
Scene perception and memory

Marvin M. Chun

Dept. of Psychology, Center for Integrative and Cognitive Neuroscience,

Vanderbilt Vision Research Center, and Kennedy Center

Vanderbilt University

IN PRESS

To appear in D. Irwin and B. Ross (Eds.) Cognitive Vision.

Address correspondence to:

Marvin M. Chun

Department of Psychology

Vanderbilt University

531 Wilson Hall

Nashville, TN 37203

e-mail: marvin.chun@vanderbilt.edu

phone: (615) 322-1780

fax: (615) 343-8449



Scene Perception 2

TABLE OF CONTENTS

I. INTRODUCTION............................................................................................................................................................3

A. SCENES ARE COMPLEX .................................................................................................................................................4

B. SCENES HAVE INVARIANT STRUCTURE ........................................................................................................................7

C.  SCENES PROVIDE CONTEXTUAL INFORMATION TO OBJECT RECOGNITION.................................................................9

II. CONTEXTUAL CUING .............................................................................................................................................10

A. HOW DOES SPATIAL LAYOUT CUE LOCATION? ..........................................................................................................11

B. HOW DOES SHAPE CONTEXT CUE AN OBJECT? ...........................................................................................................14

C. HOW DOES ONGOING TEMPORAL CONTEXT CUE AN UPCOMING EVENT? ..................................................................16

D. SCENE STRUCTURE AND CONTEXTUAL CUING...........................................................................................................17

III. ISSUES FOR THE STUDY OF SCENE RECOGNITION AND LEARNING .................................................18

A. HOW ARE SCENES REPRESENTED? .............................................................................................................................18

B. HOW DO PEOPLE LEARN ENVIRONMENTAL REGULARITIES IN SCENES? ....................................................................23

C. DOES SCENE CONTEXT FACILITATE OBJECT RECOGNITION?......................................................................................27

IV. SUMMARY REMARKS............................................................................................................................................37

REFERENCES ..................................................................................................................................................................39



Scene Perception 3

I. Introduction

Everywhere we look a visual scene is in view.  Scenes embody most of the

objects and events that we must locate and identify to guide our thoughts and actions.

Thus, it may not be an exaggeration to state that to understand scene processing would

be to understand vision.

The ability to perceive one’s local visual environment is so important for

navigation and other daily activities that it is perhaps not surprising that a region of the

brain appears to be specialized for processing scene information.  The

parahippocampal cortex responds robustly to visual scenes, namely, depictions of

visual space (Aguirre, Detre, Alsop, & D'Esposito, 1996; Aguirre, Zarahn, & D'Esposito,

1998; Epstein, Harris, Stanley, & Kanwisher, 1999; Epstein & Kanwisher, 1998).  This

region has been dubbed the parahippocampal place area (PPA) (Epstein & Kanwisher,

1998), and it can be readily identified within subjects using functional magnetic

resonance imaging (fMRI) by localizing the cortical regions that respond significantly

stronger to scene stimuli compared to face, object, or scrambled scene stimuli. Figure 1

shows a sampled region of the PPA within medial temporal cortex in a human subject.

These data were collected in our lab, and the bar graph indicates mean signal strength

of the fMRI signal that correlates with neural activity.  The results indicate that the PPA

region is more active to scenes than to faces or scrambled stimuli.

Insert Figure 1 about here

Despite great strides in understanding where scenes are perceived in the brain,

not enough is known about how people perceive scenes and use scene information to
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guide their actions.  Theoretical insights into scene recognition have been hampered by

the fundamental question of how to classify and characterize scenes.  Unlike faces,

which share a similar configuration of commonly shared diagnostic features such as two

eyes, a nose, and a mouth, the tremendous variety of scenes we experience do not

appear to share much in common, except for the fact that scenes depict a 3-

dimensional layout containing objects and surfaces.   Researchers lack a grammar to

describe scenes or even criteria to distinguish different scenes.  These limitations pose

a fundamental challenge for the study of scene recognition because any scientific

investigation requires at least some common language and rules for characterizing what

is being studied.

As a step towards understanding scene recognition and memory, this chapter will

review studies from the literature and from my lab that describe how visual scenes and

scene properties are learned and represented in the brain.  Another aim of this chapter

is to identify outstanding issues in scene perception and memory that deserve further

research.   In Section III-A, I will sketch a dual-path model of scene representation as

one possible framework to guide future work.

The chapter will begin with a brief review of some basic properties of scenes.

Despite a lack of consensus on how to operationalize different scenes, visual scenes do

share a number of properties that are uncontroversial.  I will describe three of these

characteristics below.

A. Scenes are complex

Most everyday scenes are complex in detail, presenting a rich multitude of

objects and surfaces to the observer.  In fact, the amount of information in any given
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scene greatly exceeds what can be handled by the brain at any given time: the well-

known problem of information overload (Broadbent, 1958; Chun & Wolfe, 2001; Pashler,

1998).    Such complexity leads to rather dramatic gaps in people’s perceptual grasp of

the visual world, and it also has led to rather sophisticated attentional selection

mechanisms that efficiently locate and detect important information within complex

scenes (Chun & Marois, 2002).

Some of the most compelling lab demonstrations of limited capacity in scene

processing are based on what has come to be known as the “change blindness”

paradigm (Rensink, 2002; Simons & Levin, 1997).  One of the most dramatic examples

was in a study that demonstrated real-world failures to detect a switch in a person’s

identity when that switch happened behind a brief occluding event, such as a door

passing in between the observer and the switched person (Simons & Levin, 1998).

Simpler, though no less compelling, demonstrations of change blindness from the lab

involved failures to detect a change between two otherwise identical pictures of scenes

flickering back and forth with an intervening mask to disrupt visual transients (Rensink,

O'Regan, & Clark, 1997).  In these “flicker tasks,” subjects have trouble detecting salient

changes such as a bridge disappearing and reappearing across flicker. Even in

situations where a scene does not flicker, subjects have difficulty detecting changes that

are introduced into the scene during eye movements (Irwin, 1991; McConkie & Currie,

1996) or with other visual transients (O'Regan, Rensink, & Clark, 1999).

Such powerful demonstrations of blindness to details in scenes appear to support

proposals that very little visual information is retained from one moment to the next

(Horowitz & Wolfe, 1998; O'Regan, 1992).  Although this view is probably too extreme,
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in light of recent demonstrations of good memory for objects in scenes (Gibson, Li,

Skow, Brown, & Cooke, 2000; Hollingworth & Henderson, 2002; Hollingworth, Williams,

& Henderson, 2001; Kristjansson, 2000; Peterson, Kramer, Wang, Irwin, & McCarley,

2001; Shore & Klein, 2000), there is no doubt that human observers must constantly

contend with a burdensome amount of visual information.

What’s remarkable is that the visual environment typically does not “feel” so

burdensome, because we can usually find and attend to the information we need

without much time and effort (Chun, 2000; Rensink, 2000).  This highlights the efficiency

of powerful attentional mechanisms that direct limited capacity cognitive processing to

the most important object or event that is relevant to our current behavioral goals.  For

example, while driving, we rapidly detect and usually obey traffic signals and stop signs

without much second thought.  Yet, such important, but seemingly easy tasks daunt the

abilities of the many computer chips that control so many other functions within our

automobiles these days.  Biological perception is more powerful and more intelligent,

based on the brain’s ability to utilize both bottom-up and top-down cues (Treisman &

Sato, 1990; Wolfe, 1994).  Bottom-up cues within a scene include abrupt onsets or

salient visual features that are unique in the color, size, orientation, motion direction, or

other visual primitive (Bravo & Nakayama, 1992; Theeuwes, 1992; Treisman & Gelade,

1980; Yantis & Jonides, 1984). Top-down cues include perceptual set (Egeth, Virzi, &

Garbart, 1984; Folk, Remington, & Johnston, 1992), novelty (Johnston, Hawley, Plew,

Elliott, & DeWitt, 1990), and scene context (Biederman, Mezzanotte, & Rabinowitz,

1982; Chun & Jiang, 1998, 1999).  These factors can be combined to drive selection in

an efficient manner.
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The efficiency of bottom-up and top-down cues is typically studied using visual

search tasks, where observers are asked to search for a target appearing amongst a

variable number of distractors. The visual search displays form artificial scenes, which

can be controlled to study the factors that influence attentional selection. For inefficient

search tasks, target detection time increases with set size, while for efficient search

tasks, target detection time is independent of set size. For example, uniquely colored

targets are detected rapidly, while targets that are more similar to distractors take more

time to find (Duncan & Humphreys, 1989).

B. Scenes have invariant structure

The visual world is not random, and the statistics of the environment do not

change radically over time.  Rather, scenes contain “structure,” an obvious, but

underappreciated feature of everyday scenes that we consider to be extremely

important (Chun, 2000; Fiser & Aslin, 2001, 2002; E. J. Gibson, 1969; J. J. Gibson,

1966; Olshausen & Field, 2000; Reber, 1989; Saffran, Aslin, & Newport, 1996).  By

structure, we are referring to the fact that the visual environment contains regularities,

properties that recur over time: cars travel on roads, people walk on sidewalks, windows

can be found on buildings, and so on.  Even novel scenes tend to resemble those we’ve

experienced in the past, allowing us to drive through new neighborhoods and stroll in

new shopping malls.  In sum, natural environments tend to be stable over time, and

when dynamic features exist, they tend to move about and change in fairly regular,

predictable ways.

We consider the invariant structure of scenes to be a key to understanding scene

perception, and so this property provides the motivation for much of my lab’s work on
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scene perception and memory.  Our basic proposal is that observers are exquisitely

sensitive to visual information that is invariant.  For example, the configuration of

furniture in one’s office or the layout of buildings on one’s campus tends to be stable.

Even local “scenes”, such as the instrumentation panel of one’s car, do not change from

moment to moment or day to day.  Encoding such regularities should facilitate one’s

interactions with these “scenes” on future encounters.  Thus, understanding how scene

information is processed and used by the brain can be studied as a problem of learning

and memory.  How does the brain encode invariant visual information, and how does

invariant information benefit visual behaviors and action?

One may first approach this problem by first cataloging the different types of

structure that scenes contain.  In a recent review, Henderson and Hollingworth (1999)

defined a visual scene as “a semantically coherent view of a real-world environment

comprising background elements and multiple discrete objects arranged in a spatially

licensed manner.”  Accordingly, we can identify the following key features of everyday

scenes. First, scenes contain spatial configuration information about where objects are

located relative to each other.  Such spatial regularities can be very stable, such as

buildings in a neighborhood, or approximate, such as paper on a desk or forks on a

table.  Second, scenes contain object shapes that covary with each other.  A kitchen

typically contains a sink, a stove, dishes, cups, and so on.  In a living room one is more

likely to see a sofa than an elephant.  Thus, regularities exist in the range of objects that

tend to co-occur within a scene. Finally, in addition to spatial and object shape

information, scenes viewed over time also contain rich temporal structure.  In dynamic

environments such as driving or basketball, there are regularities in how objects move
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about and change over time, allowing us to anticipate what would happen next. Thus, it

is important to understand how scene information is integrated over time. We will review

studies that illustrate these points in SectIon II on contextual cuing.

C.  Scenes provide contextual information to object recognition

Objects in natural scenes rarely occur in isolation, but are almost always

presented within a rich, detailed mosaic of other features, surfaces, objects, and events.

These properties form the global visual context that exists for most of our perceptual

interactions with the world.  As noted earlier, global context is the source of information

overload that complicates the task of individual object recognition.  However, there are

redundancies and regularities in this flux of information (Biederman, 1972). In most

natural scenes, objects and events tend to correlate with each other providing a rich,

invariant covariational texture of information that serves to decrease complexity and

increase predictability (E. J. Gibson, 1969). Although presented in a different theoretical

framework and level of analysis, both E. J. Gibson (1963; 1966) and J. J. Gibson (1966)

spoke about the attunement of perceptual systems to invariant information in the

physical world.  In short, sensitivity to regularities in the environment is informative and

helpful, and perceptual experience educates and optimizes attention.  Reber (1989)

makes a similar point in stating that when the stimulus environment is structured, people

learn to exploit the structure to coordinate their behavior in a coherent manner.

Such theoretical considerations lead to the simple prediction that global visual

context should provide important constraints to visual processing.  We propose that one

important role of visual context is to guide the deployment of visual attention (Chun,

2000).   Attention handles how information is extracted from scenes and how this



Scene Perception 10

information can be used to guide behavior.  For example, context and scene meaning

may guide eye movements towards important regions within scenes that are consistent

with the ongoing goals of the observer.  Numerous eye movement studies have shown

that fixations indeed tend to cluster around regions deemed to be central to the meaning

of the scene or relevant to an ongoing task (Loftus & Mackworth, 1978; Mackworth &

Morandi, 1967; Shinoda, Hayhoe, & Shrivastava, 2001; Yarbus, 1967).

II. Contextual Cuing

My colleagues and I have developed a number of tasks to study how the

invariant nature of complex scenes comprises contextual information that guides visual

behavior. We use the term contextual cuing to refer to the process by which scene

context information guides visual attention to important locations, objects and events

within scenes.  Unlike most prior work in scene recognition that uses real-world scenes

or depictions of real scenes, we employ rather impoverished, artificial “scenes.” What

we lose in realism, we gain in our ability to operationalize and control different

components of scenes such as their layout and content. More importantly, by using

novel scenes, we can explore how scene information is learned. In relation to this, we

aim to elucidate the neural mechanisms involved in representing complex scene

information.  Note that the principles that benefit performance in our artificial displays

have correlates in studies that employ more naturalistic, real-world images (Ryan,

Althoff, Whitlow, & Cohen, 2000; Sheinberg & Logothetis, 1998).
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A. How does spatial layout cue location?

As reviewed above, a primary feature of scenes is that objects are arranged in a

“spatially licensed manner” (Chun & Jiang, 1998; Henderson & Hollingworth, 1999).

Buildings maintain their configurations over time, as does the furniture in one’s office.

Certainly variation occurs, but by and large, the positions of most objects in the visual

world are fairly stable, especially from one moment to the next.   Such regularities are

presented to observers in the form of invariant visual context, such that encoding such

contextual information is not only critical for navigating around the environment, but also

for orienting to objects within scenes.

Our first study on contextual cuing examined how spatial context cues attention

(Chun & Jiang, 1998).   We required subjects to quickly detect a target, a rotated T,

appearing amongst 11 other rotated L shapes (See Figure 2). This is a difficult search

task that requires careful scanning of the display using focused visual attention, and we

measured the time it took to locate the target.  Such displays can present clearly

defined multiple objects in a flexible, but fully controlled manner.  But what is “context”

for such sparse displays?  Our insight was to define context as the spatial layout of the

distractor items surrounding the target.  To make this scene property “invariant,” we

repeatedly presented a set of 12 different scenes (search arrays) across blocks

throughout the entire session.  To make the scene property useful and predictive, for

each repeated scene, we had the target appear in a consistent location relative to its

visual context (global configuration).  If observers are sensitive to the invariant spatial

configuration surrounding the target, then subjects should be able to detect the target

within repeating displays more quickly as they experience more repetitions. Search for
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targets appearing in the repeated old scenes was compared to that for targets

appearing in new contexts, randomly generated in each block to serve as a baseline.

Subjects were significantly faster at detecting targets appearing in old displays

compared to targets appearing in new displays.  We call this the contextual cuing effect

because visual context served to cue attention to the target, facilitating search.   In

addition, subjects were not aware of which displays were old or new, making this task

an implicit one, a point that we will return to in Section III-B.  Similar results were

observed using pseudo-naturalistic displays with 3-dimensional perspective (Chua &

Chun, in press).

Insert Figure 2 about here

What exactly is contextual information guiding?  We had proposed that context

guides “attention” based on the assumption that the allocation of attention to a target

precedes any action directed towards it.  However, we had to infer this based on

manual response times.  An example of a more direct visual behavior would be eye

movements that direct foveal resolution to a target item.  Indeed, a recent study that

measured eye movements showed that fewer saccades were needed to acquire a

target appearing in an old display compared to a new display (Peterson & Kramer,

2001).  Similar results have been observed in monkeys making eye movements to

targets embedded in natural scene backgrounds (Sheinberg & Logothetis, 1998).

Interestingly, such contextual cuing of eye movements may even override the powerful

pull of salient visual events such as abrupt onsets (Peterson & Kramer, 2001ab).

Although the contextual cuing paradigm was developed to get a better handle on

the notion of “context” in visual processing, a number of questions arise from the
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demonstration of robust, implicit contextual learning.  Namely, what is the limit?  Any

given scene contains a prohibitively large amount of information, all of which need not

be encoded.  So what counts as context?   To begin to address this issue, we raised

two questions to examine what counts as context in the artificial displays used in Chun

and Jiang’s (1998) study.

First, is the entire display of 12 items encoded as global context, or does local

context around the target suffice?  Olson and Chun (2002) tested this by making only

half of each display invariant, while the other half of the display changed randomly from

repetition to repetition.  The invariant half of the display could either be on the side

containing the target or on the opposite side.   Thus, for each old scene, half of the

display was always invariant and predictive of target location.  What varied was whether

the target was embedded within the invariant, predictive side or within the random side.

Contextual cuing was only observed when the side containing the target was invariant,

suggesting that local context is sufficient, and that random local context is not.

Second, Jiang and Chun (2001) explored the role of selective attention in implicit

learning of background context information. Jiang and Chun presented displays of

rotated L distractors.  Half were colored green and the other half were colored red.

Each subject had a target color that was red or green, and they were instructed to

always attend to that color because the rotated T target never appeared in the

unattended color.  Thus, for any given display of intermixed red and green items, half of

the items were attended and the other half was unattended. Jiang and Chun varied

whether the attended context (spatial layout of distractors) was repeated or whether the

unattended context was repeated.  Only the attended displays produced contextual
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cuing; unattended items did not, even though they were repeated the same number of

times as the attended items, and even though all of the items were interleaved with

each other.  This finding demonstrates the importance of selective attention in

controlling learning, even implicit learning, to items of behavioral relevance.  Thus, in

the real world, we propose that when contextual information is encoded, such learning

is restricted to the subset of items within a complex scene that is most relevant to the

ongoing task.

Broadly speaking, contextual cuing illustrates the importance of learning and

memory mechanisms in visual perception. The predictive context information was

learned as subjects performed the search task.  In other words, observers encoded the

invariant visual information that benefited target detection.  We propose that such

learning occurs most of the time that observers are interacting with their visual

environment.  However, learning is not indiscriminate and it does not have infinite

capacity.  Thus learning is strongest for local context and especially for attended

information. Not all that repeats gets encoded.

B. How does shape context cue an object?

Another key feature of scenes is that they contain objects that tend to co-occur

with each other.  Modern day classrooms contain desks, chairs, whiteboards, and

computer projection systems, and they are unlikely to contain bottles of scotch or

ashtrays.  Such statistical information provide another form of “structure” that should be

useful for the observer.  Importantly, covariation information acquired through

perceptual experience allows each object within a scene to cue the presence of other

related objects.
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We studied this in the lab using novel shapes (Chun & Jiang, 1999).  Subjects

searched for a target that was the only shape in the display that was symmetric around

the vertical axis.  The other distractors were novel shapes symmetric around a non-

vertical axis (See Figure 3).  Thus, we were able to define a target task without

specifying or labeling the precise shape of the target, which could be any one of a large

number of vertically symmetric shapes.  Upon target detection, subjects pressed a key

as quickly as possible, and their response time was measured.  The display was then

replaced with an array of probe letters, each appearing in a location previously occupied

by an object.  Subjects reported the probe letter that appeared in the same location as

the target on the prior search display.  The probe task simply allowed us to ensure that

the target was properly identified.

Insert Figure 3 about here

We controlled the statistics of this novel visual world by varying whether the

target shape was correlated with its distractor shapes (old condition) or whether the

target and distractor shapes were not correlated (new condition).  In other words, target

shapes were consistently mapped to distractors in the old condition, and variably

mapped in the new condition (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977).  If

subjects are sensitive to covariation information, they should be faster in the old

condition, and indeed, they were. Importantly, the locations of targets and distractors

were completely random in this experiment, so that any cuing effects could be attributed

to shape association learning alone.  Presumably, this type of learning subserves the

intra-object priming effects observed with real-objects (Henderson, 1992; Henderson,

Pollatsek, & Rayner, 1987).
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C. How does ongoing temporal context cue an upcoming event?

Spatial layout and shape association information are prominent features of static

scenes, but they fail to encompass the fact that the visual environment is dynamic.  Not

only do objects move about within scenes, our perception of scenes changes from

moment to moment as we navigate around them.  Thus, there is rich temporal structure

in the environment that may guide our expectations for what will happen in future time

steps.

First, let’s consider situations with moving objects.  A classic example would be a

basketball or soccer game where players move about along with the ball.  The

movements are obviously not random, and moreover, there are regularities not only in

how a single player may move, but how the field of players moves relative to the ball.

Effective athletes have what is called “field sense,” which basically refers to their above-

average ability to read the dynamic field of players to predict how key players will move

and where the ball will go in the next time step.  This ability is not just an index of

natural talent but also of perceptual experience, which tunes the player to important

regularities in how plays unfold during the game.

We studied this in a dynamic search task, where subjects were asked to quickly

detect a T target that was moving about amongst other moving L distractors (Chun &

Jiang, 1999).  The movements of all of the items were independent and seemingly

random with the constraint that they could not run into each other.  However, for half of

the displays, the target trajectory was perfectly correlated with its distractor trajectories,

such that the dynamic context of moving distractor items cued the target trajectory.  For

the other half of the displays, the target trajectory was not correlated with the distractor
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trajectory. Although the displays were seemingly quite arbitrary, subjects were faster to

detect targets appearing along trajectories that were correlated with their distractor

trajectories. They demonstrated contextual cuing from dynamic displays without

awareness of which dynamic display was old and which was new.

Another form of temporal context exists in how visual events change and unfold

over time, even in the absence of explicit motion in the display.  Namely, an invariant

sequence of events forms a temporal context that benefits visual processing for

upcoming events.  Olson and Chun (2001) presented sequences of letters and varied

whether the letter identities appeared in a fixed sequence or randomly.  When the onset

of the target letter was preceded by a fixed sequence of letter identities, subjects

detected the target more quickly.  Thus, when visual events unfold in a previously

experienced manner, then the sequential information helps observers predict what’s

forthcoming.  Such temporal context learning undoubtedly benefits everyday perception.

How do subjects acquire such temporal associative information?  Fiser and Aslin

(2002) demonstrated that subjects are tuned to transitional probabilities between

successive shapes. In fact, even passive viewing allowed observers to extract temporal

correlations from an ongoing stream of different visual shape sequences. Thus, the

acquisition of temporal structure may be understood as a problem of statistical learning,

important for both the visual and auditory domains (Saffran, Johnson, Aslin, & Newport,

1999).

D. Scene structure and contextual cuing

To sum, our perceptual environment is highly structured, such that knowledge of

such structure, presented in the form of visual context, may guide perceptual processes
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to rapidly orient to a location, identify an object, or prepare for an upcoming event.  The

meaningful regularities in the environment may be extracted and internalized using

powerful statistical learning mechanisms within the brain.   Contextual cuing is a

paradigm for studying how regularities are learned through perceptual experience, and

how such visual knowledge facilitates behaviors such as search.  Understanding the

neural mechanisms that encode such regularities should provide insights into how the

brain stores visual knowledge for everyday perception.

III. Issues for the study of scene recognition and learning

In the following sections, we will discuss three issues that deserve further

research.  For each topic, we will summarize outstanding problems, review existing

work, and outline directions for future investigation.

A. How are scenes represented?

What is the nature of scene representations in the mind?  This seemingly basic

question does not have a straightforward answer.   We will divide our discussion into

two sections.  The first concerns whether scenes are more critically defined by the

collection of objects they contain or whether the background configuration is important.

The second section develops a dual-path model of scene processing that is based on

evidence that spatial layout information and object association information may make

separable contributions to scene recognition and may have dissociable substrates in the

brain.
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1. Objects or Background?

Are scenes merely collections of co-occurring objects or is the background

structure of a scene important as well?  This question has been traditionally asked by

studies that probe the effects of scene context on object recognition.  In addition, novel

insights have recently been obtained from functional neuroimaging.

Consider an office scene.  An office contains objects that co-occur in the real

world: chairs, computers, telephones, pens, papers, books, etc.  In addition to these

objects, offices typically contain a certain background structure: four walls, floor, ceiling,

windows, and perhaps some built-in bookshelves and desk countertops attached to the

wall.  This background structure depicts a sense of 3-dimensional space within which

objects can be arrayed in coherent spatial relations to each other.   Of course, in

principle, the distinction between object and background is much less clear than

described above. However, to start, we wish to follow the convention that objects tend

to be things that either move around or can be moved around, while backgrounds depict

more stable, fixed entities, thus providing reference points to define the space they

appear in (Boyce, Pollatsek, & Rayner, 1989).

With such a distinction in hand, researchers differ in the relative importance they

place on objects versus backgrounds in defining scenes and in understanding scene

context effects.  Several authors propose that global scene information, formally called

“schemas” or “frames,” is extracted based on the overall spatial organization of objects

appearing within a background context.  Such information may be extracted even before

individual objects are identified.  The schemas serve to facilitate recognition of the

embedded objects (Antes & Penland, 1981; Biederman et al., 1982).
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Alternatively, scene recognition and scene context effects may be dependent on

recognition of the objects that typically comprise a scene (Friedman, 1979; Henderson,

1992; Henderson et al., 1987).  Scene context facilitation of object identification would

occur by priming from other objects within the scene.  Scene recognition itself is largely

driven by rapid identification of diagnostic objects within scenes (e.g., an oven to define

a kitchen scene, or a car for a garage scene).

Boyce et al. (1989) supported the schema hypothesis to explain scene context

effects on target facilitation.  Namely, global background information appeared to be

more critical than surrounding objects.   They observed that objects were more difficult

to identify within a semantically inconsistent background even when related objects

were present. Moreover, for their displays, whether simultaneously presented objects

were related or unrelated did not matter.

Other studies support an intra-level object-to-object priming account (de Graef,

1992; Henderson et al., 1987). This account is based on facilitation effects observed

from related objects that were fixated prior to the target object (Henderson et al., 1987).

Even when spatial layout was unstructured, extended viewing of a scene containing

statistically correlated objects yielded robust item-to-item priming effects (Chun & Jiang,

1999).

The answer to this debate perhaps lies in between the two accounts (de Graef,

1992).  Within the first few hundred milliseconds of analysis of a scene, it is likely that

global scene properties, which may include diagnostic color information (Oliva &

Schyns, 2000), are rapidly registered and used to guide exploration of the scene (Chun

& Jiang, 1998; de Graef, 1992; Henderson, Weeks, & Hollingworth, 1999; Oliva &
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Schyns, 2000; Schyns & Oliva, 1994).  Thus, experimental studies that rely on briefly

flashed scenes are more likely to observe global schema effects rather than local object

priming effects.   As scene viewing progresses across multiple fixations, object-to-object

priming is likely to augment how the scene is processed and how component objects

are identified. We will develop this idea in further detail below.

2. A dual-path model of scene processing

It seems likely that global spatial structure and object shape covariation

information make joint contributions to the recognition of scenes as well as objects

within scenes.  This is reasonable given that scenes contain both spatial layout and

object shape information. However, are spatial layout information and shape information

stored in an integrated manner or are the internal representations for these somewhat

independent?  This question immediately brings to mind the popular “what” versus

“where” distinction, where spatial information is processed primarily through a dorsal

pathway, and object information through a ventral pathway (Ungerleider & Mishkin,

1982).  Although the distinction is not absolute, it has proven useful for understanding

how spatial or object shape information may make separable contributions to a variety

of behavioral tasks.  For example, damage to the dorsal pathway impairs the ability to

utilize spatial cues in a choice task while damage to the ventral pathway impairs the

ability to use shape cues (Pohl, 1973).  In working memory, holding spatial locations in

mind typically activates the dorsal stream while holding object shape information in mind

activates the ventral stream (Kohler, Kapur, Moscovitch, Winocur, & Houle, 1995).

The dorsal versus ventral stream distinction does not map directly on how

scenes may be represented in long-term memory, but it is interesting to note that there
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is some evidence that spatial and object shape information in scenes may be stored in

anatomically distinct regions of medial temporal cortex.

For example, the brain area that is sensitive to scene stimuli appears to care

more about spatial structure than component objects. In a seminal neuroimaging study

that characterized the parahippocampal place area (PPA), Epstein and Kanwisher

(1998) demonstrated that the neural activity in this region was substantially higher for an

“empty” room than for a 2-dimensional array of multiple related objects (e.g., furniture

from a room on a blank background that lacked 3-dimensional spatial context).  Based

on this and other converging evidence, they concluded that the PPA was most sensitive

to information that depicted the layout of local space.

Then where are object associations stored?  One promising candidate is

perirhinal cortex, which is located at the ventromedial aspect of the primate temporal

lobe.  It plays an important role in both the perception and memory of objects, especially

associations among objects (Gaffan & Parker, 1996; Murray & Bussey, 1999; Murray &

Richmond, 2001).   Although most work in this cortical region has been conducted in

non-human primates, our lab is currently pursuing a number of hypotheses to establish

a role for perirhinal cortex in object association learning.

We believe that the behavioral work and neurophysiological data reviewed here

points to a dual-path model of scene recognition.  Soon after a scene comes into the

eyes, global features of its spatial layout that depict 3-dimensional space will activate

the parahippocampal place area.  This initial “gist”  is available within 200 ms (Thorpe,

Fize, & Marlot, 1996), even when a mask is present. The global information serves to

guide further exploration of the scene (Chun & Jiang, 1998; de Graef, 1992; Henderson
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et al., 1999; Oliva & Schyns, 2000; Schyns & Oliva, 1994).  As interrogation of a scene

progresses, multiple eye movements will foveate different objects within a scene.  The

sequential pattern of these highly detailed object fixations will activate object

representations in temporal areas such as perirhinal cortex, where activation will spread

on to neuronal representations of other associated objects.  These two streams of

information should interact with each other, such that global spatial information

processed in the PPA may guide the deployment of eye movements and access to

associated object shape information in perirhinal cortex.  In turn, object shape

information may help the PPA to discriminate one local layout from another, as well as

cue the presence of other objects within the scene based on associative knowledge

stored in perirhinal cortex.

B. How do people learn environmental regularities in scenes?

A very important question that is related to the issue of scene representation is to

understand how people encode scenes from perceptual experience.   More broadly

speaking, how do observers encode important environmental regularities?  One thing

that we do know about scene memory is that it is exceptionally good.  Behavioral

studies have revealed that observers can recognize thousands and thousands of scene

images that were novel to them prior to a brief study phase (Shepard, 1967; Standing,

1973; Standing, Conezio, & Haber, 1970).  Although such memory performance

probably relies more on scene gist rather than a detailed engram, it is still remarkable

how many scene images can be encoded, sometimes even based on a single trial of

exposure.  Furthermore, we suspect that remarkable scene memory performance

measured in such recognition tasks may actually be a gross underestimate of the
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brain’s capacity to encode and discriminate scene information.  We base this conjecture

on the hypothesis that conscious recognition memory, measured in these prior studies,

has smaller capacity than that of unconscious, implicit recognition memory.

A considerable bulk of memory research is organized around the distinction

between explicit and implicit memory (Roediger, 1990; Schacter, 1987; Squire,

Knowlton, & Musen, 1993).  Explicit (declarative) memory supports the ability to

consciously retrieve and declare past facts and events.  Implicit (nondeclarative)

memory supports improved performance in a variety of perceptual and motor tasks,

although observers cannot recall or articulate the learned information.  The basic

feature of implicit memory is that much information that cannot be consciously retrieved

can produce effects on behavior due to prior exposure.  In fact, amnesic patients with

very little explicit memory show intact implicit memory for a variety of perceptual and

motor tasks (Cohen & Squire, 1980; Corkin, 1968).  Thus, implicit memory may be more

sensitive than explicit memory in revealing traces of past experience.  Another related

feature of implicit memory is its robustness over time.  Information that fades away from

explicit retrieval over time may be accessed with implicit memory tasks (Cave, 1997;

Cave & Squire, 1992; Jacoby & Dallas, 1981; Tulving, Schacter, & Stark, 1982).

Returning to scene context learning, our own lab’s work on contextual cuing also

shows that “scene” memory can be remarkably powerful, even for the rather sparse,

similar-looking displays. Another interesting key feature of contextual cuing is that it is

implicit (Chun & Jiang, 1998, 1999, 2003; Olson & Chun, 2001). Most observers do not

consciously notice the predictive relationship between repeating contexts and

embedded target locations or identities.  In fact, most subjects do not even notice that



Scene Perception 25

scene layouts or object shapes were repeating.  When probed to explicitly discriminate

old displays from new displays, subjects performed at chance.  Even when alerted to

the fact that displays were repeated and should be noted, subjects did not show more

contextual cuing or better performance on the explicit recognition task. (Chun & Jiang,

2003).  Fiser and Aslin (2001, 2002) have also observed that subjects may implicitly

learn important statistical regularities from structured spatial arrays or temporal

sequences of visual objects.

Such implicit learning is perhaps essential for visual perception, because as a

number of authors have argued (Lewicki, 1986; Reber, 1989), implicit learning allows

the learner to extract statistical regularities in a more efficient manner than may be

possible through explicit learning.  As noted above, a practical feature of implicit

learning is that it tends to be more robust and sensitive than explicitly learned

information.  For example in the spatial contextual cuing task, it is quite remarkable to

observe such a specific contextual cuing effect based on 12 arbitrary artificial scenes

that were not discriminable from the other novel scenes they appeared with.  Even more

notable is the finding that such implicitly learned artificial scene information may persist

for up to an entire week (Chun & Jiang, 2003).

Characterizing contextual scene learning as implicit need not imply that different

mechanisms or brain systems should be involved for implicit perceptual learning versus

conscious, explicit perceptual learning.  Indeed, an amnesic patient study suggested

that explicit and implicit learning may share the same neural substrates.  Chun and

Phelps examined contextual learning in amnesic patients with damage to the

hippocampus, which is a brain structure important for encoding relational, configural
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information, critical for a variety of memory tasks such as spatial learning, contextual

learning, and episodic encoding (Cohen & Eichenbaum, 1993; Hirsh, 1974; McClelland,

McNaughton, & O'Reilly, 1995; O'Keefe & Nadel, 1978; Rudy & Sutherland, 1994).

However, in humans, the hippocampus and neighboring medial temporal lobe structures

are also essential for explicit, declarative memory (Squire, 1992), such that damage to

these structures produce profound amnesia.  In contrast, implicit memory, as expressed

in perceptual priming studies or motor skill learning tasks, relies on other non-

hippocampal brain structures. Does this mean that spatial contextual cuing, which

requires spatial learning but is also implicit, does not rely on the hippocampus?

Interestingly, Chun and Phelps (1999) demonstrated that amnesic patients with

hippocampal and neighboring medial temporal lobe damage were impaired in their

ability to benefit from repeating spatial layouts.  The patients showed no contextual

cuing, suggesting that the hippocampus and neighboring structures are important for

spatial scene learning, regardless of whether the learning is conscious or unconscious.

The Chun and Phelps (1999) finding supports views that the hippocampus is

important for configural and relational processing.  However, further work is needed.

One complication is the finding that partial hippocampal damage is not sufficient to

observe contextual cuing impairments (Manns & Squire, 2001), suggesting that

complete hippocampal damage is necessary to observe a deficit.  Given that the

hippocampal patients in the Chun and Phelps study had damage that also extended into

other medial temporal lobe structures, it is possible that these other areas play a critical

role in contextual cuing.  However, a recent neuroimaging study has provided further

evidence for hippocampal involvement (Preston, Salidis, & Gabrieli, 2001).  Thus, the
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hippocampus is likely to be essential for spatial contextual learning, independent of

whether other medial lobe structures also contribute or not.

Another limitation is that the amnesic patients were only tested with the spatial

context task.  Thus, it is possible that other non-spatial forms of implicit configural

learning may not be impaired by hippocampal damage.  It would be very useful to test

the object shape contextual cuing task in a group of amnesic subjects with hippocampal

damage.  If the hippocampus is important for any type of contextual, configural learning,

then the patients should not show object contextual cuing.  However, if the

hippocampus is only relevant for configural learning that involves spatial relations, then

hippocampal patients should show normal object contextual cuing.  Following similar

logic, it would be useful to test hippocampal patients in the temporal contextual cuing

tasks as well.  An advantage of the contextual cuing paradigm is its flexibility to test

spatial, object, and temporal factors separately.  Thus, further studies with the

contextual cueing task promise to yield further insights into how different components of

scene memory are represented in long-term memory.

C. Does scene context facilitate object recognition?

As reviewed throughout this chapter, one of the most basic functions of scene

context and gist is to drive eye movements and attention towards objects relevant to a

scene. Eye fixations tend to cluster around regions of interest within scenes and to

objects relevant to an ongoing task (Loftus & Mackworth, 1978; Mackworth & Morandi,

1967; Yarbus, 1967). Detection of changes, which requires attention, within scenes

tends to be faster for features that are central to the context of a scene than for features

that are less central to the context of a scene (Kelley, Chun, & Chua, in press; Rensink
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et al., 1997; Shore & Klein, 2000).  These findings can be extended to hypothesize that

context directly facilitates the identification of consistent objects within a scene.  Thus,

Palmer (1975) demonstrated that the scene context of a kitchen enhanced recognition

of an embedded breadbox as opposed to a drum.  Biederman (1982) showed that

subjects were better at detecting objects appearing in valid locations compared to

invalid locations.  Even using novel shapes, targets that were consistently paired with

their context were detected more rapidly than those that were not.  In sum, it would

seem a foregone conclusion that scene context facilitates object recognition in an

interactive manner.

Unfortunately, despite considerable work on this topic, a fundamental question

about this basic hypothesis remains unresolved: Where is the locus of contextual effects

on object perception?  Does scene context bias an early stage of visual processing by

biasing feature extraction? Or does it operate on higher-level representations, at the

stage where perceptual representations are matched with stored descriptions of known

objects?  Or is scene knowledge completely isolated from object identification

processes? Although prior work may appear to support the former two possibilities that

place scene context effects on object recognition stages or earlier, recent studies have

questioned this assumption with evidence showing that scene context effects may

reflect response bias or selective encoding, rather than facilitated perception.

A wide variety of paradigms have been used to address this question, but each

has specific problems, as reviewed by Henderson and Hollingworth (1999).  First, in eye

movement paradigms, the dwell time of fixation on an object may be interpreted as one

index of object recognition efficiency.  Thus, shorter fixations may be predicted for
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objects consistent with their global scene context. The problem with such measures is

that evidence for shorter fixations on scene-consistent objects is not clear, at least not

for the first fixation within a scene.  A more fundamental problem is that fixation may

reflect the contribution of other mental processes beyond perception, such as an

increased difficulty of remembering the item for later report or the increased time

involved to cognitively assimilate an item that is incongruous with its surrounding

context.  Thus, eye movement measures, at least as they have been used in the past,

may not afford decisive insights into the locus of scene context effects.  This problem

generalizes to other methods such as naming tasks, which provides response times that

reflect other additional cognitive processes beyond perceptual recognition.

Given these problems with eye movement and naming measures, object

detection paradigms appear more promising, at least for understanding object

facilitation effects.  In detection tasks, experimenters measure the accuracy of detecting

a target object appearing within a briefly presented scene.  A classic study

demonstrated that objects appearing within intact scenes were more accurately

detected than objects appearing within jumbled scenes (Biederman, 1972).  One may

also measure response time to objects within scenes.  Accordingly, subjects take less

time to find a target object within a normal scene than in a jumbled scene (Biederman,

Glass, & Stacy, 1973).  Although Biederman’s early studies demonstrated the

importance of coherent scene context, one limitation is that the findings may instead

reflect an “incoherent scene disadvantage,” given that the jumbled scenes introduced

new contours, confounding visual complexity between intact and jumbled scenes.
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Such concerns may be addressed by exploring object recognition within coherent

scenes only.  To manipulate scene context effects, one may vary whether the target

object is consistent or inconsistent with the scene (Loftus & Mackworth, 1978; Palmer,

1975).  Broadly speaking, inconsistent objects may be incongruous with scene context

in their identity (a camel in a restaurant) or in their spatial position (a chair glued to the

ceiling in an office scene) or both (a sofa floating in the sky of an outdoor city scene).

Using signal detection measures, early studies showed that the advantage for

consistent objects (Biederman et al., 1982; Biederman, Teitelbaum, & Mezzanotte,

1983) reflected higher sensitivity, a measure of perceptual discriminability, rather than

bias, a measure of postidentification decision processes.  However, this finding has

been sharply criticized by Hollingworth and Henderson (1998) who demonstrated a

problem in the experimental design that affected how perceptual sensitivity was

calculated.  Using a corrected design, Hollingworth and Henderson not only replicated

Biederman et al’s results using their original uncorrected design, they demonstrated that

the advantage of context-consistent objects disappeared when the design was

corrected.  If anything, Hollingworth and Henderson (2000; 2001) have repeatedly

observed an inconsistent object advantage, which they attribute to postperceptual

selective encoding in memory.  Bolstering a postperceptual explanation, Henderson and

colleagues (Henderson et al., 1999) demonstrated that inconsistent objects were fixated

longer, but not earlier than consistent objects during scene viewing.  In sum, they favor

a functional isolation model that posits that scene knowledge and object perception

processes are segregated. Evidence for interactions between global scenes and

embedded objects may reflect cognitive processes occurring beyond recognition, such
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as guessing strategies or selective encoding strategies. In sum, current behavioral

evidence is very mixed in regards to whether scene context facilitates object recognition

or not.

My opinion is that scene context effects occur at both perceptual and

postperceptual stages.  Different tasks and dependent measures may reveal scene

context effects at different levels of perceptual and cognitive processing.  Thus, this

question should be approached with a variety of methodologies. In particular, cognitive

neuroscience methods that look into brain activity may provide novel insights, as I will

review below.

To resolve the issue of how scene context influences object recognition, one

must consider both anatomical and temporal factors.  Anatomically speaking, scene

context may influence object recognition at an early or late stage of visual processing.

Early stages may include areas in temporal cortex, where object shape information is

processed, and they may even include the earliest stages of visual analysis, such as

areas V1, V2, and V4, where features are initially extracted from the incoming image.

Conversely, scene context may not influence visual processing in the occipital or

temporal cortex at all.  Instead, one may only observe effects of context in frontal areas

that are not specialized for visual analysis, but are more involved in working memory

and response selection.

In conjunction with such anatomical factors, one may consider the time course of

contextual influences as well.  For example, does contextual information modulate

stimulus processing as sensory information passes through visual areas, say, within
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200 ms of stimulus onset?    Or are contextual influences observed at a later latency

that may be more consistent with postperceptual processes?

 There are a variety of methods to probe the anatomical and temporal

characteristics of contextual processing in the brain.  We will consider three here.  First,

single-cell neurophysiology affords insights into contextual influences with very high

spatial and temporal resolution.  However, such methods are not typically available to

study activity in human cerebral cortex. For human studies, there are two non-invasive

methodologies that are popularly used.  Event-related potentials measure stimulus and

task relevant neuronal activity that can be recorded at the scalp.  Although anatomical

resolution is poor, temporal resolution is high.  Complementary insights may be

obtained from functional neuroimaging methods such as positron emission tomography

(PET) or functional magnetic resonance imaging (fMRI).  These methods measure

changes in blood flow that correlate with neural activity.  They afford more anatomical

precision than ERP methods, while lacking temporal precision.  The anatomical

precision can be quite revealing in the case of fMRI.

When one considers the neurophysiological evidence in the literature, it becomes

abundantly clear that some form of scene context benefits perceptual processing, at a

fairly short latency within the earliest of visual cortical areas: V1.  However, the meaning

of “scene” becomes critical here, as most work has focused on processing low-level

features using stimuli that do not resemble the natural scenes we typically encounter in

the world.  Nevertheless, if one may (momentarily) allow a collection of discrete items in

an array to be called a scene, then one will find that such scene context influences

processing of items within it.  Consider the neural response of a cell in V1 that is
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optimally tuned to an oriented line (target) within its receptive field.  If the target is the

only item within the display, then its orientation will determine the strength of the neural

response because V1 neurons are orientation sensitive.  Of course, the neuron only

responds to stimuli within its receptive field.  If the target is presented outside the

neuron’s receptive field, no response is observed, and no modulation is observed as the

target moves around outside the receptive field.  However, if the target is in the neuron’s

receptive field, and there are other items in the context of the target, outside of the

receptive field, then an interesting result emerges. As the orientation of the items in the

context deviates from the target orientation, the neuron’s response increases.  For

example, the neuronal response to a vertical target is maximal when the target is

surrounded by a field of horizontal lines, and it is weakened when the surrounding field

is also vertical.  It is as if the neuron fires to permit “pop-out,” rapid segregation of the

target feature relative to the background (Knierim & van Essen, 1992).  What’s

remarkable is that such influences are being driven by stimuli outside the target’s

receptive field.  In addition, the latency of such influences is rapid, occurring within 20

ms of stimulus array onset.  Such long-range interactions in visual cortex may provide

the foundation for psychophysical observations that revealed how thresholds for

discriminating faint, oriented visual targets are dependent on interactions with other

stimuli that spatially flank the target (Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998;

Polat & Sagi, 1993, 1994).

Similar observations of contextual influences in V1 have been observed for visual

surfaces as well.  When the orientation of lines within a target surface patch is different

from the texture of lines in the background of the target surface patch, the neural
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response to the lines within the target surface patch become enhanced, supporting the

sense of perceptual segregation experienced from such displays (Lamme, 1995; Zipser,

Lamme, & Schiller, 1996; but see Rossi, Desimone, & Ungerleider, 2001).

Of course, most people will resist calling these artificial displays scenes.  In fact,

the mechanisms described above most likely play a role in low-level visual processing,

promoting texture segregation and feature pop-out.  The point that I wish to draw is that

one of the most fundamental stages of visual processing harbors neural mechanisms to

support highly interactive processing.  No feature is processed in isolation of another,

and this fact encourages the search for similar processing principles within higher levels

of visual processing.

One attempt to do so employed the contextual cuing paradigm.  Olson, Allison,

and Chun (2001) had the opportunity to collect electrophysiological recordings directly

from the cortical surface of patients who were being monitored for epileptic seizure foci.

We trained a group of patients on a set of spatial contexts that predicted the embedded

target location.  The patients showed a significant contextual cuing effect, faster

detection of targets appearing in old contexts compared to targets appearing in new

contexts.  Because no other visual cues existed to distinguish old from new contexts,

the search benefit must have been driven by learned context information. Thus, any

difference in neural activity to old scenes versus new scenes must reflect some process

that distinguishes the two types of trials, leading to faster detection.  Olson et al.

observed significant differences in the N210 component of the ERP waveform to old vs.

new scenes.  Thus, this finding demonstrates that learned context information can

influence neural processing within 210 ms of stimulus onset.  Moreover, the relatively
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higher resolution of intracranial recordings permitted Olson et al. to demonstrate that

much of this differential activity occurred in early visual areas such as V4, V2, and

perhaps even V1.  The latency of the N210 is such that it probably does not reflect

modulation of activity within the initial volley of visual information through visual cortex,

but rather backward feedback from higher-level stages, presumably scene

representations in medial temporal cortex.  Unfortunately it is not clear what the N210 is

revealing: whether it simply reflects the discrimination of old vs. new displays or whether

it signals the top-down control of spatial attention to the target associated with an old

context.  Much further work is needed.  Nevertheless, this study provides some of the

clearest evidence that learned context information can induce changes in neural activity

within 210 ms in early visual areas.

At higher stages of visual processing, there is less direct neural evidence for

contextual interactions.  However, the potential for contextual influence seems high.

Consistent with the dual-path model of scene processing, the first step of scene context

effects is likely to be rapid recognition of global scene context and configuration

information.  Behavioral work has shown that scene recognition is very efficient, based

on Potter’s (1975)  finding that the gist of a target scene can be reliably extracted from

an rapid ongoing stream of different scenes.  Still, behavioral work cannot pinpoint the

time course of scene processing because categorization processes progress even after

the stimulus is no longer present. ERP measures can provide more direct measures,

and it is very interesting that ERP signals begin to distinguish scene categories by 150

ms after stimulus onset (Thorpe et al., 1996). A follow-up of this study used fMRI to
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reveal that differential activation for target and distractor scenes occurs in high-level

visual areas such as the fusiform and parahippocampal gyri (Fize et al., 2000).

Such solid evidence for rapid scene categorization makes it tempting to postulate

that scene information develops in parallel with object information in a way that the two

streams of information interact throughout the visual pathway. The next step is to

establish that such scene information impacts the representations of embedded objects.

Such interactions must be based on associative links between objects that tend to

appear together such that the presence of one object cues the presence of the other.

Towards this goal, one must demonstrate associative learning in temporal cortex, where

object knowledge is thought to reside.  One of the most classic studies to do so was a

neurophysiological study by Miyashita and colleagues (Miyashita, 1988; Sakai &

Miyashita, 1991).  By training monkeys on novel visual shapes, they first showed that

neurons in inferotemporal (IT) cortex become shape-selective with learning.  In addition,

they demonstrated that these neurons became selective to other temporally associated

but geometrically unrelated stimuli. Presumably, this type of associative learning would

assist the neuron’s ability to link different views of the same object (Logothetis & Pauls,

1995), in addition to linking different objects that typically co-occur with each other.  Of

further interest is the recent suggestion that visual experience may induce the

development of clusters of neurons with similar stimulus preferences (Erickson,

Jagadeesh, & Desimone, 2000).

One limitation of these past studies of associative learning in visual cortex is that

they were limited to temporal associations.  Namely, a cue stimulus was temporally

correlated with a stimulus that trailed in time.  However, with respect to the dual-path
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model of scene recognition, temporal cuing may play a central role, as most objects in

complex scenes are fixated in a serial manner.  Nevertheless, it would be important to

extend these insights to understand how simultaneously presented object shapes may

influence the neural activity, and corresponding behavioral response, to a target shape.

Our lab is currently testing fMRI tasks that examine stimuli sets that are temporally

associated and/or spatially associated, and we believe that the results will further clarify

how scene context facilitates object recognition within visual processing areas in

temporal cortex.

IV. Summary Remarks

Scenes are complex, but this complexity provides a rich source of contextual

information that constrains visual processing in a useful manner.   In particular, scenes

contain many regularities in their spatial layout, object shape correlations, and dynamic

features.  Encoding such statistical regularities allow the observer to use ongoing

contextual information to constrain their search and identification of visual objects

relevant to behavior.  Much scene learning appears to occur implicitly such that past

experience with scenes and scene properties may influence behavior even when the

observer is not consciously aware of having seen them before.  We believe that implicit

measures of scene memory reveal a prodigious visual memory capacity that is at least

as large, if not larger than, the rich capacity for distinguishing previously viewed scenes,

as measured through explicit recognition measures.

To understand how such environmental regularities are represented in the brain,

it is useful to consider both behavioral and neuroscientific data.  Past findings appear to

converge to support a dual path model of scene processing, where global spatial
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configuration information is rapidly registered and used to guide how a scene is

interrogated with multiple eye movements.  As fixations move from one object to the

next, each object serves to define the scene as well as prime expectancies for other

objects within a scene.  In addition, neuroscience studies suggest that global spatial

configuration information may be represented separately from object association

information in the brain throughout medial temporal cortex. A rich theory of visual

processing will emerge through understanding how scene knowledge is acquired, how

scene knowledge is represented, and how scene knowledge interacts with early

perceptual and late response selection mechanisms.
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Figure Legends

Figure 1.  The brain image shows a coronal slice of the human parahippocampal place

area (PPA), defined as the region (outlined with a black square) with higher activity to

scenes than to faces, objects, and scrambled scenes. The bar graph shows the percent

signal strength of the fMRI signal, relative to fixation baseline, in the PPA when the

subject was viewing scenes, face, scrambled scenes, or scrambled faces.  Activity was

highest for scenes.

Figure 2.  A sample search trial display from the spatial contextual cuing task (Chun &

Jiang, 1998).  The task was to search for a T rotated to the right or to the left.  The L

shapes were also rotated in random directions, and the layout of the distractors form a

“visual context” around the T target.  When the distractor configuration was repeated

and correlated with a consistent target position, search performance improved in

comparison to displays where the distractor configuration was randomly generated.

Figure 3.   A sample search trial display from the object shape contextual cuing task

(Chun & Jiang, 1999).  The task was to search for a vertically symmetric shape.  All of

the other shapes were symmetric around a non-vertical axis.  When the target shape

was correlated with the distractor shapes, then search was faster in comparison to a

control condition where the target and distractor shapes were repeated but not

correlated with each other.
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Figure 2 (Chun)
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Figure 3 (Chun)


