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Perioperative myocardial ischemia and dysfunction re-
main prevalent after cardiac surgery despite the use of
conventional measures to provide myocardial protec-
tion. Myocardial preconditioning is a powerful, endog-
enously regulated means of myocardial protection that
may also have some clinical usage for patients undergo-
ing cardiac surgical procedures. The paradoxical con-
cept of using ischemia as a stimulus for myocardial
protection has been studied extensively in animals and
humans. The specific characteristics and constituents of
preconditioning have been well identified. The mecha-
nism remains to be completely elucidated due to differ-
ences among species and experimental models. Some
pharmacologic agents are capable of mimicking the
classic mechanism of ischemic preconditioning. Pharma-
cologic and ischemic preconditioning may have signifi-
cant clinical use and therapeutic efficacy as a means of
providing myocardial protection during cardiac surgery,
especially in procedures that do not use cardioplegia
and cardiopulmonary bypass, such as minimally inva-
sive coronary artery bypass grafting. This article re-

views the characteristics, mechanisms, potential clini-
cal applications, and therapeutic efficacy of myocardial
preconditioning.
Copyright&copy; 1999 by W. B. Saunders Company.

Myocardial ischemia occurs as a result of a
~~1&dquo;’1 metabolic supply/demand imbalance at
the cellular level, usually in association with an
excessive sympathetic response, coronary endo-
thelial dysfunction or more commonly, an un-
stable atherosclerotic lesions. 1 Although ischemia
might be associated with reversible myocardial
dysfunction, a single or repeated episode can
eventually culminate in cumulative injury mani-
festing as hibernating myocardium,2 myocardial
stunning,3 apoptosis,4 or eventually cellular necro-
sis and myocardial infarction (MI) (Fig 1). Peri-
operative myocardial morbidity is particularly
concerning for patients undergoing coronary
artery bypass grafting (CABG) considering the
high prevalence of perioperative myocardial isch-
emia { 3’~ %~ ) ~’ ~TI { 1 % to 10 °~o ) ,b and x ‘low cardiac
output syndrome&dquo; (10% to i5%),’’ despite the
use of routine conventional measures to opti-
mize myocardial protection.

Over the past several years, knowledge of the

pathophysiology of ischemia and its effect on

myocardial function has continued to develop.
Endogenous mechanisms of protection against
myocardial injury are now known to exist that
can ironically be induced directly, by brief epi-
sodes of ischemia. This paradoxical phenom-
enon known as &dquo;ischemic preconditioning&dquo;
(IPC), has been suggested to have a therapeutic
role as a means of providing myocardial protec-
tion in cardiac surgical procedures when car-
dioplegia delivery may be suboptimal or in

minimally invasive &dquo;beating heart&dquo; procedures
in which cardioplegic arrest and cardiopulmo-
nary bypass (CPB) are intentionally avoided.
Although much progress has been made in

understanding how IPC can optimize myocardial
resistance to subsequent injury, the actual mecha-
nisms remain to be elucidated. This review fo-

cuses on the characteristics, know cellular and
molecular mechanisms, and potential therapeu-
tic applications of myocardial preconditioning.

Characteristics of Ischemic
Preconditioning
In 1986, Reimer et al showed that four brief (10
minute) periods of coronary artery occlusion,
followed by reperfusion decreased canine myocar-
dial infarct size by almost 75% after a subse-
quent, sustained (40 minute) ischemic insult.s 

8

This paradoxical correlation of brief ischemic
episodes and reperfusion associated with resis-
tance to further myocardial injury, was subse-
quently termed &dquo;ischemic preconditioning&dquo; by
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Figure 1. Spectrum of reversible to irreversible myocardial injury and the potential impact of ischemic and
pharmacologic preconditioning. 

‘ ,

Murray et al.t3 The absence of any changes in
collateral blood flow supported the hypothesis
that this protective effect of antecedent ischemia
induced an inherent myocardial response.

Classic IPC refers to early myocardial protec-
tion associated with &dquo;a rapid adaptive response
to a brief ischemic insult, which slows the rate of
cell death during a subsequent, prolonged pe-
riod of ischemia.&dquo;9 A typical model of IPC

requires the presence of a preconditioning stimu-
lus, followed by a period of reperfusion and a
subsequent sustained ischemic insult. Over the
past several years, IPC has been shown using
several experimental methods in numerous ani-
mal species including humans, resulting in the
realization that many variations of the classic
theme might exist. For example, although a brief
period of antecedent ischemia (coronary occlu-
sion) is usually used, other reported precondi-
tioning stimuli have included (1) the use of

hypoxic perfizsion or a reduction of coronary
flow in buffer-perfused and blood-perfused heart
preparations, (2) the combination of hypoxia,
substrate-free perfusion and pacing stress in

isolated cardiac muscle preparations, and (3)

the combination of hypoxia with glucose-free
substrate in isolated cardiomyocytes. 1° Some in-
vestigators have described &dquo;preconditioning at a
distance&dquo; in which regional IPC created by left
circumflex coronary artery occlusion was associ-
ated with remote myocardial protection after

sustained left anterior descending coronary ar
tery occlusion.1l This example of remote precon-
ditioning probably involves mechanisms that

differ from classical IPC and perhaps implicate a
role for neural or humoral factors. IPC typically
requires a very brief period of ischemia to induce
preconditioning, although the optimal number
of episodes and duration of nonlethal IPC varies
considerably among different species and experi-
mental conditions.&dquo;’ In most animal models, the

preconditioning stimulus must last for at least I
minute, but not exceed 5 minutes to avoid

irreversible injury. 12 There are similar species-
dependent variations in the number of precondi-
tioning episodes ranging from a single, 5 minute
period in the rabbit13 to 3 periods of 3 minutes in
the rat. 14 There is no apparent cumulative effect
associated with additional brief ischemic epi-
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sodes 15 and in fact, protection may be attenuated
after numerous, repeated periods of ischemia. 16

The duration of early protection induced by
IPC is relatively short-lived (30 minutes to 3
hours) .1i-19 After early protection is lost, it can be
reestablished in some species if a subsequent
ischemic stimulus occurs several hours to days
later.20 Furthermore, IPC may induce delayed
protection (ie, &dquo;second window of protection&dquo;)
from 12 hours to 72 hours after the initial

stimulus. 1 ï.2l-23 The duration of lethal ischemia
for which IPC is still protective is also limited.
Periods of sustained ischemia greater than 30 to
90 minutes are associated with a significantly
greater risk for irreversible myocardial injury,
regardless of antecedent IPC. 10 Finally, the deter-
minants of efficacy for IPC vary between experi-
mental models, from the original gold standard
of infarct size reduction to protection against
arrythmias, 24 reduction of postischemic contrac-
tile dysfunction, 25 decreased energy demand dur-
ing sustained ischemia,96 reduction of znvocar-
dial apoptosis, 27 attenuation of platelet mediated
coronary thrombosis, 28 and preservation of endo-
thelium-dependent coronary vasodilation. 29-31 1

Molecular and Cellular Mechanisms
of Preconditioning
Several interdependent molecular and cellular
events have been identified as essential compo-
nents of IPC. The basic model for the mecha-
nism of IPC includes the initial generation of
one or more triggers followed by receptor stimu-
lation, mediator regulation of secondary path-
ways, and the eventual involvement of an end-
effector.

Triggers and Receptors c~f Classic IPC

There is some consistency among animal and
experimental models in confirming the indi-

vidual, additive, or synergistic roles for a number
of neuroendocrine and paracrine triggers of

IPC.32 Numerous studies have implicated endog-
enous adenosine, generated from adenosine tri-
phosphate (ATP) hydrolysis and released by
myocytes and vascular endothelium during brief
periods of ischemia, as an important trigger
Pretreatment with adenosine or adenosine ana-

logs before lethal coronary occlusion has been
shown to reduce infarct size.34,35 In addition,

blockade of adenosine receptors during IPC
abolishes both classic and delayed myocardial
protection36 suggesting a role for the activation
of both t11 and ~3 receptors.3’3.&dquo;56 Differences

among various animal species 37 and inconsisten-
cies in human clinical trials38-40 have contributed
to the controversy implicating a universal role
for adenosine. A number of other receptor-
specific triggers have also been identified as

important components of the IPC, including
acetylcholine (muscarinic) 41 catecholamines (CB’.1
receptors) ’42 angiotensin II,43 bradykinin (B2
receptors),44 nitric oxide (NO) ,45.46 endothel-
in, 47 and opioids (81 receptors) .48-50 Reactive

oygen species (eg, superoxide, H202, hydroxy
radicals) generated by brief ischemia and reper-
fusion have also been recognized as possible
triggers in the initiation of classic IPC,.51

Mediators and Signaling Pathways
of Classic IPC

The mechanism of IPC has been further delin-

eated by a number of investigators and most
likely involves the interaction of several media-
tors and signaling pathways. I)ownev et a152 have
proposed that after trigger generation, the stimu-
lation of adenosine, bradykinin or opiod recep-
tors coupled to G protein-coupled receptors
(A, /A3-adenosine; B2-bradykinin; õropiods) acti-
vate phospholipase C (and/or D), increasing
diacylglycerol production which subsequently
activates the protein kinase C (PKC) signaling
cascade (Fig 2). Finally, activated PKC phosphory-
lates an end-effector (ie, ATP-sensitive I~° chan-
nel).

The PKC hypothesis is based mainly on the
observation that direct activation of PKC with
either phorbol ester or l-oleyl-2-acetyl glycerol
mimics the infarct limiting effect of IPC in some
animals. 52 In addition, nonspecific PKC antago-
nists (staurosporine, chelerythrine, polymixin )52
block myocardial protection by IPC. Although
the PKC model has also been shown in human

cardiomyocytes, 53 canine and porcine models
have not consistently supported a role for PKC in
classic IPC suggesting that species-dependent
variables and specific PKC isoenzymes should
also be taken into consideration.54,55 Additional
kinase systems have been identified that may
have interdependent roles in IPC. Tyrosine ki-
nase (TK) is involved in preconditioning rabbit
hears. 56 In the pig, however, preconditioning
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Figure 2. Summary of theoretical signaling mechanisms for classic &dquo;early&dquo; preconditioning and &dquo;delayed&dquo;
preconditioning &dquo;second window of protection&dquo; {S~4’(~P). Abbreviations: ATP, adenosine triphosphate; ADP,
adenosine diphosphate; ANIQ adenosine monophosphate; Bg, bradykinin receptor type 2; 8, opioid delta
receptor; al, alpha adrenergic receptor type 1; ~l,jA~, adenosine receptor types 1 and 3; G, G regulatory protein;
PLC/PLD, phospholipase C and D; PIP,,, phosphoinositolbiphosphate; DAG, diacylglycerol; PKC[ and PKC,,,,
protein kinase C inactive and active forms; sK,~TP, sarcolemmal adenosine triphosphate-dependent, potassium
channel; TyE~ tyTosine kinase; 1~L~PK, mitogen activated protein kinase; NF-KB, nuclear factor kappa B; iNO,
inducible nitric oxide s~-nthase; NO, nitric oxide; SOD, superoxide dismutase; HSP, heat shock proteins;
u1itoIQ,Tp, mitochondrial adenosine triphosphate-dependent potassium channel.

was only blocked by simultaneous administration
of a TK inhibitor (genistein), together with a
PKC inhibitor (staurosporine), suggesting the
presence of two parallel kinase systems for medi-
ating IpC.57 In rat hearts, a phospholipase D-
coupled TK pathway is activated during precondi-
tioning and subsequently activates the PKC and
downstream mitogen-activated protein kinases
(NLXPM) .58 Increased MAPK after transient isch-
emia59 may be involved in the phosphorylation
of factors that are directly responsible for the
myocardial protective effects of IPC and apopto-
SIS.,’8 Finally, Przyklenk and Kloner’ll proposed
that a brief, modest and nonlethal increase in
intracellular calcium (Ca + +) during IPC and
reperfusion may elicit favorable Ca + + regulation
that is responsible for the anti-infarct effect of
IPC.

End-Effector Mechanisms of Classic IPC

Large conductance t~’~’P-sensiti~e K+ channels
exist in high densitv in sarcolemmal membranes
of cardiac cells ~sI3.~Tp) and appear to be promis-
ing candidates for the end-effectors of IPC. It is
frequently cited that during IPC, stimulation of
G protein-coupled receptors activates PKC which
subsequently opens sK-~Tp channels. Once the
sKATp channel is opened, there is an efflux of K+
from the cell and the action potential duration is
shortened resulting in a decrease in L-type Ca++
channel activity and a subsequent reduction in
Ga++ load during lethal ischemia and reperfu-
sion 59 (Fig 2). A decrease in intracellular Ca++ is
associated with diminished myocardial contrac-
tion and a reduction in the expenditure of
high-energy phosphates that are required to
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re-establish Ca 1- -,- concentrations. so Several lines
of evidence support an effector role of sK-~Tp
channels in the mechanism of classical IPC,

including the demonstration that SK,-BTP channel
agonists (nicorandil, pinacidil, bimakalin) mimic
the effect of IPC in reducing infarct size.60,6!

Furthermore, SKATP channel antagonists (gliben-
clamide, sodium 5-hydraxydecanoate) abolish

the infarct-limiting effects of IPC as well as the
preconditioning effects of adenosine, 35 isoflu-

rane, 62 morphine 49 and PKC. 63
Recent studies have challenged the purported

significance of the sKATp channels by showing
that the cardioprotective effect of SKATP channel
agonists is not associated with action potential
shortening. 64 More importantly, I§,Tp channels
have been shown to exist in the inner membrane

of mitochondria (mitoh~~~) as well as the sarco-
lemmal membrane of cardiac muscle .65 Mito-
chondria are known to play a pivotal role in
controlling cell viability.66 Because IPC has re-
cently been shown to protect cardiomyocytes
against necrosis6í and apoptosis,2í it is not surpris-
ing that mitoI~~TP channels have become a pri-
mary area of interest in the mechanism of

myocardial preconditioning (Fig 2). Selective

agonists (diazoxide) of the mitoKATP channel
have been shown to mimic the cardioprotective
effect of IPC, whereas specific inhibitors (5HD)
attenuate cardioprotection by IPC and diazox-
ide. 68,69 Moreover, mitoKATP channels can be
regulated by PKC and their activation may be
more relevant to IPC than the activation of the

sarcolemmal K,,Tp channels .70 The enhanced ex-

pression of anti-apoptotic Bcl2 proteins has

been proposed as the mechanism of apoptosis
prevention by a &dquo;second window of protection&dquo;
(SWOP).7l Understanding the relative contribu-
tions of sarcolemmal and mitochondrial K,~T~~
channels in mediating early and delayed cardio-
protection by IPC will be essential for the future
development of therapies that have clinical appli-
cations. 72 In addition, understanding of the role
of mitochondria in regulating cell viability will
help to further delineate any correlation be-
tween the mechanisms of IPC and both apopto-
sis and necrosis.

Mechanisms for Delayed Myocardial
Protection After IPC

The mechanism for delayed myocardial protec-
tion associated with IPC shares many of the

elements of classic early preconditioning includ-
ing some triggers and activation of similar signal-
ing cascades~’‘’ (Fig 2). In contrast to early IPC,
gene activation and subsequent de novo synthe-
sis of regulatory proteins are also important for
the late reappearance of this (SWOP). Heat
shock proteins (HSPs), have been implicated as
ideal regulators due to their involvement in the
correct folding of many proteins, protein translo-
cation, and the process of repairing or degrading
damaged proteins as a defense strategy to ensure
survival.’3 Marber et al23 first reported in rabbits
that the expression of the inducible 70-kd HSP
(HSP 70) by brief ischemia or heat stress con-
ferred resistance to myocardial infarction. In-
creased levels of HSP 70 have also been impli-
cated in the late cardioprotection against
stunning after preconditioning in pig hearts. 74
Although other investigators have been unable
to show a correlation between the expression of
HSP 70 and preconditioning,75 two low-molecu-
lar-weight HSPs (af3- crystallin, HSP 25/27) have
been shown to protect rat cardiomyocytes against
ischemic injury, The direct relationship be-

tween HSPs and either early ischemic tolerance
or delayed myocardial protection remains to be
determined.

Activation of superoxide dismutase and induc-
tion of inducible nitric oxide synthase (iNOS)
have also been suggested to play important roles
as protein effectors of delayed preconditioning.
In a series of experiments, Bolli et al proposed
that a brief period of ischemic stress increased
NO production (presumably by endothelial, con-
stitutive nitric oxide synthase) and O2- produc-
tion 77 (Fig 3). NO and O,- (superoxide anion)
could then react and activate PKC either directly
or through the production of peroxynitrite or
hydroxyl radical. Activation of PKC initiates a
complex signal transduction cascade which in-
volves tyrosine kinases, 1~I~1I’I~s, the transcription
of nuclear factor NF-KB and other gene promot-
ers, leading to upreg~.ilation of iNOS production
and increased generation of NO during the
second ischemic challenge. According to this

paradigm, NO plays two different roles in de-
layed protection against stunning, initially by
triggering the development of the cardioprotec-
tive mechanism and subsequently by protecting
against myocardial stunning through the upregu-
lation of iNOS. There is significant overlap,
however, between the proposed NO pathway of
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Figure 3. Molecular mechanism for the NO hypoth-
esis of delayed preconditioning. Abbreviations: NO,
nitric oxide; ~?l~,°OQ-, peroxynitrite; O2-, superoxide
anion; OH, hydroxyl radical; PKCe, protein kinase
G-epsilon isofornn; NF-KB, nuclear factor kappa B;
NOS, nitric oxide synthase. (Reprinted with permis-
sion from Bolli R, Dawn B, Tang X, et al: The nitric
oxide hypothesis of late preconditioning. Basic Res
Cardiol 93: 325-338, 1998.77)

preconditioning and the role of NO in the
cellular signaling mechanism leading to cell

apoptosis and necrosis. 66 How the cardiomyocyte
delicately initiates the protective mechanism for
ischemic preconditioning and simultaneously
avoids destruction by activating a similar apop-
totic signalling pathway, remains to be eluci-

dated.

Preconditioning Human Myocardium

In Vitro Evidence of IPC in Human

Cardiomyocytes

Despite the preponderance of data suggesting
the existence of endogenous mechanisms for
myocardial protection in animals, it has been

more difficult to show similar mechanisms of IPC
in humans. The most supportive evidence indicat-
ing that human myocardium is amenable to

preconditioning comes from in vitro studies of
isolated human cardiomyocytes. Ikonomidas et
al first reported that anoxic preconditioning
confers resistance to sustained ischemia in cul-
tured human ventricular cardiomyocytes.n’$ Hyp-
oxia and rapid pacing have been used to show
that adenosine is involved in protecting isolated
human atrial trabeculae from ischemia-induced
contractile dysfunction.79 Evidence from other

models of early preconditioning have also con-
firmed a role for adenosine, bradykinin and
al-adrenergic receptors, as well as PKC and KATP
channels suggesting that the mechanism of IPC
in humans and animals may be similar.110,81 In

addition, SWOP has recentlv been shown in

cultured human ventricular myocytes.82

Clinical Evidence of Myocardial IPC
in Humans

Several studies have shown that patients with
angina (within 24 to 48 hours before MI) have
smaller infarct size and decreased short-term

morbidity and mortality independent of collat-
eral circulation and the use of anti-anginal medi-
cations.83 The recent Thrombolysis in Myocar-
dial Infarction 9B Trial showed a temporal
correlation between onset of angina and subse-
quent NII. In this trial, patients who experienced
angina within 24 hours before infarction had a
lower peak CPK level and a lower incidence of
cardiac related morbidity at 30 days postinfarc-
tion compared with the &dquo;no angina group&dquo; or
those whose angina began more than 24 hours
preinfarction. 84 Furthermore, in patients with
prodromal angina within 24 hours before ante-
rior MI, Ishihara et al showed an increased
incidence of infarct-associated graft patency, im-
proved reperfusion after thrombolytic therapy,
and lower in-hospital mortality which was sus-
tained throughout a 5-year follow-up period. 85
Antecedent angina before MI may also protect
against reperfusion arrhythmias. 86 Despite these
optimistic results, the evidence from other inves-
tigations of preinfarct angina has been less consis-
tent, suggesting the existence of several con-
founding variables (extent of coronary artery
disease, age, duration of angina, etc). Some

investigators have been unable to show any
benefit associated with preinfarct angina espe-
cially in elderly patients (~~6~ years old),87
whereas other studies have even implicated that
preinfarct angina may be detrimental.88

Additional clinical correlates of myocardial
tolerance induced by angina include the con-
cepts of &dquo;walk through&dquo; or &dquo;warm-up&dquo; angina.
Warm-up angina describes the phenomenon in
which patients are able to continue exerting
themselves after a brief rest period after an initial
episode of angina. The warm-up phenomenon
has been shown by comparing the performance
on two consecutive exercise tests separated by a
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short resting period. The severity of angina, ST
segment depression on electrocardiogram re-

cordings, myocardial oxygen consumption,89 isch-
emic duration, recovery time needed,90 and wall
motion dysfunction on echocardiography9l are
significantly less during the second exercise test.
Walk through or &dquo;second wind in angina&dquo; refers
to the scenario in which patients suffer through
anginal pain without resting and can continue
exerting themselves with fewer or no symp-
toms.9’ These observations that brief episodes of
angina confer resistance to further exertion-
induced angina resemble the cardioprotection
afforded by IPC and are thought to be associated
with reduced myocardial oxygen consumption
rather than increased collateral circulation.

Patients undergoing percutaneous translumi-
nal coronary artery angioplasty (PTCA) provide
a unique opportunity to study myocardial adapta-
tion to ischemia and reperfusion. Several studies
of patients undergoing single-vessel PTCA have
shown less ST segment deviation on surface or

intracoronary electrocardiogram, decreased lac-
tate production and less angina during subse-
quent, occlusive balloon inflations in compari-
son with the first inflation. 93 In addition, a

higher ejection fraction and smaller increases in
left ventricular filling pressure have also been
observed following later balloon inflations. 94 No
beneficial effects of sequential episodes of myo-
cardial ischemia can be appreciated after a

balloon inflation of less than 60 seconds.95 The
beneficial effects of repetitive balloon angio-
plasty can be mimicked by intracoronary in-

fusion of adenosine or dipyridamole39,96 and
abolished by the K,BTP channel blocker, gliben-
clamide97 or ai-adenosine receptor antagonist,
bamiphylline. 38 Although these observations are
consistent with the experimental findings of IPC,
some investigators have been unable to show a
benefit following repeated coronary artery occlu-
sion 98 and others have suggested that the acute
recruitment of collaterals may be responsible for
the protection. 94

IPG During Conventional CABG Surgery
Once the feasibility of preconditioning the hu-
man heart can be determined and the specific
mechanism defined, clinicians can take advan-

tage of prophylactic preconditioning as a pri-
mary or supplemental means of providing myo-
cardial protection. In 1993, Yellon et al used two

3-minute periods of aortic cross-clamping inter-
spersed with 2 minutes of reperfusion as an IPC
stimulus during CPB in patients undergoing
CABG surgery. A single99.100 10-minute period of
aortic cross-clamping and electrical ventricular
fibrillation followed the second period of IPC. In
comparison with the control group which was
not preconditioned, ATP depletion was signifi-
cantly decreased in biopsies from the IPC hearts
after the ischemic insult.99,loo This same group of

investigators subsequently showed that the se-

rum troponin T level was lower at 72 hours

post-CPB in the preconditioned patients com-
pared with those in the control group.101 Other
investigators have shown that IPC provides myo-
cardial protection in addition to the concomi-
tant use of cardioplegia. 102,103 Despite these en-
couraging results, IPC induced by aortic cross-
clamping during CABG may not provide any
additional myocardial protection from that af-
forded by CPB104 or cardioplegic arrest (normo-
thermic or hypothermic) alone.105,106 Perrault et
al even reported that IPC during G~4BG did not
enhance cardioplegic protection and that it might
be deleterious because CPK release was signifi-
cantly greater compared with controls

IPC During Minimally Invasive
CABG Surgery

Ischemic myocardial preconditioning may be
more useful during CABG surgery when car-
dioplegia delivery is suboptimal or impractical
(severe coronary artery disease, ventricular hyper-
trophy, severely calcified aorta) as well as in

&dquo;beating heart&dquo; procedures when CPB and cardi-
oplegic arrest are intentionally avoided. During
minimally invasive direct coronary artery bypass
grafting (MIDCAB) and &dquo;off-pump&dquo; CABG (OP-
CAB), a period of obligatory myocardial isch-
emia occurs while the coronary anastomosis is

being performed and the corresponding coro-
nary artery is occluded. Potential benefits of

preconditioning during minimally invasive CABG
surgery include less myocardial dysfunction and
improved hemodynamic stability during native
coronary occlusion as well as a smaller MI size

should occlusion, thrombosis or spasm occur

perioperatively.l08 jacobsohn et al described the
impact of IPC on myocardial protection during a
MIDCAB procedure.109 Preconditioning was per-
formed by occluding the left anterior descend-
ing coronary artery (LAD) for 3 minutes (isch-
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emia), followed by 3 minutes of reperfusion, and
then 5 additional minutes of ischemia, followed

by 5 minutes of reperfusion. There was a total of
15 minutes of ischemic time while the left inter-
nal mammary artery (LIMA) to LAD anastomo-
sis was being performed. During the precondi-
tioning periods, there were no ST segment nor T
wave changes and no new regional wall motion
abnormalities (RvB7jBVBs) as assessed by trans-

esophageal echocardiography. The initial precon-
ditioning stimulus depressed contractility more
than the subsequent stimulus, suggesting a pro-
tective effect, and contractility improved signifi-
cantly after revascularization (Fig 4). The period
of preconditioning was well tolerated, however
the beneficial effects could not be determined

definitively in the absence of a control.
Malkowski et al investigated the effects of IPC

(5 minutes of LAD occlusion, 5 minutes of

reperfusion) in 17 patients undergoing 1~III)-
CAB procedures involving a single LAD-LIMA
anastomosis (10 to 12 minutes of LAD occlu-

sion).10’ New left ventricular RWMAs and in-
creased pulmonary arterial pressures were ob-
served during IPC which normalized to baseline
during reperfusion; IPC however, did not pre-

vent a similar increase in regional left ventricular
dysfunction and elevated pulmonary pressures
during subsequent LAD occlusion (Fig 5).

Discrepancies between in vitro and in vivo
studies, and among various clinical trials may be
related to inadequate IPC stimuli, different mea-
sures of outcome (myocardial dysfunction v
infarction) or the presence of collaterals which

may limit any benefit of regional IPC. Because
IPC may inherently induce myocardial dysfunc-
tion, further randomized trials should be con-
ducted to determine its definitive benefits, be-
fore this technique is routinely used during
minimally invasive CABG procedures.

Pharmacologic Preconditioning During
CABG Surgery
Several studies have identified a number of

pharmacologic agents that may mimic IPC with-
out having to manipulate coronary blood flow.
Endogenous adenosine has been implicated as
an important mediator of IPC in humans.110 In
addition, exogenous adenosine has been shown
to precondition myocardium in a human model
of ischemia reperfusioii.110 The results from

Figure 4. End-systolic points from the pressure area loops performed during a MIDGiBB procedure at baseline,
after an initial 3 minute period of ischemic preconditioning (first IP), after a subsequent 5 minute period (second
IPC) and after left internal mammary arterv-left anterior descending coronary artery revascularizadon (after
MIDCAB). Contractility was expressed as the ratio of end-systolic blood pressure (ESBP) to left ventricular area
(AQ area = end-systolic left ventricular area measured by transesophageal echocardiography using acoustic
quantification). The initial IP stimulus depressed contractility more than the subsequent IP stimulus. Contractility
improved after revascularization. 2, baseline; V, first IPC; 0, second IPC; X, after MIDCAB. (Reprinted with
permission from Jacobsohn E, Young C, Aronson S, Ferdinand F: The role of ischemic preconditioning during
minimally invasive coronary artery bypass surgery. J Cardiothorac Vasc Anesth 11: 787-792, 1997.109)

 at PENNSYLVANIA STATE UNIV on September 16, 2016scv.sagepub.comDownloaded from 

http://scv.sagepub.com/


93

Figure 5. Left ventricular regional wall motion was
assessed by intraoperative transesophageal echocardi-
ography in 17 patients undergoing MIDCAB proce-
dures. Measurements were made at baseline (baseline
1), during ischemic preconditioning (occlusion 1);
after subsequent reperfusion (baseline 2) and during
performance of the left internal mammary artery-
left anterior descending coronary arterv anastomosis
(occlusion 2). Using a 16-segment model, LV regional
wall motion was indexed ( 1 = normal; 2 = hypokine-
sia ; 3 = akinesia; and 4 = dyskinesia) for the anteroapi-
cal (solid bars), apical-septal (gray bars), midanterosep-
tal (open bars) and midanterior (hatched bars).
There were statisticallv significant differences (~ ~ .05)
between baseline 1 and occlusion 1 and between
baseline 2 and occlusion 2. No significant change was
observed between occlusions 1 and 2 in these regions.
Postoperative LV function returned to normal in all 17
patients after revascularization. (Reprinted with per-
mission from the American College of Cardiology
Journal of the American College of Cardiology, 1998,
31 :1035-1039] .108)

clinical trials using adenosine as a pharmaco-
logic preconditioning agent have been less con-
sistent. Some investigators have shown that aden-
osine may be advantageous as a preconditioning
agent when administered independentlyIll,112 or
together with IPC.113 In other studies however,
the addition of adenosine to cardioplegia has
not been consistently beneficial in reducing
perioperative myocardial morbidity in patients
undergoing elective CABG surgery.,*O.1l4 Acade-
sine, a synthetic adenosine regulator, has been
shown to increase the availability of adenosine in
ischemic tissues undergoing ATP depletion,115
and has therefore been implicated as a potential
myocardial pharmacologic preconditioning
agent.116-1l8 Nicorandil, an agonist of KATP chan-

nels, also increases ischemic tolerance in hu-

mans during PTCA.&dquo;~’ In addition, some opi-
ods, 49 several volatile anesthetics, 120-122 and NO
donors 77 have all been implicated as potential
pharmacologic preconditioning agents.

Practical and ethical restrictions in perform-
ing clinical trials using ischemia as a precondition-
ing stimulus have presented significant chal-

lenges in trying to study the potential therapeutic
efficacy of this technique. Further delineation of
the molecular and cellular constituents of precon-
ditioning will provide a basis for the further
development of pharmacologic agents which
may provide myocardial protection without hav-
ing to induce ischemia by altering coronary
blood flow.

Conclusion

IPC is an extremely important mechanism of
endogenously mediated myocardial protection.
Evidence from animal models and both in vitro

and in vivo studies in humans has helped to
understand and confirm the existence of the

molecular and cellular components of IPC. Varia-
tion among species and experimental models
however, has helped to identify the complexity of
the mechanism and the characteristics of IPC.

Several pharmacologic agents have also been

identified that may mimic &dquo;classic IPC&dquo; and

provide equivalent or even improved myocardial
protection without having to induce ischemia by
altering coronary blood flow. The clinical usage
of myocardial preconditioning may be particu-
larly useful in certain cardiac surgical popula-
tions such as those patients undergoing coro-
nary revascularization procedures or even heart
transplantation. 122,125 Ultimately, additional ran-
domized, controlled clinical trials will have to be

performed to further delineate the potential
therapeutic efficacy of IPC and pharmacologic
myocardial preconditioning.
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