
ABC/ADL: An ADL Supporting Component Composition

Hong Mei, Feng Chen, Qianxiang Wang, Yaodong Feng
Department of Computer Science and Technology, Peking University, Beijing 100871, P.R.China

{meih, chenfeng, wangqx, fengyd}@cs.pku.edu.cn

Abstract
Architecture Description Language (ADL) is

one of the keys to software architecture research,
but most attention was paid to the description of
software structure and high-level analysis of some
system properties, while the ability to support
refinement and implementation of Software
Architecture (SA) models was ignored. In this paper,
we present the ABC/ADL, an ADL supporting
component composition. Besides the capability of
architecting software systems, it provides support to
the automated application generation based on SA
model via mapping rules and customizable
connectors.

Keywords: Software Architecture, Architecture
Description Language, Component Composition

1. Introduction

As an effective and practical way to solve the
software development crisis, component-based
software reuse is an important research area in
current software engineering. Software component
technology primarily includes three interrelated
processes: component development, component
management and component composition. Among
these three processes, component composition is
regarded as the most important and difficult
[Cle-96a]. A systematic and integrated approach to
guide the process is desired but still under research.

In nature, software architecture provides a
top-down mechanism for component-based
software reuse. Originating from the consensus of
the importance of the overall software structure,

research on SA aims at making the architecture of a
system explicit, dealing with the high-level design
issues such as gross organization and control
structure, assignment of functionality to
computational units, and high-level interactions
between these units [All-94]. All these facilitate the
component composition process. But current SA
research pays most attention on how to effectively
describe system structure and reason the behaviours
of software, ignoring how to guide the development
of applications. Therefore, as the basis of software
architecture research, most ADLs lack the ability to
help refinement and implementation of the
high-level design model.

In order to utilize SA more effectively and
efficiently in the component-based software
development, we propose the architecture-based
component composition (ABC) approach that
employs SA descriptions as frameworks to develop
components as well as blueprints for constructing
systems, while using middleware as the runtime
scaffold for component composition [Hon-00]. An
ADL, called ABC/ADL, is also defined to support
component composition, which is essential for the
ABC approach.

In addition to basic abilities to architect
software systems, ABC/ADL provides other
features that have value in component-based
software development, e.g., explicit differentiation
between type and instance, customizable
connectors and pluggable styles, etc. Moreover,
mapping rules from ADL description to
implementation on COTS middleware were
established and a supporting toolkit, ABC Tool, has
been implemented.

The rest of this paper is organized as follows:

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

section 2 introduces the primary features of
ABC/ADL, section 3 describes the constructs of
ABC/ADL, section 4 illustrates the supporting
toolkit, section 5 discusses some relate work, and
the last section concludes this paper.

2. Features of ABC/ADL

This section explains the basic thoughts on
ABC/ADL, including the component model and
design principles, and introduces its primary
features that are valuable for component-based
software development.

In order to explain ABC/ADL clearer, an
example of a distributed scheduling system from
[Tru-01], shown in Figure 1, is used in the rest of
this paper.

In this system, each agenda is on behalf of a
client. When a client wants to make a meeting with
others, he should send the request via his agenda to
Dating Manger. Then the scheduling manager will
carry out a negotiation among invitees via their
agendas. Before the client requests services of the
scheduling manager, he should be authenticated and
authorized. Moreover, the client can refer to the

rule manager that provides a computer-aided
decision-making to arrange his appointments.

2.1 Component model

A component model is the kernel in software
component technology. A development process
usually involves diverse kinds of personnel and can
be divided into several sub-processes that treat
components from different perspectives and at
different detailed levels. As a result, different
models should be provided to meet these needs.
[Mei-01] proposed classification of current
component models according to their usage: model
for component description/classification; model for
component specification/composition; model for
component implementation. In ABC, the
component model is defined in Figure 2 to meet the
requirements of composition.

This component model is divided into two parts:
external interfaces and internal specification.
External Interfaces describe services that a
component provides to other components and
dependencies that are requested by the component

 m

ICFEM'02. LNCS 2459, pp 38 - 47. 2002
Figure 1: Architecture of distributed scheduling syste

Internal Specification
Service A Dependency A

Service B Dependency B

Figure 2: Component Model in ABC
itself. Moreover, external interfaces also define the
component’s contract with its environment and
communication protocol with other components.
Internal specification specifies constraints on
component’s interior structure, semantic model of
the component and some nonfunctional features,
e.g., security, throughput limitation.
 Based on this model, ABC/ADL depicts the
component at three layers: Basic layer includes
syntactic descriptions of components and
connectors, which primarily describes the
operations in component and connector interfaces.
Behavior layer includes semantic specifications and
constraints on component functions, behaviors and
nonfunctional features. Protocol layer includes
definitions of contracts for the interaction between
components and their environment, and
communication protocols between components
presented by connectors.

2.2 Design principles

ABC/ADL follows some sound design
principles:
 Balance between simplicity and

understandability - e.g., we adopt a natural
language like syntax to facilitate
understanding with a visual modeler to ease
design.

 Concision – no more constructs that do not
serve for the component composition exist in
order to keep the language simple.

 Open framework for extension - we provide an
open syntax and semantic framework that can
be extended with existing or emerging
programming and specification languages, as
well as an API for 3rd party tool venders to
access specification information.

ABC/ADL uses a three-layer structure to
support the extensible framework. The
meta-language layer provides abstract constructs to
define templates and architectural styles. These
constructs are embodied in language definition, and
can only be extended by language designer. The
definition layer provides concrete language
constructs to define components, connectors, and
generic architectures. All the constructs in
definition layer must be defined by the constructs in
the meta-language layer. The instance layer
provides abstractions to define the interconnection
of component and connector instances, which must
be defined by constructs provided in
definition-layer. To extend the ABC/ADL, users can
define new constructs of definition layer based on
constructs in meta-language layer.

2.3 Type and instance

ABC/ADL distinguishes component
definitions and instances clearly. The definition
defines common features of a type of component or
connector and the relationship between types, while
instances are instantiated from definition and used
to construct the system. This separation enables us
to handle architectural issues both at the definition
level like constraints (what types of components
and connectors can connect to each other.), and at
instance level like multiplicity (one server can be
connected by 0...n clients) and dynamic.

Besides, the methods in the component’s
interfaces are divided into two groups: type related
methods and instance related methods. Because we
notice that some methods are bound to the
component type such as creation and finding, while
others should be executed by instances. This
classification depicts the component more

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

accurately, and helps in understanding and
developing applications. It also facilitates
transforming ADL description into Enterprise Java
Bean (EJB) [EJB-99] and CORBA Component
Model (CCM) [CCM-00] models. To release the
users from repeated work, ABC Tool can
automatically add some common type-methods
when generating new components.

2.4 Architecture, Composite Component and

Component Evolution

In ABC, architecture is a group of
interconnected component and connector instances
that comply with the constraints of architectural
styles. It models the application’s overall structure
and is the blueprint for composing components. A
component can have its own interior architecture.
Such components are called composite components
(in fact, an application in ABC/ADL is a composite
component). With this concept, we can refine the
architecture gradually and make the design process
more controllable. Moreover, composite component
can be reused and composed as well, that is to say,
we can reuse and compose design artifacts at a
high-level.

In order to enhance the capability of system
refinement and evolution, there are two kinds of
component type relationships in ABC/ADL. The
first is subtyping (a new component inherits and
extends the old one’s interfaces) and the second is
refinement (the new component and the old one are
identical in interfaces while different in interior
architecture).

2.5 Pluggable style

Style is another important concept brought by
SA. An architecture style is determined by the
following [Bas-98]: a set of component types that
perform some function at runtime, a topological
layout of these components indicating their runtime
interrelationships, a set of semantic constrains, and
a set of connectors that mediate communication,
coordination, or cooperation among components.

A number of engineering benefits can be

obtained by introducing style: First, it provides a
template to formalize architectures in a uniform
way and establishes the vocabulary used in
describing systems, thereby simplifying the
communication among designers. Second, it
provides a unified semantic base through which
different stylistic interpretations can be compared
[Abo-93]. Third, the study of architectural styles
can guide developers to choose proper architecture
in practice since different styles possess different
features. Some efforts towards the style handbook
have been made. For example, in [Bas-98], a set of
architectural styles was cataloged and some
empirical rules figured out for choosing styles. In
some other efforts, the styles in use are limited to
simplify system reasoning and facilitate code
generation, e.g., Unicon [Sha-95] and C2 style
[Tay-96]. As a more general solution, based on its
open framework, ABC/ADL allows users to define
their own styles according to their experiences and
specific requirements.

2.6 Complex Connector

 Although the connectors are viewed as the
first-class entities in SA, they are simple and have
no interior structure in most SA study. However, in
practice, communication between components may
be quite complex, especially at high-level of
abstraction, e.g., FTP protocol between server and
client. To model such interactions, ABC/ADL
introduces complex connectors, which are the
connectors that provide some functionality and
have interior architectures, can be refined, and
finally implemented just like composite
components. Users can build up their own
connector library and express their systems more
effectively. In the dating system, the connector
between agendas and the scheduling manager may
be considered as a complex connector that has the
function of authentication and authorization.

2.7 Aspect component

Recently, research on advanced separation of
concerns has become an attractive topic, e.g.,
aspect-oriented programming (AOP) [Kic-97] and

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

subject-oriented programming (SOP) [SOP-98].
Aspect is a way to encapsulate and modularize
crosscutting concerns that used to be scattered over
the whole system, such as security, logging, etc.
[Kic-97]. Implementations can be more modular,
easier to understand and better aligned with
requirements with the application of aspect. AOP
and aspect-oriented framework (AOF) [Tru-01]
[Pin-01] were proposed and have had some
successful applications. Application servers such as
J2EE have implemented some common
crosscutting features as system services, including
transaction, security, logging, and so on. In
substance, such services can be best expressed as
aspects. We introduce aspect into ABC/ADL as a
special kind of component, and a special kind of
composition, named weaving, is also defined. For
the scheduling system, the connector between
agenda and dating manager is the connector with a
security aspect.

3. Constructs in ABC/ADL

In this section, we discuss the basic constructs in
ABC/ADL more detailedly, using the example of
the scheduling system.

3.1 Component and connector

Components and connectors are building
blocks in SA. In ABC/ADL, a component or
connector must be based on a type of architecture
style template to extend to its own specification.
Architecture style offers addition constraints on
components and connectors to avoid mismatch. The
style of component determines the style of
interfaces provided by the component. To
accommodate different requirements, a component
can integrate several styles.

Table 1 shows part of the ABC/ADL
description of the dating manager component based
on Blackboard style defined in Table 5:
Component DatingManager is BLACKBOARD.BlackBoard {

Interfaces {

provide player DatingManager is BlackBoard.Entry {

 type-method{

 DatingManage findByPrimaryKey(Object id);}

 instance-method{…}

}

request player Agenda is BlackBoard.Notification {

type-method{…}

instance-method{…}

}}

Attributes {…}

Properties {…}

Dependencies {…}

SemanticDescription{…}

I

that
metho
type
templ
Introd
transf
suppo
wheth
requir
relatio
gener
kinds
instan

O
defini
comp
code
COTS
metho
namel
define
async
return
excep
be thr

A
comp
Prope
the c
limit.
prope
constr
sectio

ICFEM'02. LNCS 2459, pp 38 - 47. 2002
Table 1: Description of dating manager
nterface specification is composed of players
incorporate head declaration and several
d specifications. Head declaration defines the
of the player (provide or request) and the
ate style on which the player must be based.
ucing the type of players facilitate automated
ormation from SA to realization, that is to say,
rting tools could use this information to know
er the interface is providing services or
ing services, and then build up proper
nships between callees and callers while

ating systems. Each player consists of two
 of methods: type-method and
ce-method, as discussed in section 2.3.
n the definition of method, we refer to the

tion of CORBA/IDL for the purpose of
atibility and facilitating the generation of glue
to construct and deploy the system based on
 middleware. In method specification, a
d is described as comprising of three parts,
y prototype, kernel and exception. Prototype
s whether the method is synchronic,
hronous or one-way; kernel part defines the
 type, method name and parameters;
tion describes the type of exceptions that can
own by the method.
ttribute section designates the attributes the

onent will use in the interaction with others.
rty section describes additional information of
omponent, e.g. security, version, throughout
A property is composed of property name,

rty type and property value, which are
ained by the component style. Dependency
n describes the relationship of dependency

between the methods in the provide players and the
methods in the request players. And semantics
description section describes the semantics
information of the component. (Refer to section 3.4
for details.)

The specification of connectors has a similar
structure with components, but usually simpler. The
ABC/ADL description of a connector of dating
system is shown in table 2.
Connector J2EEConnector is DEFAULT.Connector{

Interfaces {

 provide player Callee is Connector.Callee{*}

request player Caller is Connector.Caller{*}

}

Properties{

 Platform = J2EE;

}

Dependencies{

 Callee depends on Caller;

}

SemanticDescription {

 Caller includes Callee;

}

}

In this specification, the use of “*” in the

player definitions denotes that the player’s methods
are the same as the component player that connects
to it.

Besides, users can define the aspect
components and attach them to components and
connectors. Aspects are special components in
ABC/ADL, so the definition is the same as the
definition of components. But it should be attached
to target entity via weaving composition. Table 3
shows the connector with the security aspect:
Component SecuredAspect is DEFAULT.Aspect{

Interfaces {

 provide player PreInvocation{

 instance-method {BOOL authorize()}

}

}}

Connector SecuredConnector is DEFAULT.Connector {

Interfaces {

provide player Callee is Connector.Callee{*}

request player Caller is Connector.Caller {*}

}

Weaving {

SecuredAspect.authorize weaves Callee.*;}

}

3.2 Architecture

Table 4 shows the ABC/ADL architecture
description of the Dating System.
Architecture DS_Architecture{

uses{

 Component agendas : Agenda[];

 Component datingManager : DatingManager;

 Component ruleManager : RuleManager;

 Connector agendaToDatingManager :

SecuredConnector[];

 Connector agendaToRuleManager :

DefaultConnector[];

 Connector datingManagerToAgenda :

DefaultConnector[];

 Variable i : int;}

Config main{

 agendas[i].DatingManager connects

agendaToDatingManager[i].Callee

 agendaToDatingManager[i].Caller connects

datingManager.DatingManager

 agendas[i].RuleManager connects

agendaToRuleManager[i].Callee

 agendaToDRuleManager[i].Caller connects

ruleManager.RuleManager

 datingManager.Agenda connects

datingManagerToAgenda[i].Callee

 datingManagerToAgenda[i].Caller connects

agendas[i].Agenda}

SemanticDescription{ }

}

Component Dating_System is System{

 Structure {architecture DS_Architecture}

mapping {self.makeMeeting to

datingManager.makeMeeting}

}

 Ar
sections
compon
declared
either t
compon
Config
instance
is desc
describe
connect
links t

ICFEM'02. LNCS 2459, pp 38 - 47. 2002
Table 4: Description of Dating System

Table 3: description of Connector with Secured Aspect
Table 2: description of a connector of dating system
chitecture specification comprises two
. In uses section, all instances of
ents and connectors used in the system are
. These instances must be instantiated from
he types defined in the specification of
ents and connectors or built-in types.
section depicts the topologic layout of
s in the system, that is, the system structure
ribed here. Each item in config section
s a relation between a component and a
or, designating which component player
o which connector player. The relation

between components and connectors must conform
to the style constraint. Moreover, to improve
flexibility and adaptability, ABC/ADL allows a
system has multiple configurations, so in the
architecture specification, multiple config sections
can exist. Users can designate a configuration at the
late phases of the composition process according to
requirement.

In a complete system mode, an architecture
description will not be stand-alone, but should be
attached to some composite components using the
structure section in component specification. In
ABC/ADL, an application is a composite
component with the overall architecture, such as the
Dating_System component in the scheduling
system shown in Table 4. A subsystem or a part of
the system can also be a composite component to
make the design more understandable and reusable.
Besides, the interface of the composite component
is determined by its interior components. The
mapping section specifies how to connect the
interface of the composite component with its
internal components.

3.3 Style

As discussed in section 2.5, ABC/ADL
provides an extensible framework that allows users
to define their own styles instead of using built-in
styles. Table 5 shows the definition of Blackboard
style, which is used to express the Dating System.
Style BLACKBOARD_STYLE{

COMPONENT_TEMPLATE Blackboard {

 PROVIDE_PLAYER_TEMPLATE Entry {multicity=n};

 REQUEST_PLAYER_TEMPLATE Notification

{multicity=n};}

COMPONENT_TEMPLATE Client {

 PROVIDE_PLAYER_TEMPLATE Notification

{multicity=n};

 REQUEST_PLAYER_TEMPLATE Entry {multicity=1};}

//Here is no connector definition because this style

//uses default connectors

CONNECTION_SPEC {

 Client.Entry :: DEFAULT.Connector.Callee

 DEFAULT.Connector.Caller :: Blackboard.Entry }

CONNECTION_SPEC {

 Blackboard.Notification ::

DEFAULT.Connector.Callee

 DEFAULT.Connector.Caller :: Client.Notification }

}

 Ev
templat
specific
describ
and co
propert
the r
connec

3.4 Sem

 Fr
the sem
in ABC
of elem
word to
use for
natural
features
to know
constra
precise
verifica
on form
reasoni
architec

In
formal
provide
their o
with su
descrip
each of
natural
name
accordi
content
In our
module
relation
corresp
DatingM
UML-O
Componen

ICFEM'02. LNCS 2459, pp 38 - 47. 2002
Table5: Definition of Blackboard Style
ery definition of style includes component
es, connector templates and connection
ations. Component and connector templates
e the basic frameworks of the components
nnectors, including players and some

ies. And connection specifications restrict
elationship between components and
tors.

antic description

om above example codes, one can see that
antic description is not a standalone element
/ADL, but scattered over every specification
ents, using SemanticDescription key
 mark. The semantic description is trying to
mal methods to model, or, at least, use
language to describe, the behaviors and
 of the elements. Thus developers are able
 more beyond the interfaces and connection

ints, and construct the systems more
ly. Moreover, some automated system
tion and validation can be achieved based
al methods. In fact, the ability in system

ng is one of the advantages of software
ture approaches.

 ABC/ADL, we do not want to prescribe the
language to use. Instead, ABC/ADL

s an open framework for users to build up
wn specification of semantics information
pport of proper toolkits. Every semantic

tion section contains multiple segments,
 which uses a kind of formal language or
language. Before the semantic segment, the
of used language must be designated,
ng to which the analysis tool will pass the
 of that segment to corresponding module.
ABC tool, it is easy to plug new analysis
s into the toolkit, as well as set up the
 between language name and its
onding module. A semantics description of

anager is showing in Table 6, which use
CL to describe the actions of Agenda.
t Agenda is BLACKBOARD.Client {

…………..

SemanticsDescription

{

… …

OCL{

 Self.timetable is Sequence of TimeSlice

 Invariants {

Self.timetable->ForAll(t1, t2 |

t1 <> t2 implies t1.starttime >=

t2. endtime or t2.starttime >= t1.endtime

)

}

… …

}

 … …

}

}

4.

im
sho

pre
inc
use

off

It also accomplishes some transformation of
ABC/ADL, e.g. mapping SA description into UML
framework, generating IDL and Java code from
ADL description. In addition, it can automatically
construct applications from existing components
based on some COTS middleware specifications,
including CORBA and J2EE. Figure 4 shows its
main windows.

Before generating applications, the system
model will be validated. Because ABC/ADL
provides both structural and semantic information,
the system validating consists of three layers:
 Syntax layer: the SA model is checked to

avoid syntax errors.

ICFEM'02. LNCS 2459, pp 38 - 47. 2002
Table 6: Semantics Description of DatingManager
Tool Support

A prototype of ABC tool has been
plemented to support the ABC/ADL. Figure 3
wing its structure.

By hiding details of language, graphic
sentation is more understandable and able to
reases designing efficiency. ABC tool allows
rs to design applications in a visualized way by

ering visual representation for language elements.

 Implementation layer: component
implementations are checked to guarantee
compatibility with the specified platform and
type-matching check is also applied in
component invocation.

 Semantic layer: basic constraints on
components and connectors that are defined in
style are taken into account, and some features,
for example, deadlock-free, could be checked
if proper formal models and correspondingly
analysis modules are provided.

Figure 3 Structure of ABC Tool

5. Related Work

5.1 Other ADLs

There exist many kinds of ADLs for different
objectives, e.g., Rapide[Luc-95], Wright [All-97],
ACME [Gar-97] and Unicon [Sha-95].

Rapide is based on event-driven model in
order to support component-based development for
large-scale and multi-language systems. This ADL
presents the capabilities of architecting, analysis,
simulation and code generation, but doesn’t regard
connectors as first-class entities, which limits it
ability to describe applications.

Wright is regarded as one of he most
representative ADL. It adopts CSP to describe
behaviours so as to formally verify some aspects of
the architecture description. But, Wright is only a
language for specification and don’t support system
development.

UniCon is a step toward the system realization,
because it realizes a set of predefined connectors so

that makes it possible to generate system from
architecture. But it is limited for only the
predefined connectors can be utilized.

ACME is an architecture description
interchange language. Different ADLs provide
complementary capability for architectural
development and analysis, but their
implementations are isolated and it is difficult to
integrate them. ACME provides a structural
framework for characterizing architectures, together
with annotation facilities for additional
ADL-specific information [Gar-97]. On the basis of
ACME, different ADLs can share a set of kernel
capabilities and set up their own capability via the
open framework. ACME can be used as a common
interchange format for architecture design tools
and/or as a foundation for developing new
architectural design and analysis tools. But ACME
is not a practical ADL to model application.
ABC/ADL benefits from the structure of ACME.

5.2 Advanced separation of concerns

Study on advanced separation of concerns
(SOC) reveals a new vision to software architecture.

Figure 4: Graphic Modeling

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

Traditional development approaches divide
applications into structural units, e.g., modules,
objects or components. Recent SOC approaches
such as adaptive programming, aspect-oriented
programming, composition filter, hyperspaces,
subject-oriented programming, etc., try to enhanced
the traditional ones by providing separation of
concerns along additional dimensions, beyond
structural units. For instance, aspect encapsulates
the crosscutting features in software to make the
implementation more modular [Tzi-01];
subject-oriented design and programming align the
design and implementation with the requirement,
keeping a good traceability [Sio-99]. ABC/ADL
also adopts aspect so as to architect applications
more accurately.

5.3 Component based software development

CBSD (Component-Based Software
Development) has become more and more
prevalent in industry. Based on the middleware and
specification of runtime component, it provides a

practical bottom-up approach to construct systems
from existing components. With the development
of CBSD technology, there emerge some widely
accepted runtime component models, e.g.,
enterprise java bean (EJB), CORBA component
model (CCM), Microsoft’s distributed component
object model (DCOM) and the newly web service
model. These models provide the foundation for
component development and composition.
ABC/ADL adopts some features of them such as
type methods and instance methods to enhance the
ability of description and narrow the gap to
implementation. But CBSD primarily puts
emphasis on the interoperability of components in
implementation layer, and lacks a systematic
methodology to guide the developing process. As a
result, it’s unable to help the component
composition at the higher level of abstraction,
which is just the strength of ABC/ADL.

6. Conclusion

This paper presents an architecture description
language supporting component composition,
ABC/ADL. ABC/ADL stresses on the capabilities
of refinement and realization of architecture, trying
to support component composition better. By
separating run-time and design-time configurations,
supporting composite components and complex
connectors, introducing aspects, it effectively
support the ABC approach, which employs SA
descriptions as blueprints for constructing systems
while using middleware as the runtime scaffold for
component composition. Besides, it provides an
open framework to allow user extend the language.
A supporting tool, ABC Tool, has been
implemented to visualize the modeling process,
analyze the ADL description and automate the
application generation.
 One of the future works is to setup an
XML-based framework for ABC/ADL. XML
provides a standard way to define the ADL,
facilitating understanding and transforming ADL.
Besides, it is easy to extend languages based on

XML, and there are numerous tools available to
parse, analyze and manage XML-based languages.
Another significant work is to map ABC/ADL into
UML. As a high-level abstraction of applications,
SA does not describe how to implements its
components and connectors. UML is the most
popular OO design language, so a good mapping
between ABC/ADL and UML can greatly benefit
the development process of ABC approach.

Acknowledgement:

This effort is sponsored by the State 863
High-Tech Program, and Natural Science
Foundation of China.

References

[All-94] Allen, R. and Garlan, D., “Formalizing
Architectural Connection”, in Proceedings of ICSE 16,

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

1994.
[All-97] Allen R. And Garlan D., “A formal Basis for
Architectural Connection”, in ACM Transactions on
Software Engineering and Methodology, July, 1997.
[Abo-93] Abowd G., Allen R. and Garlan D., “Using
Style to Understand Descriptions of Software
Architecture”, in Proceedings of SIGSOFT'93:
Foundations of Software Engineering, Software
Engineering Notes 18(5), 1993.
[Bas-98] Bass L., Clements P. and Kazman R.,
“Software Architecture in Practice”, Published by
Addison-Wesley in the SEI Series, 1998.
[CCM-00] CORBA Component Model RFP [online],
Available WWW URL: < http://www.omg.org >
[Cle-96a] Clements C. Paul, From Subroutines to
Subsystems: Component-Based Software
Development, 3-6. Component-Based Software
Engineering: Selected Papers from the Software
Engineering Institute. Los Alamitos, CA: IEEE
Computer Society Press, 1996.
[Cle-96b] Clements P. and Northrop L., “Software
Architecture: An Executive Overview”, Technical
Report CMU/SEI-96-TR-003, 1996
[EJB-99] Enterprise JavaBeans Specification [online],
Available WWW URL: < http:// java.sun.com/
products/ejb/docs.html >
[Gar-93] Garlan D. and Shaw M., “An Introduction to
Software Architecture”, in Advances in Software
Engineering and Knowledge Engineering, Volume 1,
World Scientific Publishing Company, 1993.
[Gar-97] Garlan D., Monroe R. and Wile D., “ACME:
An Architecture Description Interchange Language”,
In Proceedings of CASCON'97, November 1997.
[Hon-00] Hong Mei, Jichuan Chang, Fuqing Yang,
“Composing Software Components at Architectural
Level”, IFIP WCC2000, Beijing, 2000.8
[Hon-01] Hong Mei, Jichuan Chang, Fuqing Yang,
“Software Component Composition based on ADL
and Middleware”, Science in China(F), 44(2), 136－
151, 2001
[Kic-97] Kiczales, G., et al., “Aspect-Oriented
Programming”, In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP). Springer-Verlag, Finland, 1997.

[Luc-95] Luckham D.C. and Vera J., “An event-based
architecture definition language”, IEEE Transactions
on Software Engineering, Sept., 1995.
[Med-97] N. Medvidovic, Neno, “A Classification
and Comparison Framework for Software
Architecture Description Languages”, Technical
Report UCI-ICS-97-02, University of California at
Irvine
[Mei-01] Mei, H. “A Component Model for
Perspective Management of Enterprise Software
Reuse”, Annals of Software Engineering 11,219-236,
2001
[Mey-99] Meyer B. and Mingins C.,
“Component-Based development: From Buzz to
Spark”, in IEEE Computer, July 1999.
[Per-92] Perry D. and Wolf A., “Foundations for the
Study of Software Architecture”, in ACM SIGSOFT
Software Engineering Notes, 17(4), 1992.
[Pin-01] Pinto M., Amor M., Fuentes L. and Troya J.,
“Run-time coordination of components: design
patterns vs. component-aspect based platforms”, in
Advanced Separation of Concerns workshop of the
ECOOP, 2001.
[Qio-97] Qiong Wu, Jichuan Chang, Hong Mei,
Fuqing Yang, JBCDL: An Object-Oriented
Component Description Language, Proceedings of the
twenty-fourth International Conference TOOLS ASIA,
Beijing, 1997.
[Sha-95] Shaw M., Deline R., Klein D.V., Ross T.L.,
Young D.M. and Zelesnik G., “Abstractions for
Software Architecture and Tools to Support Them”, in
IEEE Transactions on Software Engineering, April
1995.
[Sio-99] Siobhán Clarke, William Harrison, Harold
Ossher, Peri Tarr, “Subject-Oriented Design: Towards
Improved Alignment of Requirements, Design and
Code”, OOPSLA, 1999.
[SOP-98] IBM Subject-oriented programming
research home page [online]. Available WWW
<URL:http://
www.research.ibm.com/sop/sophome.htm>
[Tay-96] Taylor R., Medvidovic N., and Anderson K.,
“Component- and message-based architectural style
for GUI software”, in IEEE Transactions on Software

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

http://www.omg.org/

Engineering, June 1996.
[Tru-01] Truyen, E.; Vanhaute, B.; Joosen, W.;
Verbaeten, P.; Jorgensen, B.N.; Leuven, “Dynamic
and selective combination of extensions in
component-based applications”, ICSE, 2001.
[Tzi-01] Tzilla Elrad, Mehemet Aksit, Gregor
Kiczales, Karl Lieberherr, and Harold Ossher,
“Discussing Aspects of AOP”, IEEE Panelists, 2001.

ICFEM'02. LNCS 2459, pp 38 - 47. 2002

