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Abstract— In this paper we analyze the performance of
an iterative algorithm, similar to the discrete Papoulis-
Gerchberg algorithm, and which can be used to recover
missing samples in finite-length records of band-limited
data. No assumptions are made regarding the distribu-
tion of the missing samples, in contrast with the often stud-
ied extrapolation problem, in which the known samples are
grouped together. Indeed, it is possible to regard the ob-
served signal as a sampled version of the original one, and to
interpret the reconstruction result studied herein as a sam-
pling result. We show that the iterative algorithm converges
if the density of the sampling set exceeds a certain minimum
value which naturally increases with the bandwidth of the
data. We give upper and lower bounds for the error as a
function of the number of iterations, together with the sig-
nals for which the bounds are attained. Also, we analyze the
effect of a relaxation constant present in the algorithm on
the spectral radius of the iteration matrix. From this anal-
ysis we infer the optimum value of the relaxation constant.
We also point out, among all sampling sets with the same
density, those for which the convergence rate of the recovery
algorithm is maximum or minimum. For low-pass signals it
turns out that the best convergence rates result when the
distances among the missing samples are a multiple of a cer-
tain integer. The worst convergence rates generally occur
when the missing samples are contiguous.

I. NOTATION AND TERMINOLOGY

E will work in complex n-dimensional space C",

with the usual inner product and norm. We de-

fine a signal or sequence of length n to be any n-

dimensional complex vector x, with components, or sam-

ples, zg,x1,...,Tpn_1.

The Fourier matriz F is the unitary n X n matrix with
components Fi,; given by

1

ka = —n €

j 2= mk

where 7 denotes the imaginary unit. The discrete Fourier
transform (DFT) of x, denoted by %, is by definition the
sequence X = Fx.

Denote by E,, the set {0,1,...,n—1}, and let S, and S,
be two subsets of F,, with k elements. We say that S, and
Sy are equivalent if the elements of S, can be obtained by
addition of an integer constant, modulo n, to the elements
of Sy. This simply means that S, and S, are related by a
circular shift (a cyclic permutation). We say that a subset
of E, of cardinality & < n is contiguous if it is equivalent
to By, ={0,1,...,k —1}.

We will be interested in two linear operations defined
on C", which will be called sampling and band-limiting,
respectively.
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By definition, the sampling operation maps a sequence
into another by setting to zero a subset of its samples. In
matrix form, this corresponds to multiplication by a diago-
nal matrix D containing only zeros or ones. The diagonal of
D will be called the sampling set associated with the sam-
pling operation D, and D itself will be called a sampling
matriz. The density of a sampling set is, by definition, s/n,
s being the number of nonzero entries in the sampling set.
It is assumed that s < n, that is, D # 1.

We define a band-limiting operator to be any linear oper-
ator characterized by a matrix B of the form B = F~I!TF,
where T' is a sampling matrix other than I. Thus, accord-
ing to this definition, the band-limiting operation in C" is
similar to a sampling operation performed in the frequency
domain. We define the bandwidth of the sequence y = Bx
to be ¢/n, where ¢ is the number of nonzero entries in
the matrix I'. For real low-pass sequences, a bandwidth
of b means that the highest normalized frequency in the
sequence is b/2. It is natural to call passband of B to the
nonzero entries in the diagonal of I'. The low-pass and
high-pass signals are fixed-points of band-limiting opera-
tors with a contiguous passband.

Clearly, the set of all sampled sequences y = Dx with
x € C" is a subspace of C". Similarly, the set of all band-
limited sequences y = Bx with x € C” is a subspace of C".
Furthermore, sampling and band-limiting are idempotent
operations, and every sampling or band-limiting matrix is
a projection matrix.

II. PURPOSE AND MAIN RESULTS OF THIS PAPER

There are four possible models for the band-limited ex-
trapolation problem, which correspond to all possible com-
binations of discrete and continuous time and frequency.
These models and some of their relations were studied
in [1], along with a number of approximation results.
We will not insist here on the L, extrapolation prob-
lem nor on its sampled versions. Instead, we will focus
on finite-dimensional interpolation and extrapolation prob-
lems, characterized by finite (or periodic) time-domain and
frequency-domain vectors. In the terminology of [1], this
corresponds to the discrete-discrete model.

More precisely, this paper is concerned with the recov-
ery of partially known signals (finite dimensional vectors)
under a smoothness constraint (band-limiting) which im-
plies the vanishing of a known subset of the samples of the
DFT of the data. The signals are partially known in the
sense that only a subset of its samples is supposed to be
available for measurement. Our task is to find from the
available samples the values of the remaining ones. This



problem presents certain similarities with the familiar sam-
pling problem, which basically consists in restoration of a
signal given a subset of its samples.

When the unknown samples are contiguously distributed
this reduces to the often discussed extrapolation problem.
It will be shown that in any case only a restriction of car-
dinality needs to be imposed upon the set of lost samples,
and that, for any given bandwidth, there is a maximum
percentage of unknown samples that can be tolerated if er-
rorless restoration is desired, and this percentage naturally
increases as the bandwidth of the signals decreases. This
can be interpreted as a sampling result, asserting the pos-
sibility of errorless recovery of a band-limited signal if a
sufficiently dense subset of its samples is known.

The reconstruction algorithm studied herein is an it-
erative method which reduces to the discrete finite-
dimensional version of the well-known Papoulis-Gerchberg
extrapolation algorithm [2, 3], if the unknown samples are
contiguous, and if a relaxation constant p is unitary. In
the latter case, the algorithm may also be described as an
alternating projection algorithm of the type found in [4].
Its convergence will be established under no restriction on
the distribution of the missing samples, generalizing results
found in [5] and providing a theoretical background for the
observations reported in [6].

It is often convenient to have upper and lower bounds for
the convergence rate of an iterative algorithm. We will give
these bounds and also the particular signals for which the
bounds are attained. When the missing samples are con-
tiguously distributed, these signals reduce to the periodic
discrete prolate spheroidal sequences (P-DPSS) defined in
[7].

We will analyze the effect of the relaxation constant p
upon the convergence rate of the algorithm, and calculate
the particular value of p for which the asymptotic conver-
gence rate of the algorithm is best possible.

We will also shed some light on the nature of the sam-
pling sets for which the rate of convergence of the algorithm
is best or worst possible in a certain sense. It turns out
that, for the same number of unknown samples, the worst
possible sampling set for low-pass or high-pass signals will
nearly always be a contiguous one. On the other hand,
the optimum sampling sets are those that arise when the
distance between missing samples is a multiple of a cer-
tain integer, or very nearly so. For signals which are not
strictly low-pass or high-pass, or, more precisely, for sig-
nals with non-contiguous passbands, this is not necessarily
true. Band-pass signals provide an example of an impor-
tant class of signals for which the worst possible sampling
sets might not be contiguous.

We will show that for an optimum sampling set the spec-
tral radius of the iteration matrix, which is an important
indicator of the rate of convergence, is independent of the
number of missing samples. In fact, a signal with several
missing samples may be reconstructed as easily as a signal
with a single missing sample, in the sense of asymptotic
convergence, if the positions of the missing samples are
properly chosen.

III. RELATED WORK

A large percentage of the many published papers con-
cerned with iterative constrained signal restoration is de-
voted to the band-limited extrapolation problem. Its study
goes back to [8], where an extrapolation method is given,
based on the double orthogonality property of the prolate
spheroidal wave functions. The introduction of the error-
reduction algorithm, also known as the Papoulis-Gerchberg
iteration [2, 3], brought a new interest to the problem,
and, since then, several works dealing with different as-
pects of the extrapolation problem have appeared. We re-
fer the interested reader to [1,7,9-19] among many others.
These works address topics that include implementation as-
pects, numerical stability, convergence acceleration, nonit-
erative extrapolation, the sampled analog of the extrapola-
tion problem, convergence criteria, the effect of stabilizing
constraints, etc.

We will briefly review some of the results found in these
works and in a few others which are more closely related
to the subject that we are about to study. For a numerical
comparison of the several existing extrapolation algorithms
see [20,21].

A. Band-limited Ly and ¢5 signals

Many of the mappings often found in iterative con-
strained restoration are projections, a fact that was used
[4,11] to obtain an alternative framework for a class of
restoration problems which admit an interesting geomet-
rical interpretation [4]. In the notation of [4], = satisfies
z = Pyz, and the observed signal is y = P,z. The algo-
rithm studied therein is based on the iteration

x=y+ (I — P,)Pyz.

It is shown in [4] that = is completely determined by y =
P,z if and only if P, and I — P, have only the zero vector
in common. Furthermore, the recovery process is stable
if and only if the angle between the subspaces associated
with P, and I — P, is greater than zero. The solution of
the extrapolation problem in Ly follows from these results
if P, and P, are identified with truncation in the time and
frequency domains, respectively.

The convergence rate of the Papoulis-Gerchberg itera-
tion may be improved by reducing out-of-band noise in
an adaptive way. This can be accomplished by threshold-
ing the spectrum, a technique which is effective for signals
which are linear combinations of sinusoidal functions [22].

It is also known that algorithms which perform succes-
sive projections onto convex sets may also outperform the
Papoulis-Gerchberg iteration, since they allow any number
of a priori constraints to be included in the restoration
procedure. See, for example, [23 26].

An iterative algorithm for restoring continuously sam-
pled band-limited L. functions was proposed in [27]. A
continuously sampled signal is obtained by setting to zero
a signal except for a neighborhood of a countably infinite
set of sampling instants. This algorithm is related to the
Papoulis-Gerchberg algorithm and to a general iteration



proposed by Sandberg [28], as discussed in [29 31]. It was
shown recently [32] that the same procedure can be used
in the case of instantaneous sampling.

Many discrete extrapolation problems lead to ill-
conditioned systems of linear equations. Their nonitera-
tive solution is attractive from a computational point of
view, but the quality of the results is often insufficient due
to noise sensitivity or stability problems. Least-squares
solutions with minimum norm, which can be found using
singular value decomposition [33], are an interesting alter-
native. An unified approach to noniterative linear signal
restoration can be found in [34], using Fredholm’s theory
of first-kind integral equations. A number of two-step re-
construction algorithms can be understood in terms of this
framework. A noniterative algorithm based on a distinct
principle is studied in [35].

Reference [36] deals with iterative least-squares solutions
of the linear signal restoration problem, and presents an ap-
proach to the solution of this problem based on Bialy’s iter-
ation, a general procedure to obtain approximate solutions
of linear operator equations in Hilbert space. A number of
previously known restoration algorithms can be obtained in
this way. It is also known [37] that the Papoulis-Gerchberg
algorithm can be obtained from Landweber’s iteration, an
iterative method for the solution of first-kind Fredholm in-
tegral equations.

In [38] it is shown that time-limited restoration of shift-
invariant blurred ¢, signals can be done iterating an op-
erator equation which defines a contractive mapping. The
results are valid for multi-dimensional sequences with fi-
nite energy. A similar approach, based on fixed-point the-
orems, can be outlined under rather general conditions and
leads to the constrained iterative restoration framework de-
scribed in [39].

The extrapolation problem for multidimensional finite
energy sequences was studied in [14], and related to the Ly
band-limited extrapolation problem. More precisely, it was
shown that the discrete solution tends to the Lo solution
when the sampling rate used in the known segment of the
signal tends to infinity.

B. Estimation of Lo band-limited signals from a finite
number of samples

The problem of interpolating a band-limited signal from
a finite set of nonuniform samples was formulated as a least-
squares optimization problem and solved using Lagrange
multipliers, reproducing kernel Hilbert space theory, and
other techniques [40 43]. More recently, it was shown [44]
that Yen’s interpolation formula [40] is a consequence of an
optimization result valid in Hilbert space, and that the fre-
quency domain characteristics of this interpolation formula
are optimum in a weighted least-squares sense. A block in-
terpolator was also proposed [44] which overcomes some of
the computational difficulties found when applying Yen’s
formula to interpolation problems of large dimensionality.

A mathematically similar problem is addressed in [45],
namely, the reconstruction of a time-limited signal from
a finite number of unevenly spaced samples of its Fourier

transform. It is assumed that there exists a one-to-one dif-
ferentiable transformation which maps the set of sampling
points into a set of equally spaced points, and both one-
dimensional and two-dimensional reconstruction problems
are studied. In fact, it is possible to arrive at sampling
expansions for signals which are not band-limited if such a
mapping exists [46]. An alternative, which sometimes leads
to good results, is to interpolate a set of uniformly spaced
points on the nonuniform grid [47].

The Papoulis-Gerchberg algorithm can also be used [48]
to obtain a noniterative algorithm for the recovery of lost
samples of oversampled functions belonging to Lo. The ef-
fect, of noise and out-of-band signal components on a simi-
lar noniterative solution was studied in [49]. The algorithm
discussed in [48] is also valid for L, functions which are in-
tegral transforms of compactly supported functions [50].

It is possible to estimate band-limited discrete signals
from a finite number of samples, taking into account the
length of the interval over which a good extrapolation is
desired [51]. Although the result does not have minimum
norm, it is optimum for signals concentrated on that inter-
val.

The estimation of two-dimensional signals from a finite
number of samples was also studied. In [52] the authors
choosed to minimize the maximum of the mean-squared
error over a class of signals with respect to the sampling
set. They found that the optimum sampling set minimizes
the spectral radius of an associated matrix, and that it is
evenly spaced for rectangular passbands.

C. Finite-dimensional problems

The band-limited interpolation problem can be studied
within the more general framework of constrained iterative
restoration [39]. In this case it is natural to take band-
limiting as the constraint and time-limiting as the distor-
tion. The convergence of certain of these algorithms, in-
cluding a class of finite-dimensional problems, was studied
in [53].

There are a few papers that report the performance of it-
erative techniques as interpolators or estimators [6,54], but
the analysis normally performed does not take full advan-
tage of the finite dimensionality of the problem. This is an
important fact since it allows some of the difficulties that
arise when sampling the solution of a continuous problem
to be overcome.

More recently [55], a finite-dimensional algorithm for
interpolation and extrapolation was proposed which re-
quires less a priori information about the bandwidth of
the data, and which can be applied to mixed interpola-
tion/extrapolation methods. The new algorithm should be
particularly useful whenever precise bandwidth informa-
tion about the original signals is unavailable.

The analysis of the finite-dimensional version of the
Papoulis-Gerchberg algorithm was made in [5], taking ad-
vantage of the fact that the known samples are contiguous.
This induces a matrix partitioning amenable to analysis.
In [56], it is proved that the result of this discrete extrap-
olation procedure does indeed approximate the solution of



the continuous problem, when the sampling frequency and
the number of samples simultaneous increase. For the noisy
case see [57]. A similar result is known for multidimensional
problems [58].

Finally, we point out that the alternating projection
algorithm was explored as a method to compensate for
some forms of distortion that result from certain data com-
pression methods [59]. Experimental evidence gathered in
[6,54,59] shows the usefulness of one-dimensional iterative
methods of this kind.

IV. LINEAR ITERATIVE ALGORITHMS OF FIRST ORDER

The spectral norm of an arbitrary matrix M, which is
normally defined as

IM|| = sup [[Mx],

lIx[[=1

is also given by

M| =/ p(MFM), (1)

where p(X) denotes the spectral radius of X, that is, the
greatest of its eigenvalues, in absolute value. Note that
the spectral norm of a hermitian matrix equals its spectral
radius.

Identity (1) can be established in different ways. One
that leads to useful conclusions in the kind of problems that
we will consider is the following (for an alternative proof
see [60]). If we seek he stationary points of the continuous
function ¢(x) = ||[Mx]|?, subject to ||x|| = 1, we are lead
to the equation

MHPMx = \x, (2)

where A appears as a Lagrange multiplier. This shows that
the unitary vectors x that render ||Mx|| stationary are the
eigenvectors of MHM. If x is an eigenvector of M7 M
then

IMx||* = x"M"Mx = [A] [Ix||* = [A].

We are considering the restriction of the continuous func-
tion ¢ to a compact set. Thus, the absolute maximum
(minimum) of ¢(x) will be attained by the eigenvector of
MM that corresponds to its largest (smallest) eigenvalue
in absolute value. These eigenvalues will be denoted by
Amax and A . respectively, and the associated eigenvec-
tors by vimax and viin.

Relation (1) follows from this and the definition of norm.
Note that ||Mx|| < ||[M]|||x||. Also, since MM is hermi-
tian, [IM|2 = p(M¥ M) = [|[MZM]|.

We recall that a (possibly nonlinear) operator A defined
on a metric space M with distance function d(-, -) is nonez-
pansive if d(Az, Ay) < d(z,y) for all z,y € M, and strictly
nonexpansive if equality holds only for z = y. In spaces
endowed with a metric d induced by a norm || - || we have
d(Az, Ay) = ||Ax— Ay|| and d(z,y) = ||x—y]||. This is the
case for linear operators defined on the finite dimensional
space C", that is, matrices over the complex field, with the
usual norm. In these cases nonexpansiveness means that
for an arbitrary v € C™ ||Tv|| < ||v||, and thus the spectral

norm of a linear nonexpansive operator T cannot exceed
unity.

It follows from p(T) < ||T|| that the absolute values of
the eigenvalues of a nonexpansive matrix T do not exceed
unity. Thus, a strictly nonexpansive matrix T is convergent
to zero (a matrix T is convergent to zero is if and only if its
eigenvalues are all less than 1 in absolute value [60]). Note
that strict nonexpansiveness is only a sufficient condition
for convergence. In fact, we could easily exhibit examples
of expanding linear operators, that is, matrices with norm
greater than one, which nevertheless converge to zero. This
can never occur for hermitian or normal matrices, whose
norms and spectral radii are necessarily equal. A simple
example of a matrix whose norm and spectral radius differ
is given in [60].

Consider now the sequence of vectors x; € C" defined
by x;41 = Mx; + b, M and b being, respectively, a n x n
matrix and a n X 1 column vector. This is a model of the
general linear stationary iterative algorithm of first order
with iteration matriz M.

Assume that M is convergent to zero. Then, the se-
quence x; converges to some limit vector x which satisfies
x = Mx + b, since we have

+oc
x=» M‘b=(I-M) 'b.
k=0

The error or residual at iteration k, e = x; — x, is then
given by
e = 1\/[6]6717

being related to the initial error eq by the expression e; =
MPFe,. Thus
llerl] < M fleol

Without imposing further restrictions on M one can only
say that |[MP*|| tends to zero with k, monotonically for
sufficiently high k. For hermitian, or, more generally, for
normal matrices, we have

IM*[| = p(M),

and the norm of the error decreases with each iteration,
that is, the iterative method has the error-reduction prop-
erty, independently of k. In this case, knowledge of | M]|
allows a simple upper-bound for the error to be established.

This is not the case in general, and therefore ||M*|| must
be studied instead. The asymptotic rate of convergence of
the convergent matrix M, R, (M) = In p(M), is an often
useful quantity [60].

V. THE ALGORITHMS

The algorithms which will be studied below are linear
iterative algorithms of the first order with non-hermitian
iteration matrices. They can be derived using the gen-
eral framework for constrained iterative restoration estab-
lished in [39]. In this particular case, we take the sampling
and band-limiting operations as, respectively, the distor-
tion and constraint mentioned in [39]. The original signal



satisfies x = Bx and the observed signal is y = Dx, for
appropriate matrices B and D. This suggests the equation

Bx + p(y — Dx)
uy + (I - uD)Bx

X =

where p is any fixed constant, and I denotes the identity
mapping, as well as the sequence of successive approxima-
tions

u,41 = py + (I - pD)Bu, = Tiu, (3)

where
Ti(-) = py + (I— puD)B(,). (4)

It is possible to obtain a band-limited sequence of succes-
sive approximations by taking the distortion to be sampling
followed by band-limiting. This gives

Uptp1 = lj,By + (I — /l,BD)Un = T2un (5)

Alternatively, we may apply the band-limiting operator to
(3). This leads to

w41 = pBy + B(I - uD)u, = Tsu,. (6)

As we have seen, these algorithms will converge if and only
if the spectral radius of the respective iteration matrices is
strictly less than unity. Since the iteration matrices of the
methods (3) and (6) are the transpose of each other, and
(5) is equivalent to (6) if the first approximation is band-
limited (up = Buy), it is sufficient to consider, for example,
method (3). It will be shown next that this method leads
to a sequence of approximations that converges to the re-
quired solution, if suitable conditions are imposed upon D,
B and p. Under the same conditions the other two itera-
tions will also converge to the same solution, provided, of
course, that ug = Bug in the case of (5).

VI. CONVERGENCE OF THE ALGORITHM

A number of alternative approaches to (3) do exist. The
one that we will use depends upon well-known results in
fixed-point theory. This technique is often used in signal
restoration [39,53] and does not assume the linearity of the
operators involved. In fact, other possibly non-linear non-
expansive constraints can be incorporated in the algorithm
without disturbing convergence.

Denote the set of subscripts of the known samples of x
by I; = {i1,i2,...,is}. Let the set of subscripts of the
vanishing samples of the DFT of x be denoted by ff, the
complement in E,, of the set Iy = {k1,k2,...,kq}.

Lemma VI.1: Let D be a sampling operator with density
d, and let B be a band-limiting operator with bandwidth
w. Ifd>w, x = (I —D)x and x = Bx, then x = 0.

Proof: Since x = (I — D)x, that is, z; = 0 for all
1 € Iy, s samples of x vanish and the n equations x = Fx

reduce to
¢l

where F; denotes the i-th column of F.

On the other hand, since x = Bx, that is, z; = 0 for all
i € Iy, n — q samples of X are zero and thus

> Pz =0, (7)

ig I

for all k € I;. The submatrix of F that appears in (7) is
(n—q) x (n—s) with (n—¢q) > (n—s) since d > w. Since I is
contiguous, there is an integer r such that k; = i +r mod n
without loss of generality. Since Fy; = (1/y/n)e 72mki/n
we see that the submatrix of F that appears in (7) can be
reduced to a Vandermonde matrix, with linear independent
columns. Thus, the only solutions to (7) are given by z; =
0, and therefore x must be the identically zero vector. B

Lemma VI.2: Let 0 < pu < 2. Then, the operator T,
defined by (4) is nonexpansive.

Proof: Let A, be defined as

A, = (I— uD)B. (8)

It follows from (4) that the nonexpansiveness of T; does
not depend on y. In fact, T; is nonexpansive if and only
if A, is. The nonexpansiveness of the projection operator
B in the Euclidean norm is obvious. Thus, T; will be
nonexpansive if I — uD is, which happens if and only if
0 < p < 2. Otherwise there would be an eigenvalue of
I — uD greater than one in absolute value. |
Lemma VIL.3: If 0 < u < 2, the equation x = T x, with
T, defined by (4), has at least one solution.
Proof: T, is continuous and nonexpansive, and maps
a non-empty, compact and convex subset of C" into itself
(consider the set of all sequences with norm less than or
equal to a given bound). Therefore, it must have a fixed-
point [39,61]. |
Theorem VI.1: Let D be a sampling operator with den-
sity d, and let B be a band-limiting operator with band-
width w. If

0<p<?2, (9)

d>w, (10)

the operator T, defined by (4), is strictly nonexpansive,
and the equation x = T;x has one and only one solution.
This solution is given by

x = lim T7xq,
n— oo
for arbitrary xq.

Proof: ~ Assume, to the contrary, that (9) and (10)
hold without T; being strictly nonexpansive. This means
that

AVl = [[(T— pD)Bv|| = [Bv| = v

for some v # 0. We will show that this assumption leads
to a contradiction. The last equality implies the vanishing
of o; for i € Iy, and thus Bv = v. This reduces the second
equality to

(T = uD)v[| = Iv]-



But
I(T=pD)v|® = (1=p)>> v} +> v}
i€l icl;
= VI = p2=p) ) v}
i€l;

which implies the vanishing of the v; for i € I}, since, by
hypothesis, 0 < p < 2. Applying lemma VI.1, we see that
v must be the zero vector, a contradiction, and thus T,
must be strictly nonexpansive. The theorem then follows
since a strictly nonexpansive mapping cannot have more
than one fixed point. |

VII. UrpPER AND LOWER ERROR BOUNDS

We will now give upper and lower bounds for the recon-
struction error at any given iteration, assuming that u = 1.
The bounds are best-possible and we give the initial error
vectors for which they are attained.

Recalling (8), let v denote an eigenvector of Af A, per-
taining to the eigenvalue A, that is,

AHEA,v=B(I-D)Bv = \v. (11)
We claim that A;v will be an eigenvector of A; pertaining
to the same eigenvalue, and thus

A 2v = \A, V.

To check that this is true left-multiply (11) by A; = (I —
D)B and use the idempotency of B.

It is now easy to derive bounds for the error e at itera-
tion k of the algorithm. From the discussion in section IV
it is clear that ey = Aie;,_; and thus

sup [ler||* = sup [[Areq|” = A
lleoll=1 lleoll=1
and
inf fley|” = inf [|Areol® =X,
lleoll=1 lleoll=1
where A, and A, ,, are, as we have seen, the smallest

and largest of the eigenvalues of A¥A;. The supremum
and the infimum are attained when eg equals the v, or
Vmin, the eigenvectors of Af{Al that correspond to the
eigenvalues A, ,. and A ;,, respectively.

Now, we have just seen that Aivigax and Ajvy, will
also be eigenvectors of A;, and therefore

2
€y = A] Vmax = )\maxAl Vmax,
if €9 = Vmax, and
2
€y = A] Vmin = AminA] Vmin,
if €9 = Vmin. By induction it is now clear that the inequal-
ities
k
ler+1]l < Anaxllen]l

llensill > Myolleall

hold. Equality is attained if e; = viax, in case of (12), or
€] = Vpin, in case of (13).

In many cases one takes xq to be the zero vector, which
gives x; = y, and e, = Afx. Taking x = vpax then
results in the lowest possible asymptotic convergence rate.
In this sense, the vyax are the signals which result in the
worst possible algorithm performance. A similar argument,
regarding best possible performance, holds for vi;y.

For pure extrapolation of low-pass signals and u = 1,
this analysis is related to the singular value analysis of
the operator DB done in [7], and to the periodic discrete
prolate spheroidal sequences (P-DPSS) discussed therein.
Note that setting M = A; in equation (2) gives

B(I - D)Bv = \v, (14)
which turns out to be equivalent to
BDBv = (1 - A)v (15)

since any solution of (14) must be band-limited (left mul-
tiply (14) by B). Equation (15) is equivalent to the equa-
tion used to define the P-DPSS in [7]. The eigenvectors of
(14) Vmin and Vmax, which correspond to the smallest and
largest eigenvalues A_;, and A, in (14), are therefore ex-
amples of P-DPSS.

VIII. THE OPTIMUM RELAXATION CONSTANT

Let us now study the effect of the parameter p upon the
convergence rate of the algorithm.

Let S, = B(I — yD)B. We claim that if v is an eigen-
vector of S, pertaining to the eigenvalue X, then A, v is an
eigenvector of A, pertaining to the same eigenvalue. This
follows from the idempotency of B, which implies

A,S,=(1-uD)B*(I-uD)B =A’.

Therefore if S,v = Av then AMQV = AA,v. This shows
that every eigenvalue of S, is also an eigenvalue of A, and
thus p(S,) < p(A,).

On the other hand, if v is an eigenvector of A, pertain-
ing to the eigenvalue X, then Bv is an eigenvector of S,
pertaining to the same eigenvalue. To check this, we left
multiply A,v = Av by B, obtaining

B(I - uD)Bv = ABv,
which is equivalent to
S,Bv = ABv,

again using the idempotency of B. This shows that
p(A,) < p(S,). Since we have already shown the converse,
it follows that p(A,) = p(S,).

The effect of the parameter pu upon the convergence
rate of the algorithm may be judged from its effect upon
the spectral radius p(A,) of the iteration matrix. Since
p(A,) = p(S,), it is sufficient to compare the spectral radii
of the matrices S, and S;.



With this in mind, we will show that if v and A are,
respectively, an eigenvector/eigenvalue pair of Sy, then v
and 1 — pu(1 — A) are an eigenvector/eigenvalue pair of S,,.

Again, S;v = Av implies Bv = v (left multiply by B
and use idempotency), and thus we have

B(I - D)Bv =v — BDBv = \v.

Consequently, v is an eigenvector of BDB pertaining to
the eigenvalue 1 — A. This implies

B(I - uD)Bv =v — uBDBv =v — (1 — A)v

as we wanted to show.

The graphic {\, f(A)} of f(A) =1—p(1-X)(0<A<1)
is a straight line of positive slope connecting the points
{0,1 — u} and {1,1}. This mapping allows the determina-
tion of the optimal value of u. In the following discussion,
we take p = 1 as the reference value. Note that decreasing
1 below 1 is uninteresting since it increases the eigenvalues
of the iteration matrix. On the contrary, increasing p to-
wards 2 may reduce the spectral radius and therefore lead
to better convergence rates.

Assume that g > 1, and let A ;, and A, be the small-
est and largest eigenvalues of Sy, respectively. Note that
Amin = 0 and A, < 1 under the conditions of theorem
VIL.1. The eigenvalues of S, will therefore lie in the interval
[1—p, 1 — p(l — A,,)], the spectral radius of A, being
given by

p(Ay) = max {u—1,1—p(1 -

[max, Amax) }-

This expression is minimized when p—1=1—p(1—A,.,)-

Solving we find the optimal value of pu,

2
,Uopt:27)\

max

For pt = popt the spectral radius of the iteration matrix is

A _ p(A1)

A — max —
p( N) Q_Am 2_p(A])7

ax

which may result in considerably better convergence rates.

To summarize, reducing p below 1 should be avoided
since it decreases the convergence rate. When p increases
between 1 and popt, the spectral radius of the iteration
matrix decreases, and therefore the asymptotic conver-
gence rate is improved. Increasing p above pope should
be avoided since it again reduces the convergence rate and
will ultimately lead to divergence. Note, however, that
0 < Apax < 1 implies 1 < popy < 2 and 0 < p(A,) < 1,
which means that for p just greater than piope the method
will still be convergent.

IX. SAMPLING SETS AND CONVERGENCE RATE

We will now study the norm and spectral radius of the
matrix A; defined by (8). We would like to know which
sampling sets minimize or maximize the asymptotic con-
vergence rate of the algorithm, for a given density. We will

see that the answer depends on the B matrix. For low-
pass data, for example, the missing sample positions that
give best-possible sampling sets define a grid with a cer-
tain spacing. Thus, the optimum sampling strategy is, in
a sense, uniform sampling. On the other hand, the worst
possible sampling sets are contiguous. Again, this may not
be the case for data neither low-pass nor high-pass.

We start by noting that the general inequality |[M]| >
p(M) can be made precise if M = A;. First, recall from
section VIII that p(A,) = p(S,). When p = 1 we see that
A" A, =8, and therefore, using (1), we conclude that

A" = p(A{T A1) = p(Ay). (16)
In the following we will study the norm of A; instead of
its eigenvalues. However, because of (16), knowledge of the
norm of A is equivalent to knowledge of its spectral radius,
and therefore of its asymptotic rate of convergence. This
can be of help in understanding the effect of the sampling
sets upon the convergence properties of the algorithm.

As before, let s be the number of known samples, and
let their subscripts be Iy = {i1,ia,...,i5}.

We will not impose any contiguity constraints upon the
band-limiting matrix B, which is only assumed to have
bandwidth ¢/n (see section I for the meaning of ¢q). We
denote the columns of B by b;, i =0,1,...,n— 1.

Since the lines of A, are given by

(1— puDii)bf,
the components of the vector A,x are
(1 — uD;i)(b;, x).

It follows that

H
xTAAx = [|Ax]?

= (1 D) (b x)?

i=0

= D (bux)+(1—p)” ) (bix)".
i¢ 1y i€l
(17)
From this equation several conclusions can be drawn. We
start by examining a few simple consequences.

A. The Minimum Norm of the Iteration Matriz

Recall from section IV that ||A,||* equals the spectral
radius of the hermitian matrix A;’Au, which, in turn, can
be obtained radius of the hermitian matrix A A, which,
in turn, can be obtained by taking the supremum of (17)
over all x of unit norm. From (17) it follows that this
quantity attains its least possible value when u = 1. Thus,
the norm of A, is minimized when the relaxation constant
1 is unitary.

A second proof could be given based on the results of
section VIII.



B. One Missing Sample

When only one sample is missing and p = 1, I, is reduced
to one element. Denoting it by i, we have

A x|* = (b;, x)>.

The supremum of this expression over all x with unit norm
will be attained for x = b;/||b;||. Thus

A4 ]” = IIbs]|* = g/n,

where g/n is just the normalized bandwidth of the band-
limiting matrix. Thus A; will be a linear contractive op-
erator for any ¢ < n.

It follows from (16) that the spectral radius of A; equals
the normalized bandwidth of B. This can be checked easily,
noting that the iteration matrix A; will have, in this case,
only one nonzero row. Therefore it may have one nonzero
eigenvalue at most. Since the trace of Ay = (I — D)B is
given, in this case, by Bgy = ¢/n, we may immediately
conclude that the nonzero eigenvalue of A;, and conse-
quently its spectral radius, is also given by ¢/n and equals
the squared norm of A;.

Note that each iteration of the reconstruction algorithm
will reduce the squared error by a factor of at least g/n. Us-
ing the optimum relaxation constant pu = popt = 2n/(2n —
q) this can be improved to ¢/(2n — q).

C. Two Missing Samples

Suppose now that p still equals 1 but that two samples
are missing, that is, I; = {i,j}. In this case we have

[A1x(]* = (bs, x)* + (bj, x)”.

The stationary points of this quadratic form are the eigen-
vectors of the matrix Ay, which in this case has only two
nonzero rows, rows i and j, given by b and bf7 respec-
tively. In fact

A'A; =bb/" +b;bl".

It is easy to find the eigenvectors and eigenvalues of such
a matrix. It can be directly verified that, in the real case,
the quantities

q
[bil|* = [(bi, bj)| = — & [(bi, by}l

are eigenvalues of A A, pertaining to the orthogonal
eigenvectors

b; + b,

(consider A{'A;b; and A{’A;b;). Since the trace of
AHA, is 2||b]|> = 2¢/n, and since A¥ A, cannot have
any negative eigenvalues, we conclude that

q
A = T (b, bj)l.

The inner product (b;,b;) can be put into a simpler form.
Considering that each b; is a column of B, and that B is
idempotent, that is, B2 = B, we see that

(bi,bj) = by(q) = by(p),

where b;(k) denotes the k-th element of the i-th column
of B. This result may also be easily obtained by direct
calculation.

Using the fact that B is circulant we have

b,(q) = by(p) =bo(p © q),

where & denotes subtraction modulo n. Therefore
b q . .
JAnlE = £+ bo(i © )1

When the set of vanishing samples of the DFT of the signal
is contiguous, and in particular for low-pass or high-pass
real band-limiting matrices, we have

sin[rq(i © k)/n)

I(bi,bu)l = Iboi & k)| = | G e e /n] |

(18)
This provides a convenient way of evaluating the squared
norm and spectral radius of the iteration matrix as a func-
tion of the lag between missing samples.

D. Missing Sample Distributions that Minimize or Maxi-
mize the Norm of the Iteration Matrix

When only two samples are missing it is possible to ob-
tain the missing sample distributions that minimize (max-
imize) the norm and spectral radius of the iteration matrix
A, simply by choosing the lag ¢ & j between samples in
such a way that |bg(i © j)| is minimum (maximum).

For signals with ¢ contiguous nonzero harmonics, an hy-
pothesis satisfied by low-pass or high-pass signals, for ex-
ample, the first row of B will consist of samples of the
modulus of the Dirichlet kernel, as seen in (18). In this
case it can be verified numerically that

n
5]

for 1 < ¢ < n — 1 for realistic values of n. The worst case
situation corresponds, in these cases, to contiguous missing
samples, that is, i © j = 1. See figure 1, where the norm
of the iteration matrix is depicted as a function of the lag
between missing samples, for low-pass (or high-pass) real
signals (it follows from the symmetry of bg(z) that only
the first |n/2] possible lags need to be considered).

For band-pass signals, for example, the worst case situ-
ation may no longer correspond to a contiguous sampling
set (see figure 2).

Let us now consider a number of missing samples greater
than 2. Again, let s/n be the density of the sampling ma-
trix, and n — s the number of unknown samples. What can
we say about the best and worst possible missing sample
distributions?

As we have seen, the squared norm of A, is given by

bo(k)] < (D] k=1.2,...

Y (bix)? +(1—p)® Y (bi,x)?

i1 i€l

sup (19)

lzfj=1

There are two extreme situations. Roughly speaking, the
first and more favorable arises when all of vectors b; with
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Fig. 1. Norm of the iteration matrix for real low-pass signals (n = 64)
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to bottom) as a function of the lag between unknown samples.
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Fig. 2. Norm of the iteration matrix for real band-pass signals (n =
64) with 2m nonzero harmonics (m = 30,24,12 and 6, from top
to bottom) as a function of the lag between unknown samples.

i & I; are orthogonal, or very nearly so. The worst possible
situation occurs when the b; with i ¢€ I; are very nearly
linearly dependent.

Assume that all vectors b; with i ¢ I; are orthogonal,
and let X be the subspace spanned by them. Since they
all have squared norm equal to ¢q/n, we may write

X = ﬁ Z(bzx)bl

1 g1,

for any x belonging to X. Thus

n
||X||2 = E Z(bi7x>27

il

or, equivalently,
q
> (bix)? = [x|° .
igl, "
It follows from (19) with p = 1 that

q q
sup —[|x||* = =,
laf=1 7 n

[AL]* =

that is, A; will be a convergent matrix with squared norm
g/n. Note that in this case the norm is independent of the
number of missing samples, and equals the value obtained
for a single missing sample. Clearly, if the missing sam-
ples are distributed in this way, the recovery of one, two,
or more missing samples can be performed with a matrix
whose norm is determined only by the bandwidth of the
data.

Also, the asymptotic convergence rate of the reconstruc-
tion algorithm will be independent of the number of missing
samples, provided that the lag between missing samples is
adequately chosen. We assume, of course, that the condi-
tions of theorem VI.1 are satisfied, that is, the sampling
set has a sufficiently high density.

For signals with a contiguous set of nonzero harmonics,
and in particular for low-pass signals, it follows from (18)
that |bg(k)| can be zero only for the following values of k,

2n 3n
qa’ q

P

< |3

assuming that g divides n. These quantities determine the
possible positions of the missing samples which correspond
to optimum sampling sets. If ¢ does not divide n, they
may still originate sampling sets with near-optimum con-
vergence properties.

X. EXAMPLES

In this section we present the results of computer simu-
lations that illustrate and confirm the results presented so
far.

The reconstruction algorithm described in section V was
applied to two reconstruction problems. The input signal
for the first example is depicted in figure 3. It is a randomly
generated vector of 64 samples, band-limited with a low-
pass filter of normalized bandwidth 0.52. The (randomly
generated) sampler vector is depicted in figure 4. It has
a normalized density of 0.69. Since its normalized density
exceeds the normalized bandwidth of the input data, we
may expect the reconstruction procedure to converge.

The optimum value for the relaxation constant was found
from the results of section VIII, and the algorithm was run
twice, once with © = 1 and another with u = piope. In both
cases we took the observed signal as the first approxima-
tion. The resulting error curves are shown in figure 5. As
expected, the asymptotic rate of convergence is best in the
latter case.

Figure 6 depicts the input data vector which minimizes
the asymptotic convergence rate of the algorithm, for y =
1, the sampler depicted in figure 4, and frequency domain
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Fig. 4. Sampler. Randomly generated, n = 64, 20 zeros (normalized
density of approximately 0.69).

characteristics equal to those of the signal depicted in fig-
ure 3. It is the eigenvector viyax of S which pertains to
its largest eigenvalue.

We ran the algorithm twice using this vector as input,
once with ¢ = 1 and another with y = pop. The error
evolution may be found in figure 7. Again, the algorithm
performed as expected. Note the improvement in conver-
gence rate in the case p = lops-

In all cases, the reconstructed signals were visually indis-
tinguishable from the originals, on the scale of the figure.

XI. CONCLUSIONS

We studied the convergence properties of a finite-
dimensional iterative reconstruction algorithm which can
be useful for the solution of certain interpolation and ex-
trapolation problems. We gave best-possible lower and up-

Fig. 6. Eigenvector vmax that corresponds to the sampler depicted
in figure 4.

per bounds for the error as a function of the number of
iterations, and the signals for which the bounds are exact.
We analyzed the effect of the relaxation constant p and
established its optimum value. Starting with the simplest
possible cases, we elaborated on the best and worst possi-
ble sampling sets, in the sense of best and worst possible
asymptotic convergence rates. Finally, we illustrated the
theoretical results with the results of a computer simula-
tion.

This work complements existing works where the same
or similar algorithms are used and shown to perform well,
but which do not include a detailed theoretical analysis.

Although the algorithm is capable of interesting perfor-
mance under certain circumstances, there are classes of
problems for which it does not seem very well suited. We
point out, for example, the finite-dimensional low-pass ex-
trapolation problem as an example. In this case, and, more
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generally, whenever there are long contiguous gaps of miss-
ing samples, the convergence rate may fall to quite low
levels. We hope to address this problem in future works.

[10]

[11]

(12]

13]

REFERENCES

J. L. C. Sanz and T. S. Huang, “Some aspects of band-
limited signal extrapolation: Models, discrete approximations,
and noise”, IEEFE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. 31, no. 6, pp. 1492 1501, Dec. 1983.

A. Papoulis, “A new algorithm in spectral analysis and band-
limited extrapolation”, IEEE Transactions on Circuits and Sys-
tems, vol. 22, no. 9, pp. 735-742, Sept. 1975.

R. W. Gerchberg, “Super resolution through error energy reduc-
tion”, Opt. Acta, vol. 21, no. 9, pp. 709 720, 1974.

D. C. Youla, “Generalized image restoration by the method
of alternating orthogonal projections”, IEEE Transactions on
Circuits and Systems, vol. 25, no. 9, pp. 694 702, Sept. 1978.
M. C. Jones, “The discrete Gerchberg algorithm”, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 34, no.
3, pp- 624 626, June 1986.

P. S. Naidu and B. Paramasivaiah, “Estimation of sinusoids
from incomplete time series”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 32, no. 3, pp. 559 562, June
1984.

A. K. Jain and S. Ranganath, “Extrapolation algorithms for
discrete signals with application in spectral estimation”, TFEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
29, no. 4, pp. 830-845, Aug. 1981.

D. Slepian and H. O. Pollak, “Prolate spheroidal wave func-
tions, Fourier analysis and uncertainty 1”, The Bell System
Technical Journal, vol. 40, no. 1, pp. 43-63, Jan. 1961.

G. A. Viano, “On the extrapolation of optical image data”,
Journal of Mathematical Physics, vol. 17, no. 7, pp. 1160 1165,
July 1976.

M. S. Sabri and W. Steenaart, “An approach to band-limited
signal extrapolation: The extrapolation matrix”, IEFE Trans-
actions on Circuits and Systems, vol. 25, no. 2, pp. 74-78, Feb.
1978.

J. A. Cadzow, “An extrapolation procedure for band-limited
signals”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 27, no. 1, pp. 4 12, Feb. 1979.

W. Y. Xu and C. Chamzas, “On the extrapolation of band-
limited functions with energy constraints”, IEEFE Transactions
on Acoustics, Speech, and Signal Processing, vol. 31, no. 5, pp.
1222-1234, Oct. 1983.

H. J. Trussel, “Convergence criteria for iterative restoration
methods”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 31, no. 1, pp. 129 136, Feb. 1983.

[14]

[15]

(27]

(28]

129]

(30]

[31]

(32]

[33]

[34]

[35]

J. L. C. Sanz and T. S. Huang, “Discrete and continuous band-
limited signal extrapolation”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 31, no. 5, pp. 1276 1285,
Oct. 1983.

C. C. Chamzas and W. Y. Xu, “An improved version of Papoulis-
Gerchberg algorithm on band-limited extrapolation”, IEEFE
Transactions on Acoustics, Speech, and Signal Processing, vol.
32, no. 2, pp. 437-440, Apr. 1984.

C. Yeh and R. T. Chin, “Error analysis of a class of constrained
iterative restoration algorithms”, IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 33, no. 6, pp. 1593 1598,
Dec. 1985.

S. Singh, S. N. Tandon, and H. M. Gupta, “An iterative restora-
tion technique”, Signal Processing, vol. 11, pp. 1-11, 1986.

C. Cenker, H. G. Feichtinger, and H. Steier, “Fast iterative
and non-iterative reconstruction of band-limited functions from
irregular sampling values”, in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
Toronto, May 1991.

P. J. S. G. Ferreira, “Noniterative and faster iterative meth-
ods for interpolation and extrapolation”, submitted to TEFEFE
Transactions on Signal Processing.

T. S. Huang, J. L. C. Sanz, H. Fan, J. Shafii, and B.-M. Tsai,
“Numerical comparison of several algorithms for band-limited
signal extrapolation”, Applied Optics, vol. 23, no. 2, pp. 307-
317, Jan. 1984.

C. Cenker, H. G. Feichtinger, and M. Herrmann, “Iterative al-
gorithms in irregular sampling: a first comparison of methods”,
in Proceedings of the 10th IEEE IPCCC, Scottsdale, Mar. 1991,
pp. 483-489.

A. Papoulis and C. Chamzas, “Detection of hidden periodicities
by adaptive extrapolation”, IFEFE Transactions on Acoustics,
Speech, and Signal Processing, vol. 27, no. 5, pp. 492 500, Oct.
1979.

D. C. Youla and H. Webb, “Image restoration by the method of
convex projections: Part 1 — theory”, TEFEFE Transactions on
Medical Imaging, vol. 1, no. 2, pp. 81 94, Oct. 1982.

M. I. Sezan and H. Stark, “Image restoration by the method
of convex projections: Part 2 applications and numerical re-
sults”, IFEE Transactions on Medical Imaging, vol. 1, no. 2,
pp. 95-101, Oct. 1982.

H. J. Trussel and M. R. Civanlar, “The feasible solution in
signal restoration”, IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 31, no. 2, pp. 201 212, Apr. 1984.
H. J. Trussel and M. R. Civanlar, “The Landweber iteration and
projection onto convex sets”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 33, no. 6, pp. 1632-1634,
Dec. 1985.

R. G. Wiley, “Recovery of bandlimited signals from unequally
spaced samples”, IEEE Transactions on Communications, vol.
26, no. 1, pp. 135-137, Jan. 1978.

I. W. Sandberg, “On the properties of some systems that distort
signals 17, The Bell System Technical Journal, vol. 42, pp.
2033-2046, Sept. 1963.

R. G. Wiley, “On an iterative technique for recovery of ban-
dlimited signals”, Proceedings of the IEEE, vol. 66, no. 4, pp.
522 523, Apr. 1978.

R. G. Wiley, “Concerning the recovery of a bandlimited signal
or its spectrum from a finite segment”, IEEE Transactions on
Communications, vol. 27, no. 1, pp. 251-252, Jan. 1979.

I. W. Sandberg, “A note on the PQ theorem and the extrapo-
lation of signals”, IEEE Transactions on Signal Processing, vol.
41, no. 6, pp. 2259 2261, June 1993.

F. A. Marvasti, M. Analoui, and M. Gamshadzahi, “Recovery of
signals from nonuniform samples using iterative methods”, IEEE
Transactions on Signal Processing, vol. 39, no. 4, pp. 872 878,
Apr. 1991.

B. J. Sullivan and B. Liu, “On the use of singular value de-
composition and decimation in discrete-time band-limited signal
extrapolation”, IFEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 32, no. 6, pp. 1201-1212, Dec. 1984.

J. L. C. Sanz and T. S. Huang, “A unified approach to nonitera-
tive linear signal restoration”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 32, no. 2, pp. 403 409, Apr.
1984.

F. M. Marvasti, “Reconstruction of speech signals with lost
samples”, IEEFE Transactions on Signal Processing, vol. 40, no.
12, pp. 2897 2903, Dec. 1992.



[36]

(37]

[38]

(39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

53]

[54]

[55]

156]

[57]

J. L. C. Sanz and T. S. Huang, “Unified Hilbert space approach
to iterative least-squares linear signal restoration”, Journal of
the Optical Society of America, vol. 73, no. 11, pp. 1455 1465,
Nov. 1983.

J. L. Sanz and T. S. Huang, “On the Gerchberg-Papoulis algo-
rithm”, IFEE Transactions on Circuits and Systems, vol. 30,
no. 12, pp. 907-908, Dec. 1983.

J. L. Sanz and T. S. Huang, “Iterative time-limited signal recon-
struction”, IEEFE Transactions on Acoustics, Speech, and Signal
Processing, vol. 31, no. 3, pp. 643 649, June 1983.

R. W. Schafer, R. M. Mersereau, and M. A. Richards,
strained iterative restoration algorithms”,
IEEE, vol. 69, no. 4, pp. 432-450, Apr. 1981.
J. L. Yen, “On nonuniform sampling of bandwidth-limited sig-
nals”, IRE Transactions on Circuit Theory, vol. 3, pp. 251-257,
Dec. 1956.

L. Levi, “Fitting a bandlimited signal to given points”, IEEE
Transactions on Information Theory, pp. 372-376, July 1965.
K. Yao, “Applications of reproducing kernel Hilbert spaces
bandlimited signal models”, Information and Control, vol. 11,
pp- 429 444, 1967.

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis
and uncertainty V: The discrete case”, The Bell System
Technical Journal, vol. 57, no. 5, pp. 1371-1429, May 1978.

G. Calvagno and D. C. Munson, Jr., “New results on Yen’s ap-
proach to interpolation from nonuniformly spaced samples”, in
Proceedings of the IEEFE International Conference on Acoustics,
Speech and Signal Processing, Apr. 1990, pp. 1535 1538.

M. Soumekh, “Band-limited interpolation from unevenly spaced
sampled data”, IEEFE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 1, pp. 110-122, Jan. 1988.

J. J. Clark, R. P. Palmer, and P. D. Lawrence, “A transformation
method for the reconstruction of functions from nonuniformly
spaced samples”, IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 33, no. 5, pp. 1151-1165, Oct. 1985.

H. J. Trussell, L. L. Arnder, P. R. Moran, and R. C. Williams,
“Corrections for nonuniform sampling distortions in magnetic
resonance imagery”, IFEEE Transactions on Medical Imaging,
vol. 7, no. 1, pp. 32-44, Mar. 1988.

R. J. Marks II, “Restoring lost samples from an oversampled
band-limited signal”, IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 31, no. 3, pp. 752-755, June 1983.
P. Delsarte, A. J. E. M. Janssen, and L. B. Vries, “Discrete pro-
late spheroidal wave functions and interpolation”, STAM Journal
of Applied Mathematics, vol. 45, no. 4, pp. 641 650, Aug. 1985.
P. J. S. G. Ferreira, “Incomplete sampling series and the recov-
ery of missing samples from oversampled band-limited signals”,
IEEFE Transactions on Signal Processing, vol. 40, no. 1, pp. 225-
227, Jan. 1992.

D. P. Kolba and T. W. Parks, “Optimal estimation for band-
limited signals including time domain considerations”, IEFEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
31, no. 1, pp. 113 122, Feb. 1983.

D. S. Chen and J. P. Allebach, “Analysis of error in reconstruc-
tion of two-dimensional signals from irregularly spaced samples”,
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 35, no. 2, pp. 173 180, Feb. 1987.

V. T. Tom, T. F. Quatieri, M. H. Hayes, and J. H. McClellan,
“Convergence of iterative nonexpansive signal reconstruction al-
gorithms”, IEEFE Transactions on Acoustics, Speech, and Signal
Processing, vol. 29, no. 5, pp. 1052-1058, Oct. 1981.

F. A. Marvasti, “An iterative method to compensate for the
interpolation distortion”, TEEFE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 10, pp. 1617 1621,
Oct. 1989.

S. D. Cabrera and T. W. Parks, “Extrapolation and spectral
estimation with iterative weighted norm modification”, IEEE
Transactions on Signal Processing, vol. 39, no. 4, pp. 842 851,
Apr. 1991.

H.-J. Schlebusch and W. Splettstésser, “On a conjecture of J.
I.. C. Sanz and T. S. Huang”, IEFEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 33, no. 6, pp. 1628 1630,
Dec. 1985.

X. Zhou and X. Xia, “A Sanz-Huang conjecture on band-limiting
extrapolation with noise”, IEEFE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 9, pp. 1468-1472,
Sept. 1989.

“Con-
Proceedings of the

58]

159]

[60]

[61]

X. Zhou and X. Xia, “The extrapolation of high-dimensional
band-limited functions”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 10, pp. 1576 1580,
Oct. 1989.

P. J. S. G. Ferreira, “Reconstrucao de sinais a partir de in-
formagao parcial”, Provas de aptiddo pedagdgica e capacidade
cientifica, Departamento de Electrénica e Telecomunicacoes,
Universidade de Aveiro, Apr. 1988.

R. S. Varga, Matriz Iterative Analysis,
wood Cliffs, New Jersey, 1962.

D. R. Smart, Fized Point Theorems,
Press, Cambridge, 1980.

Prentice-Hall, Engle-

Cambridge University

Paulo J. S. G. Ferreira was born in Torres
Novas, Portugal, and received the Ph.D. degree
in Electrical Engineering from Universidade de
Aveiro, Portugal. He is presently with the De-
partamento de Electrénica e Telecomunicagoes,
Universidade de Aveiro. His research interests
are in the area of signal processing, with em-
phasis on sampling theory and constrained iter-
ative and non-iterative restoration. He is espe-
cially interested in the theory and applications

of linear algebra as well as in applications of

numerical and functional analysis to signal and systems theory.



