T1 and T2

can now be observed.

As we mentioned in Section 2.4, CT and SAR differ in their angular diversity

requirements: SAR requires a much smaller angular observation range than CT for

a satisfactory (cross-range) resolution. This is related to the high central frequencies

used in SAR, as explained in Section 2.4. In our projection matrices, the information

regarding the central frequency is carried in the full complex structure of the matrices,

as we have observed in Figure 5.5. The magnitudes of the SAR projection matrices
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(a) (b)

Figure 5.4: Magnitude of the columns of the SAR projection matrices, reshaped as
images. These images indicate the contribution of a single pixel in the scene to the
entire data. The vertical direction corresponds to the range bins, and the horizontal
direction corresponds to the observation angles. Here, a cross-range displaced point
scatterer is considered. (a) T1. (b) T2.

roughly correspond to a sensor operating at baseband, and are similar to the CT

projection matrices, as we have seen in Figure 5.1. Now, we will show on a simple

example that although a regular SAR projection matrix has a resolving power with a

small range of observation angles, the magnitude of such a matrix (i.e. a CT projection

scenario) does not. Figure 5.6(a) shows a scene with a single point scatterer, recon-

structed from data generated by T1 (∆θ = 2.3◦). Let us now generate simulated data

and reconstruct this scene using a CT-type projection operator, using the magnitude

of T1. The resulting reconstruction from such data is shown in Figure 5.6(b). Clearly,

the cross-range resolving power has been lost.
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Figure 5.5: Real parts of the rows of the SAR projection matrices, reshaped as images,
for a particular data sample at observation angle θ. (a) T1, θ = 0.7◦. (b) T2, θ = 0.7◦.

5.3 Objective Function for Feature-Enhanced Imag-

ing

We formulate the SAR image reconstruction problem as the following optimiza-

tion problem:

f̂ = argmin
f

J(f) (5.6)

where we choose J(f) to be an objective function of the following form:

J(f) = ‖g−Tf‖22 + Ψ(f) (5.7)

where Ψ(f) is a function from C
N to R

+ ∪ {0}. The structure of the above objective

function is that of the regularization functions we have seen in Chapter 4. The

first term is a data fidelity term minimizing the squared error between the actual

observations and the observations that would be produced by the reconstructed field

based on our system model. The second term is the regularization term reflecting
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(a) (b)

Figure 5.6: Demonstration of the dependence of the cross-range resolving power of
SAR on the central frequency, as reflected in the complex-valued structure of the
projection matrix. (a) Scene containing a single point scatterer reconstructed from
data generated by T1 (∆θ = 2.3◦). (b) Same scene reconstructed from CT-type data
generated by the magnitude of T1 for the same angular diversity.

the prior information we would like to impose. The reconstruction naturally depends

on the kind of constraint used, hence the choice of Ψ(f) is critical. We would like

to choose Ψ(f) such that it helps both in reducing undesired artifacts, and also in

enhancing the features in the image that are critical for further processing based on

its intended use.

The simplest and most common choice in many regularization problems is to set

Ψ(f) to be a quadratic function of f , which leads to Tikhonov regularization [55,56], as

we have seen in Section 4.2. This choice results in computationally easy optimization

problems, however it has been observed that in many imaging problems this constraint

may suppress useful features in the image. Recently, considerable effort has been

spent in designing alternative, non-quadratic constraints which are general enough to

be used in a class of problems, and yet preserve the critical features for the particular

task. In our work, we extend the use of such methods to complex-valued SAR imaging.
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In particular we choose Ψ(f) as follows:

Ψ(f) = λ21‖f‖kk + λ22‖D|f |‖kk, (5.8)

which results in the following objective function:

J(f) = ‖g−Tf‖22 + λ21‖f‖kk + λ22‖D|f |‖kk. (5.9)

Here ‖ · ‖k denotes the �k-norm, D is a discrete approximation to the 2-D derivative

operator (gradient), |f | denotes the vector of magnitudes of the complex-valued vector

f , and λ1, λ2 are scalar parameters. For a description of the discrete 2-D derivative

operators used in this dissertation, please see Appendix A.1. The formulation of

(5.6),(5.9) starts from the observed range profiles and is not simply a post-processing

of a formed image.

The first term in the objective function (5.9) incorporates the tomographic SAR

observation model (5.5), and thus information about the observation geometry. The

second and third terms in (5.9) incorporate prior information regarding both the

behavior of the field f , and the nature of the features of interest in the resulting

reconstructions. In general, the values of k used for the norms in the two prior

information terms do not have to be identical. Here we use the same norm for both

terms for the sake of simplicity. These terms are aimed at enhancing point-based and

region-based features respectively. The relative magnitudes of the parameters λ1 and

λ2 determine the relative emphasis on these two types of features.

In Sections 5.4 and 5.5, we will discuss in more detail the reasoning behind our

particular choices for these prior information terms.
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5.4 Enhancement of Point-based Features by ‖f‖kk

Many object recognition methods rely on locations of dominant point scatterers

extracted from SAR images [65,66]. Extraction of these locations is however compli-

cated due to the limited resolution achievable by the SAR system (hence widening

or merging individual peaks) and due to sidelobe artifacts. One of our objectives is

to produce images in which such point-based features are enhanced. In applications

such as nuclear magnetic resonance (NMR) spectroscopy [67] and astronomical imag-

ing [68], similar objectives have previously been achieved by using maximum entropy

methods. These approaches provide reconstructions with good energy concentration

(i.e. most elements are small and a few are very large). It has been shown that similar

behavior can be obtained using minimum �1-norm reconstruction [69]. In spectral

analysis, �k-norm constraints, where k < 2, have been shown to result in higher

resolution spectral estimates compared to the �2-norm case (which is proportional to

the periodogram) [70]. Based on these observations, we use a prior term of the form

‖f‖kk with k ≤ 1. This function imposes an energy-type constraint on the solution,

and aims to suppress artifacts and increase the resolvability of scatterers.

Now, let us get some insight about the role and effect of k. First, let us consider a

scalar, real-valued version of ‖f‖kk, i.e. |f |k, and plot it versus f . Figure 5.7 shows such

plots for a number of choices of k. When we view these plots as penalty functions,

we deduce that as the value of k gets smaller, the relative penalty on large values

of f reduces. We will show that in the SAR imaging problem, this effect helps the

preservation and enhancement of strong scatterers in the scene, while still suppressing

artifacts. Note also that for k < 1, the penalty functions in Figure 5.7 are concave,

hence minimization of objective functions containing such terms can be challenging.

Next, let us consider the effect of k on the structure of the vector which minimizes

‖f‖kk. For simplicity, let us consider vectors with two elements. Figure 5.8(a) shows
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Figure 5.7: Behavior of the function |f |k for various choices of k.

curves representing unit �k-norm points for k = {0.5, 1, 2}, where the coordinates

are the elements of the vector f . Consider the points that lie on the circle in

Figure 5.8(a), all of which have the same �2-norm, hence an �2-norm minimization

would not distinguish between these points. On the other hand, if we performed

an �1-norm minimization among these points, the optimal points would be the ones

on the coordinate axes, where the equi-norm curves for k = 2 and k = 1 intersect.

Similar observations can be made as we move on to k = 0.5, where the coordinate axes

preference is even stronger. Hence we can say, as k gets smaller, a sparser structure

in the solution is favored. What we mean by sparsity in a vector is that, there are a

small number of dominant elements, and many other elements have a magnitude close

to zero. We can do this exercise in the reverse direction as well. Consider the points

lying on the constant �0.5-norm curve in Figure 5.8(b). By drawing equi-norm curves
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Figure 5.8: Geometrical figures representing constant �k-norm points for k =
{0.5, 1, 2} for a 2-element vector f . Given all points with a particular �k-norm,
minimization of �k′-norms where k′ < k yields the coordinate axes as the minimizer
(hence a sparse vector structure). On the other hand, given all points with a particular
�k′-norm, minimization of �k-norms where k > k′ yields a solution where the two
coordinates have identical magnitudes (hence a less sparse structure).

for larger values of k, which are circumscribed by the �0.5-norm curve, we can see

that the intersection points are now at orientations of 45◦ and its multiples. Hence,

among the points with identical �0.5-norms, the ones with the two coordinates having

equal magnitudes are favored by minimization of norms with a larger k. So, as k

gets larger, a less sparse structure is favored. The same idea can be observed from

the example in Table 5.1. Given two vectors with the same �2-norm (v1 and v2 in

Table 5.1), the vector with the smaller �1-norm is v2, which has a sparser structure.

On the other hand, given two vectors with the same �1-norm (v1 and v3), �2-norm

minimization prefers v1, which has a less sparse structure.

Overall, the effect of a small k relative to a large k then is the favoring of a

field with a smaller number of dominant scatterers, and better preservation of the

scatterers and their magnitudes.
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v1 = (3, 4) v2 = (5, 0) v3 = (7, 0)
�2-norm 5 5 7
�1-norm 7 5 7

Table 5.1: Example to demonstrate minimizing �1-norm as opposed to �2-norm results
in the preference of a relatively sparse vector structure.

Apart from the implicit stabilizing effect due to regularization, the ‖f‖kk term

then serves two closely related, but still distinct goals:

1. Signal-to-noise enhancement (scatterer enhancement)

2. Superresolution

These effects are obtained by virtue of the non-quadratic nature of the objective

functions (and the non-linearity of the resulting inversion algorithms) we use. The

mechanism by which these effects are achieved by non-linear inversion schemes like

maximum entropy and minimum �1-norm minimization, and the conditions required

for the occurrence of such effects have been discussed in detail in [69]. One of the

major conclusions of that study is that these effects occur if and only if the image to

be recovered is nearly black - nearly zero in all but a small fraction of samples. In

SAR imaging, this condition can correspond to the existence of a small number of

dominant scatterers in the scene.

The term superresolution refers to the ability to resolve better than the Rayleigh

resolution limit, which has been discussed in Section 2.3. A superresolving effect in the

reconstructions can be sought when the data carries limited-resolution information

about the underlying truth, in which case the forward operator T maps a high-

resolution field to lower-resolution data.
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5.5 Enhancement of Region-based Features by ‖D|f |‖kk

SAR recognition algorithms also use region-based shape features [71–73]. As

an example, in military target recognition applications, the image is sometimes first

segmented into three regions: target, shadow and background, and features related

to the shapes of these regions are then used for classification of the targets. With

conventional SAR images, segmentation of such regions is particularly difficult due to

speckle. We are thus interested in reducing variability in homogeneous regions, while

preserving discontinuities at region boundaries. Such behavior has been obtained

in real-valued image restoration and reconstruction problems by using constraints of

the form ‖Df‖kk with k ≈ 1 [60, 74]. However, straightforward application of such a

term to the complex-valued, random-phase SAR case is problematic, since it would

impose smoothness separately on the real and imaginary parts of the complex field

f . In Section 6.4.7, we will experimentally demonstrate how the use of such a term

produces poor SAR reconstructions. The correlation in a homogeneous region of f

in SAR is due to the similarity of backscatter power, which is better represented in

the magnitude of f than its real and imaginary parts. As a result, for region-based

SAR imaging, we propose using the prior term ‖D|f |‖kk. The resulting optimization

problem is made much more difficult by the substitution of the term D|f | for Df ,

since |f | is a non-linear function of the real and imaginary parts of f . In order to

visualize some of the complexities resulting from the use of D|f |, let us consider a

simple example, and observe the convexity properties. Let f be a two-element, real-

valued vector, and let D = [1 − 1]. Figure 5.9(a) shows a 3-D mesh plot of ‖Df‖kk
as a function of the first and second elements of f for k = 2 (top) and for k = 1

(bottom). These functions are convex. The corresponding plots for ‖D|f |‖kk are

shown in Figure 5.9(b). Contrary to the curves in Figure 5.9(a), these are non-convex

functions. Efficient and robust solution of (5.9) thus becomes a major challenge. In
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Chapter 6, we overcome this limitation by providing an effective, efficient algorithm.

Note that the insight we have obtained in Section 5.4 regarding the behavior

of the �k-norms through Figure 5.7 and Table 5.1 is also valid for region-based

feature-enhancement. This time the argument holds not for the reflectivities them-

selves, but for the derivatives of the reflectivity magnitudes. So, as the role of the

point-enhancement term was to preserve strong scatterers, the role of the region-

enhancement term is to preserve strong reflectivity gradients, such as object bound-

aries, while serving as a regularizer.

Note that the advantage of region-based feature enhancement during image re-

construction rather than by post-processing a conventionally formed image is that the

former is more effective in suppressing potential artifacts resulting from limitations

(e.g. partial aperture) or imperfections in the data.
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Figure 5.9: Roughness penalty functions: (a) on reflectivities: ‖Df‖kk, (b) on reflec-
tivity magnitudes: ‖D|f |‖kk. Top: k = 2. Bottom: k = 1. (Here f is real-valued, and
has length two. D = [1− 1].)
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5.6 Statistical Interpretation

The reconstruction problem we have described in Section 5.3 can also be obtained

through Bayesian means. With a statistical perspective, let us seek a reconstructed

reflectivity field as the solution to a maximum a posteriori (MAP) estimation problem,

which defines the estimate of the random field f , based on the observed data g, as

follows:

f̂MAP = argmax
f

[
log

(
pf |g(f |g)

)]
= argmax

f

[
log

(
pg|f (g|f)

)
+ log (pf (f))

]
(5.10)

where log(·) denotes the natural logarithm. Note that maximizing the posterior

density pf |g(f |g), or its logarithm are equivalent, due to the monotonicity property of

the logarithm. Now, we need the pieces of the posterior density pf |g(f |g), namely the

likelihood pg|f (g|f), and the prior pf (f).
1

To find an expression for the likelihood, let us consider the noisy observation

model (5.5), and assume that the observation noise w is independent identically

distributed (i.i.d.) complex Gaussian noise:

pw(w) ∝ exp

(
−‖w‖22

2σ2

)
, (5.11)

where σ2 is proportional to the noise power. This is the most commonly used

statistical model for radar measurement noise [47, 75]. Then, for the likelihood, we

have:

1The posterior density also depends on pg(g), but we do not need this piece since the MAP
estimation problem does not depend on it.
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pg|f (g|f) ∝ exp

(
− 1

2σ2
‖(g−Tf)‖22

)
(5.12)

Let the prior probability density function for the field f be given by:

pf (f) ∝ exp(−µΨ(f)), (5.13)

where Ψ(f) is as in (5.8), and µ is a constant.

Now, we first substitute (5.12) and (5.13) into (5.10), and then convert the

maximization to a minimization through a sign change. The MAP estimation problem

then reduces to the following:

f̂MAP = argmin
f

[
1

2σ2
‖(g −Tf)‖22 + µΨ(f)

]

Now, letting µ = 1/2σ2, and substituting for Ψ(f), we obtain:

f̂MAP = argmin
f

[
‖g−Tf‖22 + λ21‖f‖kk + λ22‖D|f |‖kk

]
. (5.14)

Note that the function to be minimized for the MAP solution is nothing but the

objective function in (5.9).

We see that the second and third terms in (5.9) and (5.14) pertain to the inclusion

of prior information from a regularized reconstruction point of view, and from an

estimation-theoretic point of view respectively. In the former view, they act as feature-

enhancement constraints as components of the regularizer, and in the latter they are

tied into the prior probability density function pf(f). Now, let us provide some insight

for the expected impact of the use of these terms from a statistical standpoint. Let us
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assume we use only the point-based feature enhancement term ‖f‖kk (hence λ2 = 0)

in Ψ(f). Then, we have:

pf (f) ∝ exp(−µλ21‖f‖kk) (5.15)

As seen in this expression, the use of a single prior term based on ‖f‖kk, would be

equivalent to a prior model on f which assumes independent identically distributed

pixels with a circular generalized Gaussian density [74]. Note that with this prior,

phase is assumed to be uniformly distributed. Two particular cases of the density

would be, k = 2 leading to a Gaussian prior, and k = 1 leading to a Laplacian

prior for each complex-valued pixel. Figure 5.10 illustrates such densities for a

complex-valued scalar f . Figure 5.11 shows 1-D versions of these densities for ease

of interpretation. Note that the Gaussian distribution assigns very low probabilities

to large pixel amplitudes, hence it prevents large noise artifacts in the image, but

while doing that, it also penalizes large values which might actually be due to objects

present in the scene. A heavier-tailed distribution can assign a bigger probability for

large reflectivity magnitudes, as shown in Figures 5.10 and 5.11 for the Laplacian

case. Note that by choosing k < 1 in our framework, we can obtain even heavier-

tailed densities than Laplacian, and strengthen this effect. As we will experimentally

demonstrate, such a choice can be helpful for the objective of noise suppression and

scatterer enhancement. Finally, we should also mention that, if ground truth is

available for a particular type of scene, the shape of the probability density function

estimated from such data can also be used in the determination of the prior model to

be used for reconstruction purposes.

Similar to the point-based feature-enhancement case, we can also consider statis-

tical models for the region-based feature enhancement term ‖D|f |‖kk. In this case we

would have an i.i.d. Gaussian distribution for the derivatives of the field magnitude
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when k = 2 and a heavier-tailed density when k < 2. The k = 2 case may impose

a field where large values of the gradient are severely penalized. This can result in

suppression or blurring of the edges where there actually are large deviations in the

underlying scene. As we use a smaller value of k however, the penalty on very large

deviations is reduced while still keeping a considerable amount of penalty on small

deviations. Hence, in effect, formation of edges is allowed, and a smoothness penalty

is imposed in regions where there are no edges.
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Figure 5.10: Gaussian (top) and Laplacian (bottom) probability density functions for
a complex-valued scalar f .
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Figure 5.11: 1-D Gaussian and Laplacian probability density functions for a real-
valued random variable.
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Chapter 6

Efficient Solution of the

Optimization Problem

In this chapter, we present a numerical solution method for the image reconstruction

problem we have formulated in Chapter 5. In particular, we solve the optimization

problem in (5.9), where the objective is to find the field f , which minimizes the

function:

J(f) = ‖g−Tf‖22 + λ21‖f‖kk + λ22‖D|f |‖kk. (6.1)

We propose an efficient iterative algorithm, whose structure gives some insight re-

garding the feature-enhancement properties of our approach. We then show that

this algorithm is an extension of half-quadratic regularization techniques described in

Section 4.3. The final portion of this chapter contains experimental results, demon-

strating various aspects of feature-enhanced imaging.
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6.1 Quasi-Newton-based Algorithm

In order to avoid problems due to non-differentiability of the �k-norm around the

origin when k ≤ 1, we will use the following smooth approximation to the �k-norm in

(6.1) [60]:

‖z‖kk ≈
K∑
i=1

(|(z)i|2 + ε)k/2 (6.2)

where ε ≥ 0 is a small constant, K is the length of the complex vector z, and (z)i

denotes its i-th element. For numerical purposes, we thus will use the following

slightly modified cost function:

Jε(f) = ‖g−Tf‖22 + λ21

N∑
i=1

(
|(f)i|2 + ε

)k/2
+ λ22

M∑
i=1

(|(D|f |)i|2 + ε)k/2. (6.3)

Note that Jε(f) → J(f) as ε → 0. A simple, closed-form solution for the minimizer

of J(f) or Jε(f) does not exist in general, so numerical optimization techniques must

be used.

Standard numerical optimization techniques like Newton’s method or quasi-

Newton methods with a conventional Hessian update scheme, such as Davidon-

Fletcher-Powell [76] or Broyden-Fletcher-Goldfarb-Shanno [76] methods have been

shown to perform poorly in optimization problems involving non-quadratic constraints,

which are special cases of (6.3) [77], and we have observed this behavior as well.

This precludes the use of such standard methods here. The additional presence of a

constraint on the magnitude of f in our case makes the problem even more difficult.

To overcome these obstacles, we develop a new and efficient quasi-Newton method to

solve problems of the form (6.3) for complex-valued fields. This algorithm is based

on a new Hessian update scheme, which can be obtained by extending ideas from

half-quadratic regularization [61] to account for the complex-valued nature of the

SAR problem and the associated prior information terms, as will be discussed in
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Section 6.3. This new Hessian approximation and update strategy is matched to the

structure of the SAR problem in (6.3). The resulting new optimization algorithm is a

non-trivial extension of existing numerical schemes, and provides an efficient, robust

solution.

In order to develop our scheme, we use a structure which effectively deals with

both the complex-valued nature of f and the non-linearity associated with |f |. We

first take the gradient of (6.3) with respect to the real and imaginary parts of f .

This yields a gradient vector of length 2N . We then put this vector into a compact

form, by defining a complex-valued gradient vector of length N , whose real and

imaginary components contain the derivatives with respect to the real and imaginary

parts of f respectively. This requires substantial manipulation, which is described

in Appendix A.2. The resulting compact gradient can be placed in the following

convenient form:

∇Jε(f) = H(f)f − 2THg (6.4)

where:

H(f) , 2THT+ kλ21Λ1(f) + kλ22Φ
H(f)DTΛ2(f)DΦ(f) (6.5)

Λ1(f) , diag

{
1

(|(f)i|2 + ε)1−k/2

}

Λ2(f) , diag

{
1

(|(D|f |)i|2 + ε)1−k/2

}
Φ(f) , diag {exp(−jφ[(f)i])} (6.6)

Here φ[(f)i] denotes the phase of the complex number (f)i, (·)H denotes the Hermitian

of a matrix, and diag{·} is a diagonal matrix whose i-th diagonal element is given by

the expression inside the brackets.
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Examining the gradient expression (6.4), the term H(f) resembles a “coefficient”

matrix multiplying f . As a result, we use H(f) as an approximation to the Hessian.

Note that this Hessian approximation depends on f itself. We use this approximate

Hessian H(f) in the following quasi-Newton iteration:

f̂ (n+1) = f̂ (n) − γ
[
H
(
f̂ (n)

)]−1
∇Jε(f̂

(n)) (6.7)

where γ is the step size. After substituting (6.4) into (6.7) and rearranging, we obtain

our new iterative algorithm:

H
(
f̂ (n)

)
f̂ (n+1) = (1− γ)H

(
f̂ (n)

)
f̂ (n) + γ2THg (6.8)

We run the iteration (6.8) until

‖f̂ (n+1) − f̂ (n)‖22
‖f̂ (n)‖22

< δ, (6.9)

where δ > 0 is a small constant.

At the (n+1)-st iteration, the only unknown in (6.8) is f̂ (n+1). Hence (6.8) defines

the iterate f̂ (n+1) implicitly as the solution of a linear set of equations, in the form

H(f̂ (n)) f̂ (n+1) = v, where v , (1 − γ)H(f̂ (n))f̂ (n) + γ2THg. The coefficient matrix

H(f̂ (n)) of this set is sparse, Hermitian and positive semi-definite, and hence these

equations may themselves be efficiently solved using iterative approaches. We use the

conjugate gradient (CG) algorithm for the solution of this linear problem. We termi-

nate the CG algorithm when the ratio of the �2-norm of the residual H(f̂ (n)) f̂ (n+1)−v
to the �2-norm of the right-hand-side vector v becomes smaller than a threshold

δCG > 0 [78]. A conceptual diagram of this algorithm is shown in Figure 6.1.

75



Solve H(f̂ (n)) f̂ (n+1) = v
by conjugate gradient

?

Converged? -
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Stop�
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- Compute H(f̂ (n))

?

f̂ (n+1)

H(f̂ (n))

Figure 6.1: Quasi-Newton-based iterative algorithm.

6.2 Auxiliary Processes and Feature-Enhancement

The structure of the above algorithm provides some insight into the expected

feature-preserving behavior of the approach. For the sake of simplicity, let us assume

that γ = 1. Then, the solution of (6.8) is also the minimizer of the following quadratic

function with respect to f :

‖g−Tf‖22 +
kλ21
2
fHΛ1(f̂

(n))f +
kλ22
2
fHΦH(f̂ (n))DTΛ2(f̂

(n))DΦ(f̂ (n))f (6.10)

In this quadratic problem, the quantities Λj(f̂
(n)) (j ∈ {1, 2}) act as spatially varying

weighting matrices. The diagonal elements of these matrices correspond to auxiliary

processes in the context of half-quadratic regularization. First consider the role of

Λ2(f̂
(n)). At a location where there is an edge in the field, |(D|f̂ (n)|)i|2 will be large,

hence the corresponding element of Λ2(f̂
(n)) will be small, essentially suppressing the

derivative penalty at that location through (6.10), and preventing smoothing across

the edge. On the other hand, smaller fluctuations in the field (assumed to be the result

of noise and artifacts and not physical edges) will be suppressed. Next, consider the
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role of Λ1(f̂
(n)). At a location where there is a strong scatterer in the field, |(f̂ (n))i|2

will be large, hence the corresponding element of Λ1(f̂
(n)) will be small, essentially

removing the energy-type penalty at that location through (6.10), and preventing the

suppression of the scatterer. On the other hand, at locations where |(f̂ (n))i|2 is not

large enough to be “declared” as a physical scatterer, the energy-type penalty is in

effect.

Overall, the auxiliary processes associated with Λ1 and Λ2 can be viewed as fore-

ground/background and edge maps respectively, and may be useful for interpretation

of the formed image. Our algorithm generates these processes during the iteration

process without any additional cost.

6.3 Ties to Half-Quadratic Regularization

We now establish the connection between the quasi-Newton-based algorithm of

Section 6.1 and half-quadratic regularization methods discussed in Section 4.3. Note

that there are two major differences between the type of cost functions considered

in Chapter 4, and our cost function in (6.3). First, (6.3) contains complex-valued

vectors and matrices, as opposed to the real-valued formulation of standard image

processing problems. Second, the cost function in (6.3) contains roughness penalties

on the magnitude of the field through the terms D|f |, which are more complicated

than standard linear constraints of the form Df .

In establishing the link to half-quadratic regularization in this section, we con-

sider a special case of the cost function (6.3) by setting k = 1 and λ1 = 0:

Jε(f) = ‖g−Tf‖22 + λ22

M∑
i=1

(|(D|f |)i|2 + ε)1/2. (6.11)

This simplification is aimed at keeping the algebra in this section simple, and it does
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not cause any loss of generality. Now, let us develop a half-quadratic approach to

minimize Jε(f) of (6.11). To this end, consider the following augmented cost function:

K(f ,b, s) = ‖g−Tf‖22 + λ22

M∑
i=1

[
bi
(
|(DSf)i|2 + ε

)
+

1

4bi

]
(6.12)

where

S = diag{exp(−jsl)}, (6.13)

with sl being the l-th element of the vector s. In this formulation, b and s act as

auxiliary vectors. Note that K(f ,b, s) is a quadratic function of f , hence it is half-

quadratic. In Appendix A.3, we show the following relationship between K(f ,b, s)

of (6.12), and Jε(f) of (6.11):

inf
b,s

K(f ,b, s) = Jε(f). (6.14)

Based on (6.14), Jε(f) and K(f ,b, s) share the same minima in f . Then, we can use

a block coordinate descent scheme on K(f ,b, s), to find the field f that minimizes

Jε(f):

ŝ(n+1) = argmin
s

K(f̂ (n), b̂(n), s) (6.15)

b̂(n+1) = argmin
b

K(f̂ (n),b, ŝ(n+1)) (6.16)

f̂ (n+1) = argmin
f

K(f , b̂(n+1), ŝ(n+1)) (6.17)

Using the results of Appendix A.3, we obtain:

ŝ(n+1)i = φ[(f̂ (n))i] (6.18)
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b̂
(n+1)
i =

1

2
[
(DŜ(n+1)f̂ (n))2i + ε

]1/2 (6.19)

[
2THT+ 2λ22(Ŝ

(n+1))HDTdiag
{
b̂
(n+1)
i

}
DŜ(n+1)

]
f̂ (n+1) = 2THg (6.20)

Note that Ŝ(n+1) = Φ(f̂ (n)), where Φ(·) is as defined in (6.6). Now, substituting

(6.18), and (6.19) into (6.20) results in the following fixed point iteration for f̂ (n+1):


2THT+ λ22Φ

H(f̂ (n))DTdiag


 1[

(D|f̂ (n)|)2i + ε
]1/2


DΦ(f̂ (n))


 f̂ (n+1) = 2THg.

(6.21)

Note that this iterative algorithm obtained through half-quadratic regularization is

nothing but the quasi-Newton scheme of (6.8) with γ = 1, for the special case of

k = 1, λ1 = 0, as we have assumed in this section. Hence, our iterative scheme for

SAR image formation is an extension of half-quadratic regularization methods.

This association is important for two reasons. First, it allows the use of previous

results concerning e.g. the convergence properties of half-quadratic regularization

methods, as in [63, 79], for our algorithm as well. Second, it extends the use of

half-quadratic regularization methods to problems involving complex-valued, random-

phase fields.

6.4 Experimental Results

We demonstrate the effectiveness of our method on synthetic and real SAR

scenes. We present examples for both point-based feature enhancement and region-

based feature enhancement, and compare these results to conventional reconstruc-

tions.
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6.4.1 Algorithm Initialization and Parameter Selection

For all the examples, we initialize our algorithm with f̂ (0) = aTHg. Here a is

a normalization factor, and we choose a to be the reciprocal of the value that the

diagonal elements of the matrix THT take. Note that this initialization is obtained by

application of the adjoint of the observation matrix to the data. From a tomographic

standpoint, this can also be viewed as the backprojection operation. Another simple

initialization is the conventional polar format reconstruction. The difference between

these two initialization choices is minimal. Sensitivity of our algorithm to initial

conditions will be discussed in Section 6.4.10.

Although the iterative scheme in (6.8) allows a variable step size, we use a fixed

step size of γ = 1 in our examples. In our experience, the algorithm has always

converged with this choice, hence varying (reducing) the step size has not been

necessary. We choose the approximation parameter ε in (6.2) between 10−7 and

10−5, depending on the particular data set, so that it is small enough not to affect

the behavior of the solution. For the termination conditions of (6.8), we use δ = 10−6

and a CG tolerance of δCG = 10−3. We choose the feature accentuation parameters

λ1 and λ2 in (6.3) based on subjective qualitative assessment of the formed imagery,

coupled with our imaging goals, as described in subsequent sections. Our experience

on a large database of SAR images composed of similar scenes is that one set of

parameters chosen on a single image can be used for the entire data set. Automatic

selection of these regularization parameters is beyond the scope of our work and

information on this topic can be found in [53, 57]. In all the examples, we show the

magnitude (in dB) of the reconstructed complex-valued field. We increase the sparsity

of H(f̂ (n)) by neglecting elements in THT whose magnitudes are smaller than 1% of

the largest element.
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6.4.2 Synthetic Scene Reconstructions

6.4.2.1 Point-based Feature Enhancement

First, we demonstrate the superresolution capability of our method on a simple

synthetic scene composed of eight single-pixel scatterers with unit reflectivity magni-

tude and random, uniform phase. The 3-D mesh plot of the magnitude of this 16×16

pixel scene is shown in Figure 6.2(a). We simulate SAR returns from this ideal scene

such that the bandwidth of the data supports a resolution cell of 2 × 2 pixels. The

conventional SAR reconstruction in Figure 6.2(b) cannot resolve four of the scatterers

falling into one resolution cell, and suffers from sidelobes. In this example, we want to

accentuate points, hence we set λ2 = 0 in (6.3). Figure 6.2(c) and (d) show the results

of our method with two different choices of k in (6.3). In these reconstructions, all the

scatterers are resolved, background is suppressed, and peak reflectivity magnitudes

are preserved (0.9552 in (c) and 0.9947 in (d)). Next, we show the performance of

our method in the face of degradation in data quality. To this end, we add complex

Gaussian noise to the simulated SAR returns, so that the signal-to-noise ratio (SNR)

is 10 decibels (dB). We take the SNR to be the variance ratio of the noise-free data

to noise in dB. The resulting conventional and point-enhanced reconstructions are

shown in Figure 6.3. Our method is still able to resolve the scatterers and suppress

the effect of noise.

6.4.2.2 Region-based Feature Enhancement

We now demonstrate region-based feature enhancement in our framework through

the reconstruction of the synthetic scene of Figure 6.4(a). This scene represents an

object (e.g. a vehicle) in a uniform background (the gray area in the image). The

white portions of the scene are where there is scattering from the object, and the

black area is where the shadow of the object falls. Here, we display the magnitude (in
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Figure 6.2: Mesh plots of synthetic point scatterer reconstructions. (a) Truth. (b)
Conventional method. (c) Proposed method with k = 0.8, λ1 = 1, λ2 = 0. (d)
Proposed method with k = 0.1 λ1 = 1, λ2 = 0.

dB) of the synthetic reflectivities only, however the reflectivities are complex-valued,

with random, uniform phase.

We simulate the SAR returns from this scene and corrupt the observations by

additive complex Gaussian noise. We consider two noise levels of SNR = 30 dB

and SNR = 10 dB. The conventional and region-enhanced reconstructions from such

observations are shown in the middle and bottom rows of Figure 6.4. The conventional

reconstructions suffer from artifacts. The region-enhanced reconstructions provide a

better representation of the scene through homogeneous regions and preserved region

82



−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−50

−40

−30

−20

−10

0

range (m)cross−range (m)

m
ag

ni
tu

de
 (

dB
)

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−100

−80

−60

−40

−20

0

range (m)cross−range (m)

m
ag

ni
tu

de
 (

dB
)

(a) (b)

Figure 6.3: Mesh plots of synthetic point scatterer reconstructions from noisy data
(SNR = 10 dB). (a) Conventional method. (b) Proposed method with k = 0.8,
λ1 = 2, λ2 = 0.

boundaries.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.4: Reconstruction of the synthetic target image at the top, from data with
SNR = 30 dB (middle row), and SNR = 10 dB (bottom row). (a) Original scene.
(b) Conventional method. (c) Proposed method with k = 1, λ1 = 0, λ2 = 1.4. (d)
Proposed method with k = 0.7, λ1 = 0, λ2 = 1.4. (e) Conventional method. (f)
Proposed method with k = 1, λ1 = 1.4, λ2 = 2.5. (g) Proposed method with k = 0.7,
λ1 = 1.4, λ2 = 2.
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6.4.3 ADTS Data Reconstructions

We now show results on data from the MIT Lincoln Laboratory Advanced

Detection Technology Sensor (ADTS) data set [3, 80]. Since the ADTS data set

provides formed imagery only, we generate synthetic radar returns by computing

Fourier transform samples on a polar grid and then using the resulting range profiles

as the input to our reconstruction algorithm.

6.4.3.1 Point-based Feature Enhancement

First, we show point-based feature enhancement results. In this example, all of

the reconstructed images consist of 64 × 64 complex-valued pixels. Since we want

to accentuate point features, we set λ2 = 0 in (6.3). The top row in Figure 6.5

contains 0.3 m resolution reconstructions of a scene containing an M48 tank. Our

reconstructions appear to produce images with accentuated dominant peaks. Next,

we reduce the bandwidth of the data equally in range and cross-range, and attempt to

generate superresolution reconstructions. The middle and bottom rows in Figure 6.5

contain reconstructions where the resolution has been reduced to 0.6 m and 1.2 m

respectively. Although precise superresolution arguments are not as easy for this

complicated real SAR scene as for the synthetic scene of Figure 6.2, the peaks still

appear to be better localized by our approach. Note that a particular parameter

choice in our method (such as that associated with the image in the bottom row

of Figure 6.5(b)) produces reconstructions which are visually very similar to the

imagery obtained by the spectral estimation-based superresolution method of [32]. In

Figure 6.6, we show reconstructions from lower quality data for the 0.3 m resolution

case. Lower quality data are obtained by adding complex Gaussian noise to the ADTS

SAR returns used for the example in Figure 6.5. If we treat those ADTS returns as

the clean signal, the SNR in this case is 10 dB. The quality of the point-enhanced
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reconstruction is not significantly affected by noise. For a quantitative analysis of

the improvements in scattering center locating accuracy provided by our technique,

please see Chapter 9.

6.4.3.2 Region-based Feature Enhancement

Now, we demonstrate formation of images with enhanced region-based features.

Since we want to accentuate homogeneous regions, we set λ2 ≥ λ1 in (6.3). We

do not necessarily set λ1 = 0, since we have observed that its presence can help in

preserving the shadow regions in some cases. The images of this example consist of

128× 128 complex-valued pixels. Figure 6.7 contains ADTS images of an M48 tank

reconstructed by using the conventional method and by our proposed scheme for

different choices of k. By choosing k = 2, our algorithm can produce reconstructions

analogous to standard Tikhonov regularization, which we show for comparison. When

k ≤ 1, our method produces images where background fluctuations are suppressed,

in contrast to the conventional image. Furthermore, this is achieved without compro-

mising the sharp boundaries, unlike Tikhonov-type reconstructions. In Figure 6.8, we

show reconstructions from lower quality data. The region-enhanced image is again

able to provide smooth homogeneous regions with clear boundaries.

Similar observations apply to the reconstructions of a natural scene consisting

of trees, corner reflectors, fields and a road, shown in Figure 6.9. Our method

forms images in which the tree shapes and shadows are very distinguishable, and

the background is quite smooth, whereas the conventional SAR image suffers from

considerable amount of speckle.
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Conventional k = 1 k < 1

(a) (b) (c)

Figure 6.5: Enhancement of point-based features. Resolution: top: 0.3 m, middle:
0.6 m, bottom: 1.2 m. (a) Conventional method. (b) Proposed method with k = 1,
λ2 = 0, and top: λ1 = 14, middle: λ1 = 7, bottom: λ1 = 10. (c) Proposed method
with k < 1 and λ2 = 0, with top: λ1 = 14, k = 0.8, middle: λ1 = 7, k = 0.8, bottom:
λ1 = 10, k = 0.95.

87



(a) (b)

Figure 6.6: Enhancement of point-based features from low-quality data (SNR = 10
dB). Resolution: 0.3 m. (a) Conventional method. (b) Proposed method with k = 1,
λ1 = 14, λ2 = 0.
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(a) (b)

(c) (d)

Figure 6.7: Enhancement of region-based features. (a) Conventional method. (b)
Tikhonov-type reconstruction (i.e. k = 2) with λ1 = 4, λ2 = 22. (c) Proposed
method with k = 1, and λ1 = 5, λ2 = 9. (d) Proposed method with k = 0.7, and
λ1 = 4, λ2 = 6.
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(a) (b)

Figure 6.8: Enhancement of region-based features from low-quality data (SNR = 8
dB). (a) Conventional method. (b) Proposed method with k = 0.7, and λ1 = 5,
λ2 = 6.
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(a) (b)

(c) (d)

Figure 6.9: Enhancement of region-based features. (a) Conventional method. (b)
Tikhonov-type reconstruction (i.e. k = 2) with λ1 = 4, λ2 = 22. (c) Proposed
method with k = 1, and λ1 = 4, λ2 = 5. (d) Proposed method with k = 0.7, and
bottom: λ1 = 4, λ2 = 4.
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6.4.4 MSTAR Data Reconstructions

We now show results on data from the Moving and Stationary Target Acquisition

and Recognition (MSTAR) public target data set [81].

6.4.4.1 Obtaining the Projectional Data

Similar to the ADTS data, the MSTAR data set also provides formed imagery

only. In order to apply our image formation technique, we need the projectional data

(phase histories or range profiles). The MSTAR data contain some information about

how the images are formed. Hence we can attempt to undo the final steps of MSTAR

image formation using that information to obtain a closer approximation to the raw

collected data, as done in [82].

We will now highlight the main blocks of this processing. MSTAR images are

formed by taking a 2-D inverse FFT of the Taylor-windowed, zero-padded phase

history data on a rectangular grid. To undo this image formation process, we can

first take the 2-D FFT of the 128×128 images, and shift the transformed signal such

that small frequencies are at the center. A mesh plot of the magnitude of the resulting

2-D signal for a sample MSTAR scene is shown in Figure 6.10. One can notice a band

of points with significantly small values near the borders of the 2-D signal. We can

then assume, as in [82] that these are due to zero-padding, and remove a band of

width 28 around this signal to obtain a 100 × 100 signal. The next step is to undo

the Taylor windowing. From the MSTAR file headers, we know that a 35 dB Taylor

window [15] has been used, and we assume that the quality of approximation of the

Taylor window used is n = 4. The mesh plot of such a Taylor window is shown in

Figure 6.11. The 100×100 data can then be divided by this 2-D window to obtain the

unwindowed phase histories. Finally by a rectangular-to-polar resampling, the polar

formatted phase histories can be obtained. Range profiles can be obtained through
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Figure 6.10: Magnitude of the 2-D FFT of a sample MSTAR image.

1-D Fourier transforms.

6.4.4.2 Point-based Feature Enhancement

Figure 6.12 shows 100 × 100 conventional and point-enhanced MSTAR images.

Images in the top row have been reconstructed from 100×100 data (resolution = 0.3 m),

and images in the bottom row have been reconstructed from 50 × 50 data (resolu-

tion = 0.6 m). Point-enhanced imaging is able to localize the dominant peaks despite

the resolution loss. In forming these images, we have used the data without removing

the Taylor windowing. For comparison, Figure 6.13 shows the reconstructions for the

0.3 m resolution case, using the data after the removal of the Taylor window.
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Figure 6.11: A 100× 100 2-D Taylor window with 35 dB sidelobe suppression, and a
quality of approximation of n = 4.

6.4.4.3 Region-based Feature Enhancement

Figure 6.14 shows a conventional and a region-enhanced MSTAR image. Quali-

tatively, the behavior is very similar to what we have observed with the ADTS data.

Region-enhanced imaging suppresses fluctuations in homogeneous regions, without

destroying the region boundaries.
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(a) (b)

Figure 6.12: Enhancement of point-based features. Resolution: top: 0.3 m, bottom:
0.6 m. (a) Conventional method. (b) Proposed method with k = 0.8, λ1 = 7, λ2 = 0.
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(a) (b)

Figure 6.13: Results from data with Taylor windowing removed. Resolution: 0.3 m.
(a) Conventional method. (b) Proposed method with k = 0.8, λ1 = 14, λ2 = 0.

(a) (b)

Figure 6.14: Enhancement of region-based features. (a) Conventional method. (b)
Proposed method with k = 0.8, λ1 = 1.7, λ2 = 2.5.

96



6.4.5 URISD Reconstructions

Our final examples are from the XPATCH-generated [83] University Research

Initiative Synthetic Dataset (URISD) [84]. The URISD provides phase histories and

range profiles, which we directly use as the input to our algorithm. Figure 6.15

contains the CAD model of a fire truck used for data generation, and the correspond-

ing reconstructed images. The conventional image in Figure 6.15(b) suffers from

large sidelobes. Sidelobes can be suppressed by windowing the data prior to image

formation, as we have seen for the MSTAR data in Section 6.4.4, however this may

reduce the effective resolution in the formed image. Our reconstruction with a point-

based prior is shown in Figure 6.15(c), and achieves sidelobe suppression, as well as

increased resolvability of point scatterers. Our method with a region-based prior,

on the other hand, produces an image with an enhanced object shape, as shown in

Figure 6.15(d).

6.4.6 Auxiliary Processes

So far, we have shown only the images reconstructed by our method. However, as

discussed in Section 6.2, our algorithm also produces auxiliary processes in addition

to the reconstructed field. Here, we will consider one of these processes, consisting

of the diagonal elements of the matrix Λ2, as defined in (6.6). Note that this process

acts as an indicator of the edges in the scene. In Figure 6.16 we show such edge fields

corresponding to the region-enhanced reconstructions of Figure 6.4. These images

are displayed in a dB scale.
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(a) (b)

(c) (d)

Figure 6.15: Results with the URISD. (a) CAD model of the fire truck. (b) Conven-
tional reconstruction. (c) Enhancement of point-based features with k = 0.8, λ1 = 22,
λ2 = 0. (d) Enhancement of region-based features with k = 0.8, λ1 = 5, λ2 = 9.
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(a) (b)

(c) (d)

Figure 6.16: Auxiliary processes representing the edges in the region-enhanced recon-
structions of Figure 6.4. (a) SNR = 30 dB, k = 1, λ1 = 0, λ2 = 1.4. (b) SNR = 30
dB, k = 0.7, λ1 = 0, λ2 = 1.4. (c) SNR = 10 dB, k = 1, λ1 = 1.4, λ2 = 2.5. (d) SNR
= 10 dB, k = 0.7, λ1 = 1.4, λ2 = 2.
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6.4.7 Results of Smoothing Real and Imaginary Components

When choosing a region-based feature enhancement term in Section 5.5, we have

argued that due to the random-phase nature of the SAR reflectivities, the smoothing

constraint should be explicitly imposed on the magnitude of the field through D|f |,
rather than on the real and imaginary components of the field through Df .

We experimentally demonstrate the results of using these two types of smoothness

constraints now. First, we illustrate this phenomenon on a 1-D signal denoising prob-

lem. We consider a complex signal with a piecewise smooth magnitude and random,

uniform phase. We add complex Gaussian noise to this signal to obtain the noisy

signal, g, shown in the top row of Figure 6.17. Figure 6.17(a) shows the magnitude of

the noisy signal, while Figure 6.17(b) and (c) show the real and imaginary components

respectively. Treating this signal as the observation, our objective then is to denoise

it to reconstruct the original piecewise constant true signal magnitude. We present

two approaches. The first approach finds the estimate f̂ by minimizing the following

objective function:

Jε(f) = ‖g − f‖22 + λ22

M∑
i=1

(|(Df)i|2 + ε)k/2 (6.22)

Note that the smoothness constraint is based on Df . The results of this approach,

with k = 1, are shown in the middle row of Figure 6.17. Clearly, the objective of

recovering the piecewise smooth signal has not been achieved. There is some smooth-

ing on the real and imaginary components, which can be observed by comparing the

middle portions of the reconstructed signals in (e) and (f) with their counterparts in

the noisy observation of (b) and (c).

The alternative approach involves constraints explicitly on the magnitude of the
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field, and finds the estimate f̂ by minimizing the following objective function:

Jε(f) = ‖g− f‖22 + λ22

M∑
i=1

(|(D|f |)i|2 + ε)k/2 (6.23)

The resulting denoised signal, with k = 1, is shown in the bottom row of Figure 6.17.

This reconstructed signal magnitude provides the piecewise smooth signal, as desired.

Next, we show a similar comparison for a SAR image reconstruction example.

Figure 6.18(b) contains the magnitude of an image reconstructed by our technique.

This is the example shown in Figure 6.7(c) before. Now, if we replace the term

D|f | in (6.3) with Df , and use the resulting objective function in image formation,

we obtain the reconstructed field in Figure 6.18(a). The parameter values used for

this reconstruction are the same as those used for the one in Figure 6.18(b). This

example demonstrates that if the smoothing constraint is not explicitly imposed on

the magnitude of the field, the resulting reconstruction suffers from artifacts caused

by the random-phase nature of the reflectivities.

6.4.8 Comparison with Post-Processing

Our technique starts from the projectional SAR observations, and forms feature-

enhanced images. Here we illustrate that such feature enhancement cannot in general

be achieved alternatively by post-processing operations on a conventionally recon-

structed image. By “post-processing,” we refer to techniques that do not take into

account a proper observation model for the data at hand.

Let us consider the point enhanced superresolution image in the middle row

of Figure 6.5(c), repeated in the top row of Figure 6.19. The question we pose

here is whether we can obtain such localization of point scatterers starting from the
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conventional image f̂CONV (shown in the middle row of Figure 6.5(a)) through the

minimization of an objective function of the following form:

Jε(f) = ‖f̂CONV − f‖22 + λ21

N∑
i=1

(
|(f)i|2 + ε

)k/2
(6.24)

In the bottom row of Figure 6.19, we show the results of such post-processing of

the conventional image. The three images correspond to small, medium, and large

regularization parameter choices. Neither of these images can provide the scatterer

localization power of the image in the top row.

However, we should note that, if an observation model taking into account the

SAR data collection and image formation processes is incorporated in the processing,

objectives similar to ours can be achieved by acting on a conventional image as well.

6.4.9 Bandwidth Extrapolation Property

In Section 2.3, we have seen that the resolution of a SAR image is determined

by the bandwidth of the spatial frequency domain data available. As discussed in

Section 3.4, a class of recently proposed SAR image formation methods aim to produce

superresolution images directly by extrapolating these available data samples in the

spatial Fourier domain. Our approach to superresolution was different. However,

naturally, our method also implicitly performs extrapolation. This is demonstrated

in Figure 6.20. The top row in Figure 6.20 shows the conventional and superresolution

images for the 1.2 m resolution example in Figure 6.5. The bottom row in Figure 6.20

displays the magnitude of the centered 2-D DFT coefficients of these images. The

support of the significant DFT coefficients for the superresolution images is larger

than that for the conventional image.
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Figure 6.17: Comparison of smoothness constraints on the real and imaginary parts
of a signal versus its magnitude, in the problem of denoising a random-phase signal
with piecewise smooth magnitude. Top: noisy observations. Middle row: results
of smoothing real and imaginary components. Bottom: results of smoothing the
magnitudes directly. Left: magnitude of the signal. Middle column: real part of the
signal. Right: imaginary part of the signal.
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(a) (b)

Figure 6.18: Comparison of smoothness constraints on the real and imaginary parts
of the reflectivities versus their magnitude, for the example of Figure 6.7. (a) Recon-
structed field by smoothing real and imaginary components. (b) Reconstructed field
by smoothing the magnitudes directly.

104



Figure 6.19: Demonstration that simple post-processing techniques do not lead to
robust feature enhancement. Top: Superresolution SAR image from Figure 6.5.
Bottom: Results of post-processing the corresponding conventional image, based on
(6.24), with k = 0.8. From left to right: λ1 = 1.4, λ1 = 1.7, λ1 = 2.2.
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(a) (b) (c)

Figure 6.20: Bandwidth extrapolation property of point-enhanced, superresolution
imaging, for the 1.2 m resolution example of Figure 6.5. Top: reconstructed images.
Bottom: magnitude of the DFT coefficients (zero frequency at the center of the
image). (a) Conventional method. (b) Point-enhanced, k = 1. (c) Point-enhanced,
k = 0.8.
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6.4.10 Sensitivity to Initial Conditions

In previous sections, we have initialized our iterative image reconstruction scheme

as described in Section 6.4.1, with an adjoint-based initial condition, which was also

very similar to a conventional image. Here we address the issue of sensitivity of

the reconstructions to the choice of the initial conditions, by showing the results of

initializing our algorithm with zero initial conditions. We consider the examples of

Figure 6.7(c) and (d). Note that for the reconstruction in Figure 6.7(c), we used

k = 1, and for the reconstruction in Figure 6.7(d), we used k = 0.7.

In Figure 6.21, we show these images, as well as the corresponding reconstructions

obtained by using zero initial conditions. For the k = 1 case, the difference between

the reconstructions with different initial conditions is not visually noticeable. The

values of the objective function at the solution point for the two initializations are

also very close: J∗ = 1.7248 × 105 for the adjoint-based initialization, versus J∗ =

1.7972× 105 for initialization with zeros. For the k = 0.7 case, the difference caused

by the different initialization is more noticeable, but the two reconstructions are still

quite similar. The values of the objective function in this case are J∗ = 1.7671× 105,

for the adjoint-based initial condition, and J∗ = 1.8998 × 105 for the zero initial

condition.

6.4.11 Behavior of the Iterative Scheme

So far, we have shown only the final results of our iterative scheme. However,

the path to this final solution is also of interest. Here, we consider the image

reconstruction example of Figure 6.7(c), and examine various aspects of the iterative

structure.

The first issue is the behavior in which the objective function progresses towards

its minimum. Figure 6.22 shows the value of the objective function Jε(f) of (6.3) as
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a function of the iteration number. For this example, the algorithm has converged in

26 steps. The convergence tolerances used are δ = 10−6, and δCG = 10−3, as stated

in Section 6.4.1. Based on Figure 6.22, the objective function quickly approaches its

minimum value. In fact, 98.6% of the path from the initial value of the objective

function to its final value is taken in the first three iterations.

Next, we consider the behavior of the �2-norm of the gradient of the objective

function ∇Jε(f) of (6.4), as a function of the iteration number. Figure 6.23 shows the

evolution of the gradient norm with the iterations. Again, this plot confirms the fast

approach of the algorithm to the convergence point.

Finally, we are interested in the behavior of the field f̂ (n) itself, as a function

of the iterations. Again, we consider the example of Figure 6.7(c). In Figure 6.24,

we show the intermediate stages of the reconstructed field after the iterations n =

1, 2, 3, 4, 13, 26. The last image corresponds to the final reconstruction. We can

observe that it is possible to obtain reconstructions which closely resemble the final

solution, with only three or four iterations of the algorithm. Figure 6.25 shows the

results after the same number of iterations as in Figure 6.24, for the case of starting

the algorithm from a zero initial condition.
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(a) (b)

(c) (d)

Figure 6.21: Sensitivity of the SAR image reconstruction algorithm to initial condi-
tions. Top: k = 1, and λ1 = 5, λ2 = 9. Bottom k = 0.7, and λ1 = 4, λ2 = 6. Left:
adjoint-based initial condition. Right: zero initial condition. Values of the objective
function at the solution point: (a) J∗ = 1.7248 × 105 (b) J∗ = 1.7972 × 105 (c)
J∗ = 1.7671× 105 (d) J∗ = 1.8998× 105.
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Figure 6.22: Evolution of the objective function as a function of the iteration number
n.
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Figure 6.23: Evolution of the �2-norm of the gradient of the objective function as a
function of the iteration number n.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 13 (f) n = 26

Figure 6.24: Evolution of the field f̂ (n) as a function of the iteration number n.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 13 (f) n = 26

Figure 6.25: Evolution of the field f̂ (n) as a function of the iteration number n, with
a zero initial condition.
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δ = 10−6 δ = 10−4

time (seconds) J∗ time (seconds) J∗

δCG = 10−3 93 1.7247× 105 37 1.7319× 105

δCG = 10−2 51 1.7250× 105 23 1.7322× 105

Table 6.1: Computation times and values of the objective function at the solution
point for the region-enhanced image reconstruction example of Figure 6.7(c) with
various choices of the convergence tolerances.

6.4.12 Computational Complexity

In this section, we provide some information about the computational cost of

our algorithm. We have done all the implementation presented here on a Sun Ultra

60 system with a 350 MHz processor using non-optimized MATLAB code. We have

used simple diagonal pre-conditioning [78] for the conjugate gradient algorithm, more

advanced pre-conditioning techniques can be used to reduce the computational cost

further.

First, let us consider the region-enhanced reconstruction of Figure 6.7(c). As

shown in Table 6.1, it takes our algorithm about 1.5 minutes to produce this im-

age, with the convergence tolerances of δ = 10−6, and δCG = 10−3. However,

we have noticed that considerable computational savings can be achieved, without

compromising the final result significantly, by relaxing these convergence tolerances.

Table 6.1 contains the running times of the algorithm with the relaxed tolerances, as

well. The images produced with these choices of the tolerances are visually hardly

distinguishable from the reconstruction of Figure 6.7(c). The values of the objective

function at the solution point for each of these cases are also very close to each other,

as shown in Table 6.1. Here we have used a fixed value for δCG, for a complete run of

the algorithm. Another approach might be to start with a relaxed value of δCG, and

reduce it at each iteration n.
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δ = 10−6 δ = 10−4

time (seconds) J∗ time (seconds) J∗

δCG = 10−3 14 5.6308× 104 5.6 5.6410× 104

δCG = 10−2 12 5.6308× 104 4.7 5.6412× 104

Table 6.2: Computation times and values of the objective function at the solution
point for the point-enhanced image reconstruction example of the top row of Fig-
ure 6.5(b) with various choices of the convergence tolerances.

Next, we consider the point-enhanced reconstructions in Figure 6.5(b). Table 6.2

contains the computation times, and the values of the objective function at the

solution point with various choices of the convergence tolerances. Note that this

was a non-superresolution example.

For the superresolution reconstruction problems, the computation time signif-

icantly increases, as shown in Table 6.3 for the 2-to-1 resolution loss example of

Figure 6.5(b), middle row. This is mainly due to the less sparse structure of the matrix

THT in the case of a high-resolution-field to low-resolution-data forward operator T.

Finally, in Table 6.4, we present similar results for the 4-to-1 resolution loss

example of Figure 6.5(b), bottom row. In this case, the reconstructions with the

relaxed convergence tolerances are visually distinguishable from the more accurate

reconstruction obtained by the use of tight tolerances. For that reason, we display

the solutions with tight and relaxed tolerances in Figure 6.26, to demonstrate the

computation versus accuracy tradeoff in this case. Note that the image in Fig-

ure 6.26(b) is obtained by only one tenth of the computation required for the image

in Figure 6.26(a), but still provides a reasonable approximation.
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δ = 10−6 δ = 10−4

time (seconds) J∗ time (seconds) J∗

δCG = 10−3 296 8.5160× 103 56 8.5313× 103

δCG = 10−2 71 8.5257× 103 51 8.5325× 103

Table 6.3: Computation times and values of the objective function at the solution
point for the point-enhanced, superresolution image reconstruction example of the
middle row of Figure 6.5(b) with various choices of the convergence tolerances.

δ = 10−6 δ = 10−4

time (minutes) J∗ time (minutes) J∗

δCG = 10−3 14.40 1.4958× 104 2.10 1.5006× 104

δCG = 10−2 2.60 1.5007× 104 1.53 1.5034× 104

Table 6.4: Computation times and values of the objective function at the solution
point for the point-enhanced, superresolution image reconstruction example of the
bottom row of Figure 6.5(b) with various choices of the convergence tolerances.

(a) (b)

Figure 6.26: Demonstration of the tradeoff between computation and accuracy for
the superresolution reconstruction example of Figure 6.5(b), bottom row. (a) Recon-
struction with δ = 10−6, δCG = 10−3, with a computation time of 14.40 minutes.(a)
Reconstruction with δ = 10−4, δCG = 10−2, with a computation time of 1.53 minutes.
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Chapter 7

Image Reconstruction with More

General Potential Functions

In Chapter 5, we have formulated the SAR image reconstruction problem using a par-

ticular family of functions (�k-norms) for the prior information terms. In this chapter,

we generalize our framework and iterative algorithm to incorporate a wider range of

potentially useful choices. We demonstrate feature-enhanced imaging through the

use of a number of classes of potential functions. We also compare these functions in

terms of their expected behavior in image reconstruction.

7.1 Feature-Preserving Potential Functions

For the prior information term in (5.7), we now assume the following structure:

Ψ(f) = λ21
∑
i

ψ (|(f)i|) + λ22
∑
i

ψ ((D|f |)i) . (7.1)

117



ψ1(x) (x2 + ε)k/2

ψ2(x)
(x2+ε)k/2

1+(x2+ε)k/2

ψ3(x) log
(
1 + (x2 + ε)k/2

)
Table 7.1: Families of potential functions used. k is a parameter determining the
shape of the functions. ε is a small smoothing constant.

The role of the first term in (7.1) is to put an energy-type constraint on the solution,

and this term should be chosen in such a way to suppress artifacts and increase

the resolvability of scatterers. The second term is a piecewise smoothness penalty

which should be chosen in such a way that it provides the required smoothing while

preserving the edges and hence the shapes of the objects. Our method does not require

the potential functions ψ used for the two terms in (7.1) to be identical, however we use

identical potential functions for simplicity here. As before, the relative magnitudes

of λ1 and λ2 reflect the emphasis on point-based feature enhancement (superreso-

lution imaging) and region-based feature-enhancement (edge-preserving smoothing)

respectively.

Now, let us discuss the choice of the potential function ψ. There exist some recent

studies in image restoration which have focused on the problem of finding appropriate

potential functions both from a superresolution [70,85] and from an edge-preservation

[63,86] point of view. Conditions to be satisfied for such potential functions have also

been proposed [63]. We will not go into the details of such discussions, but rather

pick a number of such potential functions from image restoration literature, and

demonstrate their use for SAR image reconstruction in our framework. The three

particular classes of feature-preserving functions ψ we consider in this chapter are

shown in Table 7.1. For all of these functions, ε is a small smoothing parameter,

hence (x2 + ε)k/2 ≈ xk. One might subtract an appropriate constant from each

potential function to set ψl(0) = 0 (l ∈ {1, 2, 3}), however we have chosen not to do
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so in Table 7.1, to keep the expressions simpler. Note that these potential functions

can more generally be expressed in terms of x/∆, where ∆ is a scaling parameter.

This parameter ∆ can also be used to control the shape, hence the behavior of the

potential function. Here, we will use a fixed ∆, and omit it in our analysis for

notational simplicity.

First note that the use of ψ1 in (7.1) leads to constraints in terms of approximate

�k-norms. This is nothing new for us: it results exactly in the prior terms used in

(6.3). The other functions, ψ2 and ψ3, are new within our framework. The potential

function ψ2 is based on previous work in [86]. Special cases of ψ2 for k = 1 and

k = 2 yield the potential functions used in [61] and [63] respectively. Finally, ψ3 is a

generalized version of the potential function proposed in [87].

7.2 General Numerical Solution

The only modification required for the generalization of the iterative algorithm

developed in Section 6.1, to incorporate more general potential functions is the

structure of the matrix H(f). Let us choose Ψ(f) in (5.7) so that it contains one

of the potential functions ψl (l ∈ {1, 2, 3}) from Table 7.1. Then, based on the

gradient of the cost function (5.7), the Hessian approximation to be used for each l

is as follows:

H(f) , 2THT+ λ21Vl(|f |) + λ22Φ
H(f)DTVl(D|f |)DΦ(f) (7.2)

Vl(z) , diag {vl(zi)}

vl(zi) =
ψ′
l(zi)

zi
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v1(x)
k

(x2+ε)1−k/2

v2(x)
k

(x2+ε)1−k/2[(x2+ε)k/2+1]
2

v3(x)
k

(x2+ε)1−k/2[(x2+ε)k/2+1]

Table 7.2: The weighting functions associated with the potential functions.

The weighting functions vl(·), for the three potential functions ψl(·) considered here,

are shown in Table 7.2. With this H(f), the iterative algorithm (6.8) remains valid

for the general case.

7.3 Discussion on the Choice and Behavior of Po-

tential Functions

Although we will not attempt to answer the question of which potential function

and choice of parameter k is “best” for a reconstruction problem, we will briefly

discuss the behavior of the potential functions of Table 7.1. Figure 7.1 shows plots of

these functions for a number of choices of k.

One important issue in the choice of a function to be used in an optimization

problem is its convexity properties. Convex functions are known to result in easier

minimization problems. From an image restoration and reconstruction standpoint

however, non-convex (or relatively “less” convex) potential functions for the prior

terms have been observed to be more feature-preserving (more resolvant or more

edge-preserving) [79, 88]. All of the potential functions in Figure 7.1, except ψ1 for

k > 1, are non-convex.

We will now highlight the feature preservation properties of each potential func-

tion, first as a function of the parameter k, and then relative to the other potential
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functions. Note that what we mean by feature preservation here is just the degree to

which the potential function suppresses the penalization of large-valued quantities.

Let us consider the weighting functions vl corresponding to the potential func-

tions ψl. Figure 7.2 plots the scaled weighting functions vl(x)/k on a logarithmic

scale.1 Scaling is done so as to compare the structure of the functions more easily.

Note also that scaling can always be adjusted through the regularization parameters.

Consider the first weighting function v1(x), and note that v1(x)/k is constant for

k = 2. Hence this function imposes uniform penalties (energy-type or smoothness)

everywhere in the scene, and does not lead to feature enhancement. When k < 2

however, the weighting v1(x) decreases, as x gets larger. This results in the preserva-

tion of large-valued reflectivities or gradients. This effect becomes more pronounced

as k decreases, hence we will say v1 (hence (ψ1)) becomes “more feature-preserving”

as k decreases.

The structure of v2 as shown in Figure 7.2 is more interesting. First, note that2

v2(x)/k ≈ 1/(x2−k(1 + xk)2). If we just focus on small values of the magnitude of x

(e.g. smaller than 1), the behavior of v2, as observed from the plots, is similar to that

of v1, that is, as k gets smaller, the rate of decay of the weighting function increases.

This is because v2 behaves like xk−2 in that region, which is also the behavior of v1.

On the other hand, for large x, v2 decays more rapidly as k increases, unlike the case

for v1. This is because for large x, the weighting function v2 behaves like x−(2+k),

hence for a large k the non-uniform weighting effect becomes more dramatic. Hence

the effect of k on the feature preservation property of v2 depends on the range of

values of x of interest.

The dependence of the third weighting function v3(x)/k ≈ 1/(x2−k(1 + xk)) on

k for small x is similar to the first two weighting functions. For large x, v3 behaves

1Note that vl(x) also depends on k.
2Considering positive x in the expressions here, without loss of generality.
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like x−2, hence different choices of k do not lead to very different behavior.

Now, let us compare the three potential functions in terms of the “feature-

preservation” effect for a given k. For the three weighting functions we have:

v2(x) ≈
v3(x)

(1 + xk)
≈ v1(x)

(1 + xk)2
(7.3)

Note that the term (1 + xk) is always larger than 1, and monotonically increasing,

so v2 has the fastest rate of decay. Hence the second function has the most, and the

first function has the least feature-preserving property for fixed k. This can also be

observed from the plots of potential functions themselves for a fixed k, as shown for

k = 0.8 in Figure 7.3. Here we can observe that ψ2(x) has the least penalty on large

values of x as compared to the other two potential functions.
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Figure 7.1: Families of potential functions used in the prior terms for feature-enhanced
image reconstruction.
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Figure 7.2: Scaled weighting functions corresponding to the potential functions in
Figure 7.1.
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Figure 7.3: The three potential functions for k = 0.8.
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7.4 Examples

To demonstrate the performance of our image reconstruction method, generalized

to incorporate all three potential functions described in this chapter, we use images

from the MIT Lincoln Laboratory Advanced Detection Technology Sensor (ADTS)

data set [3]. For all the results presented here, we have chosen the values of λ1 and

λ2 based on subjective qualitative assessment of the formed imagery. We use ∆ = 1

for all the examples.

7.4.1 Region-based Feature Enhancement

First, we consider region-based feature enhancement through edge-preserving

image formation in our framework. For this task, the dominant prior information

term in (7.1) should be the smoothness constraint (hence we need to set λ2 > λ1).

Images of a military vehicle obtained by the use of various potential functions, as well

as the conventional method are shown in Figure 7.4. The images produced by our

scheme exhibit reduced speckle, and clear object and shadow boundaries. The three

potential functions produce very similar reconstructions. If we compare the image

in Figure 7.4(c) with the one in Figure 7.4(b), we can say that the more “feature-

preserving” potential function ψ2 produces slightly sharper edges around the target

area as compared to ψ1. However it also accentuates some pieces of clutter in the

background.

7.4.2 Point-based Feature Enhancement

We now demonstrate superresolution imaging. For this task, we set λ2 = 0

in (7.1). First, we show a synthetic example. We generate a synthetic scene by

extracting the brightest 30 peaks from a real SAR image, preserving the complex
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reflectivities of these points, and setting everything else in the scene to zero. This

provides a simple scene where we have a small number of scatterers, and no clutter.

Visualizing the resolution properties of the resulting reconstructions should then be

simpler than that in a real, complicated scene. We generate simulated SAR data

from this scene, by a 2-to-1 resolution reduction. We will show the reconstructions

both as intensity images, and as contour plots for ease of interpretation. Figure 7.5

contains the images, and Figure 7.6 contains the contour plots for the synthetic scene,

and the conventional, as well as the point-enhanced reconstructions. Point-enhanced

reconstructions with each of the three potential functions provide a better visual

representation of the underlying scene than the conventional image.

Next, we demonstrate results on real data. Figure 7.7 shows images of the vehicle

reconstructed from 0.6 m resolution data. Figure 7.8 contains similar results for an

even more reduced resolution level of 1.2 m. Images formed by our approach exhibit

improved resolution, reduced sidelobes, narrower mainlobes, hence higher resolution

and better dominant scatterer localization than the conventional images for both the

synthetic and the real data cases. For a quantitative analysis of the improvements

in scattering center locating accuracy provided by our technique (for a subset of the

potential functions used here) please see Chapter 9.
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(a) (b)

(c) (d)

Figure 7.4: Edge-preserving, region-enhanced reconstructions with various potential
functions. (a) Conventional image. (b) ψ1, p = 0.8, λ21 = 30, λ22 = 60. (c) ψ2, p = 0.8,
λ21 = 30, λ22 = 70. (d) ψ3, p = 0.8, λ21 = 30, λ22 = 70.
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Figure 7.5: Point-enhanced, superresolution imaging of a synthetic scene. (a) Original
scene. (b) Conventional image. (c) ψ1, p = 0.8, λ21 = 50. (d) ψ2, p = 0.8, λ21 = 25.
(e) ψ3, p = 0.8, λ21 = 25.
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Figure 7.6: Contour plots of the images in Figure 7.5. (a) Original scene. (b)
Conventional reconstruction. (c) ψ1, p = 0.8, λ21 = 50. (d) ψ2, p = 0.8, λ21 = 25. (e)
ψ3, p = 0.8, λ21 = 25.
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(a) (b)

(c) (d)

Figure 7.7: Point-enhanced, superresolution imaging from 0.6 m resolution data. (a)
Conventional image. (b) ψ1, p = 0.8, λ21 = 50. (c) ψ2, p = 0.8, λ21 = 100. (d) ψ3,
p = 0.8, λ21 = 100.
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(a) (b)

(c) (d)

Figure 7.8: Point-enhanced, superresolution imaging from 1.2 m resolution data. (a)
Conventional image. (b) ψ1, p = 0.8, λ21 = 150. (c) ψ2, p = 1, λ21 = 200. (d) ψ3,
p = 0.8, λ21 = 150.
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Chapter 8

Generalization to Other

Variational Formulations

In this chapter, we demonstrate the use of a different variational energy formulation

for SAR imaging. This formulation, based on the Mumford-Shah energy [14], has been

commonly used in image restoration and segmentation problems before. Our work

here provides an extension of our previous framework for SAR imaging to incorporate

the richer structure of this variational formulation. On the other hand, it also extends

the use of Mumford-Shah-type formulations to complex-valued, random-phase fields,

with non-trivial observation models.

8.1 Variational Formulations based on the Mumford-

Shah Energy

Many variational approaches for image segmentation problems are based on the

well-known Mumford-Shah energy [14]. Such approaches share our goal in region-

enhanced imaging of smoothing the field where there are no edges, while preserving
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the discontinuities. Our philosophy in Chapters 5 and 7 to solve this problem was to

use non-quadratic potential functions, which implicitly produced the desired effect.

In contrast, the Mumford-Shah-type variational formulations start from an objective

function which is explicitly aimed at smoothing the homogeneous regions in an image,

but simultaneously preserving the discontinuities. One such function, which is a

relaxed version of the Mumford-Shah energy, is the Ambrosio-Tortorelli energy [89].

A discretized version of this objective function is:

E(f , e) = ‖g − f‖22 + λ2

{[
M∑
i=1

(1− ei)
2(Df)2i

]
+

1

2β
‖e‖22 +

β

2
‖De‖22

}
(8.1)

where g denotes the observed image data, f denotes the piecewise smooth approx-

imating field, e denotes the continuous-valued edge field, D is a discrete derivative

operator, and λ, β are scalar parameters. The subscript i denotes the i-th element

of a vector. Presence and absence of an edge at a particular location make the edge

field e approach 1 and 0 respectively at that location. The first term in (8.1) is a

data fidelity term. Note that since segmentation problems use an observed image as

the data, the observation model is just the identity. The second of the four terms

is a smoothness constraint. Note that this term is essentially a weighted �2-norm of

Df where the weights are given by (1− ei)
2. Due to the edge-dependent weighting,

smoothing is done only in locations where the edge field e is small. Such a constraint

makes sense, however this term by itself favors placing edges everywhere in the scene.

This potential problem is prevented by the last two terms in (8.1), which penalize the

norm and roughness of the edge field e.
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8.2 A Mumford-Shah-type Formulation for SAR

Imaging

By adapting the Ambrosio-Tortorelli energy in (8.1), we propose the following

cost function for SAR imaging:

J(f , e) = ‖g−Tf‖22 + λ2

{[
M∑
i=1

(1− ei)
2
(
|(D|f |)i|2

)]
+

1

2β
‖e‖22 +

λ2eβ

2
‖De‖keke

}
(8.2)

Note that this cost function takes into account the SAR observation model T, and

imposes a smoothness constraint on the magnitude of the complex-valued SAR reflec-

tivity field f . To solve this optimization problem, we take a half-quadratic approach.

The half-quadratic energy K̃(f , e, s) must satisfy:

inf
s

K̃(f , e, s) = J(f , e). (8.3)

Such a half-quadratic augmented cost function is given by:

K̃(f , e, s) = ‖g−Tf‖22 + λ2

{[
M∑
i=1

(1− ei)
2
(
|(DSf)i|2

)]
+

1

2β
‖e‖22 +

λ2eβ

2
‖De‖keke

}
(8.4)

where

S = diag{exp(−jsl)}, (8.5)

with sl being the l-th element of the vector s.

We minimize K̃(f , e, s) of (8.4) by the following coordinate descent approach:
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ŝ(n+1) = argmin
s

K̃(f̂ (n), ê(n), s) (8.6)

ê(n+1) = argmin
e

K̃(f̂ (n), e, ŝ(n+1)) (8.7)

f̂ (n+1) = argmin
f

K̃(f , ê(n+1), ŝ(n+1)) (8.8)

Based on the structure of K̃(f , e, s), we obtain the following coordinate descent steps:

ŝ
(n+1)
i = φ[(f̂ (n))i] (8.9)

ê(n+1) = argmin
e

{[
M∑
i=1

(1− ei)
2
(
|(DŜ(n+1)f̂ (n))i|2

)]
+

1

2β
‖e‖22 +

λ2eβ

2
‖De‖keke

}
(8.10)[

2THT+ 2λ2(Ŝ(n+1))HDTdiag

{(
ê
(n+1)
i

)2}
DŜ(n+1)

]
f̂ (n+1) = 2THg (8.11)

Note that (8.9), and (8.11) provide what are conceptually closed-form solutions for

ŝ(n+1) and f̂ (n+1) respectively (although an iterative scheme can be used in practice

for f̂ (n+1)). On the other hand (8.10) gives a closed-form solution for ê(n+1) only if

ke = 2, in which case this is a quadratic minimization problem. When ke �= 2, a

numerical method, such as the half-quadratic methods we have been discussing, must

be used for (8.10).

8.3 The Link to Previous Image Formation Ap-

proach

In this section, we illuminate the similarity between the function K̃(f , e, s) of Sec-

tion 8.2, and the half-quadratic objective functions we have considered in Chapters 5

and 7. In particular, we show that we may view the Mumford-Shah-type variational
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approach of this chapter as a generalization of our previous framework, with a specific

potential function. In our development, we follow the line of thought in [88].

Consider the special case of the objective functions of Chapters 5 and 7, where

we take λ1 = 0:

J(f) = ‖g −Tf‖22 + λ22

M∑
i=1

ψ((D|f |)i). (8.12)

In Section 6.3, we have seen that minimization of such functions J(f) can be done by

the minimization of a half-quadratic energy, K(f ,b, s).

Now, suppose we choose ψ(x) = x2/(1 + x2) in (8.12). Note that this is a

particular case of the potential function ψ2 from Table 7.1, with k = 2 and ε = 0.

With this potential function in (8.12), we can show that the augmented half-quadratic

cost function K(f ,b, s) is given by:

K(f ,b, s) = ‖g−Tf‖22 + λ22

M∑
i=1

[
bi
(
|(DSf)i|2

)
+ (

√
bi − 1)2

]
(8.13)

Let us make a change of variable and replace bi with (1− ei)
2. This yields:

K(f , e, s) = ‖g −Tf‖22 + λ22

M∑
i=1

[
(1− ei)

2
(
|(DSf)i|2

)
+ (ei)

2
]
. (8.14)

Finally, recognizing the last term in (8.14) can be expressed as an �2-norm, we obtain:

K(f , e, s) = ‖g−Tf‖22 + λ22

{[
M∑
i=1

(1− ei)
2
(
|(DSf)i|2

)]
+ ‖e‖22

}
(8.15)
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The cost function K(f , e, s) of (8.15) is a particular case of the type of functions we

have used in Chapters 5 and 7. Now, let us compare this function to the Mumford-

Shah-based cost function K̃(f , e, s) of (8.4). One can easily establish a correspondence

between the terms in these two functions. We can observe that K(f , e, s) can be

viewed as a special case of K̃(f , e, s) with λ = λ2, λe = 0, β = 0.5. Hence the

Mumford-Shah-based cost function K̃(f , e, s) can be viewed as a generalization of

our previous formulation in a particular way.

8.4 Example

We now illustrate some benefits that may be obtained by the richness of the

variational formulations considered in this chapter. Consider the synthetic scene in

Figure 8.1(a). We simulate SAR returns from this scene, and add Gaussian noise

to the simulated noise-free returns so that SNR is 15 dB. We then consider the

reconstruction problem from such noisy data. Figure 8.1(b) shows the conventional

reconstruction.

We now reconstruct this scene first using the approach of Chapter 7, and then

using the variational formulation presented in this chapter. For the discrete derivative

operators, we use the second approach described in Appendix A.1 here. Figure 8.2(a)

shows the reconstructed field obtained by the method of Chapter 7 with ψ2, k = 2.

Note that this corresponds to minimizing the function in (8.15). Figure 8.2(b) shows

the associated reconstructed edge field e. Using the same regularization parameter,

we now form an image by minimizing the function in (8.4) using the iterative scheme

of Section 8.2. The reconstructed field and the edge field are shown in Figure 8.2(c)

and (d). Note that the edge field in (d) suppresses the artifacts much better than the

edge field of (b).
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(a) (b)

Figure 8.1: Synthetic example. (a) Original scene. (b) Conventional reconstruction
from noisy data (SNR=15 dB).
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Figure 8.2: Feature-enhanced reconstructions. (a) Reconstructed field using the
objective function in (8.15) with λ22 = 20. (b) Edge field e corresponding to (a).
(c) Reconstructed field using the Mumford-Shah-based objective function in (8.4)
with λ22 = 20, β = 0.1, λ2e = 0.4, ke = 1. (d) Edge field e corresponding to (c).
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Chapter 9

Evaluation based on

Recognition-Oriented Features

While the images produced by our methods appear visually good, the performance

of such images in automated processing algorithms is our main interest. Therefore,

in this chapter, we propose quantitative criteria for evaluating the images produced

by the SAR image formation technique developed in Chapters 5 and 6, based on

recognition-oriented features. We run experiments on the MSTAR public target

data set [81] to compare the SAR images formed by feature-enhanced imaging to

conventional images in terms of these quantitative measures. The criteria we use to

evaluate point-based features are target-to-clutter ratio, mainlobe width, peak match-

ing accuracy, and average associated peak distance. The metric of peak matching

accuracy is particularly useful for testing the superresolution properties of an image

formation method. The criteria we use to evaluate region-based features are speckle

suppression, segmentation accuracy, and statistical separability of different regions

from one another. The results of our experiments indicate that feature-enhanced

images exhibit superresolution and improved localization accuracy for dominant scat-
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terers, and improved separability for different regions in the scene.

9.1 Evaluation Criteria for Point-Enhanced Images

In this section, we propose measures focusing on point-based features, for evalu-

ating the quality of reconstructed SAR images. Many of these criteria have appeared

in the literature before, and they are mostly directed towards quantities to be used

in target recognition tasks.

9.1.1 Target-to-Clutter Ratio

As a measure of accentuation of the target pixels with respect to the background,

we will use the target-to-clutter ratio in dB, defined as [32]:

Target−to−clutter ratio = 20 log10

(
max(i,j)∈T (|f̂ij|)
1
NC

∑
(i,j)∈C |f̂ij|

)
(9.1)

where the pair (i, j) denotes the pixel indices, f̂ is the reconstructed image, f̂ij is the

reconstructed reflectivity at location (i, j), T denotes the target region, C denotes a

clutter patch in the image, and NC denotes the number of pixels in the clutter patch.

9.1.2 Mainlobe Width

As one of the measures of the effective resolution of an image, we will use the

3-dB mainlobe width of the strong scatterers. To obtain an estimate of the mainlobe

width, we concentrate on the target region. In each row and column in the target

region of the reconstructed image, we find the first point near the maximum where the

reflectivity magnitude is more than 3 dB below the maximum value. We then obtain

a better estimate of the 3-dB distance by means of a linear interpolation between
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pixels. Finally, we average the distances obtained from each row and column in the

target region to find an overall estimate of the 3-dB lobe width for a particular image.

9.1.3 Peak Matching Accuracy

Locations of dominant point scatterers extracted from a target image are im-

portant characteristics for recognition [65, 66]. Loss of resolution manifests itself by

merging and moving such characteristic points, and this makes the accurate localiza-

tion of these points in the scene more difficult. Thus, we evaluate the superresolution

properties of our method by measuring how well the dominant scatterers are preserved

when we use reduced-resolution data to form the image.

The procedure we use for measuring peak matching accuracy is as follows. The

first step is to extract the locations of Np brightest scatterers from a reconstructed

image. For this purpose, we first find all the peaks in the scene. The peaks are taken

to be the points where the discrete spatial derivatives of the reflectivity magnitude

in both the x and the y directions change sign from positive to negative. Once the

peaks are found, we order them based on their magnitudes, and pick the largest Np

of them. In our experiments, we will use Np = 20.

We then evaluate how well the coordinates of these Np peaks match those of the

Np “reference” locations of the scatterers. These reference positions may be obtained

either from the ground truth, in case that is available, or from the locations of the

scatterers extracted from a higher resolution image, otherwise. Once we have two

sets of Np peak locations, we need to determine how many of the extracted locations

“match” a reference location. The simplest matching criterion would be to count

the exact position matches between the two sets of locations. However, this criterion

may be too restrictive. For this task, we use the feature matching method used

in [90]. This method allows a match declaration between two peaks, if the estimated
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peak location is within a radius r of the “reference” peak location. Hence it is more

powerful than counting only the exact matches, with r used as a variable parameter

(r = 0 corresponds to counting the exact matches). A one-to-one association of the

peaks is made such that the sum of the squared distances between the locations of the

“reference” peaks and the corresponding matched peaks from the image is minimized.

We can then count the number of matched peaks out of Np, to see how well the peaks

are preserved.

We apply the above procedure to the conventional images and the feature-

enhanced images reconstructed from the same reduced-resolution data. We compute

the number of matched peaks for a large set of such conventional and feature-enhanced

images, and compare the average number of matched peaks, parameterized by r.

9.1.4 Average Associated Peak Distance

Another criterion based on peak locations that we use is the average distance

between the two sets of Np matched peak coordinates. To compute this measure, we

relax the matching radius r of Section 9.1.3, so that each of the Np peaks from the

reconstructed image is matched to one of the “reference” peaks. We then find the

average of the distances between these associated peaks.

9.2 Evaluation Criteria for Region-Enhanced Im-

ages

9.2.1 Speckle Suppression

Speckle complicates intensity-based region description in conventional SAR im-

ages. One measure that has been used for speckle amplitude is the standard deviation
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of a clutter patch in the dB-valued SAR images [32]. We use this measure to quan-

titatively compare our reconstructions with conventional images in terms of speckle

suppression.

9.2.2 Segmentation Accuracy

It is of interest to obtain accurate segmentations of SAR images for effective use

of region-based shape features in target recognition. Recently there has been much

interest in the development of segmentation algorithms for conventional SAR images.

Our region-enhanced images would appear to provide easier-to-segment regions as

compared to conventional SAR images. We demonstrate this property by segmenting

our reconstructions to target, shadow and background regions by simple adaptive

thresholding, where the thresholds for a particular image under consideration depend

on the statistics of that image.

To determine the thresholds, we find the mean µ and the standard deviation σ of

the dB-valued pixel magnitudes in the image. Then, we apply the following decision

rule at each pixel:

20 log10(f̂ij) < µ− c1σ =⇒ f̂ij ∈ S

µ− c1σ ≤ 20 log10(f̂ij) < µ+ c2σ =⇒ f̂ij ∈ B
µ+ c2σ ≤ 20 log10(f̂ij) =⇒ f̂ij ∈ T

where T ,S,B denote the target, shadow and background regions respectively and

c1, c2 are two constants that are fixed beforehand. Hence, this is really a “histogram-

based” threshold.

From a statistical standpoint, it would make more sense to develop a decision

metric based on the statistics of particular regions. However, our objective here is not

to develop the best decision metric, but rather to show that we can obtain reasonable

segmentations of the region-enhanced images even by simple suboptimal processing.
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The above procedure produces a segmented image. Next, we need to evaluate

the accuracy of this segmentation. For such evaluation, we need the ground truth.

Ground truth for this problem consists of the assignment of each location in the scene

to one of the three sets T ,S,B. Such ground truth information is not readily available

in general, as is the case with the MSTAR data set. We use segmentations done by

humans as the ground truth. The measure of accuracy we use is the percent of pixels

in the automatically segmented image, which are classified correctly (i.e. assigned to

the same set as the ground truth assignment of the pixel).

9.2.3 Statistical Separability of Regions

Segmentation accuracy provides a good flavor of the degree of separability of

different regions from one another in the SAR image. However it does not provide a

statistical measure for the similarity of different regions, T ,S,B. To obtain such

a measure, we first assume that all the (dB-valued) reflectivity magnitudes in a

particular region of the reconstructed SAR target image are drawn from the same

Gaussian distribution. We also assume that these region-based probability density

functions are independent of the target type. We then estimate the mean and variance

of such a density for each region, T ,S,B, using a large set of SAR images. Note that

the actual distribution of those elements may not be close to a Gaussian, but such a

simple model is sufficient for our objective of measuring region separability.

As a measure of the similarity of two Gaussian densities corresponding to classes

(regions) i and j, we use the Bhattacharyya distance dij [91]:

dij =
1

8
(µi − µj)

T

(
Σi + Σj

2

)−1
(µi − µj) +

1

2
ln

(
|Σi+Σj

2
|

|Σi|1/2|Σj|1/2

)
(9.2)

where µi, µj are the mean vectors and Σi, Σj are the covariance matrices for class
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i and class j. Note that, in our case the means and covariances are just scalars.

The distance dij is a common measure of the separability of classes characterized by

multi-dimensional Gaussian distributions and gives an upper bound on the Bayesian

error for classification of two classes. We compute Bhattacharyya distances for each

pair of different regions, T ,S,B, and compare such distances for conventional and

region-enhanced images. A larger Bhattacharyya distance means that the regions are

easier to separate from each other.

9.3 Experimental Results

9.3.1 Experimental Setup

The MSTAR public target data set provides SAR images of various military

vehicles. We use images of T72 tanks, BMP2 tanks, and BTR70 armored personnel

carriers from this data set to evaluate the performance of our reconstructed images in

terms of the criteria described in Sections 9.1 and 9.2. Sample pictures of these three

types of vehicles are shown in Figure 9.1. We use 72 images for each vehicle type, all

at 17◦ depression angle, and evenly spaced in azimuth (approximately 5◦) to cover

360◦. Depression angle is the angle between the horizontal plane and the line that

connects the radar platform to the imaged scene. Azimuth or aspect angle is the angle

between the major axis of the vehicle and the line between the radar platform and

the vehicle in the ground plane, hence this angle basically shows the orientation of

the vehicle with respect to the sensor. Figure 9.2 shows the magnitude of an example

MSTAR image in dB for each target type. We will use such sample images to display

the nature of our reconstructions and the associated feature extraction results for

each target type. As we will describe, we have also carried out some synthetic scene

reconstruction experiments to make some evaluations where ground truth is exactly
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T72 BMP2 BTR70

Figure 9.1: Sample pictures of the three types of vehicles whose SAR images are used
in the experiments.

T72 (azimuth=100.77◦ ) BMP2 (azimuth=175.19◦) BTR70 (azimuth=94.00◦)

Figure 9.2: 128× 128 sample images from the MSTAR public target data set.

known. We obtain the projectional SAR data from the MSTAR images as described

in Section 6.4.4.1.

When applying our image reconstruction method, we choose the feature accen-

tuation parameters λ1 and λ2 in (6.3) based on subjective qualitative assessment of

one image from the entire data set, and use those values for all the images for that

particular experiment.
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9.3.2 Point-Enhanced Imaging from Full-Resolution Data

In this section, we report the results of the experiments using the 100 × 100

phase history samples to form point-enhanced images. The resolution supported by

this data is 0.3 m. We form “critically-sampled” (i.e. 100 × 100) images with our

technique. Therefore, in order to have conventional SAR images of this size for

comparison, we first form 100 × 100 Taylor-windowed Fourier images. Samples of

such reconstructions are shown in the top row of Figure 9.3. Naturally these are very

similar to their oversampled versions in Figure 9.2.

We form point-enhanced images with k = 0.8, and λ2 = 0 in (6.3). We do

not apply any windowing to the data before processing, since our method is able to

suppress sidelobes considerably even with rectangular weighting. However, if desired,

the method can be used with windowing, as it was demonstrated in Section 6.4.4.

The bottom row in Figure 9.3 shows the reconstructions obtained. The dominant

scatterers appear to be accentuated as compared to the conventional images at the

top row.

9.3.2.1 Target-to-Clutter Ratio

We will quantify the enhancement of the target pixels in the full-resolution data

reconstructions by means of their target-to-clutter ratio. We compute the target-

to-clutter ratio as defined in (9.1), by using the bottom 20 rows (2000 pixels) of

the reconstructed images as the clutter region. This region is big enough to give a

reliable estimate of the mean reflectivity magnitude, and is safe to use, since target

and shadow appear to be located outside this region for the entire data set. Table 9.1

shows the average target-to-clutter ratio achieved by the conventional and the point-

enhanced reconstructions over the 72 images for each target type. These results

indicate a clear improvement of the target-to-clutter ratio by our proposed image
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T72 BMP2 BTR70

Figure 9.3: 100 × 100 sample images reconstructed from full-resolution (100 × 100)
data. Top: conventional. Bottom: proposed point-enhanced, with k = 0.8, λ1 = 14,
λ2 = 0.

formation method.

9.3.3 Point-Enhanced Superresolution Imaging from Reduced-

Resolution Data

In this section, we report the results of experiments on two sets of data: the

actual MSTAR data, and the synthetic point scatterer scenes constructed using the

MSTAR images. The reason for using synthetic examples is to demonstrate the

superresolution properties of our method in a situation where the ground truth is
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Average Target-to-Clutter Ratio T72 BMP2 BTR70

Conventional 31.88 dB 28.92 dB 26.92 dB
Proposed 88.28 dB 85.38 dB 82.62 dB

Table 9.1: Average target-to-clutter ratios of images reconstructed from full-resolution
data.

exactly known.

We present the mainlobe width results for only the actual MSTAR reconstruc-

tions. We present the peak matching accuracy and the average associated peak

distance results for both actual and synthetic images. We do not present the target-

to-clutter ratio results in this section, since they are very similar to the full-resolution

target-to-clutter ratio results of Table 9.1.

For experiments on actual MSTAR data, we form images from a 50×50 subset of

the 100×100 phase history samples previously used. This results in a 2-to-1 resolution

loss in the range and cross-range directions. Hence, the resolution supported by such

reduced data is 0.6 m. All the images we present in this section are composed of

100 × 100 pixels. The top row in Figure 9.4 shows Taylor weighted Fourier images

from the reduced-resolution, 50 × 50 data. The resolution loss in these images is

evident when they are compared to their high-resolution counterparts in Figure 9.3.

We now form point-enhanced images with k = 0.8, and λ2 = 0 in (6.3), samples of

which are shown in the bottom row of Figure 9.4.

We now consider the synthetic examples. To generate synthetic scenes, we find

the 20 peaks with the largest magnitude in each of the 72 100×100 Taylor-windowed

T72 Fourier images, and form a synthetic scene by placing simulated point-scatterers

at the locations of these peaks, with the original complex reflectivities, and zeros in the

rest of the scene. An example contour plot of the magnitude of such a synthetic scene

is shown in the left third of Figure 9.5. We then generate simulated phase histories
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T72 BMP2 BTR70

Figure 9.4: 100× 100 sample images reconstructed from reduced-resolution (50× 50)
data. Top: conventional. Bottom: proposed point-enhanced, with k = 0.8, λ1 = 14,
λ2 = 0.

from this scene. The reconstructed conventional Taylor-windowed image from 50×50

phase history samples is shown at the top row, middle column of Figure 9.5. The loss

of resolution is easy to observe. The corresponding point-enhanced image produced

by our method is shown at the bottom row, middle column of the same figure, and we

can visually observe that most of the scatterers that were merged by the conventional

reconstruction are now resolved. The images in the rightmost column demonstrate

similar results for the 25 × 25 data case. Although the amount of data we use here

is only one sixteenth of the data required for full resolution, our method is able to

localize most of the scatterers.
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Figure 9.5: Synthetic T72 image reconstruction example from reduced-resolution
data. Left: ground truth. Middle: results from 50 × 50 data. Right: results from
25 × 25 data. Top row: conventional. Bottom row: proposed point-enhanced, with
k = 0.8, λ2 = 0, and middle: λ1 = 14, right: λ1 = 7.

In the remainder of this section, we quantitatively demonstrate the resolution

improvement achieved by the images presented here.

9.3.3.1 Mainlobe Width

We compute the average 3-dB mainlobe width as described in Section 9.1.2 for

all the 216 reconstructed MSTAR scenes. The results in Table 9.2 for 50 × 50 data

reconstructions show that our proposed scheme is able to reduce the mainlobe width

considerably. To put these numbers in perspective, note that the resolution supported

by the data is 0.6 m in this experiment.

153



Average Mainlobe Width T72 BMP2 BTR70

Conventional 0.447 m 0.466 m 0.459 m
Proposed 0.098 m 0.097 m 0.094 m

Table 9.2: Average mainlobe widths of images reconstructed from reduced-resolution
(50× 50) data.

9.3.3.2 Peak Matching Accuracy

We now evaluate how the locations of the dominant peaks are preserved in

reduced-resolution data situations by the conventional reconstructions and by our

point-enhanced images. For the MSTAR examples, we use the locations of the 20

peaks extracted from the Taylor-windowed image reconstructed from full-resolution

data, as the “reference” locations. Figure 9.6 provides a visual comparison of the

peak locating accuracy of the reconstructions from 50× 50 data. The circles indicate

the “reference” locations of the 20 dominant scatterers, and the plus signs indicate

the peaks extracted from the reconstructed reduced-resolution images. The top row

contains the results for the conventional images, while the bottom row contains those

for the point-enhanced images. The clear observation we can make out of these results

is that, since conventional image formation causes peaks to merge, some of the peaks

in the target area are lost, and peaks outside this area may become dominant. We now

evaluate the peak matching accuracy of our method by using the criterion described

in Section 9.1.3. In Figure 9.7, we plot the average number of peak matches for the

images formed by the conventional and the proposed methods as a function of the

radius r within which a match declaration is allowed. The standard deviation of

this estimate of the mean is very small, hence we do not show error bars on these

plots. The peak matching accuracy of our images appear to be higher than that of

the conventional images. Note that our analysis is based on finding peaks all around

the scene. Alternatively, the search for peaks can be done in a pre-determined target
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Figure 9.6: Sample peak extraction results for images reconstructed from 50 × 50
data. Circles indicate “reference” dominant scatterer locations extracted from full-
resolution conventional images. Plus signs indicate peaks extracted from the recon-
structed images. Top: conventional. Bottom: proposed point-enhanced, with k = 0.8,
λ1 = 14, λ2 = 0.

region only.

We now report the results of similar experiments for the synthetic T72 scenes.

Figure 9.8 shows the peaks extracted from the point-enhanced images and those

extracted from the conventional images using 50×50 and 25×25 data. The improved

accuracy provided by our method is easy to observe in these plots. Similarly, the

peak matching accuracy results from the entire data, shown in Figure 9.9, verify the

superresolution properties of our imaging scheme.
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9.3.3.3 Average Associated Peak Distance

We now compute the average distance between the true 20 peaks and the 20 peaks

extracted from the reconstructed images as described in Section 9.1.4. Tables 9.3

and 9.4 illustrate the average associated peak distances for the real and synthetic scene

experiments respectively. These results indicate a clear reduction in peak distances

by point-enhanced imaging.

Average Associated Peak Distance T72 BMP2 BTR70

Conventional 3.13 m 4.32 m 4.30 m
Proposed 0.82 m 1.06 m 1.25 m

Table 9.3: Average associated peak distances in images reconstructed from reduced-
resolution (50× 50) data.

Average Associated Peak Distance (synthetic T72) 50× 50 data 25× 25 data

Conventional 1.22 m 1.35 m
Proposed 0.07 m 0.61 m

Table 9.4: Average associated peak distances in the synthetic T72 reconstructions.

156



T72

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

16

18

20

radius of match declaration (m)

nu
m

be
r 

of
 m

at
ch

es

Conventional
Proposed    

BMP2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

16

18

20

radius of match declaration (m)

nu
m

be
r 

of
 m

at
ch

es

Conventional
Proposed    

BTR70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

16

18

20

radius of match declaration (m)

nu
m

be
r 

of
 m

at
ch

es

Conventional
Proposed    

Figure 9.7: Average number of peak matches in images reconstructed from reduced-
resolution (50× 50) data as a function of the radius of match declaration r.
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Figure 9.8: Sample peak extraction results for the synthetic T72 scenes. Circles
indicate the scatterer locations in the synthetic scene. Plus signs indicate peaks
extracted from the reconstructed images. Left: 50 × 50 data. Right: 25 × 25 data.
Top: conventional. Bottom: proposed point-enhanced, with k = 0.8, λ1 = 7, λ2 = 0.
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Figure 9.9: Average number of peak matches for the synthetic T72 scenes as a function
of the radius of match declaration r. Top: 50× 50 data. Bottom: 25× 25 data.
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Average Speckle Amplitude T72 BMP2 BTR70

Conventional 5.919 dB 5.921 dB 5.898 dB
Proposed 2.261 dB 2.283 dB 2.269 dB

Table 9.5: Average speckle amplitude in the dB-valued reconstructed images.

9.3.4 Region-Enhanced Imaging

We now compare our region-enhanced images with conventional ones in terms

of the criteria described in Section 9.2. Here, we form 128× 128 images from 128×

128 Taylor-windowed phase history samples. In our image reconstruction method,

we use k = 1, and set λ2 > λ1 in (6.3) to enhance regions. The second row of

Figure 9.10 shows sample reconstructions using the proposed method. In contrast to

the conventional images in the top row, these reconstructions reduce variability in

homogeneous regions, while preserving discontinuities at region boundaries.

9.3.4.1 Speckle Suppression

We quantify the speckle amplitude in images as described in Section 9.2.1, by

using the bottom 20 rows (2560 pixels) of the reconstructed images as the clutter

region. The results in Table 9.5 illustrate the speckle suppression achieved by the

region-enhanced reconstructions.

9.3.4.2 Segmentation Accuracy

We now demonstrate that our region-enhanced images simplify segmentation

of the images into target, shadow and background regions. In our evaluation, we

use human segmentations of the MSTAR images as the ground truth. These seg-

mentations have been obtained by having a number of volunteers draw the region
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T72 BMP2 BTR70

Average Segmentation Accuracy 96.85 % 97.28 % 97.64 %

Table 9.6: Average segmentation accuracy for region-enhanced images, measured as
the percentage of correctly classified pixels.

boundaries on conventional MSTAR images based on their own judgment. Samples

of such human segmentations are shown in the third row of Figure 9.10. Naturally,

these segmentations are themselves not perfect.

We segment our region-enhanced images by simple adaptive thresholding, as de-

scribed in Section 9.2.2, using c1 = 1.2 and c2 = 2.5. Sample results of such processing

are shown in the bottom row of Figure 9.10. These results show that segmentation

is considerably simplified by our reconstruction method. If such thresholding-based

segmentation were applied to conventional images, the result would be dominated by

fluctuations in homogeneous regions, as shown in the fourth row of Figure 9.10.

In Table 9.6, we present the average percentage of accurately classified pixels in

segmentations of region-enhanced images using the entire data set. We should note

that the major error contributing to our results is due to the gap between the target

and shadow regions in the segmentations. This is a systematic error and may be

improved upon by incorporation of additional information during segmentation. Our

error analysis in Table 9.6 has the limitation that the human segmentations, which

we use as the truth, are really not perfect. We should also note that the feature-

enhancement parameters λ1, λ2, and the thresholding parameters c1, c2 have not

been optimized for best segmentation performance, but rather picked based on visual

assessment of one image, and applied to the processing of the entire data set.
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Bhattacharyya Distances Targ.-Backg. Targ.-Shad. Backg.-Shad.

Conventional 0.28 0.76 0.25
Region-Enhanced 1.48 1.81 0.45

Table 9.7: Bhattacharyya distances between Gaussian densities characterizing differ-
ent regions in SAR images.

9.3.4.3 Statistical Separability of Regions

We now provide a measure of the separability of different regions from each

other in conventional and region-enhanced images by using Bhattacharyya distances

as described in Section 9.2.3. To this end, we treat the human segmented images as

the truth, and extract region labels from these segmentations for each location in the

scene. We assume that all the pixels in a particular region are drawn from an identical

distribution. We also assume that the probability distribution for a particular type of

region is the same for all target types. We can then model each region by a Gaussian

density after estimating the mean and variance from the reconstructed dB-valued

images. Figure 9.11 illustrates the Gaussian densities we thus obtain for the target,

shadow and background regions of the conventional and region-enhanced images. By

visual inspection, we can claim that the densities for the region-enhanced images

are farther from each other than those for the conventional ones. We can quantify

this claim by computing the Bhatacharyya distances between region pairs. Table 9.7

contains the results of this computation, which demonstrate that the Bhattacharyya

distances between all region pairs are larger for the region-enhanced images than the

conventional images.
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9.4 Summary

The results of the study in this chapter show that emphasizing point-based

features through the proposed method yields images with higher resolution and better

dominant scatterer localization than conventional images. Our experiments indicate

that the method is able to produce accurate superresolution reconstructions from

considerably reduced amounts of data. Emphasizing region-based features on the

other hand, results in enhanced anomaly and speckle suppression in homogeneous

regions, and hence, easier-to-segment images. Our results should be compared to

those in similar analyses carried out for other enhanced SAR image formation tech-

niques [32,82,92].

In this chapter, the focus was mostly on how well the reconstructed images

represent the underlying truth, in terms of recognition-oriented features. However,

the actual issue of how this behavior is reflected to recognition performance has not

been addressed. The impact of feature-enhanced SAR imaging on automatic target

recognition is evaluated in Chapter 10.
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T72 BMP2 BTR70

Figure 9.10: Region-enhanced image formation and segmentation. Top row: MSTAR
images. Second row: region-enhanced reconstructions with k = 1, λ1 = 4, λ2 = 6.
Third row: human segmentations. Fourth row: threshold-based segmentations of con-
ventional imagery. Bottom row: threshold-based segmentations of region-enhanced
imagery.
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Figure 9.11: Gaussian probability density functions for regions in SAR images. (a)
Conventional images. (b) Region-enhanced images.
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Chapter 10

Recognition Tests with

Feature-Enhanced Imagery

In this chapter, we present an evaluation of the impact of feature-enhanced imaging on

automatic recognition performance. We use the MSTAR targets, and three different

classifiers, to make decisions about the target type given conventional or feature-

enhanced images, and compare the results for these two types of images. The first

classifier is based on template-matching, which is a conventional approach for SAR

ATR. The second classifier is based on conditionally Gaussian models for reflectivities,

and performs classification through a likelihood test. The third classifier is aimed at

the use of point-based features in superresolution imaging, and performs classification

by measuring how well the dominant scatterer locations are preserved in the face of

resolution loss in data. We present the recognition results in the form of confusion

matrices. These experiments demonstrate that feature-enhanced imaging can offer

higher probability of correct classification than conventional imaging.

166



10.1 Template-based Classifier

The idea in template-based classification is to first measure how well a given test

image matches reference images, called templates, which represent the hypotheses in

the problem, and then declare the test image to be from the class giving the best

matching score. A common metric used for the degree of match is the mean-squared

error (MSE) between the test image, and the template. This classification approach

has been used in the classifier component of a series of ATR systems developed by

Lincoln Laboratory [35,93].

The classification problem in ATR is to determine the type of the vehicle in

a given scene. In SAR, the image of a particular type of vehicle at a particular

orientation (azimuth, aspect angle) with respect to the radar platform is usually not

equivalent to a rotated version of the image of the same vehicle at a significantly

different orientation. Hence for template-based classification, we need templates of

the targets at a reasonable number of different orientations. Let t(ϑ, a) be such a

template (stacked as a vector) for vehicle type a, at orientation ϑ ∈ [0◦, 360◦), and

let f̂dB be a normalized (to have unit �2-norm) test image (in dB) stacked as a vector.

Then the template-based minimum MSE classification can be done as follows:

âMSE = argmin
a

(
min
ϑ

‖f̂dB − t(ϑ, a)‖22
)

(10.1)

The classifier in (10.1) needs a stored set of templates, which in practice can be

obtained from training data. Usually we do not have many training images at exactly

the same orientation. Then, the template for vehicle type a, at orientation ϑk can be

constructed by first aligning (in angle) the training images that have an orientation

close to ϑk, and then finding an average of these images, as follows:
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t(ϑk, a) =
1

Nk

∑
ϑ∈Wk

f̂ rdB(ϑ, a) (10.2)

where Wk denotes the range of angular orientations that are used in training for

the orientation ϑk, Nk is the number of available training images that have an

orientation within this range, and f̂ rdB(ϑ, a) is a training image which has an original

orientation of ϑ, and which is rotated ϑk − ϑ degrees, so that it is aligned with other

training images used for the computation of t(ϑk, a). Such templates for T72 tanks

at 17◦ depression angle and various orientations for the conventional, point-enhanced

(non-superresolution), and region-enhanced images are shown in Figures 10.1, 10.2,

and 10.3. The orientation ϑ for each image used in the computation of these templates

is obtained from the corresponding MSTAR file header. In the construction of these

templates, we have used ϑk = 5(k − 1) degrees, and Wk = [ϑk − 5, ϑk + 5), where

k ∈ {1, 2, ..., 72}. Hence the sets of images used in the computation of templates for

subsequent orientations intersect each other, and each training image is used in the

construction of two templates. In our experimental work, described in Section 10.4,

we use images at 17◦ depression angle for training the classifiers, and an independent

set of images at 15◦ depression angle to test the classification performance.
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Figure 10.1: Conventional templates for the T72 target at 17◦ depression angle. Each
image shows the template for a different aspect angle, starting from 0◦ on the top
left, and covering all 360◦ with 5◦ increments, and a 10◦ window for averaging.
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Figure 10.2: Point-enhanced templates for the T72 target at 17◦ depression angle.
Each image shows the template for a different aspect angle, starting from 0◦ on the
top left, and covering all 360◦ with 5◦ increments, and a 10◦ window for averaging.
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Figure 10.3: Region-enhanced templates for the T72 target at 17◦ depression angle.
Each image shows the template for a different aspect angle, starting from 0◦ on the
top left, and covering all 360◦ with 5◦ increments, and a 10◦ window for averaging.
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10.2 Likelihood-based Classifier

We now describe a likelihood-based classifier, proposed in [94] for SAR ATR.

This approach starts from a statistical signal model, in which the underlying SAR

image f(ϑ, a), where ϑ and a are as defined in Section 10.1, is assumed to be a complex

Gaussian vector, and the observed image f̂ is given by the following observation model:

f̂ = f(ϑ, a) +w (10.3)

where w is i.i.d. complex Gaussian noise with mean 0 and covariance σ2I. The

classifier is based on a generalized likelihood test as follows:

âGLRT = argmax
a

(
max
ϑ

l(f̂ |ϑ, a)
)

(10.4)

where l(f̂ |ϑ, a) denotes the logarithm of the likelihood that the test image is of target

type a, at orientation ϑ. Let the signal f(ϑ, a) have mean m(ϑ, a) and covariance

Q(ϑ, a). Then the probability density function p(f̂ |ϑ, a) is Gaussian with the following

mean and covariance:

E{f̂ |ϑ, a} = m(ϑ, a) (10.5)

E{[f̂ −m][f̂ −m]H |ϑ, a} = Q(ϑ, a) + σ2I (10.6)

Let us define K(ϑ, a) , Q(ϑ, a) + σ2I. Then the log-likelihood is given by:

l(f̂ |ϑ, a) ∝ − log |K(ϑ, a)| − [f̂ −m(ϑ, a)]H (K(ϑ, a))−1 [f̂ −m(ϑ, a)]. (10.7)
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We will assume that m(ϑ, a) = 0, as in [94]. This is a reasonable assumption due to

the random phase nature of SAR reflectivities. The second simplifying assumption

made in [94] is that of statistical independence of different pixels in the SAR image,

which results in a diagonal Q(ϑ, a), hence a diagonal K(ϑ, a). This in turn simplifies

the computation of the likelihood to a simple summation:

l(f̂ |ϑ, a) ∝
∑
i

[
− log(Ki,i(ϑ, a))−

|(f̂)i|2
Ki,i(ϑ, a)

]
(10.8)

The classifier in (10.4) with the likelihood function in (10.8) requires the model

variances Ki,i(ϑ, a). These variances can be estimated from training data as follows:

Kii(ϑk, a) =
1

Nk

∑
ϑ∈Wk

∣∣∣(f̂ r(ϑ, a))
i

∣∣∣2 (10.9)

where (f̂ r(ϑ, a))i denotes the i-th pixel of an aligned training image, and Nk, Wk are

as defined in Section 10.1. The operation in (10.9) produces variance “images”, which

in spirit are very similar to the template images of Figures 10.1, 10.2, and 10.3.

10.3 Point-feature-based Classifier

We now concentrate on the reconstruction problem from reduced-resolution data,

and propose a classifier specifically aimed at evaluating the ability of the point-

enhanced, superresolution images to preserve the locations of dominant scatterers in

the scene. Similar peak-based classification schemes have previously been proposed

in [66] and [73]. Such feature-based classification techniques, rather than the pixel-

based classification schemes of the previous two sections, have been an important

component of recent research efforts such as those in DARPA’s Moving and Stationary

Target Acquisition and Recognition (MSTAR) program [73].
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The classifier works as follows. Given a test image, the locations of the largest

Np peaks are extracted. The peak extraction is done as described in Section 9.1.3.

Then a one-to-one association is established between these peaks and the true peak

locations for the hypothesis under test. Next, an average associated peak distance

between these two sets of peaks is computed as described in Section 9.1.4. The

class assignment is achieved by finding the vehicle type which yields the minimum

associated peak distance over all orientations:

âPEAK = argmin
a

(
min
ϑ

1

Np
‖dPEAK(f̂ , f(ϑ, a))‖1

)
(10.10)

where dPEAK(·, ·) is a vector of Euclidean distances between associated peak pairs

extracted from the two argument images. Note that the �1-norm in (10.10) is just

equivalent to a summation of the distances between individual peak pairs. The

classifier in (10.10) requires the “true” peak locations for each target type, at a

reasonable number of orientations ϑ, extracted from the reference scenes f(ϑ, a). One

way to obtain the reference peak locations is through the use of 3-D CAD models

of the vehicles together with an electromagnetic signature prediction tool such as

XPATCH [83] to simulate the expected reference scene. A second option is to use

conventional SAR images obtained from higher resolution data as the reference scenes,

and extract the “true” peak locations from such images. In our experiments, we use

the latter approach.

10.4 Experimental Results

10.4.1 Experimental Setup

We now evaluate the performance of the classifiers described in the previous

sections, given MSTAR images produced by feature-enhanced versus conventional
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Training set Test set
Target Depression No. of images Depression No. of images
T72 17◦ 232 15◦ 196

BMP2 17◦ 233 15◦ 195
BTR70 17◦ 233 15◦ 196

Table 10.1: Composition of the MSTAR data set used in recognition experiments.

imaging. The MSTAR data set consists of a large assortment of military targets. In

our recognition experiments, we use the T72, BMP2 and BTR70 targets. Sample

pictures of these vehicles were shown in Figure 9.1. All the images in this chapter

(both conventional and feature-enhanced) have been formed from Taylor-windowed

data. For all three classifiers, our training set is composed of images at 17◦ depression

angle, and our test set is composed of an independent set of images at 15◦ depression

angle. The numbers of each type of target images in each of these sets are shown

in Table 10.1. In training and testing with all three classifiers, we extract and use

a near-central portion of the SAR image which contains the target. In all cases, we

normalize the images so that they have the same �2-norm, before using them in the

classifiers.

We present the results of our evaluations in the form of classifier confusion

matrices, which show the number of correct and incorrect classifications achieved

on test inputs of each type. A single number characterizing the classifier’s ability to

recognize test inputs can be obtained through the probability of correct classification,

Pcc, which is defined as the fraction of all target test inputs that were correctly

classified.
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10.4.2 Template-based Classification Results

We now present the recognition performance of the conventional, point-enhanced

(non-superresolution) and region-enhanced images, when they are used as inputs to

the template-based classifier, described in Section 10.1. We use 72 templates for

each target type, with each template representing an orientation 5◦ apart from the

subsequent template. In the construction of each template, we use a training window

Wk of 10 degrees, as described in Section 10.1.

We have initially conducted recognition experiments with images reconstructed

from high SNR data. By high SNR data, we mean the SAR data obtained by undoing

the image formation steps for the images in the MSTAR data set, without any addi-

tional measurement noise. The templates for such images were shown in Figures 10.1,

10.2, 10.3. We have observed that for this high-SNR, 3-target classification problem

both conventional and feature-enhanced images result in a high recognition rate, and

the performance difference is not significant. Next, we investigate the recognition

performance of these images in the face of degraded data, which may provide a better

representation of a practical situation. To this end, we have included additive complex

Gaussian noise in the projectional SAR data. Treating the original data before the

addition of this noise as the clean signal, the SNR of the corrupted data we use is

−4 dB. This represents a very noisy scenario. The templates of the T72 target for

the conventional and feature-enhanced images in this case are shown in Figures 10.4,

10.5, and 10.6.

We now present the recognition results for this low-SNR case. Table 10.2 shows

the confusion matrices for the classification of conventional and feature-enhanced im-

ages. The conventional images result in an overall probability of correct classification

of 69.85%. Point-enhanced and region-enhanced imaging increase this rate to 88.93%

and 96.76% respectively. So degradation in recognition performance caused by the
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noise is much less with our feature-enhanced images, as compared to the conventional

images. Hence feature-enhanced imaging is more robust to limitations in data quality.

T72 BMP2 BTR70

T72 159 30 7
BMP2 53 120 22
BTR70 33 32 131

(a) Conventional images. Pcc = 69.85%

T72 BMP2 BTR70

T72 176 13 7
BMP2 8 173 14
BTR70 3 20 173

(b) Point-enhanced images. Pcc = 88.93%

T72 BMP2 BTR70

T72 184 11 1
BMP2 3 191 1
BTR70 1 2 193

(c) Region-enhanced images. Pcc = 96.76%

Table 10.2: Confusion matrices summarizing the template-based classification results.
The entry in row i, column j shows the number of images from vehicle type i classified
as vehicle j.
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Figure 10.4: Conventional templates for the T72 target at 17◦ depression angle,
reconstructed from low-SNR data. Each image shows the template for a different
aspect angle, starting from 0◦ on the top left, and covering all 360◦ with 5◦ increments,
and a 10◦ window for averaging.
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Figure 10.5: Point-enhanced templates for the T72 target at 17◦ depression angle,
reconstructed from low-SNR data. Each image shows the template for a different
aspect angle, starting from 0◦ on the top left, and covering all 360◦ with 5◦ increments,
and a 10◦ window for averaging.
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Figure 10.6: Region-enhanced templates for the T72 target at 17◦ depression angle,
reconstructed from low-SNR data. Each image shows the template for a different
aspect angle, starting from 0◦ on the top left, and covering all 360◦ with 5◦ increments,
and a 10◦ window for averaging.
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10.4.3 Likelihood-based Classification Results

We now present the results of running the low-SNR data used in Section 10.4.2

through the likelihood-based classifier described in Section 10.2. For each target

type, we train 72 probability density functions, each representing an orientation 5◦

apart from the subsequent orientation. As in the construction of the templates in

Section 10.4.2, we use a training window Wk of 10 degrees, in estimating the covariance

matrices.

The classification results are shown in Table 10.3. The classifier has a correct

classification rate of 87.05% with conventional images, 94.38% with point-enhanced

images, and 99.15% with region-enhanced images.

10.4.4 Point-feature-based Classification Results

We now report the results of recognition experiments with images reconstructed

from data supporting a lower resolution than those used in the previous recognition

tests in this chapter. The data used in Sections 10.4.2 and 10.4.3 had a resolution of

0.3 m. In this section, we use 50× 50 test data with a resolution of 0.6 m. The data

used for the low resolution experiments do not contain any noise in addition to what

is already present in the MSTAR data. Hence, we consider a high-SNR scenario here.

We could certainly use a template-based, or likelihood-based classifier for the

images reconstructed from such data, too. However, our objective in this section is to

present the results of a feature-based classification scheme, rather than a pixel-based

one. The classifier we use has been described in Section 10.3. We obtain the true peak

locations for all targets at all the orientations available, using conventionally formed

SAR images at 0.3 m resolution, and 17◦ depression angle. We then run the classifier

on conventional and point-enhanced, superresolution images at 15◦ depression angle,

reconstructed from data supporting a resolution of 0.6 m.
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T72 BMP2 BTR70

T72 170 18 8
BMP2 7 161 27
BTR70 4 12 180

(a) Conventional images. Pcc = 87.05%

T72 BMP2 BTR70

T72 190 5 1
BMP2 10 178 7
BTR70 8 2 186

(b) Point-enhanced images. Pcc = 94.38%

T72 BMP2 BTR70

T72 193 3 0
BMP2 1 194 0
BTR70 1 0 195

(c) Region-enhanced images. Pcc = 99.15%

Table 10.3: Confusion matrices summarizing the likelihood-based classification re-
sults. The entry in row i, column j shows the number of images from vehicle type i
classified as vehicle j.

The classification results presented in Table 10.4 demonstrate a clear improve-

ment in recognition performance through the use of point-enhanced, superresolution

images as compared to the case of conventional images. The correct classification rates

for the conventional and point-enhanced images are 44.80%, and 81.43%, respectively.

10.5 Summary

In this chapter we have defined a 3-class target recognition problem to compare

the recognition performance of feature-enhanced images and conventional images.
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T72 BMP2 BTR70

T72 38 84 74
BMP2 14 114 67
BTR70 4 81 111

(a) Conventional images. Pcc = 44.80%

T72 BMP2 BTR70

T72 162 23 11
BMP2 28 147 20
BTR70 10 17 169

(b) Point-enhanced, superresolution images. Pcc = 81.43%

Table 10.4: Confusion matrices summarizing the point-feature-based classification
results, from reduced-resolution data. The entry in row i, column j shows the number
of images from vehicle type i classified as vehicle j.

We have constructed two pixel-based classifiers, and one feature-based classifier.

With high-SNR data we have not observed significant performance difference be-

tween the conventional and feature-enhanced images. With reduced quality data

however, feature-enhanced images resulted in higher recognition rates. We have also

conducted reduced-resolution data experiments, and used the feature-based classifier

to test the performance of our superresolution images. We have observed recognition

improvements as compared to the conventional images in this case, as well. Table 10.5

summarizes the results obtained in this chapter in terms of the probability of correct

classification.

The recognition systems, and the posed recognition problem in this chapter were

only a first step in understanding the recognition behavior of feature-enhanced images.

There is definitely need for more extensive studies on this topic. In Section 12.2.1,

we suggest a number of such research directions.
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Low-SNR experiment
Conventional Point-Enhanced Region-Enhanced

Template-based classifier 69.85% 88.93% 96.76%
Likelihood-based classifier 87.05% 94.38% 99.15%

Reduced-resolution, high-SNR experiment
Conventional Point-Enhanced, Superresolution

Point-feature-based classifier 44.80% 81.43%

Table 10.5: Overall summary of the classification experiments, in terms of the prob-
ability of correct classification, Pcc.
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Chapter 11

Application of Feature-Enhanced

Reconstruction in HRR Radar

In this chapter, we demonstrate the application of the feature-enhanced SAR image

reconstruction technique of Chapters 5 and 6 in another radar operating mode, known

as high range resolution (HRR) radar. We illustrate the potential of our approach to

produce superresolution reconstruction of HRR range profiles.

11.1 Introduction to HRR Radar

HRR radars have the same data collection mechanism, as in SAR. The difference

between the two modes of operation is the way the collected phase history data are

processed and used. In SAR, data at multiple observation angles, and within the

extent of a synthetic aperture, are combined to form an image of the scene. In HRR

radar, data at each observation angle are used to form a complex HRR range profile.

HRR radar uses high bandwidth pulses so that it achieves a high resolution,

which is sufficient to profile a target. As in SAR, the information contained in the
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profile is the magnitude of the radar scattering as a function of range, along the line

of sight of the radar. This in turn provides information about the length of the object

in the scene.

As SAR has been successfully used for imaging stationary scenes, the main

objective of HRR radar has been the detection and tracking of vehicles in moving

target indication (MTI) systems. An HRR/MTI system provides vehicle target length

measurements and can be used as a cueing mechanism for the detection of critical

targets through such measurements. This cue can then be handed off to a SAR system

for imaging and recognition. However, the high resolution nature of the HRR profiles

suggests more advanced uses for this sensor. Consequently, there has recently been

much interest in using HRR profiles directly for recognition of moving targets, and

both template-based [95–97], and feature-based [98] approaches to the problem have

been proposed.

11.2 Superresolution HRR Signal Reconstruction

The primary difficulty associated with the HRR sensor for ATR is that the HRR

signatures exhibit a high degree of variability. Yet, characteristic, robust features are

required for successful recognition. In [98] locations and amplitudes of the dominant

peaks in the HRR profile have been proposed as such features. Superresolution

processing techniques for HRR profiles can help in the accurate extraction of such fea-

tures, and there has been some recent work in this direction. In [99,100], a relaxation-

based algorithm has been presented for superresolution target feature extraction,

whereas in [101], the SAR imaging technique of [32] has been used for HRR radar.

Furthermore, the study in [101] has also demonstrated that superresolution techniques

can improve HRR ATR performance. With these motivations, we have extended the

use of our point-enhanced, superresolution signal reconstruction technique to the
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formation of HRR profiles.

From a mathematical standpoint, the observed data in HRR is equivalent to

the SAR data received at a single observation angle. Hence the inverse problem we

formulate here is one of obtaining a complex HRR profile from the received, pre-

processed HRR phase history signal. To this end, let q be the sampled HRR profile,

and h be the noisy sampled phase history data at a particular observation angle.

Then, we have the following observation model:

h = Fq+w (11.1)

where w is measurement noise, and F is a high resolution to low resolution DFT

matrix. This definition of F reflects the belief that the underlying object (hence

its profile) possesses high-frequency features that are not captured by the resolution

supported by the data. The conventional way to reconstruct the HRR profile is

through an inverse DFT, which, in this framework can be represented by q̂CONV =

FHh, with appropriate normalization. In contrast, we formulate the HRR profile

reconstruction problem as the following optimization problem:

q̂ = argmin
q

J(q) (11.2)

where we choose J(q) to be an objective function of the following form:

J(q) = ‖h−Fq‖22 + λ21‖q‖kk (11.3)

where k and λ1 are scalar parameters. Apart from the nature of the observation

matrix F, and the 1-D as opposed to 2-D structure of the signals, the optimization

problem in (11.3) is in the same form as the optimization problem defined for SAR

imaging in Chapter 5. Hence the algorithm described in Chapter 6 can be readily
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used for the solution of this problem.

We end this section by pointing out the relationship between our technique for

superresolution HRR profile reconstruction and the field of adaptive signal represen-

tation [102–104]. Adaptive signal representation addresses the problem of finding

optimal representations of signals as combination of elements from an overcomplete

dictionary. Such techniques have been used for feature extraction from HRR pro-

files [104]. One adaptive signal representation technique, called basis pursuit denois-

ing [103], finds an optimal representation by minimizing an objective function of the

same mathematical form as (11.3) with k = 1. Hence, we can interpret our signal

reconstruction method as one of finding the optimal basis pursuit denoised represen-

tation of the observed HRR data, in terms of the complex exponential dictionary

elements.

11.3 Examples

In our examples, we use the University Research Initiative Synthetic Dataset

(URISD) [84]. The URISD provides a collection of simulated range profiles and

the associated phase histories, produced by the HRR simulator XPATCH [83]. The

URISD includes data for four ground vehicles (two tank models, school bus, fire truck)

over three frequency bands (UHF, L, X). In our examples, we use the X-band data

which has a central frequency of 10 GHz, and a bandwidth of 1.4775 GHz. This

implies a resolution of around 0.1 m.

We use conventionally reconstructed 0.1 m resolution profiles as the “reference”

profiles. In our experiments, we use limited data, supporting a resolution of 0.4 m to

obtain conventional and point-enhanced reconstructions. We compare the resulting

reconstructions to the reference profile in terms of the preservation of point-based

features.
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Figure 11.1(a) shows the reference profile for a fire truck at 0◦ orientation. The

conventional reconstruction from reduced resolution data is shown in Figure 11.1(b).

Note that the two most dominant peaks in the reference profile are merged into one in

the conventional reconstruction. The point-enhanced reconstruction in Figure 11.1(c)

however, resolves these dominant peaks. Note that the point-enhanced reconstruction

also preserves the amplitudes of the peaks better and appears to provide a good visual

approximation to the reference profile. We can quantify this degree of similarity by

calculating the MSE between the reference and reconstructed profiles. The conven-

tional profile in this case yields an MSE of 9.4 · 10−3, and the point-enhanced profile

yields an MSE of 6.3 ·10−3, hence the latter is a better approximation of the reference

profile in the MSE sense, as well. Figure 11.2 provides the detail of the profiles

around the region where the dominant peaks of the reference profile are located.

This plot demonstrates the capability of the point-enhanced method in resolving and

accurately locating the dominant peaks. Figure 11.3 shows the profiles in the case of

lower SNR data. To obtain such data, we have added complex Gaussian noise with a

standard deviation of 0.3 to the phase history observations. If we treat the original

phase histories before the addition of this noise as the clean signal, then this level of

noise is equivalent to an SNR of 36 dB. The conventional profile in Figure 11.3(b)

suffers from random oscillations in the background caused by the noise, whereas the

point-enhanced reconstruction in Figure 11.3(c) is able to suppress those artifacts.

Next, we show similar reconstructions for another vehicle, the M1 tank. Fig-

ure 11.4 contains the M1 profiles, where similar observations to the fire truck exam-

ple can be made. In particular, the two leftmost dominant peaks in the reference

profile of Figure 11.4(a) are merged into one by the conventional reconstruction

of Figure 11.4(b), but they are resolved by the point-enhanced reconstruction of

Figure 11.4(c).

Our work in this chapter was aimed at suggesting that our techniques for SAR
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image reconstruction may prove to be useful for HRR radar, as well. However,

more extensive studies are required to investigate the practical significance of such

techniques for HRR radar.
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Figure 11.1: HRR profiles of fire truck at 0◦ orientation, reconstructed from X-band
data. (a) Reference profile at 0.1 m resolution. (b) Conventional reconstruction from
0.4 m resolution data. (c) Point-enhanced, superresolution reconstruction from 0.4 m
resolution data (k = 1, λ21 = 10).
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Figure 11.2: Detail of the profiles in Figure 11.1 around the 110th range bin.
Conventional reconstruction cannot resolve the two peaks, whereas point-enhanced
reconstruction can.
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Figure 11.3: HRR profiles of fire truck at 0◦ orientation, reconstructed from low SNR
X-band data. (a) Reference profile at 0.1 m resolution. (b) Conventional reconstruc-
tion from 0.4 m resolution data. (c) Point-enhanced, superresolution reconstruction
from 0.4 m resolution data (k = 1, λ21 = 10).
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Figure 11.4: HRR profiles of M1 tank at 0◦ orientation, reconstructed from X-band
data. (a) Reference profile at 0.1 m resolution. (b) Conventional reconstruction from
0.4 m resolution data. (c) Point-enhanced, superresolution reconstruction from 0.4 m
resolution data (k = 0.9, λ21 = 3).
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Chapter 12

Conclusions and Future Directions

12.1 Summary and Conclusions

In this dissertation, we have contributed to the area of SAR imaging and to

the area of regularized reconstruction of complex-valued fields. We have developed

a novel mathematical foundation and associated algorithms for feature-enhanced

imaging of complex-valued SAR reflectivity fields. We have provided mathematical

extensions of robust regularization techniques to be used in complex-valued, random-

phase problems. We have presented methods for quantitative assessment of the

proposed techniques, and have shown potential benefits of the new perspective of

this dissertation through extensive evaluation experiments on real SAR data.

In Chapter 5, our framework for feature-enhanced, regularized SAR imaging was

established. At the heart of our formulation was an objective function to be minimized

for image formation. This objective function consisted of a data fidelity term and prior

information terms. The data fidelity term required the use of a discrete observation

model. To be used as the observation model, the concept of a SAR projection matrix

was introduced, and various interesting properties of this matrix were illustrated.
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The prior information terms were aimed at preserving and enhancing certain types of

features in the scene, and took into account the complex-valued, random phase nature

of the SAR reflectivities. Our specific choices for these terms, to enhance point-based

and region-based features, and their anticipated role in image reconstruction were

discussed. Finally, a statistical interpretation of the posed problem was presented.

The optimization problem posed in Chapter 5 was challenging, due to both

the random-phase nature of the reflectivities, and the presence of non-quadratic

functions of the field, which were needed for effective, robust feature enhancement.

Chapter 6 provided a robust and efficient numerical solution technique for this type

of optimization-based image formation problems. This technique was based on a

specific quasi-Newton method matched to the structure of the SAR image formation

problem. The technique was then shown to be a generalization of half-quadratic regu-

larization methods. Various aspects of the iterative scheme were discussed, including

the mechanism by which feature-enhancement is achieved and the role of auxiliary

processes. The rest of the chapter presented experimental results. Through recon-

structions of a variety of real and synthetic scenes, the effectiveness of the proposed

approach in forming SAR images with enhanced features and suppressed artifacts

was demonstrated. Particular benefits included images with higher resolution than

that supported by the measured data, as well as images with reduced variability of

reflectivity magnitudes within homogeneous regions and preserved region boundaries.

Experimental analyses were carried out to illuminate and quantify various aspects of

the numerical solution method.

Chapter 7 extended the formulation of Chapter 5 to allow the use of different

classes of potential functions in the prior information terms, and considered the

use of three particular classes of functions. The generalization of the optimization

problem, and of the numerical solution method to include such new potential functions

was presented. The anticipated behavior of the three classes of potential functions
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considered were discussed and compared. Finally, experimental results demonstrating

the effectiveness of SAR imaging with the new potential functions were presented.

Chapter 8 provided an extension of our framework to the type of variational for-

mulations based on the Mumford-Shah energy, commonly used in image segmentation

problems. This extension involved a generalized version of the Ambrosio-Tortorelli

objective function to be used in problems involving complex-valued, random-phase

fields. This extension provided a richer and more flexible structure in the formulation

of the optimization problems for SAR image formation. Potential benefits of this

richness were illuminated through examples.

In Chapter 9, quantitative criteria for evaluating SAR images based on recognition-

oriented features were introduced. While the experimental results in previous chapters

had provided promising results based on subjective visual assessment, the aim of

this chapter was to present a quantitative, feature-based analysis. The quantitative

criteria used for point-enhanced images included the target-to-clutter ratio, mainlobe

width, peak matching accuracy, and average associated peak distance. The criteria

used for evaluating region-enhanced images were speckle suppression, segmentation

accuracy, and statistical separability of regions. Extensive experiments on large

sets of real and synthetic SAR images indicated that feature-enhanced SAR images

exhibited superresolution and improved localization accuracy for dominant scatterers,

and improved separability and ease of segmentation for different region types, which

are all important attributes for automated decision-making from SAR images.

Chapter 10 demonstrated the impact of feature-enhanced SAR imaging on an

automatic target recognition task. Three different ATR algorithms, including a

template-based classifier, a likelihood-based classifier, and a point-feature-based clas-

sifier were implemented. Conventional and feature-enhanced SAR images were used

as inputs to these decision-making systems. The recognition results, presented in the

form of confusion matrices and the probability of correct classification, demonstrated
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potential improvements provided by feature-enhanced SAR imaging in the face of

limited data quality and reduced resolution.

In Chapter 11, extension of the use of feature-enhanced reconstruction methods

to HRR radar was considered. The main focus here was superresolution, and res-

olution improvements achieved through feature-enhanced signal reconstruction were

demonstrated by experimental results.

Overall, this dissertation has presented a new perspective to complex-valued

image reconstruction problems, in particular those arising in SAR. At the center of

the new philosophy were goal-directed processing based on intended use of the images,

effective use of prior knowledge, and robustness to data limitations. The methods

developed in this dissertation, resulting from such a philosophy, produce imagery

from which accurate features can be efficiently extracted. This improves the feature

extraction process which makes our approach a promising technology, especially in

applications where automated recognition or decision-making algorithms are to be

applied to the formed imagery.
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12.2 Topics for Future Research

12.2.1 Further Analysis and Evaluation of the Techniques

Developed

Further Analysis on Potential Function Choices

In Chapter 7, we have demonstrated the use of a number of classes of potential

functions in constructing objective functions for SAR imaging. However, we have not

addressed the question of which potential function is the “best” in some sense for a

particular type of scene or objective. Although all potential functions considered in

this work are aimed at similar objectives, further analysis of the relationship between

the potential function and the resulting reconstruction can help in automated or semi-

automated choice of both the class of potential functions, and the particular function

(through the choice of parameter k) within a class to be used in image formation.

Comparison to Other Superresolution Methods

In Chapter 3, we have discussed a number of recently proposed SAR image forma-

tion techniques, which share some of the objectives of our approach to the problem. In

particular, the published results on the spectral-estimation-based methods resemble

the reconstructions obtained by our point-enhanced, superresolution method. We

believe a qualitative and quantitative comparative evaluation of the two approaches,

when applied to the same data set would be valuable.

Extensive Experiments on a Feature-based Recognition System

In Chapter 10, we have presented some recognition experiments to compare the

performance of feature-enhanced and conventional images. Although this analysis
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has provided a flavor of the impact of feature-enhanced imaging, more extensive

experimentation on a more general setting would be an important contribution for

a number of reasons. First, the recognition problem posed in Chapter 10 contained

three classes. This is too small to represent a practical setting where the decisions

usually involve a larger number of vehicle types. Furthermore, our experiments

did not involve confuser vehicles. Confuser vehicles are test inputs, for which no

training is done, and the ATR system should ideally respond as “unknown” to data

containing such vehicles. This is an important practical issue, and a more realistic

recognition evaluation should involve confuser vehicles. Finally, although the pixel-

based classifiers of Chapter 10 were based on real recognition systems in use, there

are more advanced, feature-based systems under development, such as that associated

with the MSTAR program, as described in [73]. Currently, we are collaborating with

the authors of [73], to test our images in their recognition system, which will hopefully

address all the issues mentioned above.

Recognition Tests on HRR Radar Data

In Chapter 11, we have demonstrated a superresolution signal reconstruction

technique for HRR radar. However, we have not investigated the impact of such

reconstructions on the problem of target recognition from HRR radar profiles. Such

an analysis would be valuable in evaluating the significance of our results.
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12.2.2 Variations and Enhancements of the Techniques De-

veloped

Use of Priors for Other Features

The potential functions in this dissertation, introduced in Chapters 5 and 7, used

either the field reflectivities themselves, or the gradients of the reflectivity magnitudes,

as their arguments. This was based on the relationship of these quantities to the types

of features we wanted to preserve. Our framework however is not limited to these

choices. One example of a different prior, used in surface and shape estimation is the

so-called thin-plate prior model, which involves the second derivatives of the field.

With a statistical perspective, this would be equivalent to a different correlational

structure in the prior probability density function for the field. Our framework can

be easily extended to allow the use of various functions of the field reflectivities as

arguments of the potential functions.

More Physical/High Level/Statistically-based Prior Models

One of the key elements of our philosophy for image reconstruction was the

inclusion of prior information about the scene. The information incorporated in this

way was at a particular level of abstraction. It was not at a physical level of electro-

magnetic interactions and scattering. On the other extreme, it did not carry high level

characterizations such as the shape, size etc. of the physical objects expected to be

present in the scene. In a variety of applications, there is ongoing work in both ends

of the spectrum: in physics-based signal processing, and in pattern theory. Use of

such different levels of information for the SAR image formation and automated scene

interpretation problems is an open area with interesting philosophical and practical

questions.
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On a different note, the optimization problems posed for image formation in this

dissertation had statistical interpretations, as discussed in Section 5.6. However, the

resulting statistical prior models themselves were really not based on the “statistics

of the truth” itself. Work in the direction of incorporating more statistically-based

information can add value to the estimation-theoretic perspective of our approach to

SAR imaging.

Automated Choice of Hyperparameters

Our approach to image reconstruction involves scalar parameters, which need

to be picked appropriately for successful imaging. In this dissertation, we have not

attempted to choose those parameters automatically, but have picked them manually.

In regularization problems, automated choice of hyperparameters based on data is

still an open and important research problem. Development and incorporation of an

efficient automated parameter choice technique producing reasonable results would

add value to feature-enhanced SAR imaging.

Closing the Loop between Recognition and Image Formation

One of the elements of our image formation philosophy was to tailor the image for-

mation process to the final objectives of the mission, by enhancing features important

for automated decisions, such as recognition. Within our framework however, there

are certain choices, which can still have an impact on the recognition performance.

So far, we have made choices, such as the class of potential functions, the particular

potential function through the selection of k, and the regularization parameters in

an open-loop fashion, without optimizing recognition performance over these choices.

Constructing a mechanism to include the feedback from the decision-making stage

in driving the image formation process, as sketched in Figure 12.1, would increase
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Figure 12.1: Illustration of the idea of incorporating feedback from the final decision-
making task in image formation.

the effectiveness of our SAR imaging approach. In fact, if performed accurately

and efficiently, this would be the ideal way to tune the image formation process for a

particular decision-making task. An approach based on such a closed-loop recognition

philosophy has recently been proposed in [105, 106] for integrated segmentation and

recognition of optical images.

Multiresolution Image Formation

In our reconstruction framework, we have constructed the prior models directly

on the field. In a number of similar domains however, researchers have obtained

various advantages by constructing the prior on a transformation of the field. An ex-

ample of this philosophy is multiscale statistical models, where the priors are built on

a multiscale representation of the field. One advantage obtained through these kinds

of models is multiresolution image formation, which naturally leads to an incremental

refinement property for the reconstructed image. Figure 12.2 demonstrates the idea

on a small SAR image reconstruction example. Multiscale models have also led to

computational advantages via reasonable approximations in the transform domain.

Extension of our framework to include such ideas is a future research topic.
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Figure 12.2: Illustration of the multiresolution reconstruction concept for a SAR
image. Each scale also corresponds to intermediate results at various stages of image
formation.

Choosing Priors in a Projectional Transform Domain

Another direction for choosing priors not directly on the field is to choose them

in a domain closer to the projectional observations. Such an idea has previously

been applied to the CT problem [107], and has been shown to offer computational

advantages. Similar approaches may be investigated for the SAR problem, as well.

Incorporation of Non-Point-Scattering Effects

In our SAR observation model, we have assumed a point-scattering mechanism,

that is, we have assumed the reflected signal from a scatterer to be the same pure

delay and scaling of the transmitted signal, for all observation regimes and angles.

This in turn assumes that the scatterers are isotropic and frequency-independent, i.e.

the reflectivities do not change as a function of the observation angle of the sensor
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and frequency of the transmitted signal. These are assumptions that are also made

by all conventional SAR imaging techniques. Physics of electromagnetic scattering

however show that these may not be very realistic assumptions, and different physical

structures can lead to different scattering behaviors. There is some recent work

which attempts to take into account the aspect or frequency dependence present in

SAR [19, 108, 109]. In our formulation, such an attempt would require the use of

an observation model T(f), which depends on the field f itself. This would be a

challenging and interesting research direction for our framework.
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12.2.3 Relations and Extensions to Other Domains, Prob-

lems, Methods

Application of the Techniques in Other Observation Modes or Domains

The model-based nature of our approach simplifies its use in problems requiring

an observation model that is different from the one considered in this dissertation.

The first example of such an extension is regarding the approximations we have

made in constructing an observation model. These include the sensor-scene distance

being much larger than the scene radius, or the quadratic phase term being very

small, as discussed in Section 2.2. It is straightforward to build and incorporate in

our method, a more general observation model not requiring these assumptions, in

case they are violated.

Secondly, there are other modes of SAR operation, such as stripmap-mode SAR,

where the geometry of data collection is different from that in spotlight-mode SAR.

Extension of our techniques to such operating modes only requires the use of an

appropriate discrete observation model for that particular sensing scenario.

Finally, there are other inverse problems, especially in inverse scattering, which

are geometrically, and physically similar to SAR. Examination of the extension and

usefulness of our methods to such domains for data inversion, especially involving

complex-valued fields is another research path.

Extension to Moving-Target Scenes

SAR imaging has so far been successful for stationary scenes, and that is what

we have assumed in our work, as well. Imaging of scenes containing moving targets

has recently started to attract attention [110]. Using feature-enhanced SAR imaging

for moving scenes is another challenging research direction.
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Appendix A

Appendix

A.1 Discrete 2-D Derivative Operators

In our methods, we use smoothness constraints on a field, which require the

spatial derivatives of the field. We use the horizontal and vertical first order differ-

ence operators in approximating such derivatives. Derivatives of the field in other

directions, such as the diagonals may be used as well, however we have found the use

of only horizontal and vertical derivatives sufficient. Consider a real-valued, sampled

field z, column stacked as a vector of length N = NxNy, where Nx and Ny denote

the number of rows and columns respectively in the 2-D field. We can compute first

order differences of this field, Dxz and Dyz, in the horizontal and vertical directions

respectively, where the discrete derivative operators are given by:

Dx =




−I I
. . . . . .

−I I


 (A.1)
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and

Dy =




D1

D1

. . .

D1


 , (A.2)

with

D1 =




−1 1
. . . . . .

−1 1


 . (A.3)

Note that, since we take first order differences between neighboring pixels, it is

appropriate to define the discrete derivatives between the locations of the adjacent

pixels. With the above definitions, Dx has a size of Ny(Nx − 1)×NxNy, and Dy has

a size of Nx(Ny − 1)×NxNy. Hence, these are non-square operators. However, if the

use of square derivative operators is desired, the above definitions can be augmented

by derivatives defined at the boundary of the field to make these operators square.

This may be preferred, for example, when one wants to associate the derivatives to

pixel locations.

We now describe two ways to compute the smoothness constraint terms of the

form ‖Dz‖kk, that appear in objective functions such as (5.9). The discussion can

easily be generalized to smoothness constraints with other potential functions, such

as those considered in Chapter 7.

The first approach is based on treating the horizontal and vertical derivatives

separately in imposing a smoothness constraint. This is achieved by defining the 2-D

discrete derivative operator D as follows:

D ,


 Dx

Dy


 . (A.4)
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With this definition, we can write ‖Dz‖kk as

‖Dz‖kk =
M∑
i=1

|(Dz)i|k =
Mx∑
i=1

|(Dxz)i|k +
My∑
i=1

|(Dyz)i|k = ‖Dxz‖kk + ‖Dyz‖kk (A.5)

where Mx , Ny(Nx − 1), My , Nx(Ny − 1), and M = Mx +My.

The second approach is based on treating the gradient at each pixel location as

a two-element vector [ (Dxz)i (Dyz)i ]
T , composing of the horizontal and vertical

gradients, and using the �2-norms of such gradients at all locations in the field for the

computation of the overall �k-norm:

‖Dz‖kk ,
N∑
i=1

[
|(Dxz)i|2 + |(Dyz)i|2

]k/2
(A.6)

Two things must be noted here. First, the use of a linear operatorD is only conceptual

in this case, because no such explicit matrix exists. Second, this approach requires a

one-to-one correspondence between horizontal and vertical derivatives at each location

in the scene, hence in this case we use square (N ×N) derivative operators Dx, Dy.

In our methods, we have used the first approach described above, unless stated

otherwise. All the mathematical expressions in the body of this dissertation are also

based on the first approach. Note that when k = 2, the two approaches are identical,

with the use of square derivative operators. To make the association between the two

approaches clear, let us consider square derivative operators, and examine the first

approach in this case:

‖Dz‖kk =
N∑
i=1

|(Dxz)i|k +
N∑
i=1

|(Dyz)i|k (A.7)

=
N∑
i=1

[
|(Dxz)i|k + |(Dyz)i|k

]
(A.8)
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Let us compare this expression to the second approach given in (A.6). In (A.6),

�2-norm of the gradient vector at each location is used in the computation of the

overall �k-norm. In contrast, the first approach, as shown in (A.8), corresponds

to using an �k-norm for the gradient vector [ (Dxz)i (Dyz)i ]
T at each location.

This association lets us compare the consequences of using the two approaches. For

example, when k < 2, the first approach used in a smoothness constraint would favor

horizontal/vertical edges more than diagonal edges, relative to the second approach.

A.2 Gradient of the Objective Function for Image

Reconstruction

Let us first define:

gb ,


 
(g)

�(g)


, fb ,


 
(f)

�(f)


 , Tb ,


 
(T) −�(T)

�(T) 
(T)


 (A.9)

where 
(·) and �(·) denote the real and imaginary components respectively. These

matrices are real-valued versions of the original complex-valued matrices formed by

stacking the real and imaginary parts appropriately.

When we take the gradient of (6.3) with respect to the real and imaginary parts

of f , we obtain the following gradient expression:

∇J1ε (f) = 2TTb Tbfb + kλ21Q1(f)fb + kλ22Φ
T
b1(f)D

TΛ2(f)D|f | − 2TTb gb (A.10)
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where

Q1(f) ,


 Λ1(f) 0

0 Λ1(f)


 (A.11)

Φb1(f) ,
[
c s

]
(A.12)

c , diag {cos(φ[(f)i])} (A.13)

s , diag {sin(φ[(f)i])} (A.14)

(f)i denotes the i-th element of f , φ[z] denotes the phase of the complex number z,

and Λ1(f), Λ2(f) are as defined in (6.6). Note that ∇J1ε (f) is a 2N-vector, where N

is the length of the complex vector f .

We would like to rewrite (A.10) in a form that resembles a linear function of

fb. The reason is that we would like to use ideas from half-quadratic regularization.

The relationship between our method and half-quadratic regularization is explained in

Section 6.3, however let us provide a brief, qualitative explanation for desiring a linear-

like gradient here. As discussed in Section 4.3, half-quadratic regularization uses an

augmented cost function which is quadratic in the unknown field. Consequently, the

gradient of the augmented cost function is linear in the unknown field (when the

auxiliary variable is fixed). It is this linear structure that we are after here. To this

end, let us concentrate on ΦTb1(f)D
TΛ2(f)D|f | which is the only term that needs to

be manipulated for this purpose. Let us first define:

Φb(f) ,


 c s

−s c


 (A.15)

Q2(f) ,


 DTΛ2(f)D 0

0 DTΛ2(f)D


 (A.16)
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and then do the following manipulation:

ΦTb1(f)D
TΛ2(f)D|f | =


 cDTΛ2(f)D|f |

sDTΛ2(f)D|f |




=


 c −s
s c




 DTΛ2(f)D|f |

0


 (A.17)

=


 c −s
s c




 DTΛ2(f)D 0

0 DTΛ2(f)D




 |f |

0


 .(A.18)

Now, noting that 
 |f |

0


 = Φb(f)fb (A.19)

and using the definitions in (A.15) and (A.16), we obtain:

ΦTb1(f)D
TΛ2(f)D|f | = ΦTb (f)Q2(f)Φb(f)fb. (A.20)

Now, defining

Hb(f) , 2TTb Tb + kλ21Q1(f) + kλ22Φ
T
b (f)Q2(f)Φb(f) (A.21)

we can write the gradient as:

∇J1ε (f) = Hb(f)fb − 2TTb gb. (A.22)

This is in the form that we have desired: it resembles a linear function of fb, when

the f-dependence of the matrix Hb(f) is ignored.

We could develop our iterative scheme using the gradient expression in (A.22),

which involves real-valued vectors of length 2N . However, we choose to formulate
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the algorithm in terms of complex-valued N-vectors. The two representations are

equivalent. The reasons why we choose the latter are the following. First, it provides

a compact, easier to interpret structure. Second, we have noticed some computational

advantages of dealing with small, complex-valued, rather than large, real-valued

matrices in MATLAB. To this end, first note:

Hb(f) ,


 
(H(f)) −�(H(f))

�(H(f)) 
(H(f))


 (A.23)

where

H(f) , 2THT+ kλ21Λ1(f) + kλ22Φ
H(f)DTΛ2(f)DΦ(f) (A.24)

Φ(f) , diag {exp(−jφ[(f)i])} (A.25)

We note the fact that for any complex-valued matrices M1,M2,M3, such that M3 =

M1M2, we have:


 
(M3) −�(M3)

�(M3) 
(M3)


 =


 
(M1) −�(M1)

�(M1) 
(M1)




 
(M2) −�(M2)

�(M2) 
(M2)


 . (A.26)

We use the property in (A.26) to deduce:

∇J1ε (f) =


 
(∇Jε(f))

�(∇Jε(f))


 (A.27)

where

∇Jε(f) = H(f)f − 2THg. (A.28)

We use the complex-valued “gradient” ∇Jε(f) in (6.4).
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A.3 Augmented Cost Function for Half-Quadratic

Regularization

The objective of this appendix is to prove the relationship (6.14), which we repeat

here:

inf
b,s

K(f ,b, s) = Jε(f). (A.29)

This relationship shows that K(f ,b, s) of (6.12), is a valid augmented cost function

to be used in half-quadratic regularization for the function Jε(f) of (6.11).

To keep the derivation simple, we will consider a 1-D signal f , rather than a 2-D

field in this appendix. The results however can easily be extended to the 2-D case.

We will assume the following structure for the discrete 1-D derivative operator D:

D =




−1 1
. . . . . .

−1 1


 (A.30)

which simply consists of two-element differences.

Let us now find s and b which minimize K(f ,b, s). First consider s. The portion

of K(f ,b, s) which depends on s is the following:

M∑
i=1

bi|(DSf)i|2. (A.31)

Based on the structures of D in (A.30) and S in (6.13), we have

(DSf)i = −e−jsifi + e−jsi+1fi+1 (A.32)
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and consequently

|(DSf)i|2 = |fi|2 + |fi+1|2 − 2

{
|fi||fi+1|ej(φ[(f)i]−φ[(f)i+1])ej(si+1−si)

}
(A.33)

Here φ[(f)i] denotes the phase of the complex number fi. The sum in (A.31) takes

its minimum value, when the term inside the brackets in (A.33) has a zero imaginary

part for all i. Hence the minimizing s satisfies:

si+1 − si + φ[(f)i]− φ[(f)i+1] = 0 (A.34)

We could have obtained this result by the following qualitative argument as well. We

want to minimize (A.31), which is a weighted sum of squared norms of the differences

between complex number pairs of the form zi = e−jsifi. The variables we have

for optimization are si for all i, hence we can essentially choose the phase of each

complex number. Naturally, the minimum is obtained when the complex numbers zi

have identical phase, since this makes the norm of the difference between two complex

numbers as small as possible. This is exactly what the condition in (A.34) implies:

the optimum si should “rotate” fi in such a way that the resulting zi have the same

phase for all i. Note that we still have a freedom in choosing what that identical

phase is. If we simply choose it to be 0, then we have the following optimal s:

si = φ[(f)i], ∀i (A.35)

Note that with this s, we have Sf = |f |. Hence,

inf
s

K(f ,b, s) = ‖g−Tf‖22 + λ22

M∑
i=1

[
bi
(
|(D|f |)i|2 + ε

)
+

1

4bi

]
(A.36)

215



Next, let us consider b. Differentiating the term inside the summation in (A.36),

and setting it equal to zero, we obtain the following condition for the minimizing b:

bi =
1

2 (|(D|f |)i|2 + ε)1/2
(A.37)

Substituting (A.37) in K(f ,b, s), we obtain the result we desired:

inf
b,s

K(f ,b, s) = ‖g −Tf‖22 + λ22

M∑
i=1

(|(D|f |)i|2 + ε)1/2 = Jε(f) (A.38)

which shows that (6.14) is true.
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