
Computer Networks 51 (2007) 4460–4474

www.elsevier.com/locate/comnet
Stability of FIFO networks under adversarial models:
State of the art q

Vicent Cholvi *, Juan Echagüe
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Abstract

Network stability is an important issue that has attracted the attention of many researchers in recent years. Such inter-
est comes from the need to ensure that, as the system runs for an arbitrarily length of time, no server will suffer an
unbounded queue buildup.

Over the last few years, much research has been carried out to gain an understanding of the factors that affect the sta-
bility of packet-switched networks. In this paper, we attempt to review the most noteworthy results in this area. We will
focus on networks where the scheduling policy is of the FIFO type, which is, by far, the most widely adopted policy. We
gather these results and present them in an organized manner. Furthermore, we also identify some directions open to
future research.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A growing number of networking applications
today have constraints in terms of their maximum
allowable end-to-end delay, packet loss rate, band-
width, availability, and so forth. Therefore, it is
becoming increasingly important to find out the
conditions under which a given communication net-
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work guarantees performance bounds when dealing
with emerging real-time-oriented networking sce-
narios. In spite of the significant advances in the
complexity of communication networks, much work
still needs to be done in that direction.

In order to characterize the performance of a net-
work, one crucial issue is that of stability, which has
become a major topic of study in the last decade.
Roughly speaking, a communication network sys-
tem is said to be stable if the number of packets wait-
ing to be delivered (backlog) is finitely bounded at
any one time. The importance of such an issue is
obvious, since if one cannot guarantee stability, then
one cannot hope to be able to ensure deterministic
.
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V. Cholvi, J. Echagüe / Computer Networks 51 (2007) 4460–4474 4461
guarantees for most of the network performance
metrics.

In a paper dating back to 1975 [1], Kelly proved
that in stochastic networks where packet sizes and
packet inter-arrival times are exponentially distrib-
uted, if the service time at servers follows the same
distribution then the well-known scheduling policy
FIFO (which is by far the most widely adopted pol-
icy) is stable. After that and for many years, the
common belief was that only overloaded queues1

could generate instability, while underloaded ones
could only induce delays that are longer than
desired, but always remain stable. This general wis-
dom goes back to the models of packet-switching
networks originally developed by Kleinrock [2],
and based on Jackson queuing networks [3]. Stabil-
ity results for more general classes of queueing net-
works [4,5] also confirmed that only overload
generates instability. This belief was shown to be
wrong when it was observed that, in some networks,
the backlogs in specific queues could grow indefi-
nitely even when such queues were not overloaded
[6,7]. It was later observed that instability could also
occur, even when the ratio between arrival rate and
service rate is arbitrarily small, under the FIFO
scheduling policy, both by using probabilistic
assumptions [8,9] and by considering deterministic
ones [10]. However, the above mentioned counte-
rexamples required that the time needed to process
a packet be different from one to another. Clearly,
this is not, in general, a valid assumption in
packet-switched networks, where servers generally
have the same service rates for all packets (such net-
works are usually said to be of the Kelly type [5]).
Nevertheless, shortly afterwards it was shown that
instability could also arise in some types of Kelly
networks, including networks using the FIFO
scheduling policy [11,12]. These later results aroused
an interest in understanding the stability properties
of packet-switched networks.

This paper provides a review and synthesis of the
most important results concerning stability of net-
works using the FIFO scheduling policy, which
have usually appeared in a continuous but dispersed
form. Here, we bring these results together and pres-
ent them in an organized manner. Furthermore,
throughout this survey we also identify a number
of directions open to future research.
1 A queue is considered to be overloaded when the total arrival
rate at any server is greater than the service rate.
The paper has two clearly differentiated parts. In
the first, which comprises Sections 2–4, we talk
about network stability and discuss the different
dimensions from which stability can be investigated.
We also characterize the model of input traffic we
will use and formally define what we mean by stabil-
ity in that model. In the second part, which com-
prises Sections 5–7, we review the state of the art
concerning stability in networks with a FIFO sched-
uling policy, and present the results obtained when
considering several different points of view; whereas
in Section 5 we present some instability results, in
Section 6 we present the most relevant directions
used to approach stability and in Section 7 we tackle
the problem of deciding which networks are stable.
We finish with some concluding remarks in Section
8.

In order to keep a historical perspective of the
results, in each reference we include the first version
of the paper (mostly conference versions) as well as
the final one (mostly journal papers).

2. Network scenario

Network stability can be approached from three
dimensions (G,A,P): the network topology G, the
input traffic pattern A and the packet scheduling pro-

tocol P.

2.1. Network topology

The network topology constitutes the underlying
infrastructure by means of which packets travel
from their source to their destination. It is com-
posed of network switches (also referred to as rou-
ters, servers or nodes), which are interconnected
by means of unidirectional or bidirectional links.
Each node contains a server for each outgoing link.
Servers may have different service rates (link band-
widths), measured in packets per unit of time. How-
ever, in general and for the sake of simplicity, it is
assumed that each link can transmit a single packet
in each time step (i.e., they have a normalized ser-
vice rate of 1). Furthermore, there is a propagation
delay associated to each link. Each server schedules
the packets that must cross the link using a nonpre-
emptive scheduling policy (which may be different at
each server). Packets are forwarded in a store-and-
forward manner.

We will represent networks by means of directed
graphs G ¼ ðV ;EÞ, where vertices V represent the
nodes and edges E are the links between servers,



2 A scheduling protocol is called greedy (also known as work-
conserving) if it cannot be idle as long as there is at least one
packet queued.
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the orientation of which represents the direction in
which the traffic flows through the network link.
In the case where traffic can flow in both directions
of a network link, such a link will be represented by
two edges, one in each direction.

2.2. Input traffic

When a request arrives for the transmission of a
certain amount of data, a connection is established
along one or more routes. Clearly, network stability
is affected by the requests for transmission, their
variabilities and the routes followed to reach their
destinations. The input traffic that is allowed is usu-
ally characterized by specifying a constraining func-

tion that bounds the maximum number of packets
that can be injected at each time interval, the nodes
where packets ingress into the network and the
route followed by each of the packets until they
reach their destination.

Although the average load on each link must be
within its bandwidth capacity in order to guarantee
stability, this is not a sufficient condition [6–11].
This raises a fundamental question about how to
bound the input traffic to make the network stable.
In traditional queuing theory, the input traffic pat-
tern is generally assumed to be characterized by a
stochastic distribution (e.g., a Poisson distribution).
However, while such an assumption is convenient
for theoretical analysis, questions have been raised
about its realism [13]. In real data networks, connec-
tion arrivals may be seriously correlated and bursty,
rather than stationary in nature. To model the bur-
sty phenomena in data arrivals, instead of assuming
stochastic stationary arrival processes, bursty mod-

els [14,12] have been introduced for data communi-
cation networks, thus allowing us to study how
burstiness affects network stability. These latter
models will be formally defined in Section 3.

2.3. Scheduling protocol

The scheduling protocol is responsible for decid-
ing the order in which packets trying to cross a link
simultaneously will be served. Since only one packet
can cross the link in a single step, the rest of the
packets will have to wait in the queue associated
with the congested link.

Although scheduling algorithms have been stud-
ied for decades, almost all routers currently imple-
ment the first-in first-out protocol (FIFO); that is,
all arriving packets are treated equally by placing
them into a single queue, and then serving them in
a greedy fashion2 in order of arrival. The reasons
for the widespread adoption of FIFO as a schedul-
ing algorithm are clear. On the one hand, FIFO is
easily implementable, which makes it very attractive
for system designers. On the other hand, FIFO is
also very fast, since the time required to make a
scheduling decision is insignificant. In addition,
because it only works with local information (as
opposed to other policies, like Farthest-to-Go, that
rely on the packets subsequent path, or the Longest-
in System, that relies on the packet injection time), it
prevents packets from being faked to a higher
priority.

Nevertheless, and contrary to what one could
expect, it has not usually been easy to analyze its
properties. This occurs because the ordering
imposed by the FIFO policy is so ‘‘loose’’ that it
is difficult to ascertain the individual behavior of
packets and, consequently, extract consequences
about the behavior of the whole system.

3. Adversarial models of input traffic

As has been pointed out in the previous section,
in real data networks, the assumption that input
traffic is characterized by a stationary process is
not realistic. Therefore, to model the bursty phe-
nomenon in data arrivals, a new type of model
has been proposed. Such models consider the time
evolution of a packet-routing network as a game
between a malicious adversary that has the power
to perform a number of actions (such as injecting
packets at particular nodes, choosing their destina-
tion, routing them, etc.) and the underlying system.
Such an adversary, based on the knowledge of
behavior of the system, can devise the scenario that
maximizes the ‘‘stress’’ on the system. Conse-
quently, it provides us with a valuable tool with
which to analyze the network in a worst-case sce-
nario. On the one hand, positive results (i.e., stabil-
ity results) are more robust in that they do not
depend on particular stationary assumptions about
the input sequences. On the other hand, since an
adversary could encompass a wider range of actions
than stationary inputs, it may produce unstable
scenarios that are not allowed using a stochastic
model. Thus, since the stability results derived using
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adversarial models3 are, in the above mentioned
sense, more general than those obtained using sta-
tionary models, we will focus on findings that take
into account only adversarial models of input
traffic.

In an adversarial model each packet is injected
(by the adversary) into a node and follows a specific
unique path, after which it is absorbed. Paths, how-
ever, cannot contain the same link more than once.
If more than one packet wishes to cross an edge e in
the current time step, then the protocol chooses one
of these packets to send across e; and remaining
packets wait in a queue at the tail of e.

To describe the dynamics of the system being
considered, we introduce some notation adopted
from [15]. Let P be a set of paths that cannot con-
tain the same edge more than once in a network
G ¼ ðV ;EÞ. Packets will follow paths in P, which
might be the set of all paths or just a subset of it.
For each path p 2 P, let fep

0; e
p
1; e

p
2; . . . ; ep

kðpÞg be the
set of consecutive edges in p. Let Ap(t1, t2) be the
total number of packets that are injected during
time interval [t1, t2) and use path p. Let De,p(t1, t2)
be the total number of packets following path p

and traversing edge e within the time interval
[t1, t2). Finally, let Qe,p(t) be the total number of
packets following path p that are waiting to traverse
edge e at time t.

The dynamics of the network are described as
follows. For each t = 0,1,2, . . . and each path p 2 P

Qep
0
;pðtÞ ¼ Qep

0
;pð0Þ þ Apð0; tÞ � Dep

0
;pð0; tÞ ð1Þ

and for all i = 1,2, . . . ,k(p)

Qep
i ;p
ðtÞ ¼ Qep

i ;p
ð0Þ þ Dep

i�1
;pð0; tÞ � Dep

i ;p
ð0; tÞ: ð2Þ

For each edge e and each time interval [t1, t2) the fol-
lowing constraint must hold:
X
p:e2p

De;pðt1; t2Þ 6 t2 � t1: ð3Þ

The first concrete model that implicitly contained
the concept of an adversary was proposed by Cruz
in [14] and it is called as Permanent Session Model

(PSM) (also known as the Session Oriented Model

or the (r,q)-Regulated Session Model). In this model
all packets are forced to belong to some session, and
packets from the same session follow the same path.
3 They are so called to reflect the fact that the emphasis is on
stability with respect to an adversarial model of input traffic (i.e.,
a model where packets are injected and routed by an adversary),
rather than on an oblivious randomized process.
Each session p is associated to a rate qp and a burst
allowance rp so that the number of packets injected
by a session p during time interval [t1, t2) is bounded
by

Apðt1; t2Þ 6 rp þ qpðt2 � t1Þ: ð4Þ

It is clear that, in order to avoid trivially overload-
ing the system, the maximum traffic injected in every
link over long periods of time should not exceed the
amount of traffic that the link can serve. Therefore,
the following load condition must be fulfilled for all eX
p:e2p

qp 6 1: ð5Þ

Let Q(t) denote the vectors of queue lengths at
time t, and A(t) and D(t) respectively denote the vec-
tor of arrivals and departures up to time t. Any fea-
sible solution (Q(t), A(t),D(t)) to (1)–(4) will be
called a realization in the ðG; PSM ;PÞ system, where
P is the scheduling protocol by which packets are
chosen to cross edges.

Informally, it can be said that a PSM adversary
can control individual input streams. However, in
some scenarios it seems convenient to provide a bet-
ter model for networks having heterogeneous and
frequently changing rates of traffic. That is, it seems
convenient to have an adversary that globally con-
trols the entire input process. In [12], Borodin
et al. provided a new perspective to the analysis of
stability in packet-switched networks by introduc-
ing a new framework, known as Adversarial Queu-

ing Theory4 (AQT), which has given rise to the
appearance of a large number of results. In AQT,
in each time step, the adversary injects a set of pack-
ets at some of the nodes. For each packet, it also
specifies the path it must follow (i.e., the sessions
in which packets are being injected can change over
time). As in the case of PSM, in order to avoid triv-
ially overloading the system, the maximum traffic
injected in every link over long periods of time
should not exceed the amount of traffic that the link
can serve. Formally, the number of packets injected
by the adversary in any consecutive time steps w

(w P 1 represents a window size) requiring any par-
ticular link e is bounded byX
p:e2p

Apðt1; t2Þ 6 dwre; ð6Þ

where w = t2 � t1 and 0 < r 6 1 represents the nor-
malized injection rate.
4 Also known as Windowed Adversarial Queuing.
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In [11], Andrews et al. introduced a new adver-
sarial model known as the Leaky-Bucket Model

(LB) that differs from AQT in that the number of
packets that the adversary is allowed to inject dur-
ing any time interval [t1, t2) and that require the link
e is now bounded by
X
p:e2p

Apðt1; t2Þ 6 rðt2 � t1Þ þ b; ð7Þ

where b P 0 represents a burst allowance and
0 < r 6 1 represents the sustainable normalized
injection rate.

Fig. 1 compares AQT and LB in terms of the
number of packets the adversary could inject in a
period of time that have to cross a given edge e.
As can be seen, an LB adversary can inject at least
as many packets as an AQT adversary. In fact,
Rosén [16, Fact 1] compared both models (starting
with an empty configuration), showing that they
have the same power provided r < 1. Two adversar-
ies A1 and A2 have the same power if the set of
actions (such as injecting packets at particular
nodes, choosing their destination, routing them,
etc.) performed by A1 can also be performed by
an A2, and vice-versa. To establish the equivalence,
it was necessary to use adversaries with different
injection rates, but not different sequences of packet
trajectories. Therefore, we consider them as being
the same, jointly called Adversarial Queuing Model

(AQM). Similar to the case of PSM, any feasible
solution (Q(t), A(t),D(t)) to (1)–(3) (6)/(7) will be
called a realization in the ðG;AQM ;PÞ system,
where P is the scheduling protocol by which packets
are chosen to cross edges.
Leaky–bucket

b=rw

3w2ww

2b

3b

4b

packets

t

AQT

Fig. 1. Number of packets injected over time that require a given
edge for AQT and LB adversaries. The same value for the
injection rate r has been taken, and it is assumed that b = rw.
Clearly, PSM is more restrictive than AQM,
since the adversarial injection strategies in AQM

are more general than in PSM. Hence, any stability
result in AQM implies an analogous result in PSM;
the converse, however, does not necessarily hold. In
turn, any instability result in PSM implies an anal-
ogous result in AQM; again, the converse does not
necessarily hold.

Adversarial models other than AQM and PSM

have been proposed. For instance, Aiello et al. [17]
proposed a variation of AQM where the adversary
specifies both the origin and destination of each
packet and they are dynamically routed according
to certain network parameters (i.e., the adversary
does not specify the trajectories packets follow). A
different variation was proposed by Andrews et al.
in [18], where the entire trajectory of a packet is
known at the source, instead of being dynamically
routed. Alvarez et al. [19] proposed yet another var-
iation of AQM that allows the adversary to priori-
tize packets, either in a fixed fashion (at packet
injection time) or in a variable manner (the priority
of each packet is assigned at each time step). How-
ever, these models can be seen as being either a rein-
forcing or a weakening of the adversarial power. So,
in the following sections when we present the
results, we only consider AQM and PSM and refer,
when necessary, to the factors that strengthen or
restrain their power.

4. Network stability in adversarial models

In the previous sections, it has been outlined
what we mean by network stability. Now, we define
stability in a more formal way when considering
adversarial models of input traffic.

Given a network G, an adversary A and a sched-
uling protocol P, a realization (Q(t),A(t), D(t)) in
ðG;A;PÞ is stable if the number of packets in the
system is bounded at all times by a fixed value. That
is, if

sup
t2Zþ

X
e2p; p2P

Qe;pðtÞ <1:

We say that ðG;A;PÞ is stable if every realization is
stable. Furthermore, stability can also be addressed
from the point of view of the scheduling protocol or
the network. Therefore, if ðG;A;PÞ is stable, we
say that the scheduling protocol P is stable against
adversary A with network G. Alternatively, we also
say that network G is stable against adversary A
with scheduling protocol P.
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In the most concrete case where a scheduling pro-
tocol P is stable against every adversary A covered
by a given adversarial model with every network, we
say that it is stable against such an adversarial
model. Similarly, when a network G is stable against
every adversary A covered by a given adversarial
model with scheduling protocol P, we say that it
is P-stable against such an adversarial model.

We note that in the previous definitions nothing
has been said about the initial configuration. It
has been argued in [11, Lemma 2.9] that systems
with empty initial configurations (i.e., assuming
that, at time zero, there are no packets in the sys-
tem) and systems with nonempty initial configura-
tions are equivalent, since any adversary in the
latter can be transformed into an adversary in the
former that behaves similarly. That allows us to
work, without loss of generality, with models with
empty or nonempty initial configurations. But it
must be taken into account that the construction
used to establish such a result needs to change the
network topology and creates a set of packets that
have a specific age; therefore, if the scheduling pol-
icy bases its queuing decision on its history (e.g.,
Longest-in-System, Farthest-from-Source, etc.) it
is not clear if the above mentioned result remains
valid. By using a very simple transformation, Blesa
[20, Fact 2] has shown the equivalence of adversar-
ies with and without initial configuration only by
changing the parameters of the adversary. This is
a stronger result than the analogous one given in
[11, Lemma 2.9] since here the graph does not need
to be changed. Nevertheless, we remark that the
FIFO scheduling policy does not take into account
the packets history.

We conclude this section by noting that one
important direction for investigating stability of a
queuing network is the analysis of the associated
fluid limits, which are the different ‘‘limits’’ one
obtains by shrinking the weight of individual pack-
ets and time proportionally. The fluid limits will sat-
isfy fluid model equations, which correspond to the
deterministic analog of the queuing network under
consideration. To prove stability, typically one
attempts to show that solutions of the fluid model
equations are stable (i.e., their queue lengths are 0
by a fixed time). The stability of the (non-adversar-
ial) queuing network then follows from the stability
of these solutions, as proved by Dai [21]. Subse-
quently and parallelizing the result obtained by
Gamarnik [15] has shown that the stability of an
adversarial fluid model implies the stability of an
underlying adversarial queuing network (AQM).
However, the connection between a queueing net-
work (either adversarial or not) and the associated
fluid model is a fairly complex issue, neither trivial
nor subtle, and it is presently not known when the
stability of a fluid model follows from that of the
corresponding queueing network. Only some partial
results were proven by Dai [22] and Meyn [23], stat-
ing that when the fluid limits all have a uniformly
positive drift, then the queuing network itself is
unstable. Bramson [24] and Dai et al. [25] have also
shown that there are families of queuing networks
that are stable, but whose fluid models are unstable.

5. Instability results

Perhaps the most natural question regarding the
stability of FIFO is to unveil whether or not it is a
stable policy with every network. Unfortunately, it
has been found that FIFO can be unstable in some
circumstances, contrary to what happens when con-
sidering some scheduling disciplines like Farthest-
to-Go, Longest-in-System, Nearest-to-Source, etc.

To show that a ðG;A;PÞ system is not stable,
one has to find an adversarial injection strategy
for A such that, as time goes by, the number of
packets in the system grows unboundedly. But,
there is an interesting result by Hajek in [26, Propo-
sitions 1 and 2] that shows that if a ðG;A;PÞ system
is stable then any other ðG;A0;PÞ system will be
stable provided A and A0 have the same injection
rate. This shows that large bursts are not, in them-
selves, enough to cause instability and rules out
burstiness as a factor that could produce instability,
and it also implies that one must center on the injec-
tion rate to find the adversarial injection strategy
that causes the system to be unstable. Therefore,
we can turn out our attention to the injection rate
as the only factor that affects network instability.

The first result regarding instability of FIFO in
adversarial models was given by Andrews et al. In
[11, Theorem 2.10] it was proven that there is a net-
work GB (see Fig. 2) and an AQM adversary A of
rate r P 0.85 such that ðGB;A; FIFOÞ is unstable.
The proof breaks the construction of A down into
phases. Briefly, it assumes that, at the very begin-
ning, there are s packets in the queue of v0. During
the first s steps, a set X of rs packets that want to
traverse edges e0f 00e1 are injected in v0. Then, for
the next rs steps, a set Y of r2s packets that want
to traverse edges e0f0e1 are injected in v0. The core
of the proof consists in delaying the packets in X



Fig. 2. Baseball network GB used in [11, Theorem 2.10] to show
instability of FIFO.

Fig. 3. Extended baseball network GE used in [18, Theorem 4.1]
to show instability of FIFO, regardless of how the paths for
packets are chosen.
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using single-edge injections until packets in Y are
ready to traverse edge f 00. Therefore, the packets
that cross f 00 and f0 will merge in v1. By injecting
new packets in v1 that want to traverse e1, they show
that the queue of e1 will contain r3s + r2s/(r + 1)
packets, which is greater than s if r P 0.85. Since
the graph is symmetric, one can repeat the same
process to increase the queue size in v0, and then
also repeat the whole process with a value s 0 > s.

The result obtained by Andrews et al. triggered
an effort to reduce the injection rates for which
FIFO is unstable. Dı́az et al. [27, Theorem 3]
decreased the instability bound to 0.8357, Kouko-
poulos et al. [28, Theorem 3] lowered it to 0.749,
and Lotker et al. [29, Theorem 3.17] brought it
down to 0.5. The definitive result that determines
the minimum injection rate for which FIFO is
unstable was given by Bhattacharjee et al. [30, The-
orem 5.4]. Specificaly, they proved that FIFO can be
unstable at arbitrary low-load injection rates. The
main idea for the proof was the construction of a
gadget which, assuming certain initial conditions,
allows only a small fraction of packets to pass
through it for a long period of time. In particular,
the fraction of packets which escape is bounded
by k/(1 + r)k, where k is a parameter of the gadget
and can be increased arbitrarily. The network is
constructed using this gadget and the adversary
works in phases. At the beginning of a phase, it is
assumed that there are some packets waiting to pass
through a column of gadgets. Using each gadget in
the column more packets are generated which want
to ultimately traverse through a second column.
Additional copies of the gadget are used to delay
and synchronize these new packets so that, at the
end of the phase, there are more packets waiting
to traverse the second column than there were wait-
ing at the first column at the beginning of the phase.
Applying this inductively leads to instability. One
feature of the network constructed in the above
mentioned instability proof is that its size is polyno-
mial in 1/r, which is quite strong. However, this is
unavoidable, since it has been shown (see Section
6.2) that, regardless of the network topology, FIFO
is stable if r < 1/(d � 1), where d is the network
diameter (i.e., the largest number of links crossed
by any packet). Clearly, this implies that, to obtain
a FIFO-unstable network for a small injection rate,
one must increase the network diameter.

The previous instability results also raise the
question as to what happens if the path each packet
must follow is chosen by a routing algorithm instead
of being dictated by the adversary. Let us, for
instance, consider the baseball network in Fig. 2
and not route any packet throughout the links f 00
and f 01. Clearly, this network will behave exactly like
a ring network. But since any ring is FIFO-stable
against AQM (see Section 6.1), then the baseball
network in Fig. 2 will also be FIFO-stable, contrary
to what happens if the adversary dictates the routes.
This evidences the fact that the ability of the adver-
sary to select the routes that packets must follow
could make a difference. However, that fact does
not imply that FIFO is stable against AQM when
the routes are not chosen by the adversary. Indeed,
it was shown by Andrews et al. [18, Theorem 4.1]
that there is a network GE (see Fig. 3) and an
AQM adversary A of rate r P 0.9 such that
ðGE;A; FIFOÞ is unstable, regardless of how the
routes for the packets are chosen. The proof is sim-
ilar to the proof in [11, Theorem 2.10] to show insta-
bility of FIFO. It breaks the packet injections into
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phases. Inductively, it is assumed that at the begin-
ning of phase j a set S of s packets with destination
u0 is in the queue of e0. For the first s steps, a set X

of rs packets are injected at node v0 with destination
u1. These packets are held up at e0 by the packets in
S. Furthermore, rs packets are injected at w0 with
destination u0. These newly injected packets get
mixed with those of S into the set S 0. At the end
of the first s steps, rs packets from S 0 are at f0.
For the next rs steps, a set Y of r2s packets are
injected at node v0 with destination u1. These pack-
ets are held up at e0 by the packets in X. At the same
time, packets are injected at w0 with destination u00
at rate r. These packets delay the packets from X

that are routed through f 00. Hence, at most rs/
(r + 1) packets of X cross f 00 and, at the end of these
rs steps, a set X 0 � X of at least r2s/(r + 1) packets
are still at w0. Finally, for the next jX 0j + jYj steps
the packets in X 0 and Y move forward, and merge
at v1. Meanwhile, packets are injected at v1 with des-
tination u1 at rate r. In the end, the number of pack-
ets at v1 with destination u1 is at least r3s + r3s/
(r + 1). For r P 0.9, r3 + r3/(r + 1) > 1. Since the
graph is symmetric, one can repeat the same process
to increase the queue size in v1, and then also repeat
the whole process with a value s 0 > s. Therefore, this
proves that one cannot hope to achieve FIFO-sta-
bility with general networks, even if we have the
freedom to choose the routes.

Regarding stability against PSM, it must be
recalled that the set of injection strategies in AQM

are more general than in PSM. This means that
instability against AQM does not directly imply a
similar result when considering PSM. The first
result regarding stability when considering PSM

was presented by Andrews in [31, Theorem 1],
where he proposed a network topology that exhibits
instability for a maximum injection rate of 1–
3 · 10�4, the analogous instability result being par-
allelized for AQM. Such a network consisted of a
cycle of seven gadgets, each one made up of 15 serv-
ers, partitioned into three columns. The proof was
performed by using a fluid network, and it was
argued that it is trivial to modify it for a non-fluid
network with discrete packets. The creation of insta-
bility involves a number of phases, where the aim
was to build up fluid in the left and right columns
of the gadget. By injecting fluid into each session
at a rate of 0 or 1/3 (i.e., the fluid is either on or
off) at given time intervals and using quite involved
calculations (derived using computer calculation),
he shows that it is possible to inject more fluid into
the system than the amount that is escaping. Then,
repeating the same process indefinitely, it is possible
to build up an arbitrary amount of fluid in the net-
work. In a subsequent work, Andrews extended his
instability result to arbitrary low injection rates [32,
Lemma 6], thus answering what was, for several
years, perhaps the most relevant open question
about FIFO stability. Obviously, since the stability
result for AQM also holds for PSM, the size of
the networks used to create instability was forced
to grow with the inverse of the injection rate (i.e.,
for all p 2 P : qp < 1/(d � 1), where d is the network
diameter).

• Open Issue #1: Whereas the above mentioned
instability results at arbitrary low injection rates
have, in some sense, closed an important ques-
tion regarding the stability of FIFO in general
networks, it must be noted that no restriction
was set on the way the adversaries injected pack-
ets into the network (other than satisfying either
the AQM or PSM specifications). Finding under
which conditions constraining the input traffic
makes FIFO stable seems to be an interesting
issue.

• Open Issue #2: In PSM, determining whether
FIFO is stable or not when the routes are not dic-
tated by the adversaries it is still open matter.

• Open Issue #3: Similarly, determining the mini-
mum injection rate for which FIFO is unstable
against AQM when the routes are not dictated
by the adversaries is still open.

6. Stability results

The fact that FIFO is not a stable policy under
all circumstances does not imply that such a policy
could not be stable under some conditions. In this
section, we present the most relevant directions that
have been used to approach the stability of FIFO
under adversarial models.

6.1. Stable topologies

DAGs: The first results regarding the stability of
FIFO in particular network topologies were
achieved by Cruz in [14, Theorem 4.1]. He proved
that any directed acyclic graph or DAG is WC-sta-
ble against PSM, where WC denotes any work-con-
serving packet-scheduling protocol (remember that
a scheduling protocol is said to be greedy or
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work-conserving if it cannot be idle as long as there
is at least one packet queued). This result was
extended to AQM by Borodin et al. in [12, Theorem
1]. In the case of PSM, the known upper bounds on
queue sizes and delays of packets are exponential in
the length of the longest path in the network and, in
the case of AQM, in the number of edges.

Trees: The above mentioned bounds for DAGs
can be improved when considering rooted tree net-
works (which are a special case of DAG). In this
case, the queue sizes and the packet delays are linear
in the length of the longest path in the network [12,
Theorem 1], when considering both PSM and
AQM.

Rings: In [33, Theorem 1], Tassiulas and Georgi-
adis proved that unidirectional n-node ring topolo-
gies are WC-stable against PSM, evidencing that
cyclicity is not, by itself, a problem to achieve stabil-
ity. Later, Andrews et al. [11, Theorem 3.7]
extended that result to AQM and showed that the
queue size is also linear on the number of nodes in
the ring. More precisely, there are never more than
(b + 1)n/(1 � r) packets in the system that require
any given edge, and the maximum number of steps
a packet spends in the system is O(bn/(1 � r)2)
(where (b, r) are the parameters that characterize
the AQM adversary).

In Table 1, we summarize the upper bounds on
the queue sizes of servers and on the maximum
end-to-end delay of packets found for the above
mentioned network topologies.

6.2. Network structure

Network stability has been also studied from the
point of view of the network structure.

By taking into account information on the largest
number of links crossed by any session in the net-
work, denoted d, Charny and Le Boudec [34, Theo-
rem 1] proved that if the load condition is lower than

1
d�1

(i.e., for all p 2 P: qp < 1/(d � 1)), then FIFO is
stable against PSM. Furthermore, they also showed
Table 1
Upper bounds on the queue size and the end-to-end packet delay for F

Model DAG TREE

Queue size Packet delay Queue size

PSM O(cd) O(cd) O(d)

AQM O(2m�1) O(2m�1) O(d)

The parameter n is the number of nodes in the ring, d is the length of the
and c P 2.
that 1
d�1

is a tight bound, in the sense that if the load
condition overpasses 1

d�1
, then for any value of the

delay d, there exists a network with a maximum
diameter d where the delay of some packet exceeds
d. The same bound was obtained by Zhang et al.
[35, Theorem 1] by employing a technique based
on bounding the maximum delay experienced by
any packet at each server.

An analogous result for AQM was achieved by
Lotker et al. [29, Theorem 4.3]. Namely, they
proved that any network is FIFO-stable against
AQM if the adversarial injection rate r is lower than
1
d (in this case, d means the network diameter). Such
a bound was reduced to 1

d�1
by Echagüe et al. [36,

Theorem 3.1], also showing that the worst-case
end-to-end packet delay is bounded above by d(b/
(1 � r(d � 1))), where (b, r) are the parameters that
characterize the AQM adversary. The proof of this
last stability result is based on finding the conditions
that bound the maximum time interval a packet
takes to cross a server. If we denote by ai

s the time
instant that packet i arrives at its sth server and
denote by Qi

s the time interval packet i takes to cross
its sth server, then we have that Qi

s 6 rðai
s � a1Þþ

b� ðai
s � tBÞ, where a1 is the injection time in the

network of the oldest packet present in the sth ser-
ver at time instant ai

s and tB is the last time no later
than ai

s that no packet was scheduled by the sth
server. Making some algebra, the previous inequal-
ity becomes Qs

i 6 rdQþ b (where Q ¼ maxi;sQ
s
i ),

which implies that if r < 1/(d � 1) then Q <1.
As can be readily observed, the stability bound

for AQM coincides with the tight bound found for
PSM. Thus, since PSM is more restrictive than
AQM, this implies that 1

d�1
is also a tight bound

for AQM. To show an example of the guarantees
provided by this result, observe that the diameter
of the baseball network in Fig. 2 is 5 (e.g.,
f0e1f1e0f 00). Then, if the adversarial injection rate is
below 0.25, the baseball network is FIFO-stable
against AQM. Similarly, if the maximum sum of
the rates of sessions that cross any node is lower
IFO under DAG, TREE and RING topologies

RING

Packet delay Queue size Packet delay

O(d) O(n) O(n)

O(d) ðbþ1Þn
ð1�rÞ O bn

ð1�rÞ2

� �

longest path in the network, m is the number of edges in the graph



V. Cholvi, J. Echagüe / Computer Networks 51 (2007) 4460–4474 4469
than 0.25, the baseball network is stable against
PSM.

By considering a scenario where each link capa-
city may take on integer values from [1, C] with
C > 1, which may or may not vary over time (such
a scenario was introduced by Borodin et al. in [37]
to study stability of some protocols when the link
capacity is changing dynamically), Koukopoulos
et al. [38, Theorem 15] proved that any network is
FIFO-stable against AQM if the adversarial injec-
tion rate r is lower than 1

Cd. That is, the performance
bound in the dynamic setting has as expense a mul-
tiplicative factor of C.

Koukopoulos et al. also studied the problem of
the stability of FIFO by considering other parame-
ters that characterize the network structure, in addi-
tion to the network diameter. In [39, Theorem 4.1],
they showed that FIFO is stable against AQM if the
adversarial injection rate is lower than or equal to
rG, where rG is a real number in (0, 1) satisfying
the equation r2

G

Pd�1
i¼0 ðaþ rGÞi ¼ 1=p, d being the

network diameter, p the minimum number of
edge-disjoint paths that cover the network and a
the maximum number of ingoing edges in a vertex
in the network.
6.3. Pathwise constant injection rates

It is known that, even for arbitrary low injection
rates, FIFO can be unstable against both PSM and
AQM (see Section 5). However, one may ask if there
are situations, regarding the injection rates, that
make FIFO to be stable, either against PSM or
AQM.

Consider the case where the long-term injection
rate for each session is constant. More formally,
when the number of packets injected by a session
p during time interval [t1, t2) is bounded not only
by Eq. (4) but also by

Apðt1; t2ÞP qpðt2 � t1Þ � r0p; ð8Þ

where r0p P 0.
With this type of injection rates (usually called

pathwise constant injection rates), Gamarnik [15,
Theorem 5] showed that FIFO is stable against
PSM. For the proof, he proved that, given a system
ðG; PSM=AQM ; FIFOÞ, if its associated adversarial
fluid model (as defined in [15]) is stable then the sys-
tem itself is also stable [15, Theorem 4]. Combining
this with Bramson’s result [40] that shows that
FIFO solutions are stable in fluid networks with
pathwise constant arrival rates, Gamarnik states
that FIFO is stable against PSM. A consequence
of this previous result is that, combined with
Andrews’ instability result in [31, Theorem 1], it
means that FIFO exhibits non-monotonicity prop-
erties in PSM: for pathwise constant injection rates
we have stability, but if the adversary can occasion-
ally reduce some session rates then we can also have
instability.

6.4. Interfering sessions

Another different way to approach stability in
PSM considers how the paths followed by the traffic
sessions interfere with each other. The route interfer-

ence number of a traffic session p, denoted RINp, is
defined as the number of other traffic sessions whose
paths interfere with the path followed by p, counted
with multiplicity if some sessions share several dis-
tinct sub-paths along the same path. Chlamtac
et al. [41, Corollary 1] proved that if, for each ses-
sion p, the interpacket time between any two consec-
utive packets in the same session is at least RINp

(i.e., for all p, qp 6 1/(RINp + 1)), then

1. Any network is FIFO-stable.
2. The end-to-end queuing delay for a given traffic

session p is bounded by its RINp.
3. The backlog at any queue is bounded byP

i2IN i �miniN i, where I is the number of input
links in the queue and Ni is the number of ses-
sions entering the node via input link i.

The essence of the proofs consisted in showing
that, at any given time, there is at most one packet
per flow present in each queue. Then, the above
mentioned results follow almost directly.

In a subsequent work, Boudec and Hebuterne
[42, Theorem 2.3] reduced the backlog queue bound
to
P

i2I N i �maxiN i, instead of
P

i2IN i �miniN i.
Essentially, the same result was found indepen-
dently by Zhang [43, Theorem 2], who also analyzed
the tightness for a multipoint-to-point tree topology
[43, Theorem 3]. Fig. 4 illustrates with an example
the concept of route interference.

• Open Issue #4: Clearly, the above mentioned
interpacket condition is not tight, in the sense
that, in some circumstances, it is possible to
increase the injection rate and still preserve the
network stability. For instance, in Fig. 4, the
three sessions could inject up to a rate of 1/3,



Fig. 4. In this network, RIN1 = 4, RIN2 = 4 and RIN3 = 2.
Therefore, if session 1 and session 2 inject up to a rate of 1/5, and
session 3 injects up to a rate of 1/3, this network is FIFO-stable.
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which is more than what is permitted by the cur-
rent interpacket condition. A challenging issue is
to find how to relax it and still preserve network
stability.
Fig. 5. This network contains cycles and, therefore, may be
unstable. However, if we prohibit turns (v0,w0,v1) and (v1,v0,w1)
and turns of the (x,y,x) form, then no cycles can occur and
consequently the resulting network will become FIFO-stable.
6.5. Transforming networks into FIFO-stable

The previous results presented features that, in
some sense, are intrinsic to the networks under
study. However, it is possible to implement, on
top of any given network, a virtual one emulating
a FIFO-stable topology and use it for the communi-
cation between servers. Bearing this in mind, a sim-
ple way to transform any network into a stable
topology is to construct a virtual ring, and use only
links belonging to the ring. However, this does not
appear to be a good solution, since it will greatly
affect the system’s performance. A more scalable
solution consists in implementing a virtual DAG.
But this does not guarantee bidirectional graph con-
nectivity among the nodes.

One technique that has been proven to be very
convenient for transforming any network into
FIFO-stable consists in prohibiting only certain
carefully selected turns within the original network.
The concept of turn was introduced by Schroeder
et al. in [44] and it is like a triplet of nodes connected
by two links; a prohibited turn (a,b,c) would forbid
the forwarding of a packet from link (a,b) to link
(b,c) (and vice-versa). Of course, it is necessary to
take care to choose the turns that guarantee that
the resulting topology will become FIFO-stable,
while also preserving network connectivity. The
routing of packets can be performed by using a
routing protocol, such as Turnnet [45], which has
been specially designed for such a type of network.

Taking the turn-prohibition approach, in [46]
Starobinski et al. devised an algorithm that, while
preserving network connectivity, breaks all the
existing cycles. Therefore, the resulting topology
will behave like a DAG, which is FIFO-stable
against AQM (see Section 6.1). Fig. 5 illustrates
how to transform a network topology into a
FIFO-stable network by using turns, while also pre-
serving network connectivity. In addition, they also
showed that the maximum number of forbidden
turns is bounded by 1/3 of the total number of
turns. In a subsequent paper [47], Starobinsky and
Karpovsky presented another algorithm (also based
on forbidden turns) that allows some of the nodes in
a given spanning tree to be replaced by turn-based
nodes without creating any cycles. However, in this
case the maximum number of forbidden turns
increases up to 1/2 the total number of turns.

One drawback of the previous algorithms is that
they are centralized. Therefore, to implement them,
it is necessary to know the whole network topology.
In [48], Echagüe et al. presented a fully distributed
turn-based algorithm that prevents the occurrence
of cycles and prohibits at most 1/2 the total number
of turns. This algorithm was later extended to allow
multiple nodes to initiate it in an independent man-
ner, and it can be used to cope with new nodes
entering the system as well as with node crashes.

Finally, we remark that the previous algorithms
are designed to break cycles of nodes. Therefore,
paths cannot pass through the same node more than
once. Note that such a type of paths usually called
simple paths, are a slightly restrictive version of
AQM paths.

• Open Issue #5: It would be useful to have a dis-
tributed turn-based algorithm that works in a
collaborative manner (i.e., where several parts
of the network are transformed in an indepen-
dent fashion and then merged to obtain the full
cycle-free network).



Fig. 6. Set of forbidden subdigraphs for deciding FIFO-stability.
A dotted line indicates a simple path of an arbitrary number
(including 0) of edges. If a path has 0 edges, the vertices at its ends
coincide.
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• Open Issue #6: An approach that has not yet
been considered is how to obtain FIFO-stable
topologies that are not necessarily cycle-free.
For instance, it is known that the ring is FIFO-
stable, even though it has cycles. Perhaps, in
some circumstances, these topologies could per-
form better than cycle-free ones.

7. Deciding FIFO-stability

In this section, we consider the problem of decid-
ing which networks are FIFO-stable and if it is pos-
sible to detect them from the knowledge of the
network’s topological structure.

Since to decide the stability of a network against
an adversarial model it is necessary to implicitly
quantify over all adversaries and all protocols, it
is not clear, a priori, whether stability is a decid-
able property. Surprisingly, Andrews et al. [11,
Section 3.2] showed that, contrary to what one
could expect, WC-stability against AQM is a decid-
able property. The approach followed to obtain
the above mentioned result was to prove that if a
network G is WC-stable against AQM, so is every
minor of G. A graph is a minor of G if it can be
obtained from G by a sequence of operations
involving edge deletions, vertex deletions, and edge
contractions (i.e., by merging endpoints together).
Then, they used the results obtained by Robertson
and Seymour [49–51] to prove the existence of an
algorithm to decide WC-stability that runs in time
O(n2) (n being the number of nodes in the net-
work). However, they did not provide an explicit
characterization of the networks that are WC-
stable.

The first explicit algorithm to decide WC-stabil-
ity was proposed by Goel in [52, Theorem 2.8].
Namely, he constructed two simple directed graphs
that were unstable, and proved that any graph G is
WC-stable against AQM if and only if none of
these unstable graphs is a minor of G. In spite of
the obvious relevance of this result, a compelling
aspect of it is that it is only valid on a slightly
restrictive version of AQM. Namely, the paths cho-
sen by the adversaries must be simple paths (i.e.,
paths where all the nodes, and necessarily all the
edges, are different).

In [53, Theorem 3.1], Gamarnik focused on the
stability of undirected graphs, proving that any con-
nected undirected graph is WC-stable if and only if
it has, at most, two edges. Although now adversar-
ies do not need to use simple paths but all paths
allowed by AQM (i.e., edges must be different but
not nodes), he also used a slightly restrictive version
of AQM in which each undirected link can be
crossed in one direction in one time step, contrary
to what happens in the original specification of
AQM where each link can be traversed, at the same
time, in each direction.

Following the same approach as Goel, in [54]
Álvarez et al. attained an explicit polynomial time
algorithm for deciding WC-stability against the ori-
ginal specification of AQM. Specifically, they con-
structed three simple directed graphs, and proved
that any graph G is WC-stable against AQM if
and only if no extension of these unstable graphs
is a minor of G.

At this point, we note that the previous results
apply to all work-conserving policies and not only
to FIFO, which is also a work-conserving policy.
Regarding the stability of the particular FIFO
scheduling policy Weinard, based on previous
work of Blesa [55], proposed an algorithm to
decide FIFO-stability in polynomial time [56, The-
orem 2]. More particularly, the algorithm decides
that any given graph G is FIFO-stable against
AQM if and only if none of the three simple for-
bidden graphs (A, B and C) in Fig. 6 is a minor
of G. He also proposed an algorithm to decide sim-
ple path FIFO-stability (i.e., FIFO-stability when
the paths are simple paths). For instance, the base-
ball network in Fig. 2 is FIFO-unstable since the
forbidden subdigraph A is a minor of GB. In turn,
both DAGs and trees are FIFO-stable, since they
do not contain any of the three forbidden sub-
digraphs.

As a consequence of the previous result, it has
been evidenced that there are FIFO-stable networks
that are not WC-stable [56, Corollary 1] (until
recently, the only FIFO-stable networks that had
been observed were also WC-stable). Fig. 7 shows
a very simple network that is FIFO-stable but not
WC-stable.



Fig. 7. Example that illustrates a FIFO-stable network, usually
called U1, which is not WC-stable. Specifically, there is an AQM

adversary A of rate r > 0.841 and a scheduling policy NTG-LIS

(in NTG-LIS, the highest priority is assigned to the packet that
still has to cross the smallest number of edges, solving ties by
giving priority to the packet that has been in the system the
longest time) such that ðU1;A;NTG� LISÞ is unstable [54,
Theorem 3].
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• Open Issue #7: An interesting open problem is to
determine whether or not there is an efficient
algorithm that can decide FIFO-stability at
reduced injection rates.

• Open Issue #8: Contrary to what happens in the
case of AQM, deciding FIFO-stability against
PSM is an issue that has not been tackled at
all. Thus, parallelizing Weinard’s result and find-
ing an efficient algorithm to decide FIFO-stabil-
ity against PSM seems a natural direction to
follow.

8. Concluding remarks

Undoubtedly, network stability is an important
issue that, in recent years, has attracted the atten-
tion of many researchers. Such interest comes from
the need to ensure that, as the system runs for an
arbitrary length of time, no server will suffer an
unbounded queue buildup.

In this survey, we have presented, in a structured
manner, the recent advances concerning the stability
of FIFO in packet-switched networks. Further-
more, we have also identified some directions open
to future research. Although the results obtained
are mainly theoretical, they have contributed to
form a core of fundamental results, and it is a mat-
ter of time before such results will be taken into
account for more practical issues, such as the design
of network protocols, the analysis of multiprocessor
systems, and so forth.

The current state of the art regarding the stability
of FIFO constitutes a first step toward the develop-
ment of a more mature theory of stability. We think
that in the next few years many more new results
will appear, especially in the form of identifying sit-
uations where FIFO is stable (e.g., new forms of
injection rates, networks structures, etc.), together
with work carried out on devising techniques for
guaranteeing stability.
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