
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 1994 1Interpolation and the Discrete Papoulis-GerchbergAlgorithmPaulo Jorge S. G. FerreiraAbstract| In this paper we analyze the performance ofan iterative algorithm, similar to the discrete Papoulis-Gerchberg algorithm, and which can be used to recovermissing samples in �nite-length records of band-limiteddata. No assumptions are made regarding the distribu-tion of the missing samples, in contrast with the often stud-ied extrapolation problem, in which the known samples aregrouped together. Indeed, it is possible to regard the ob-served signal as a sampled version of the original one, and tointerpret the reconstruction result studied herein as a sam-pling result. We show that the iterative algorithm convergesif the density of the sampling set exceeds a certain minimumvalue which naturally increases with the bandwidth of thedata. We give upper and lower bounds for the error as afunction of the number of iterations, together with the sig-nals for which the bounds are attained. Also, we analyze thee�ect of a relaxation constant present in the algorithm onthe spectral radius of the iteration matrix. From this anal-ysis we infer the optimum value of the relaxation constant.We also point out, among all sampling sets with the samedensity, those for which the convergence rate of the recoveryalgorithm is maximum or minimum. For low-pass signals itturns out that the best convergence rates result when thedistances among the missing samples are a multiple of a cer-tain integer. The worst convergence rates generally occurwhen the missing samples are contiguous.I. Notation and TerminologyWE will work in complex n-dimensional space C n ,with the usual inner product and norm. We de-�ne a signal or sequence of length n to be any n-dimensional complex vector x, with components, or sam-ples, x0; x1; : : : ; xn�1.The Fourier matrix F is the unitary n� n matrix withcomponents Fmk given byFmk = 1pnej 2�n mkwhere j denotes the imaginary unit. The discrete Fouriertransform (DFT) of x, denoted by x̂, is by de�nition thesequence x̂ = Fx.Denote by En the set f0; 1; : : : ; n�1g, and let Sa and Sbbe two subsets of En with k elements. We say that Sa andSb are equivalent if the elements of Sa can be obtained byaddition of an integer constant, modulo n, to the elementsof Sb. This simply means that Sa and Sb are related by acircular shift (a cyclic permutation). We say that a subsetof En of cardinality k < n is contiguous if it is equivalentto Ek = f0; 1; : : : ; k � 1g.We will be interested in two linear operations de�nedon C n , which will be called sampling and band-limiting,respectively.Departamento de Electr�onica e Telecomunica�c~oes / INESC, Uni-versidade de Aveiro, 3810 Aveiro, Portugal. Tel. +351-34-370525,fax +351-34-370545, e-mail pjf@inesca.pt.

By de�nition, the sampling operation maps a sequenceinto another by setting to zero a subset of its samples. Inmatrix form, this corresponds to multiplication by a diago-nal matrixD containing only zeros or ones. The diagonal ofD will be called the sampling set associated with the sam-pling operation D, and D itself will be called a samplingmatrix. The density of a sampling set is, by de�nition, s=n,s being the number of nonzero entries in the sampling set.It is assumed that s < n, that is, D 6= I.We de�ne a band-limiting operator to be any linear oper-ator characterized by a matrix B of the form B = F�1�F,where � is a sampling matrix other than I. Thus, accord-ing to this de�nition, the band-limiting operation in C n issimilar to a sampling operation performed in the frequencydomain. We de�ne the bandwidth of the sequence y = Bxto be q=n, where q is the number of nonzero entries inthe matrix �. For real low-pass sequences, a bandwidthof b means that the highest normalized frequency in thesequence is b=2. It is natural to call passband of B to thenonzero entries in the diagonal of �. The low-pass andhigh-pass signals are �xed-points of band-limiting opera-tors with a contiguous passband.Clearly, the set of all sampled sequences y = Dx withx 2 C n is a subspace of C n . Similarly, the set of all band-limited sequences y = Bx with x 2 C n is a subspace of C n .Furthermore, sampling and band-limiting are idempotentoperations, and every sampling or band-limiting matrix isa projection matrix.II. Purpose and Main Results of this PaperThere are four possible models for the band-limited ex-trapolation problem, which correspond to all possible com-binations of discrete and continuous time and frequency.These models and some of their relations were studiedin [1], along with a number of approximation results.We will not insist here on the L2 extrapolation prob-lem nor on its sampled versions. Instead, we will focuson �nite-dimensional interpolation and extrapolation prob-lems, characterized by �nite (or periodic) time-domain andfrequency-domain vectors. In the terminology of [1], thiscorresponds to the discrete-discrete model.More precisely, this paper is concerned with the recov-ery of partially known signals (�nite dimensional vectors)under a smoothness constraint (band-limiting) which im-plies the vanishing of a known subset of the samples of theDFT of the data. The signals are partially known in thesense that only a subset of its samples is supposed to beavailable for measurement. Our task is to �nd from theavailable samples the values of the remaining ones. This



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 1994problem presents certain similarities with the familiar sam-pling problem, which basically consists in restoration of asignal given a subset of its samples.When the unknown samples are contiguously distributedthis reduces to the often discussed extrapolation problem.It will be shown that in any case only a restriction of car-dinality needs to be imposed upon the set of lost samples,and that, for any given bandwidth, there is a maximumpercentage of unknown samples that can be tolerated if er-rorless restoration is desired, and this percentage naturallyincreases as the bandwidth of the signals decreases. Thiscan be interpreted as a sampling result, asserting the pos-sibility of errorless recovery of a band-limited signal if asu�ciently dense subset of its samples is known.The reconstruction algorithm studied herein is an it-erative method which reduces to the discrete �nite-dimensional version of the well-known Papoulis-Gerchbergextrapolation algorithm [2, 3], if the unknown samples arecontiguous, and if a relaxation constant � is unitary. Inthe latter case, the algorithm may also be described as analternating projection algorithm of the type found in [4].Its convergence will be established under no restriction onthe distribution of the missing samples, generalizing resultsfound in [5] and providing a theoretical background for theobservations reported in [6].It is often convenient to have upper and lower bounds forthe convergence rate of an iterative algorithm. We will givethese bounds and also the particular signals for which thebounds are attained. When the missing samples are con-tiguously distributed, these signals reduce to the periodicdiscrete prolate spheroidal sequences (P-DPSS) de�ned in[7].We will analyze the e�ect of the relaxation constant �upon the convergence rate of the algorithm, and calculatethe particular value of � for which the asymptotic conver-gence rate of the algorithm is best possible.We will also shed some light on the nature of the sam-pling sets for which the rate of convergence of the algorithmis best or worst possible in a certain sense. It turns outthat, for the same number of unknown samples, the worstpossible sampling set for low-pass or high-pass signals willnearly always be a contiguous one. On the other hand,the optimum sampling sets are those that arise when thedistance between missing samples is a multiple of a cer-tain integer, or very nearly so. For signals which are notstrictly low-pass or high-pass, or, more precisely, for sig-nals with non-contiguous passbands, this is not necessarilytrue. Band-pass signals provide an example of an impor-tant class of signals for which the worst possible samplingsets might not be contiguous.We will show that for an optimum sampling set the spec-tral radius of the iteration matrix, which is an importantindicator of the rate of convergence, is independent of thenumber of missing samples. In fact, a signal with severalmissing samples may be reconstructed as easily as a signalwith a single missing sample, in the sense of asymptoticconvergence, if the positions of the missing samples areproperly chosen.

III. Related WorkA large percentage of the many published papers con-cerned with iterative constrained signal restoration is de-voted to the band-limited extrapolation problem. Its studygoes back to [8], where an extrapolation method is given,based on the double orthogonality property of the prolatespheroidal wave functions. The introduction of the error-reduction algorithm, also known as the Papoulis-Gerchbergiteration [2, 3], brought a new interest to the problem,and, since then, several works dealing with di�erent as-pects of the extrapolation problem have appeared. We re-fer the interested reader to [1,7,9{19] among many others.These works address topics that include implementation as-pects, numerical stability, convergence acceleration, nonit-erative extrapolation, the sampled analog of the extrapola-tion problem, convergence criteria, the e�ect of stabilizingconstraints, etc.We will briey review some of the results found in theseworks and in a few others which are more closely relatedto the subject that we are about to study. For a numericalcomparison of the several existing extrapolation algorithmssee [20, 21].A. Band-limited L2 and `2 signalsMany of the mappings often found in iterative con-strained restoration are projections, a fact that was used[4, 11] to obtain an alternative framework for a class ofrestoration problems which admit an interesting geomet-rical interpretation [4]. In the notation of [4], x satis�esx = Pbx, and the observed signal is y = Pax. The algo-rithm studied therein is based on the iterationx = y + (I � Pa)Pbx:It is shown in [4] that x is completely determined by y =Pax if and only if Pb and I � Pa have only the zero vectorin common. Furthermore, the recovery process is stableif and only if the angle between the subspaces associatedwith Pb and I � Pa is greater than zero. The solution ofthe extrapolation problem in L2 follows from these resultsif Pa and Pb are identi�ed with truncation in the time andfrequency domains, respectively.The convergence rate of the Papoulis-Gerchberg itera-tion may be improved by reducing out-of-band noise inan adaptive way. This can be accomplished by threshold-ing the spectrum, a technique which is e�ective for signalswhich are linear combinations of sinusoidal functions [22].It is also known that algorithms which perform succes-sive projections onto convex sets may also outperform thePapoulis-Gerchberg iteration, since they allow any numberof a priori constraints to be included in the restorationprocedure. See, for example, [23{26].An iterative algorithm for restoring continuously sam-pled band-limited L2 functions was proposed in [27]. Acontinuously sampled signal is obtained by setting to zeroa signal except for a neighborhood of a countably in�niteset of sampling instants. This algorithm is related to thePapoulis-Gerchberg algorithm and to a general iteration



FERREIRA: INTERPOLATION AND THE DISCRETE PAPOULIS-GERCHBERG ALGORITHM 3proposed by Sandberg [28], as discussed in [29{31]. It wasshown recently [32] that the same procedure can be usedin the case of instantaneous sampling.Many discrete extrapolation problems lead to ill-conditioned systems of linear equations. Their nonitera-tive solution is attractive from a computational point ofview, but the quality of the results is often insu�cient dueto noise sensitivity or stability problems. Least-squaressolutions with minimum norm, which can be found usingsingular value decomposition [33], are an interesting alter-native. An uni�ed approach to noniterative linear signalrestoration can be found in [34], using Fredholm's theoryof �rst-kind integral equations. A number of two-step re-construction algorithms can be understood in terms of thisframework. A noniterative algorithm based on a distinctprinciple is studied in [35].Reference [36] deals with iterative least-squares solutionsof the linear signal restoration problem, and presents an ap-proach to the solution of this problem based on Bialy's iter-ation, a general procedure to obtain approximate solutionsof linear operator equations in Hilbert space. A number ofpreviously known restoration algorithms can be obtained inthis way. It is also known [37] that the Papoulis-Gerchbergalgorithm can be obtained from Landweber's iteration, aniterative method for the solution of �rst-kind Fredholm in-tegral equations.In [38] it is shown that time-limited restoration of shift-invariant blurred `2 signals can be done iterating an op-erator equation which de�nes a contractive mapping. Theresults are valid for multi-dimensional sequences with �-nite energy. A similar approach, based on �xed-point the-orems, can be outlined under rather general conditions andleads to the constrained iterative restoration framework de-scribed in [39].The extrapolation problem for multidimensional �niteenergy sequences was studied in [14], and related to the L2band-limited extrapolation problem. More precisely, it wasshown that the discrete solution tends to the L2 solutionwhen the sampling rate used in the known segment of thesignal tends to in�nity.B. Estimation of L2 band-limited signals from a �nitenumber of samplesThe problem of interpolating a band-limited signal froma �nite set of nonuniform samples was formulated as a least-squares optimization problem and solved using Lagrangemultipliers, reproducing kernel Hilbert space theory, andother techniques [40{43]. More recently, it was shown [44]that Yen's interpolation formula [40] is a consequence of anoptimization result valid in Hilbert space, and that the fre-quency domain characteristics of this interpolation formulaare optimum in a weighted least-squares sense. A block in-terpolator was also proposed [44] which overcomes some ofthe computational di�culties found when applying Yen'sformula to interpolation problems of large dimensionality.A mathematically similar problem is addressed in [45],namely, the reconstruction of a time-limited signal froma �nite number of unevenly spaced samples of its Fourier

transform. It is assumed that there exists a one-to-one dif-ferentiable transformation which maps the set of samplingpoints into a set of equally spaced points, and both one-dimensional and two-dimensional reconstruction problemsare studied. In fact, it is possible to arrive at samplingexpansions for signals which are not band-limited if such amapping exists [46]. An alternative, which sometimes leadsto good results, is to interpolate a set of uniformly spacedpoints on the nonuniform grid [47].The Papoulis-Gerchberg algorithm can also be used [48]to obtain a noniterative algorithm for the recovery of lostsamples of oversampled functions belonging to L2. The ef-fect of noise and out-of-band signal components on a simi-lar noniterative solution was studied in [49]. The algorithmdiscussed in [48] is also valid for L2 functions which are in-tegral transforms of compactly supported functions [50].It is possible to estimate band-limited discrete signalsfrom a �nite number of samples, taking into account thelength of the interval over which a good extrapolation isdesired [51]. Although the result does not have minimumnorm, it is optimum for signals concentrated on that inter-val.The estimation of two-dimensional signals from a �nitenumber of samples was also studied. In [52] the authorschoosed to minimize the maximum of the mean-squarederror over a class of signals with respect to the samplingset. They found that the optimum sampling set minimizesthe spectral radius of an associated matrix, and that it isevenly spaced for rectangular passbands.C. Finite-dimensional problemsThe band-limited interpolation problem can be studiedwithin the more general framework of constrained iterativerestoration [39]. In this case it is natural to take band-limiting as the constraint and time-limiting as the distor-tion. The convergence of certain of these algorithms, in-cluding a class of �nite-dimensional problems, was studiedin [53].There are a few papers that report the performance of it-erative techniques as interpolators or estimators [6,54], butthe analysis normally performed does not take full advan-tage of the �nite dimensionality of the problem. This is animportant fact since it allows some of the di�culties thatarise when sampling the solution of a continuous problemto be overcome.More recently [55], a �nite-dimensional algorithm forinterpolation and extrapolation was proposed which re-quires less a priori information about the bandwidth ofthe data, and which can be applied to mixed interpola-tion/extrapolation methods. The new algorithm should beparticularly useful whenever precise bandwidth informa-tion about the original signals is unavailable.The analysis of the �nite-dimensional version of thePapoulis-Gerchberg algorithm was made in [5], taking ad-vantage of the fact that the known samples are contiguous.This induces a matrix partitioning amenable to analysis.In [56], it is proved that the result of this discrete extrap-olation procedure does indeed approximate the solution of



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 1994the continuous problem, when the sampling frequency andthe number of samples simultaneous increase. For the noisycase see [57]. A similar result is known for multidimensionalproblems [58].Finally, we point out that the alternating projectionalgorithm was explored as a method to compensate forsome forms of distortion that result from certain data com-pression methods [59]. Experimental evidence gathered in[6,54,59] shows the usefulness of one-dimensional iterativemethods of this kind.IV. Linear Iterative Algorithms of First OrderThe spectral norm of an arbitrary matrix M, which isnormally de�ned askMk = supkxk=1 kMxk;is also given by kMk =q�(MHM); (1)where �(X) denotes the spectral radius of X, that is, thegreatest of its eigenvalues, in absolute value. Note thatthe spectral norm of a hermitian matrix equals its spectralradius.Identity (1) can be established in di�erent ways. Onethat leads to useful conclusions in the kind of problems thatwe will consider is the following (for an alternative proofsee [60]). If we seek he stationary points of the continuousfunction �(x) = kMxk2, subject to kxk = 1, we are leadto the equation MHMx = �x; (2)where � appears as a Lagrange multiplier. This shows thatthe unitary vectors x that render kMxk stationary are theeigenvectors of MHM. If x is an eigenvector of MHMthen kMxk2 = xHMHMx = j�j kxk2 = j�j:We are considering the restriction of the continuous func-tion � to a compact set. Thus, the absolute maximum(minimum) of �(x) will be attained by the eigenvector ofMHM that corresponds to its largest (smallest) eigenvaluein absolute value. These eigenvalues will be denoted by�max and �min, respectively, and the associated eigenvec-tors by vmax and vmin.Relation (1) follows from this and the de�nition of norm.Note that kMxk � kMk kxk. Also, since MHM is hermi-tian, kMk2 = �(MHM) = kMHMk.We recall that a (possibly nonlinear) operator A de�nedon a metric spaceM with distance function d(�; �) is nonex-pansive if d(Ax;Ay) � d(x; y) for all x; y 2M , and strictlynonexpansive if equality holds only for x = y. In spacesendowed with a metric d induced by a norm k � k we haved(Ax;Ay) = kAx�Ayk and d(x; y) = kx�yk. This is thecase for linear operators de�ned on the �nite dimensionalspace Cn, that is, matrices over the complex �eld, with theusual norm. In these cases nonexpansiveness means thatfor an arbitrary v 2 Cn kTvk � kvk, and thus the spectral

norm of a linear nonexpansive operator T cannot exceedunity.It follows from �(T) � kTk that the absolute values ofthe eigenvalues of a nonexpansive matrix T do not exceedunity. Thus, a strictly nonexpansive matrixT is convergentto zero (a matrix T is convergent to zero is if and only if itseigenvalues are all less than 1 in absolute value [60]). Notethat strict nonexpansiveness is only a su�cient conditionfor convergence. In fact, we could easily exhibit examplesof expanding linear operators, that is, matrices with normgreater than one, which nevertheless converge to zero. Thiscan never occur for hermitian or normal matrices, whosenorms and spectral radii are necessarily equal. A simpleexample of a matrix whose norm and spectral radius di�eris given in [60].Consider now the sequence of vectors xi 2 C n de�nedby xi+1 =Mxi + b, M and b being, respectively, a n� nmatrix and a n� 1 column vector. This is a model of thegeneral linear stationary iterative algorithm of �rst orderwith iteration matrix M.Assume that M is convergent to zero. Then, the se-quence xi converges to some limit vector x which satis�esx =Mx+ b, since we havex = +1Xk=0Mkb = (I�M)�1b:The error or residual at iteration k, ek = xk � x, is thengiven by ek =Mek�1;being related to the initial error e0 by the expression ek =Mke0. Thus kekk � kMkk ke0kWithout imposing further restrictions on M one can onlysay that kMkk tends to zero with k, monotonically forsu�ciently high k. For hermitian, or, more generally, fornormal matrices, we havekMkk = �(M)k;and the norm of the error decreases with each iteration,that is, the iterative method has the error-reduction prop-erty, independently of k. In this case, knowledge of kMkallows a simple upper-bound for the error to be established.This is not the case in general, and therefore kMkk mustbe studied instead. The asymptotic rate of convergence ofthe convergent matrix M, R1(M) = ln �(M), is an oftenuseful quantity [60].V. The AlgorithmsThe algorithms which will be studied below are lineariterative algorithms of the �rst order with non-hermitianiteration matrices. They can be derived using the gen-eral framework for constrained iterative restoration estab-lished in [39]. In this particular case, we take the samplingand band-limiting operations as, respectively, the distor-tion and constraint mentioned in [39]. The original signal



FERREIRA: INTERPOLATION AND THE DISCRETE PAPOULIS-GERCHBERG ALGORITHM 5satis�es x = Bx and the observed signal is y = Dx, forappropriate matrices B and D. This suggests the equationx = Bx+ �(y �Dx)= �y + (I� �D)Bxwhere � is any �xed constant, and I denotes the identitymapping, as well as the sequence of successive approxima-tions un+1 = �y + (I� �D)Bun = T1un (3)where T1(�) = �y + (I� �D)B(�): (4)It is possible to obtain a band-limited sequence of succes-sive approximations by taking the distortion to be samplingfollowed by band-limiting. This givesun+1 = �By + (I� �BD)un = T2un (5)Alternatively, we may apply the band-limiting operator to(3). This leads toun+1 = �By +B(I� �D)un = T3un: (6)As we have seen, these algorithms will converge if and onlyif the spectral radius of the respective iteration matrices isstrictly less than unity. Since the iteration matrices of themethods (3) and (6) are the transpose of each other, and(5) is equivalent to (6) if the �rst approximation is band-limited (u0 = Bu0), it is su�cient to consider, for example,method (3). It will be shown next that this method leadsto a sequence of approximations that converges to the re-quired solution, if suitable conditions are imposed upon D,B and �. Under the same conditions the other two itera-tions will also converge to the same solution, provided, ofcourse, that u0 = Bu0 in the case of (5).VI. Convergence of the AlgorithmA number of alternative approaches to (3) do exist. Theone that we will use depends upon well-known results in�xed-point theory. This technique is often used in signalrestoration [39,53] and does not assume the linearity of theoperators involved. In fact, other possibly non-linear non-expansive constraints can be incorporated in the algorithmwithout disturbing convergence.Denote the set of subscripts of the known samples of xby It = fi1; i2; : : : ; isg. Let the set of subscripts of thevanishing samples of the DFT of x be denoted by �If , thecomplement in En of the set If = fk1; k2; : : : ; kqg.Lemma VI.1: LetD be a sampling operator with densityd, and let B be a band-limiting operator with bandwidthw. If d � w, x = (I�D)x and x = Bx, then x � 0.Proof: Since x = (I � D)x, that is, xi = 0 for alli 2 It, s samples of x vanish and the n equations x̂ = Fxreduce to x̂ =Xi=2It Fixi;where Fi denotes the i-th column of F.

On the other hand, since x = Bx, that is, x̂i = 0 for alli 2 �If , n� q samples of x̂ are zero and thusXi=2It Fkixi = 0; (7)for all k 2 �If . The submatrix of F that appears in (7) is(n�q)�(n�s) with (n�q) � (n�s) since d � w. Since �If iscontiguous, there is an integer r such that ki = i+r mod nwithout loss of generality. Since Fki = (1=pn)e�j2�ki=n,we see that the submatrix of F that appears in (7) can bereduced to a Vandermonde matrix, with linear independentcolumns. Thus, the only solutions to (7) are given by xi =0, and therefore x must be the identically zero vector.Lemma VI.2: Let 0 � � � 2. Then, the operator T1de�ned by (4) is nonexpansive.Proof: Let A� be de�ned asA� = (I� �D)B: (8)It follows from (4) that the nonexpansiveness of T1 doesnot depend on y. In fact, T1 is nonexpansive if and onlyif A� is. The nonexpansiveness of the projection operatorB in the Euclidean norm is obvious. Thus, T1 will benonexpansive if I � �D is, which happens if and only if0 � � � 2. Otherwise there would be an eigenvalue ofI� �D greater than one in absolute value.Lemma VI.3: If 0 � � � 2, the equation x = T1x, withT1 de�ned by (4), has at least one solution.Proof: T1 is continuous and nonexpansive, and mapsa non-empty, compact and convex subset of C n into itself(consider the set of all sequences with norm less than orequal to a given bound). Therefore, it must have a �xed-point [39, 61].Theorem VI.1: Let D be a sampling operator with den-sity d, and let B be a band-limiting operator with band-width w. If 0 < � < 2; (9)d � w; (10)the operator T1, de�ned by (4), is strictly nonexpansive,and the equation x = T1x has one and only one solution.This solution is given byx = limn!1Tn1x0;for arbitrary x0.Proof: Assume, to the contrary, that (9) and (10)hold without T1 being strictly nonexpansive. This meansthat kA�vk = k(I� �D)Bvk = kBvk = kvkfor some v 6= 0. We will show that this assumption leadsto a contradiction. The last equality implies the vanishingof v̂i for i 2 �If , and thus Bv = v. This reduces the secondequality to k(I� �D)vk = kvk:



6 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 1994But k(I� �D)vk2 = (1� �)2Xi2It v2i +Xi2�It v2i= kvk2 � �(2� �)Xi2It v2iwhich implies the vanishing of the vi for i 2 It, since, byhypothesis, 0 < � < 2. Applying lemma VI.1, we see thatv must be the zero vector, a contradiction, and thus T1must be strictly nonexpansive. The theorem then followssince a strictly nonexpansive mapping cannot have morethan one �xed point.VII. Upper and Lower Error BoundsWe will now give upper and lower bounds for the recon-struction error at any given iteration, assuming that � = 1.The bounds are best-possible and we give the initial errorvectors for which they are attained.Recalling (8), let v denote an eigenvector of AH1 A1 per-taining to the eigenvalue �, that is,AH1 A1v = B(I�D)Bv = �v: (11)We claim that A1v will be an eigenvector of A1 pertainingto the same eigenvalue, and thusA12v = �A1v:To check that this is true left-multiply (11) by A1 = (I �D)B and use the idempotency of B.It is now easy to derive bounds for the error ek at itera-tion k of the algorithm. From the discussion in section IVit is clear that ek = A1ek�1 and thussupke0k=1 ke1k2 = supke0k=1 kA1e0k2 = �maxand infke0k=1 ke1k2 = infke0k=1 kA1e0k2 = �min;where �min and �max are, as we have seen, the smallestand largest of the eigenvalues of AH1 A1. The supremumand the in�mum are attained when e0 equals the vmax orvmin, the eigenvectors of AH1 A1 that correspond to theeigenvalues �max and �min, respectively.Now, we have just seen that A1vmax and A1vmin willalso be eigenvectors of A1, and thereforee2 = A12vmax = �maxA1vmax;if e0 = vmax, ande2 = A12vmin = �minA1vmin;if e0 = vmin. By induction it is now clear that the inequal-ities kek+1k � �kmaxke1k (12)kek+1k � �kminke1k; (13)

hold. Equality is attained if e1 = vmax, in case of (12), ore1 = vmin, in case of (13).In many cases one takes x0 to be the zero vector, whichgives x1 = y, and ek = Ak1x. Taking x = vmax thenresults in the lowest possible asymptotic convergence rate.In this sense, the vmax are the signals which result in theworst possible algorithm performance. A similar argument,regarding best possible performance, holds for vmin.For pure extrapolation of low-pass signals and � = 1,this analysis is related to the singular value analysis ofthe operator DB done in [7], and to the periodic discreteprolate spheroidal sequences (P-DPSS) discussed therein.Note that setting M = A1 in equation (2) givesB(I�D)Bv = �v; (14)which turns out to be equivalent toBDBv = (1� �)v (15)since any solution of (14) must be band-limited (left mul-tiply (14) by B). Equation (15) is equivalent to the equa-tion used to de�ne the P-DPSS in [7]. The eigenvectors of(14) vmin and vmax, which correspond to the smallest andlargest eigenvalues �min and �max in (14), are therefore ex-amples of P-DPSS.VIII. The Optimum Relaxation ConstantLet us now study the e�ect of the parameter � upon theconvergence rate of the algorithm.Let S� = B(I � �D)B. We claim that if v is an eigen-vector of S� pertaining to the eigenvalue �, then A�v is aneigenvector of A� pertaining to the same eigenvalue. Thisfollows from the idempotency of B, which impliesA�S� = (I� �D)B2(I� �D)B = A2�:Therefore if S�v = �v then A�2v = �A�v. This showsthat every eigenvalue of S� is also an eigenvalue of A�, andthus �(S�) � �(A�).On the other hand, if v is an eigenvector of A� pertain-ing to the eigenvalue �, then Bv is an eigenvector of S�pertaining to the same eigenvalue. To check this, we leftmultiply A�v = �v by B, obtainingB(I� �D)Bv = �Bv;which is equivalent toS�Bv = �Bv;again using the idempotency of B. This shows that�(A�) � �(S�). Since we have already shown the converse,it follows that �(A�) = �(S�).The e�ect of the parameter � upon the convergencerate of the algorithm may be judged from its e�ect uponthe spectral radius �(A�) of the iteration matrix. Since�(A�) = �(S�), it is su�cient to compare the spectral radiiof the matrices S� and S1.



FERREIRA: INTERPOLATION AND THE DISCRETE PAPOULIS-GERCHBERG ALGORITHM 7With this in mind, we will show that if v and � are,respectively, an eigenvector/eigenvalue pair of S1, then vand 1� �(1� �) are an eigenvector/eigenvalue pair of S�.Again, S1v = �v implies Bv = v (left multiply by Band use idempotency), and thus we haveB(I�D)Bv = v �BDBv = �v:Consequently, v is an eigenvector of BDB pertaining tothe eigenvalue 1� �. This impliesB(I� �D)Bv = v � �BDBv = v � �(1� �)vas we wanted to show.The graphic f�; f(�)g of f(�) = 1��(1��) (0 � � � 1)is a straight line of positive slope connecting the pointsf0; 1� �g and f1; 1g. This mapping allows the determina-tion of the optimal value of �. In the following discussion,we take � = 1 as the reference value. Note that decreasing� below 1 is uninteresting since it increases the eigenvaluesof the iteration matrix. On the contrary, increasing � to-wards 2 may reduce the spectral radius and therefore leadto better convergence rates.Assume that � > 1, and let �min and �max be the small-est and largest eigenvalues of S1, respectively. Note that�min = 0 and �max < 1 under the conditions of theoremVI.1. The eigenvalues of S� will therefore lie in the interval[1 � �; 1 � �(1 � �max)], the spectral radius of A� beinggiven by �(A�) = max1<�<2f�� 1; 1� �(1� �max)g:This expression is minimized when ��1 = 1��(1��max).Solving we �nd the optimal value of �,�opt = 22� �max :For � = �opt the spectral radius of the iteration matrix is�(A�) = �max2� �max = �(A1)2� �(A1) ;which may result in considerably better convergence rates.To summarize, reducing � below 1 should be avoidedsince it decreases the convergence rate. When � increasesbetween 1 and �opt, the spectral radius of the iterationmatrix decreases, and therefore the asymptotic conver-gence rate is improved. Increasing � above �opt shouldbe avoided since it again reduces the convergence rate andwill ultimately lead to divergence. Note, however, that0 < �max < 1 implies 1 < �opt < 2 and 0 < �(A�) < 1,which means that for � just greater than �opt the methodwill still be convergent.IX. Sampling Sets and Convergence RateWe will now study the norm and spectral radius of thematrix A1 de�ned by (8). We would like to know whichsampling sets minimize or maximize the asymptotic con-vergence rate of the algorithm, for a given density. We will

see that the answer depends on the B matrix. For low-pass data, for example, the missing sample positions thatgive best-possible sampling sets de�ne a grid with a cer-tain spacing. Thus, the optimum sampling strategy is, ina sense, uniform sampling. On the other hand, the worstpossible sampling sets are contiguous. Again, this may notbe the case for data neither low-pass nor high-pass.We start by noting that the general inequality kMk ��(M) can be made precise if M = A1. First, recall fromsection VIII that �(A�) = �(S�). When � = 1 we see thatAH1 A1 = S1, and therefore, using (1), we conclude thatkA1k2 = �(AH1 A1) = �(A1): (16)In the following we will study the norm of A1 instead ofits eigenvalues. However, because of (16), knowledge of thenorm ofA1 is equivalent to knowledge of its spectral radius,and therefore of its asymptotic rate of convergence. Thiscan be of help in understanding the e�ect of the samplingsets upon the convergence properties of the algorithm.As before, let s be the number of known samples, andlet their subscripts be It = fi1; i2; : : : ; isg.We will not impose any contiguity constraints upon theband-limiting matrix B, which is only assumed to havebandwidth q=n (see section I for the meaning of q). Wedenote the columns of B by bi, i = 0; 1; : : : ; n� 1.Since the lines of A� are given by(1� �Dii)bHi ;the components of the vector A�x are(1� �Dii)hbi;xi:It follows thatxHA�HA�x = kA�xk2= n�1Xi=0(1� �Dii)2hbi;xi2= Xi=2Ithbi;xi2 + (1� �)2Xi2Ithbi;xi2:(17)From this equation several conclusions can be drawn. Westart by examining a few simple consequences.A. The Minimum Norm of the Iteration MatrixRecall from section IV that kA�k2 equals the spectralradius of the hermitian matrix AH� A�, which, in turn, canbe obtained radius of the hermitian matrix AH1 A1, which,in turn, can be obtained by taking the supremum of (17)over all x of unit norm. From (17) it follows that thisquantity attains its least possible value when � = 1. Thus,the norm of A� is minimized when the relaxation constant� is unitary.A second proof could be given based on the results ofsection VIII.



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 1994B. One Missing SampleWhen only one sample is missing and � = 1, �It is reducedto one element. Denoting it by i, we havekA1xk2 = hbi;xi2:The supremum of this expression over all x with unit normwill be attained for x = bi=kbik. ThuskA1k2 = kbik2 = q=n;where q=n is just the normalized bandwidth of the band-limiting matrix. Thus A1 will be a linear contractive op-erator for any q < n.It follows from (16) that the spectral radius of A1 equalsthe normalized bandwidth ofB. This can be checked easily,noting that the iteration matrix A1 will have, in this case,only one nonzero row. Therefore it may have one nonzeroeigenvalue at most. Since the trace of A1 = (I �D)B isgiven, in this case, by B00 = q=n, we may immediatelyconclude that the nonzero eigenvalue of A1, and conse-quently its spectral radius, is also given by q=n and equalsthe squared norm of A1.Note that each iteration of the reconstruction algorithmwill reduce the squared error by a factor of at least q=n. Us-ing the optimum relaxation constant � = �opt = 2n=(2n�q) this can be improved to q=(2n� q).C. Two Missing SamplesSuppose now that � still equals 1 but that two samplesare missing, that is, �It = fi; jg. In this case we havekA1xk2 = hbi;xi2 + hbj ;xi2:The stationary points of this quadratic form are the eigen-vectors of the matrix A1, which in this case has only twononzero rows, rows i and j, given by bHi and bHj , respec-tively. In fact AH1 A1 = bibHi + bjbHj :It is easy to �nd the eigenvectors and eigenvalues of sucha matrix. It can be directly veri�ed that, in the real case,the quantitieskbik2 � jhbi;bjij = qn � jhbi;bjijare eigenvalues of AH1 A1 pertaining to the orthogonaleigenvectors bi � bj(consider AH1 A1bi and AH1 A1bj). Since the trace ofAH1 A1 is 2kbik2 = 2q=n, and since AH1 A1 cannot haveany negative eigenvalues, we conclude thatkA1k2 = qn + jhbi;bjij:The inner product hbi;bji can be put into a simpler form.Considering that each bi is a column of B, and that B isidempotent, that is, B2 = B, we see thathbi;bji = bp(q) = bq(p);

where bi(k) denotes the k-th element of the i-th columnof B. This result may also be easily obtained by directcalculation.Using the fact that B is circulant we havebp(q) = bq(p) = b0(p	 q);where 	 denotes subtraction modulo n. ThereforekA1k2 = qn + jb0(i	 j)j:When the set of vanishing samples of the DFT of the signalis contiguous, and in particular for low-pass or high-passreal band-limiting matrices, we havejhbi;bkij = jb0(i	 k)j = ���� sin[�q(i	 k)=n]n sin[�(i	 k)=n] ���� : (18)This provides a convenient way of evaluating the squarednorm and spectral radius of the iteration matrix as a func-tion of the lag between missing samples.D. Missing Sample Distributions that Minimize or Maxi-mize the Norm of the Iteration MatrixWhen only two samples are missing it is possible to ob-tain the missing sample distributions that minimize (max-imize) the norm and spectral radius of the iteration matrixA1 simply by choosing the lag i 	 j between samples insuch a way that jb0(i	 j)j is minimum (maximum).For signals with q contiguous nonzero harmonics, an hy-pothesis satis�ed by low-pass or high-pass signals, for ex-ample, the �rst row of B will consist of samples of themodulus of the Dirichlet kernel, as seen in (18). In thiscase it can be veri�ed numerically thatjb0(k)j � jb0(1)j k = 1; 2; : : : ; jn2k ;for 1 < q < n� 1 for realistic values of n. The worst casesituation corresponds, in these cases, to contiguous missingsamples, that is, i 	 j = 1. See �gure 1, where the normof the iteration matrix is depicted as a function of the lagbetween missing samples, for low-pass (or high-pass) realsignals (it follows from the symmetry of b0(x) that onlythe �rst bn=2c possible lags need to be considered).For band-pass signals, for example, the worst case situ-ation may no longer correspond to a contiguous samplingset (see �gure 2).Let us now consider a number of missing samples greaterthan 2. Again, let s=n be the density of the sampling ma-trix, and n�s the number of unknown samples. What canwe say about the best and worst possible missing sampledistributions?As we have seen, the squared norm of A� is given bysupkxk=10@Xi62Ithbi;xi2 + (1� �)2Xi2Ithbi;xi21A : (19)There are two extreme situations. Roughly speaking, the�rst and more favorable arises when all of vectors bi with
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1 5 10 15 20 25 30Fig. 2. Norm of the iteration matrix for real band-pass signals (n =64) with 2m nonzero harmonics (m = 30; 24; 12 and 6, from topto bottom) as a function of the lag between unknown samples.i 62 It are orthogonal, or very nearly so. The worst possiblesituation occurs when the bi with i 62 It are very nearlylinearly dependent.Assume that all vectors bi with i 62 It are orthogonal,and let X be the subspace spanned by them. Since theyall have squared norm equal to q=n, we may writex = nq Xi62Ithbi;xibifor any x belonging to X . Thuskxk2 = nq Xi62Ithbi;xi2;

or, equivalently, Xi62Ithbi;xi2 = kxk2 qn :It follows from (19) with � = 1 thatkA1k2 = supkxk=1 qnkxk2 = qn;that is, A1 will be a convergent matrix with squared normq=n. Note that in this case the norm is independent of thenumber of missing samples, and equals the value obtainedfor a single missing sample. Clearly, if the missing sam-ples are distributed in this way, the recovery of one, two,or more missing samples can be performed with a matrixwhose norm is determined only by the bandwidth of thedata.Also, the asymptotic convergence rate of the reconstruc-tion algorithmwill be independent of the number of missingsamples, provided that the lag between missing samples isadequately chosen. We assume, of course, that the condi-tions of theorem VI.1 are satis�ed, that is, the samplingset has a su�ciently high density.For signals with a contiguous set of nonzero harmonics,and in particular for low-pass signals, it follows from (18)that jb0(k)j can be zero only for the following values of k,nq ; 2nq ; 3nq ; : : :assuming that q divides n. These quantities determine thepossible positions of the missing samples which correspondto optimum sampling sets. If q does not divide n, theymay still originate sampling sets with near-optimum con-vergence properties. X. ExamplesIn this section we present the results of computer simu-lations that illustrate and con�rm the results presented sofar.The reconstruction algorithm described in section V wasapplied to two reconstruction problems. The input signalfor the �rst example is depicted in �gure 3. It is a randomlygenerated vector of 64 samples, band-limited with a low-pass �lter of normalized bandwidth 0.52. The (randomlygenerated) sampler vector is depicted in �gure 4. It hasa normalized density of 0.69. Since its normalized densityexceeds the normalized bandwidth of the input data, wemay expect the reconstruction procedure to converge.The optimum value for the relaxation constant was foundfrom the results of section VIII, and the algorithm was runtwice, once with � = 1 and another with � = �opt. In bothcases we took the observed signal as the �rst approxima-tion. The resulting error curves are shown in �gure 5. Asexpected, the asymptotic rate of convergence is best in thelatter case.Figure 6 depicts the input data vector which minimizesthe asymptotic convergence rate of the algorithm, for � =1, the sampler depicted in �gure 4, and frequency domain
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