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Abstract- The paper analyzes the scalability of multiob-
jective estimation of distribution algorithms (MOEDAs),
particularly multiobjective extended compact genetic
algorithm (meCGA), on a class of boundedly-difficult
additively-separable multiobjective optimization prob-
lems. The paper demonstrates that even if the link-
age is correctly identified, massive multimodality of the
search problems can easily overwhelm the nicher and
lead to exponential scale-up. The exponential growth
of the Pareto-optimal solutions introduces a fundamen-
tal limit on the scalability of MOEDAs and the number
of competing sub-structures between the multiple objec-
tives. Facetwise models are subsequently used to pre-
dict this limit in the growth rate of the number of dif-
fering substructures between the two objectives to avoid
the niching method from being overwhelmed and lead to
polynomial scalability of MOEDAs.

1 Introduction

One of the challenging areas in genetic and evolution-
ary computation that has received increased attention is
multiobjective evolutionary algorithms (MOEAs). Several
MOEAs have been proposed and applied with significant
success to real-world problems [1, 2]. However, studies on
the theory and analysis of MOEAs have been limited in part
because of the complexity of both the algorithms and the
problems. For example, some aspects of problem difficulty
and algorithm scalability have been recently studied [3, 4].

Recently, there has been a growing interest in extend-
ing estimation of distribution algorithms [5, 6]—a class of
competent genetic algorithms [7] that replace traditional
variation operators of genetic algorithms (GAs) with prob-
abilistic model building of promising solutions and sam-
pling the model to generate new offspring—to solve multi-
objective search problems quickly, reliably, and accurately.
Such multiobjective EDAs (MOEDAs) [8, 9, 10, 11] typi-
cally combine the model-building and sampling procedures
of EDAs with the selection procedure of MOEAs such
as the non-dominated sorting GA (NSGA-II) [12], and a
niching method such as sharing or crowding in objective
space. MOEDAs have been shown to outperform traditional
MOEAs in efficiently searching and maintaining Pareto-
optimal solutions on boundedly-difficult problems.

However, the scalability of the population size and the
number of function evaluations required by EDAs as a func-
tion of problem size and the number of Pareto-optimal solu-
tions has been largely ignored. This is the case even though

one of the primary motives for designing MOEDAs is to
carry over the polynomial (oftentimes sub-quadratic) scala-
bility of EDAs to boundedly-difficulty multiobjective search
problems. However, the usual scalability approach used for
single-objective EDAs with one or few global solutions—
where, we investigate the minimum number of function
evaluations to get high-quality solutions quickly, reliably,
and accurately—does not work for multiobjective problems,
and it is easy to get into combinatorial difficulty. Even with
two objectives, additively decomposable problems have ex-
ponentially many Pareto-optimal solutions and it is easy to
get into combinatorial difficulty. This massive multimodal-
ity introduces a fundamental limitation on the scalability of
MOEAs in general, and MOEDAs in particular. In this pa-
per, we demonstrate that even if the sub-structures (or link-
ages) are correctly identified, the combinatorial explosion of
the number of Pareto-optimal solutions can overwhelm the
niching capability and as expected lead to exponential scala-
bility. This fundamental nature of multiobjective additively
decomposable problems introduces a limit on the number of
building blocks (or sub-structures) that can differ between
the multiple objectives. That is, MOEAs scale polynomially
(subquadratically) only if the multiple objectives share com-
mon building blocks and have a limited number of building
blocks that are different. We use facetwise models to predict
the limit in the number of competing sub-structures between
multiple objectives.

The paper is organized as follows. We provide a brief
background on the motivation for the paper, followed by
a brief description of multiobjective extended compact ge-
netic algorithm (meCGA). The details on the test problems
and experimental methodologies are described in the subse-
quent sections. Section 3 demonstrates how massive multi-
modality of the search problem can overwhelm the niching
mechanism and lead to exponential scale-up of MOEDAs.
In section 4, using facetwise models of population-sizing
for EDAs and niching methods, we propose a method to
predict the limit on the growth rate of the number of com-
peting sub-structures between two objectives that can lead
to polynomial scalability. Finally, we present key conclu-
sions of the study.

2 How This Paper Came About?

Recently, there has been a growing interest in extending es-
timation of distribution algorithms (EDAs) to solve multiob-
jective search problems. Similar to single-objective EDAs
[5, 6], multiobjective EDAs (MEDAs) replace the variation



operators of MOEAs with the probabilistic model building
of promising solutions and sampling the model to generate
new offspring. Recently, several MOEDAs have been pro-
posed [8, 9, 10, 13, 14, 15, 11] which have combined vari-
ants of the Bayesian optimization algorithm (BOA) [16] and
iterated density estimation evolutionary algorithm (IDEA)
[17, 18] with the selection and replacement procedures of
MOEAs [1, 2]. Even though MEDAs have been shown to
outperform their MOEA counterparts on different test prob-
lems, none of the studies have systematically analyze the
scalability of MOEDAs.

Therefore, our original purpose was to systematically an-
alyze the scalability of MOEDAs on a class of boundedly-
difficult additively decomposable problems. We followed
a methodology analogous to that used to test the scal-
ability of single-objective EDAs with O(1) global solu-
tions. In particular, we investigated the minimum num-
ber of function evaluations required to obtain and main-
tain all the Pareto-optimal solutions quickly, reliably, and
accurately. Specifically, we investigated the scalability of
multiobjective Bayesian optimization algorithm [13] and
meCGA on several bi-objective test problems and observed
that MOEDAs scale-up exponentially. This is the case
even when the EDAs successfully solve each of the objec-
tives alone, requiring only sub-quadratic number of function
evaluations.

Further analysis of our scalability results and the test
problems, we discovered a fundamental fact of such
building-block-wise difficult problems: Exponential growth
in the number of Pareto-optimal solutions. When consid-
ering each objective in isolation, there is only one global
solution, but when considering the two objectives in multi-
objective optimization, the total number of global (Pareto-
optimal) solutions grow exponentially (O(2m)). Since we
need at least one individual to maintain a Pareto-optimal so-
lution, we need exponentially many individuals to maintain
all the Pareto-optimal solutions in the population.

In the following section, we briefly describe multiobjec-
tive extended compact genetic algorithm (meCGA), which
we use as a representative algorithm of MOEDAs. We
choose meCGA not only because of its simplicity and ease
of visualizing the probabilistic models, but also because it
bounds the scalability of other binary EDAs such as BOA
[19, 20].

2.1 Multiobjective Extended Compact Genetic Algo-
rithm (meCGA)

In this study, we use multiobjective extended compact GA
and test their scalability on a class of boundedly-difficult
problems. The multiobjective extended compact genetic al-
gorithm (meCGA) is similar to mBOA [9], except that the
model building and sampling procedure of BOA is replaced
with those of extended compact GA (eCGA) [21]. The
meCGA is used in this study in part because the simplic-
ity of the probabilistic model and its direct mapping to link-
age groups makes it amenable to systematic analysis. The
typical steps of meCGA can be outlined as follows:

1. Initialization: The population is usually initialized
with random individuals. However, other initializa-
tion procedures can also be used in a straightforward
manner.

2. Evaluation: The fitness or the quality-measure of the
individuals are computed.

3. Selection: As in mBOA, we use the selection pro-
cedure of NSGA-II [12]. That is, we first perform
the non-dominated sorting, and compute the crowd-
ing distance for all the individuals in the population.
We then use the individual comparison operator to
bias the generation of new individuals.

4. Probabilistic model estimation: Unlike traditional
GAs, however, EDAs assume a particular probabilis-
tic model of the data, or a class of allowable models.
A class-selection metric and a class-search mecha-
nism is used to search for an optimum probabilistic
model that represents the selected individuals.

Model representation: The probability distribu-
tion used in eCGA is a class of probability models
known as marginal product models (MPMs). MPMs
partition genes into mutually independent groups
and specifies marginal probabilities for each linkage
group.

Class-Selection metric: To distinguish between bet-
ter model instances from worse ones, eCGA uses a
minimum description length (MDL) metric [22]. The
key concept behind MDL models is that all things be-
ing equal, simpler models are better than more com-
plex ones. The MDL metric used in eCGA is a sum
of two components:

• Model complexity which quantifies the model
representation size in terms of number of bits
required to store all the marginal probabilities:

Cm = log2(n)
m∑

i=1

(
2ki − 1

)
. (1)

where n is the population size, m is the number
of linkage groups, ki is the size of the ith group.

• Compressed population complexity, which
quantifies the data compression in terms of the
entropy of the marginal distribution over all par-
titions.

Cp = n

m∑

i=1

2ki∑

j=1

−pij log2 (pij) , (2)

where pij is the frequency of the jth gene se-
quence of the genes belonging to the ith parti-
tion.

Class-Search method: In eCGA, both the structure
and the parameters of the model are searched and op-
timized to best fit the data. While the probabilities



are learnt based on the variable instantiations in the
population of selected individuals, a greedy-search
heuristic is used to find an optimal or near-optimal
probabilistic model. The search method starts by
treating each decision variable as independent. The
probabilistic model in this case is a vector of prob-
abilities, representing the proportion of individuals
among the selected individuals having a value ’1’
(or alternatively ’0’) for each variable. The model-
search method continues by merging two partitions
that yields greatest improvement in the model-metric
score. The subset merges are continued until no more
improvement in the metric value is possible.

5. Offspring creation: New individuals are created by
sampling the probabilistic model. The offspring pop-
ulation are generated by randomly generating subsets
from the current individuals according to the proba-
bilities of the subsets as calculated in the probabilistic
model.

6. Replacement: We use two replacement techniques
in this study: (1) Restricted tournament replacement
(RTS) [23] in which offspring replaces the closest
individual among w individuals randomly selected
from the parent population, only if the offspring is
better than the closest parent. (2) Elitist replacement
used in NSGA-II, in which the parent and offspring
population are combined. The domination ranks and
crowding distances are computed on the combined
population. Individuals with increasing ranks are
gradually added starting from those with the lowest
rank into the new population till its size reaches to
n. However, if it is not possible to add all the solu-
tions belonging to a particular rank without increas-
ing the population size to greater than n, then individ-
uals with greater crowding distances are preferred.

7. Repeat steps 2–6 until one or more termination crite-
ria are met.

2.2 Test Problem

Our approach in verifying the performance of MOEDA is
to consider bounding adversarial problems that exploit one
or more dimensions of problem difficulty [24]. Particularly,
we are interested in problems where building-block identifi-
cation is critical for the GA success. Additionally, the prob-
lem solver (meCGA) should not have any knowledge of the
building-block structure of the test problem, but should be
known to researchers for verification purposes.

One such class of problems is the m-k deceptive trap
problem, which consists of additively separable deceptive
functions [25, 26, 27]. Deceptive functions are designed to
thwart the very mechanism of selectorecombinative search
by punishing any localized hillclimbing and requiring mix-
ing of whole building blocks at or above the order of decep-
tion.

In this study, we use a class of test problems with two
objectives: (1) m-k deceptive trap, and (2) m-k deceptive

inverse trap. String positions are first divided into disjoint
subsets or partitions of k bits each. The k-bit trap and in-
verse trap are defined as follows:

trapk(u) =

{
1 if u = k

(1− d)
[
1− u

k−1

]
otherwise ,(3)

invtrapk(u) =

{
1 if u = 0
(1− d)

[
u−1
k−1

]
otherwise , (4)

where u is the number of 1s in the input string of k bits, and
d is the signal difference. Here, we use k = 3, 4, and 5, and
d = 0.9, 0.75, and 0.8 respectively.

The m-k trap and inverse trap functions have conflicting
objectives. Any solution that sets the bits in each partition
either to 0s or 1s is Pareto optimal and thus there are a to-
tal of 2m solutions in the Pareto-optimal front with m + 1
distinct points in the objective space.

2.3 Experimental methodology

We measure the scalability of MOEDAs as the minimum
number of function evaluations required to maintain at least
one copy of all the Pareto-optimal solutions for problems
of different sizes. For each problem type, problem size,
and algorithm, a bisection method was used to determine
a minimum population size to allocate at least one individ-
ual to each representative solution in the Pareto front. As
mentioned earlier, for the test problems we consider in this
study, for an `-bit problem—where ` = m · k—there are
2m Pareto-optimal solutions with m + 1 distinct objective
value pairs. In this study, we investigate the population size
required to (1) find at least one copy of all the 2m Pareto-
optimal solution, and (2) find at least one copy of the m+1
distinct points in the Pareto-optimal front. That is, we con-
sider Pareto-optimal solutions with the same values of both
objectives to be equivalent.

The probability of maintaining at least one copy of all
the representative Pareto-optimal solutions at a given pop-
ulation size is computed by averaging 10–30 independent
MOEA runs. The minimum population size required to
maintain at least one copy of all the representative solutions
in the Pareto front are averaged over 10-30 independent bi-
section runs. Therefore, the results for each problem type,
problem size, and algorithm correspond to 100–900 inde-
pendent GA runs. The number of generations for meCGA
was bounded by 5`, where ` is the string length.

2.4 Scalability of meCGA

We have tried m-k deceptive trap and inverse trap functions
for k = 3, 4, and 5, for brevity, we only show results for
k = 3 in this paper. Moreover, we note that the results
for other values of k are qualitatively similar and those for
k = 3 are representative of the behavior of meCGA.

Figure 1(a), shows the scalability of meCGA with the
problem size for m-3 deceptive trap and inverse trap prob-
lem. We plot the minimum number of function evalua-
tions required to allocate at least one copy of all the solu-
tions in the Pareto-optimal front. As shown in the figure,
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Figure 1: Scalability of meCGA with Crowding and with RTS for the m-3 deceptive trap and inverse trap with the problem
size. Here, we plot the minimum number of function evaluations required to search and maintain at least one copy of (a)
all the 2m solutions in the Pareto-optimal front, and (b) only the m + 1 solutions in the Pareto-optimal front with different
objective-value pairs. Here, we treat the genotypically (and phenotypically) different Pareto-optimal solution with same
values in both objectives to be equivalent.

all algorithms scale-up exponentially. The scale-up does
not improve even if we restricted the requirement to find-
ing only those m + 1 Pareto-optimal solutions with differ-
ent objective-value pairs as shown in Figure 1(b). That is,
even if we consider genotypically (and phenotypically) dis-
tinct solutions that have the same value in both objectives
to be equivalent, meCGA scales exponentially. This is de-
spite the linkage information being identified correctly by
meCGA. Additionally, the scalability does not improve if
the niching or speciation is performed in the objective space
(as in NSGA-II) or in the variable space (as in restricted
tournament selection). To reiterate, meCGA scales up ex-
ponentially on the trap and inverse trap functions, in spite
of accurate identification of the building blocks. Further-
more, when considering the m-k trap functions or inverse
trap functions eCGA scales polynomially.

3 Exponential growth of Pareto-Optimal Solu-
tions

As mentioned in the previous section, the exponential scale-
up is not due to incorrect linkage identification and mix-
ing [28, 29, 30], but because the niching mechanism gets
quickly overwhelmed due to the exponential growth in the
number of Pareto-optimal solutions. Furthermore, the dis-
tribution of the 2m solutions in the Pareto-optimal front is
not uniform. There are exponentially as many solutions in
the middle of the front than at the edges (see table 1). That
is, there is only one solution—a binary string with all 0s
and all 1s—at each extreme of the Pareto-optimal front. In

contrast, there are
(

m
m/2

)
≈ O (em) genotypically dif-

ferent solutions in the middle of the Pareto-optimal front
with same values in both objectives.

This highly non-linear distribution of solutions in the
Pareto-front has two effects on the niching mechanisms

n1,BBs 0 1 · · · i · · · m
n0,BBs m m− 1 · · · m− i · · · 0

# solutions 1 m · · ·
(

m
i

)
· · · 1

Table 1: Distribution of genotypically and phenotypically
different solutions in the Pareto-optimal front with same
values in both objectives. n1,BBs refers to the number of
k-bit partitions (substructures) with 1s and n0,BBs is the
number of k-bit partitions with 0s.

used in MOEAs in general, and MOEDAs in particular:
• Since the extremes of the Pareto-optimal front (max-

imizing most partitions or sub-structures with respect
to one particular objective) has exponentially smaller
representatives than in the middle, it takes exponen-
tially longer time, or exponentially larger population
size [24, 30] to search and maintain the solutions at
the extremes of the Pareto-optimal front. When the
population size is fixed, the probability of maintain-
ing a solution in the middle of the Pareto-optimal
front is higher than doing so in extremes of the front,
as shown in figure 2.

• Since there are multiple points that are genotypically
and phenotypically different, but lie on the same point
on the Pareto-optimal front (solutions have same val-
ues in both objectives), some of them vanish over
time due to drift. The drift affects both the solutions
in the middle and the extremes of Pareto front.

3.1 Overwhelming the Niching Method

To illustrate, how additively decomposable problems with
conflicting objectives can overwhelm the niching mecha-
nism used in MOEAs—irrespective of linkage adaptation
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Figure 2: Probability of finding and maintaining different
solutions on the Pareto-optimal for the 10-3 deceptive trap
and inverse trap problem as a function of population size.
The results are for meCGA with elitist crowding and the
results are averaged over 100 independent runs.

capabilities of the evolutionary algorithm—and lead to ex-
ponential scalability, we consider a problem where link-
age learning is not required. Specifically, we consider the
OneMax-ZeroMax problem which is similar to bi-criteria
OneMax problem of Chen [4]. In OneMax-ZeroMax prob-
lem, the task is to maximize two objectives, one which is
the sum of all the bits with value 1, and the other is the sum
of all the bits with value 0:

fOneMax(X) =
∑̀

i=1

xi, (5)

fZeroMax(X) =
∑̀

i=1

(1− xi), (6)

where ` is the problem size, and xi is the value of the ith bit
of a candidate solution X .

We specifically choose the OneMax-ZeroMax problem
to isolate the effect of linkage identification or lack there
of from those of the niching methods on the scalability of
the MOEAs. Unlike the m-k deceptive trap and inverse
trap function, linkage identification is not necessary for the
OneMax-ZeroMax problem. Furthermore, both OneMax
and ZeroMax problems are GA-easy problems which a sim-
ple selectorecombinative GA with uniform crossover and
tournament selection can solve in linear time [31, 32].

However, in a multiobjective scenario of the OneMax-
ZeroMax, the entire search space (2`) belongs to the Pareto-
optimal front with ` + 1 distinct objective-value pairs.
Therefore, in order to maintain all the Pareto-optimal solu-
tions, we would require O(2`) population size. From the
details presented in the previous sections, even if we re-
lax the scalability requirement to finding at least one copy
of all ` + 1 distinct Pareto-optimal solutions, the exponen-
tial requirement in the population size (and consequently
the number of function evaluations) is not relaxed. There-
fore, as expected, the MOEAs, particularly multiobjective
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Figure 3: Scalability of NSGA-II and mUMDA on the
OneMax-ZeroMax problem in terms of minimum number
of function evaluations required to maintain at least on copy
of each of the ` + 1 distinct solutions in the Pareto-optimal
front. Both algorithms with two different niching methods
scale-up exponentially with the problem size.

univariate marginal distribution algorithm (mUMDA) and
NSGA-II, scale-up exponentially in solving the OneMax-
ZeroMax problem as shown in figure 3. The mUMDA al-
gorithm used in this study is identical to meCGA where the
probabilistic model is a univariate model where each vari-
able/bit is considered independent to each other [33], which
is the ideal model for the OneMax-ZeroMax problems.

The results clearly indicate how the niching methods—
both those that work in parameter space (RTS) and those
that work in objective space (Crowding)—get overwhelmed
due to exponentially large number of solutions in the Pareto-
optimal front. That is, since the number of Pareto-optimal
solutions grow exponentially, in order to maintain at least
one copy of all the global solutions we would require ex-
ponentially large population sizes. Additionally, the results
also show that even if the requirement is relaxed by treat-
ing all the different points that lie on the same point in the
Pareto-optimal front to be equivalent, the scale-up does not
improve. Finally, the results suggest that in decomposable
problems, if all or majority of the sub-structures compete in
the two objectives, then the niching method fails to maintain
good coverage, leading to exponential scale-up.

This combinatorial growth in the number of Pareto-
optimal solutions is a deal breaker for tractable solutions

• Acknowledge that with practical population sizes,
some of the Pareto-optimal solutions cannot be cov-
ered (especially at the edges of the Pareto front), and
do the best we can. In such a scenario, an MOEA with
linkage-adaptation capabilities outperforms MOEAs
with fixed recombination operators [34].

• Size the population appropriately in accordance with
the exponential growth in the Pareto-optimal solu-
tions. Here, Mahfoud’s population-sizing model for
niching methods [35], which predicts that the popu-
lation size grows linearly with the number of global
solutions, is applicable.



• Understand the fundamental limits on the growth in
the number of Pareto-optimal solutions and thereby
the type of search problems that permit tractable
search. If we want MOEDAs to scale polynomially
on additively-decomposable problems, the number of
Pareto-optimal solutions have to be limited. In other
words, if the number of sub-structures that are differ-
ent (or compete) between multiple objectives is lim-
ited, then MOEDAs can scale polynomially. That
is, There is an imposed limit on the type of addi-
tively decomposable problems MOEDAs can solve in
polynomial time. We use facetwise models to predict
this limit on the growth of competing sub-structures
between multiple objectives (and consequently, the
number of Pareto-optimal solutions) in the next sec-
tion.

4 Limit on the Growth of Competing Sub-
Structures

The results in the previous two sections clearly indi-
cate that MOEDAs with either RTS or crowding mecha-
nism of NSGA-II scale-up exponentially with problem size
on boundedly-difficult additively-separable multiobjective
problems. We also demonstrated that the exponential scal-
ability is due to the niching method being overwhelmed
because of exponentially large number of solutions in the
Pareto-optimal front. The exponential growth in the number
of Pareto-optimal solutions imposes a fundamental limita-
tion on the type of problems which MOEDAs can solve in
polynomial time. That is, MOEDAs can solve only those
multiobjective problems in polynomial time, which have
limited growth in the number of Pareto-optimal solutions.

One way to restrict the growth of the Pareto-optimal so-
lutions is to control the number of sub-structure (building
blocks) that compete between the two objectives, md. That
is, for a problem with m sub-structures, the two objectives
differ in only md sub-structures and share the same m−md

sub-structures. For example, consider 4 − bit OneMax-
ZeroMax problem, md = 2, and without loss of general-
ity, that the last two building blocks differ between the two
objectives. Then there are only four Pareto-optimal solu-
tions (as opposed to 24 = 16): 1100, 1101, 1110, and
1111. Since the total number of Pareto-optimal solutions,
nopt = 2md , by controlling the number of competing sub-
structures, we implicitly control the total number of Pareto-
optimal solutions.

The growth-rate of the competing sub-structures should
be such that the effect of model accuracy, decision mak-
ing, and building-block supply on the population sizing is
dominant over the effect of niching on the population size.
The effect of model accuracy, decision making and sub-
structure supply on the population sizing of eCGA is given
by [20, 19]:

neCGA ∝ c1 · 2k ·m log m, (7)

where, c1 is a constant. The effect of niching method on the
population-sizing of GAs was modeled by Mahfoud [35]
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Figure 4: The scalability of meCGA with the crowding
mechanism of NSGA-II and RTS niching for both OneMax-
ZeroMax and m-3 deceptive trap and inverse trap problems.
The growth rate of number of sub-structures that compete
in the two objectives for a given problem size is controlled
as given by equation 10.

and is reproduced below:

nniching ∝
log

[(
1− γ1/t

)
/nopt

]

log [(nopt − 1) /nopt]
≈ c2 · 2md , (8)

where γ is the probability of maintaining at least one copy
of all the Pareto-optimal solutions, t is the number of gen-
erations we need to maintain all the niches, and c2 is a con-
stant. While Mahfoud derived the population-sizing esti-
mate for fitness-sharing method, it is generally applicable
to other niching methods and MOEAs as well [36, 13].

In order to restrict the number of Pareto-optimal solu-
tions, and thereby to circumvent the niching method from
being overwhelmed we require neCGA ≥ nniching. That is,

c2 · 2md ≥ c1 · 2k ·m log m. (9)

The above equation can be approximated 1 to obtain a con-
servative estimate of the maximum number of competing
sub-structures that circumvent the niching mechanism from
being overwhelmed is given by:

md ≈ k + log2(m) (10)

To reiterate, MOEDAs can solve additively separable
problems in polynomial time if the number of building
blocks that differ between two objectives is less than that
predicted in the above equation. We verify this assertion
with empirical results for the OneMax-ZeroMax problem
in Figure 4. Specifically, for the m − md building blocks
shared by both objectives we consider the OneMax func-
tion, and for the md differing building blocks, we consider
the OneMax-ZeroMax problem. The particular building
blocks that differ between the two objectives are randomly

1Since log2

�
c1 log m

c2

�
∼ 1, we neglect the term



chosen for a particular problem instance. As shown in fig-
ure 4, the results indicate that when the limit on the growth-
rate of competing sub-structures is satisfied, the MOEDAs
scale-up polynomially with the problem size.

5 Summary and Conclusions

In this paper, we studied the scalability of multiobjective
estimation of distribution algorithms (MOEDAs), specif-
ically multiobjective extended compact genetic algorithm
(meCGA), on a class of boundedly-difficult additively sep-
arable problems. We observed that even when the linkages
were correctly identified, the MOEDAs scaled-up exponen-
tially with problem size due to the combinatorial growth in
the number of Pareto-optimal solutions. We demonstrated
that even if the linkage is correctly identified, massive mul-
timodality of the search problems can easily overwhelm the
nicher and lead to exponential scale-up. That is, in de-
composable problems, if majority or all the sub-structures
compete in different objectives, then the number of Pareto-
optimal solutions increase exponentially. This exponential
increase overwhelms the nicher and causes significant prob-
lems in maintaining a good coverage of the Pareto-optimal
front. This combinatorial explosion of Pareto-optimal solu-
tions introduces a fundamental limit on the number of com-
peting sub-structures between multiple objectives. Using
facetwise models that incorporate the combined effects of
model accuracy, decision making, and sub-structure supply,
and the effect of niching on the population sizing, we pre-
dict this limit on the growth rate of maximum number of
sub-structures that can compete in the two objectives to cir-
cumvent the failure of the niching method. If the number of
competing sub-structures between the multiple objectives is
less than the proposed limit, MOEDAs scale-up polynomi-
ally with the problem size on boundedly-difficult problems.
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