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Abstract. We explore the effects of time lapse on iris biometrics us-
ing a data set of images with four years time lapse between the earliest
and most recent images of an iris (13 subjects, 26 irises, 1809 total im-
ages). We find that the average fractional Hamming distance for a match
between two images of an iris taken four years apart is statistically sig-
nificantly larger than the match for images with only a few months time
lapse between them. A possible implication of our results is that iris bio-
metric enrollment templates may undergo aging and that iris biometric
enrollment may not be “once for life.” To our knowledge, this is the first
and only experimental study of iris match scores under long (multi-year)
time lapse.
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1 Introduction

The iris biometrics research community has accepted the premise that the ap-
pearance of the iris is highly stable throughout most of a person’s life. Daugman
stated the assumption this way-“As an internal (yet externally visible) organ of
the eye, the iris is well protected and stable over time”[1]. The assumption is
repeated in similar form in recent academic references: “[the iris is] stable over
an individual’s lifetime‘”[3], “the iris is highly stable over a person’s lifetime”[5],
“[the iris is] essentially stable over a lifetime”[4]. While the basic assumption
is broadly accepted as valid and commonly re-stated, we know of no experi-
mental work that establishes its validity. This paper describes our experimental
evaluation of the extent to which this assumption is true in terms of practical
application in biometrics.

We formulate an experimental test of the long-term stability of iris texture
in iris biometrics as follows. Assume that a person has an iris image acquired at
one point in time for enrollment, and at a later point in time has another image
acquired for recognition. The result of matching the two iris images is reported
as a fractional Hamming distance, a value between 0 and 1 that indicates the
fraction of iris code bits that do not match. A fractional Hamming distance of
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0 indicates a perfect match, and a distance of 0.5 indicates random agreement.
The “stable over a lifetime” concept can be tested by comparing the Hamming
distance of image pairs acquired with different time lapses.

To investigate this question experimentally, we use a set of iris images ac-
quired at the University of Notre Dame [6][10][8], and a modified version of
the open source “ICE baseline” iris code matcher[7][9][13]. Comparing matching
scores between images taken a few months apart with scores between images
taken approximately four years apart, we find that there is a statistically sig-
nificant difference in the average Hamming distance between short-time-lapse
matches and long-time-lapse matches. This suggests that the “lifetime enroll-
ment” concept may not be valid. This would also suggest that time lapse between
images should factor into a decision about match quality, and that guidelines
are needed for time between re-enrollment.

1.1 Related Work

Gonzalez et al. report an effect of time separation on iris recognition [11] that
may initially seem similar to this paper. However, their work is based on compar-
ing matches between images acquired at the same acquisition session with those
acquired with at most three months time lapse. They report a higher match
statistic for images from the same session than those across sessions. They note
little change in match statistics when comparing matches with short time lapses,
between two weeks and three months. In this paper, we eliminate matches be-
tween images acquired at the same session as we expect they would be unfairly
similar. Additionally, we focus on the effect of time-lapse between gallery and
probe images and same-session images are not used as both the gallery and the
probe in a real world scenario. We do not note significant differerences in average
Hamming distance for images with a few months time lapse. However, at four
years time lapse, we do observe a significant difference.

2 Experimental Methods and Materials

2.1 Experimental Materials

The iris images analyzed in this study were acquired using an LG 2200[2], and
the acquisition protocol is the same as that used in the collection of images for
the Iris Challenge Evaluation[8]. A small subset of people have participated in
data collections from spring of 2004 through spring of 2008. We know of no other
iris image data set that has four years of time-lapse data available.

Our data set consists of images acquired approximately weekly during each
academic semester. At each acquisition session, six images of each iris are ac-
quired from each subject. Some images were discarded from our data set due to
poor quality.

We compare two types of matches: (1) matches between two images both
acquired in the same semester (but not on the same day) and (2) matches be-
tween one image from spring 2004 and one image from spring 2008. We found 13
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subjects in the data set with both spring 2004 and spring 2008 images of each
iris. For these 26 “iris subjects”, we used 1236 images from 2004 and 573 images
from 2008 for a total of 1809 images. This data set contains eight males and five
females between the ages of 24 and 56. Three of these subjects are Asian and
ten are Caucasian. Four of these subjects wore contacts and nine did not; no
subjects wore glasses for this acquisition.

All images used in our experiments were acquired by the same LG2200 cam-
era. They were also acquired in the same studio using the same acquisition
procedure, computer system, digitizer board, driver software, and application
software[6][10].

Our iris segmentation technique employs encoding and matching, we used
software based on the open source IrisBEE[8]. This software uses one dimensional
log-Gabor wavelets to create a 240x20x2-bit iris code and contains improvements
to the segmentation as described in [6].

2.2 Experimental Method

Our null hypothesis and alternative hypothesis are stated as follows.
Null Hypothesis: The fractional Hamming distance for iris code matches be-

tween images taken a longer time apart is not greater than that for matches
between images taken a shorter time apart.

Alternative Hypothesis: The fractional Hamming distance for iris code matches
between images taken a longer time apart is greater than that for matches be-
tween images taken a shorter time apart.

We consider two experimental scenarios to test the null hypothesis, an “all-
irises” test and an “iris-level” test. The experimental results and conclusions
are similar for both formulations. The “all-irises” scenario combines the set of
images from all 26 “iris-subjects” and is explained as follows.

For each iris we have multiple images. Each such image is considered as a
gallery image in succession. For each gallery image, all other images are consid-
ered as probe images. Each match between a gallery and a probe image results
in a Hamming distance. This HD is placed in either a short-time-lapse set or a
long-time-lapse set, depending on the time elapsed between the gallery and the
probe image. The process is repeated for every image of that iris subject, yield-
ing a set of short-time-lapse HDs and a set of long-time-lapse HDs. These sets
are each averaged, yielding a short-time-lapse mean HD and a long-time-lapse
mean HD for that iris subject.
We introduce the following notation:

We have a set of iris images: I = {I1, I2, . . . In}
Each image in our set has a subject ID including a left-right indicator and a date:

∀ I ∈ I, I.id = SubjectID (i.e. 02463L)
I.date = Date of Image

For each unique subject S,
IS = {I ∈ I | I.id = S}
For each I ∈ IS , we obtain the set of images within a short-time lapse, IS∗S :
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IS∗S = {I ′ ∈ IS | |I ′.date − I.date| < Td}
and we obtain the set of images taken after a long-time lapse, IS∗L:

IS∗L = IS − IS∗S

where Td is a time difference threshold. We use Td = 6 months.
We also define sets of Hamming distances as follows:

DS∗S = {HD(I, I ′) | I ∈ IS , I ′ ∈ IS∗S}
DS∗L = {HD(I, I ′) | I ∈ IS , I ′ ∈ IS∗L}

µS∗S =

∑
DS∗S

||DS∗S|| (mean short-time-lapse match score)

µS∗L =

∑
DS∗L

||DS∗L|| (mean long-time-lapse match score)

The difference between the means (µS∗L−µS∗S) is computed, and the process is
repeated for every iris subject, yielding a set of differences between mean HDs.

We consider two tests of the null hypothesis using these differences. For the
sign test, we consider the null hypothesis that a positive difference occurs equally
as often as a negative difference. The alternative hypothesis is that the more
prevalent, a positive difference, occurs more often. Using a one-tailed Student’s
t test on the difference of means, we consider the null hypothesis that the mean
of the N differences is zero. The alternative hypothesis is that the mean of the
differences is greater than zero.

The “iris-level” scenario involves tests performed on each iris separately,
yielding 26 different p values. For each iris subject, S, the short-time-lapse set,
DSS , and the long-time-lapse set, DSL, used in the “all irises” experiment give
two samples of HDs. To test our null hypothesis, we test if these two samples
are from a distribution with µSS = µSL.

2.3 Possible Sources of Change in Match Quality

We consider four factors other than time-lapse that itself could conceivably cause
poorer quality matches with longer time lapse.

1. The number of bits used in comparisons can affect the match distribution.
If two images are masked in such a way that few bits are left to be used in the
comparison, the Hamming Distance may be lower than it ought to be[12]. To
control for differences in the number of bits used in a match, we implemented
score normalization as suggested by Daugman[12]. Across our data, 5400 was
the average number of bits used and was used as the scaling parameter in the
normalization step.

2. It has been shown that the pupil to iris ratio affects the match distribu-
tion[13]. When two images of irises with largely dilated pupils are compared, the
Hamming distance is greater than two irises with less dilated pupils. Similarly,
as the difference in dilation between the two irises increases, the match distri-
bution shifts in the positive directiont[13]. To account for any effects of pupil
dilation, we consider the difference in pupil dilation between irises as a factor in
the experiment below.
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3. The presence of contact lenses can adversely affect match quality[15]. We
performed a manual, retrospective check for contact lenses in all images used
in this study. Four subjects wore contact lenses in both years and nine did not
wear them in either year. No subjects appear to have begun to wear contacts in
2008 when they did not in 2004, or to have changed the type of contacts they
wore.

4. Poor image quality and segmentation affect match quality[16]. We man-
ually inspected every image and its segmentation produced by our segmenter.
Approximately 7% of the images acquired for these subjects were discarded due
to poor quality and an additional 24% were discarded due to poor segmentation.

3 Results

For every iris-subject, we computed the mean Hamming distance and the stan-
dard deviation for the short-time-lapse matches and the long-time-lapse matches.
In 23 of the 26 irises, µSL was greater than µSS matches. The difference in mean
HDs for the two sets of time lapse, µdiff = µS∗L − µS∗S , was computed for

each iris. We also found the difference in the average number of bits used where
Bitsdiff = BS∗L − BS∗S , where BS∗L is the average number of bits used in

long-time-lapse matches and BS∗S is the average number of bits used in short-
time-lapse matches. This data is shown in Table 1.

We found the average pupil to iris ratio in 2004 and the average ratio in 2008
for each of the irises. In 23 of the 26 irises, the average ratio was smaller in 2008
than in 2004. For every match, we computed the difference in the pupil to iris
ratio of the two matched images. For each iris we determined the average ratio
difference of short-time-lapse matches, ∆PS∗S and the average ratio difference
of long-time-lapse matches, ∆PS∗L. We found ∆PS∗L was greater than ∆PS∗S

in 22 of the 26 irises. This change in pupil to iris ratio difference may account
for an increase in the HD for long-time-lapse matches. However, we observe no
correlation between ∆PS∗L − ∆PS∗S and µS∗L − µS∗S (see Table 1.)

Across all matches, we determined the mean Hamming distance for a long-
time-lapse was 0.230, whereas the mean HD for a short-time-lapse was 0.212.
However, we found the nonmatch mean HD was 0.447 for a long-time-lapse and
0.446 for a short-time-lapse. These results indicate a time-lapse effect on match
scores, but a negligible effect on nonmatch scores. Fig. 2 clearly indicates the
shift in the match distribution for long-time-lapse matches and the consistency
within the nonmatch distributions.

3.1 All Irises Test

The difference, µS∗L − µS∗S , was positive for 23 of the 26 irises with an average
difference of 0.0165. In a random sample, we would expect the average HD
for long-time-lapse matches to be worse for 13 irises and better for 13 irises.
We applied a sign test to test the null hypothesis that the number of positive
differences is not statistically significantly greater than the number of negative
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(a) Enrollment Image
from Spring 2004

(b) Verification Image
from Spring 2004

(c) Verification Image
from Spring 2008

Fig. 1. Subject 04233 Left iris- HD for spring 2004 gallery versus spring 2004 probe
was 0.156. HD for spring 2004 gallery versus spring 2008 probe was 0.285.

Fig. 2. We observe no change in the non-match distribution, but a significant shift to
the right for long-time-lapse matches.

differences. With a sign test statistic value of z = 4.1184, we reject the null
hypothesis at a significance level of 5% (p = 0.0001).

A histogram representing this sample of differences of mean Hamming dis-
tances is shown in Fig. 3. We applied a chi-square goodness-of-fit test to the
sample of 26 differences of means. The null hypothesis that this sample is from
a normal distribution cannot be rejected at a 5% significance level. Since this
data is approximately normal, we can use a t-test to compare the difference of
means.

We applied a one-tailed paired Student’s t test to test the null hypothesis
that this difference-of-means sample comes from a distribution with a mean of
zero. The alternative hypothesis is that the difference distribution has a mean
greater than zero, which would mean that the long-time-lapse HDs are on average
greater than the short-time-lapse HDs. The null hypothesis was rejected at a 5%
significance level (p=0.00001.)
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Table 1. Average Hamming distance and standard deviation for short-time-lapse and
long-time-lapse matches and the change in mean Hamming distances, bits used, and
pupil to iris ratio for all 26 irises.

Iris µS∗L std ||DS∗L|| µS∗S std ||DS∗S || µdiff Bitsdiff ∆PS∗L−

∆PS∗S

02463L 0.1843 0.0404 1419 0.1847 0.0418 1219 −0.0004 61.5 0.0044

02463R 0.2056 0.0377 987 0.1952 0.0375 1008 0.0104 41.0 −0.0014

04233L 0.1977 0.0402 2254 0.1795 0.0420 2108 0.0183 46.3 0.0281

04233R 0.1752 0.0353 2372 0.1712 0.0398 2080 0.0040 33.8 0.0034

04261L 0.1584 0.0378 156 0.1463 0.0403 224 0.0121 −87.7 0.0318

04261R 0.1408 0.0255 127 0.1381 0.0302 176 0.0027 −8.1 0.0168

04385L 0.2316 0.0409 2676 0.1999 0.0383 1628 0.0317 −91.0 0.0289

04385R 0.2288 0.0387 960 0.2140 0.0455 960 0.0148 −74.8 0.0335

04397L 0.1398 0.0363 1983 0.1365 0.0355 1323 0.00330 21.8 0.0219

04397R 0.1441 0.0266 2311 0.1380 0.0290 1496 0.0061 1.2 0.0087

04470L 0.2470 0.0524 479 0.2377 0.0499 572 0.0093 8.9 0.0010

04470R 0.2401 0.0468 689 0.2403 0.0521 518 −0.0002 97.2 0.0084

04537L 0.2131 0.0463 733 0.1991 0.0433 825 0.0140 −24.2 0.0530

04537R 0.1933 0.0387 805 0.1829 0.0442 864 0.0104 −69.0 0.0578

04629L 0.2947 0.0440 1246 0.2691 0.0485 1056 0.0255 −97.2 −0.0170

04629R 0.2994 0.0438 964 0.2678 0.0476 840 0.0316 −171.8 −0.0072

04815L 0.2769 0.0491 2236 0.2336 0.0555 1474 0.0433 −51.6 0.0531

04815R 0.2524 0.0493 2922 0.2263 0.0517 2294 0.0260 −26.8 0.0392

04851L 0.3101 0.0364 1356 0.2619 0.0478 1122 0.0481 −213.8 0.0203

04851R 0.3307 0.0357 2229 0.3092 0.0485 1755 0.0215 −47.5 0.0099

04870L 0.2460 0.0594 1477 0.2432 0.0564 880 0.0028 43.1 0.0228

04870R 0.2607 0.0539 1556 0.2647 0.0520 855 −0.0041 57.1 0.0267

04888L 0.2594 0.0373 147 0.2376 0.0454 162 0.0218 −74.8 0.0268

04888R 0.2261 0.0371 216 0.2168 0.0407 252 0.0093 6.0 0.0007

04917L 0.2380 0.0397 2022 0.2050 0.0406 1386 0.0330 −250.6 −0.0095

04917R 0.2342 0.0395 2419 0.2000 0.0347 1768 0.0343 −246.8 0.0007

All 0.2302 0.0663 28845 0.2118 0.0632 36741 0.0184 −41.3

To confirm that there is no significant effect from the number of bits used in
matches, we applied a Student’s t test to the distribution of Bitsdiff . The null
hypothesis was that the mean of this sample was zero. We failed to reject the
null hypothesis at a 1% significance level (p = 0.0285). Thus, across all irises,
there was no significant change in the number of bits used.

3.2 Iris-Level Test

For each iris subject, we have two samples of Hamming distances, one from long-
time-lapse matches, DS∗L, and one from short-time-lapse matches, DS∗S . These
samples were approximately normal, so we applied a one-tailed Student’s t test
to test the null hypothesis that these two samples of matches come from the same
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Fig. 3. Distribution of difference of long-time-lapse means and short-time-lapse means

distribution with equal means. The alternative hypothesis is that DS∗L > DS∗S .
The null hypothesis was rejected for 21 of the 26 irises at a significance level of
0.05.

3.3 Sensor Tests

We have observed that the Hamming distance for long-time-lapse matches is on
average larger than that for short-time-lapse matches. One possible cause for
this observation would be that there is some subtle change in iris texture over
time. However, it is important to note that this is not the only possible cause.
For example, if the sensor properties changed over time, this could also produce
a change in the imaged texture even if there is no change in the true iris texture.

We performed an experiment with images from the original LG2200 camera
used in the acquisition for all images in this paper and a different, rarely-used,
LG2200 camera. We tested images from both cameras to determine if the origi-
nal, well-used, camera and sensor have a degrading effect on match quality. To
perform this test, we used two sets of images from Fall 2008 acquired with the
original camera as the gallery set and the first probe set, and a third set of
images from Fall 2008 acquired with the new, rarely-used camera as the second
probe set. We found the matches produced from the two different probe sets
were not significantly different. Therefore, we do not see any evidence that the
sensor properties have changed enough to explain the time-lapse conclusions we
have presented.

4 Discussion and Future Work

We observe an approximate 0.018 increase in Hamming distance for matches
with a four years time-lapse. HDs are between 0 and 0.5, so our result represents
an approximate 3− 4% increase over a four year period. Additionally, at a false
accept rate of 0.01%, the false reject rate increases by 75% for long-time-lapse.

The basic results and conclusion presented here run counter to conventional
wisdom about iris biometrics. However, we know of no experimental study that
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has previously tested the “one enrollment for a lifetime” assumption. The previ-
ous time variability study referenced in the introduction compared images with
less than three months time lapse. Their results show better performance for im-
ages acquired in the same session than images acquired across sessions. They also
note no significant differences between two weeks to four weeks to two months
time lapse. Our results are based on images of the same iris imaged with time
lapse as long as four years. With this long-term time lapse we note statistically
significant changes in the iris match quality. Upon visual examination of the
irises with the largest difference in Hamming distance, we observed no drastic
changes in iris textures, suggesting that if the iris aging affect is real, it is based
on subtle differences.

In this study, we use the same iris imaging system, and control for contact
lenses, pupil dilation, and number of bits in a match. We noted no apparent trend
in the change in the number of bits in a match. In 22 of the 26 irises, the difference
in the pupil dilation between the images of a match was greater for matches of
long-time-lapse than matches of short-time-lapse. However, this change in pupil
dilation difference does not correlate with the change in Hamming distance across
the two sets of time-lapse. We have considered the major potential complicating
factors for an experimental study of this type. However, it is still important for
our result to be replicated by other research groups using different and larger
data sets with more subjects.

Future work includes investigation into textural changes and pinpointing the
location of such changes. Predicting textural or pupil dilation changes may aid
in accounting for degradation in the match statistic. While we have observed an
increase in Hamming distance and the false reject rate over a four year period,
we do not know if this trend is linear or how the match quality will change with
eight years, or longer, time lapse.

Even if the “lifetime enrollment” concept is disproved, it is not necessarily a
major barrier to practical deployment of iris biometrics systems. It would mean
that consideration should be paid to the time-lapse between image acquisitions
in quantifying a match statistic. One possible reconciliation for match quality
degradation is to re-enroll a subject with every verification scenario. However,
this requires routine verifications as a long time lapse between enrollment and
verification will result in an increased false reject rate. Another possibility is
to require a re-enrollment session for every subject after a set time frame. The
necessary time frame may be difficult to determine. If the time frame is too long
the iris match quality may degrade beyond the accept rate before re-enrollment.
A third possibility is to report the time lapse between the enrolled and the
verification images as well as the match statistic. If further research shows a
possible prediction of changes in the match statistic with increased time lapse,
we may be able to normalize the statistic based upon this lapse. We suggest
these possible considerations but recognize that much further research is needed
before making a recommendation.
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