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1 Axiomatic model construction

We assume that the cancer growth term satisfies the following biological require-
ments:

1. The obvious requirement of positivity: F (x, y) ≥ 0 for all x, y ≥ 0, and
continuity.

2. At the beginning, the growth is exponential: limz→0 F (z) = 1.1

3. The growth slows down as the number of cells increases: dF (z)/dz ≤ 0.

4. A symmetry requirement: F (x, y) = F (x+y): the growth is controlled by
infected and uninfected cells equally; note however that this requirement
is not essential for our analysis.

We assume that the virus spread term (βyG(x, y)) satisfies the following
biological requirements:

1. The obvious requirement of positivity: G(x, y) ≥ 0 for all x, y ≥ 0, and
continuity.

2. For small values of x and y, the growth should be exponential to reflect
perfect mixing:

lim
x,y→0

G(x, y)/x = 1.

3. The growth term must monotonically increase with x and y:

∂(yG(x, y))

∂x
≥ 0,

∂(yG(x, y))

∂y
≥ 0.

4. The growth rate, G(x, y)/x, must slow down with x and y:

∂(G(x, y)/x)

∂x
≤ 0,

∂(G(x, y)/x)

∂y
≤ 0.

1This requirement fixes the scaling of the time-variable. In general, if the initial growth-
rate limz→0 F (z) = r, we scale time t′ = tr, and also use a′ = a/r and β′ = β/r. The primes
are dropped for convenience.
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5. The growth has to be saturated in both x and y, such that

lim
x→∞

yG(x, y) = Hx(y), 0 < Hx(y) < ∞,

where Hx(y) is a function of y independent of x. Similarly, with y.

6. For large values of x, the growth term cannot be positive in the limit of
small y, that is,

lim
y→0

Hx(y) = 0.

Similarly, with x.

7. For large values of x and y the spread cannot stop completely:

lim
x,y→∞

yG(x, y) > 0.

Note that this expression could be infinite.

The analyses below rely on these properties.

2 The number of equilibria

The fixed points of the virus-cancer system (equations (1-2) of the main text)
are given by (0, 0) and all the solutions of the equations

xF (x + y) = ay, (1)

G(x, y) =
a

β
. (2)

The trivial point (0, 0) has eigenvalues F (0) and −a and is thus a saddle. The
number of solutions of equations (1-2) depends on the particular shapes of the
functions F and G. In order to find the nontrivial equilibria, we solve equation
(1) to find y(x), and then substitute it into equation (2). The equilibria are
thus defined by the roots of equation

βG(x, y(x)) = a. (3)

From equation (1) we can see that y(0) = 0. We know from assumption (2) on
the function G that G(0, 0) = 0. The next step is to study the limiting behavior
of G(x, y(x)) for large values of x. For that we need to know the behavior of
y(x) for large x. We have from equation (1):

lim
x→∞

y(x) = lim
x→∞

xF (x)/a.

There are three cases. (i) For a linear type growth, we have limx→∞ xF (x) = c0,
a nonzero constant. In this case, limx→∞ y(x) = c0/a, with 0 < c0 < ∞.
(ii) For any growth F which is superlinear but slower than exponential, we
have limx→∞ y(x) = ∞, but limx→∞ y/x = limx→∞ F (x + y)/a = 0, that is,
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y increases slower than x. (iii) Finally, for exponential growth, F = 1 and
y(x) = x/a, such that y(x) ∼ x for large values of x.

From the biological assumptions on the function G(x, y) listed above, it
follows that for any of the possible dependencies y(x), the function G(x, y(x))
approaches a finite limiting value as x → ∞, and this value can be zero or
nonzero. We use the exponential case F = 1 and yexp(x) = x/a to separate all
functions G into two classes. If limx→∞ G(x, x/a) = 0, then we will consider the
virus spread to be slow, and if limx→∞ G(x, x/a) = G∞

exp > 0, with G∞

exp < ∞,
we will regard this as fast spread. Note that for all laws of cancer growth
slower than exponential, we have G(x, y(x)) ≥ G(x, yexp(x)). This is because
y(x) ≤ yexp(x), and G is a decreasing function of y.

2.1 Fast virus spread

In this case, the function Gexp(x) ≡ G(x, yexp(x)) is either a monotonically
increasing function (figure 1(a) of the main text), or it can attain one or more
local extrema before converging to its nonzero horizontal asymptote.

For a monotonically increasing Gexp, low values of β correspond to zero roots
in equation (2), which means that the cancer growth will continue indefinitely
(figure 1(a) of the main text). As β crosses a critical value defined by a/G∞

exp,
there is one root. The value of x at this root drops as β increases (this is due
to the convergence of Gexp to an asymptote, G∞

exp). For large values of β, the
value of x at the intersection tends to zero.

If the function Gexp has an absolute maximum at point xexp, then an ini-
tial increase of β above a/cmax with cmax = Gexp(xexp, y(xexp)) results in the
appearance of two roots. Additional local extrema will result in an appearance
and disappearance of pairs of roots. However, as β increases through the second
threshold given by a/c2, only one (the lowest) root remains. The value of c2

is given by the lower of the values {G∞

exp, cmin}, where cmin is the value at the
lowest local minimum, if it exists.

In both cases, for sufficiently large values of β, there will be only one root
in equation (2). Introducing other cancer growth laws can increase the limiting
value of G thus decreasing the value of βc. In the case of a monotonically
increasing Gexp, there will be no qualitative change. If Gexp is one- or multiple-
humped, the hump(s) may disappear. Whether this qualitative change happens
depends on the relative size of the two spacial scales involved. The first scale is
defined by the location of the maxima of Gexp and is related to the virus spread
scale, sv. The second scale is given by the size, st, at which cancer growth
law starts to deviate from exponential. Once st ∼ sv, the limiting value of G
becomes sufficiently large such that the “hump” disappears.

It is useful to investigate the value of x at the equilibrium as a function of β,
for different values of st. Suppose that the graph of G(x, x/a) is a monotonically
growing function of x which approaches a limiting value, G∞

exp. Suppose that
the cancer growth slows down around the scales near st. So near x ∼ st, the
function G(x, y(x)) deviates from the horizontal asymptote, G∞

exp, and starts
growing toward a different, and higher horizontal asymptote, which we will call
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Figure 1: The dependence of the equilibrium on β and st. We use the model with F =
η/(η + x + y) (thus, st is defined by η) and G = x/(x + y + ε). The function G(x, y(x)) is
plotted vs x for different values of η. The dashed vertical lines indicate the scales of interest:
the leftmost such line corresponds to x ∼ sv , and the rest of the lines to x ∼ st for different
values of η. The other parameters are: a = 4, ε = 1.

G1 > G∞

exp (see figure 1 for a particular example). The phase diagram as β
increases is as follows. For β < a/G1, there are no roots. As β crosses the first
threshold, a/G1, one root appears. The value of x at this equilibrium decays
rapidly from infinity to values around st, as β grows (because of the fact that
G1 is a horizontal asymptote). Then as β grows through its second threshold,
a/G∞

exp, the value of x at the equilibrium drops from st to values of order 1.
The second transition is sharp if the following is satisfied: st À x1, where x1 is
the value of x such that |G(x1, y(x1)) − G∞

exp| = |G1 − G∞

exp|. In other words,
x1 is the value of x where the function G(x, y(x)) comes near its first horizontal
asymptote (“near” means that it is at least as close to G∞

exp, as G∞

exp is to G1).
If st À x1, then the function G has a significant interval in x where it comes
near the value G∞

exp, before it deviates from it to start growing toward G1. This
guarantees a threshold effect.

We conclude that for all cancer growth laws and for all functions G corre-
sponding to a fast virus spread, increasing β beyond a threshold leads to the
existence of only one equilibrium, whose value correlates negatively with the
viral replication rate, β. For large enough st, there is a “threshold” effect, such
that the size at equilibrium decreases very sharply as β approaches a defined
value.

2.2 Slow virus spread

In this case, the function Gexp(x) ≡ G(x, yexp(x)) is a one- or a multiple-humped
function, which approaches zero for large x (figure 1(b) of the main text).

In the case of an exponential growth, the bifurcation diagram looks as fol-
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lows. As before, small values of β correspond to no equilibria (zero roots in
equation (2)). As we increase β, a pair of roots appears after the threshold given
by a/cmax, where cmax = G(xexp, y(xexp)), the maximum value of Gexp. As β
increases, other roots may appear and disappear in pairs. Since Gexp(0) = 0
and the function Gexp has zero as its horizontal asymptote, there will be two
equilibria for all values of β larger than a/cmin, where cmin is the value of G at
its lowest local minimum in the case that such a minimum exists; cmin = cmax

otherwise.
Let us next consider how non-exponential laws of cancer growth modify this

picture. In some cases, a slower-than-exponential growth term, F , will lead to
the horizontal asymptote of G(x, y(x)) becoming nonzero. In general whether
this happens depends on the functional forms of both G and F . In the case of
linear growth, y(x) ≡ ylin(x) converges to a nonzero constant, c1, and we have
limx→∞ Glin(x) = limx→∞ G(x, c1) = Gx(c1) = c2 < ∞, which is a nonzero
constant. Depending on the value of st, Glin can be a one- or a multiple-humped
function, or (for st similar or smaller than xexp) it is a monotonically increasing
function of x. In either of these cases, there exists a finite value of β such that
for all values of β larger than this value, there is only one root in equation (2).
For growths faster than linear but slower than exponential, we have y → ∞ as
x grows, but y = o(x), i.e. it grows slower than x. In some cases the function G
will retain a zero asymptote (e.g. in the case where G = x/(x + 1)/(y + 1) and
a surface growth law for F ). In other cases it will acquire a nonzero limit (e.g.
with G = x/(x + 1 +

√
x(y + 1)) and a surface growth law for F ). In the latter

case we can say that the surface cancer growth is sufficiently slow to warrant
successful treatment given the particular mode of viral spread.

2.3 Finite tumor size

Here we consider a growth term which becomes zero for a finite value of x + y.
The growth starts off exponential (F (0) = 1) and at some size, st, it slows down
(we do not exclude the possibility that st ∼ 1, that is, the growth becomes
slower than exponential right away). Then there exists another characteristic
size, W À st such that the growth slows down further and stops. We define W
such that F (W ) = 0. Note that if st ∼ W then there is no need to introduce
the two scales, st and W . Therefore, the assumption st ¿ W must hold.

The previous analysis holds on the scales intermediate between st and W ,
such that st ¿ x ¿ W . In particular, for values x ¿ W , the shape of the
curve G(x, y(x)) is similar to that obtained for the corresponding unlimited
growth. As x grows far beyond st and approaches W , the function G approaches
G(W, 0). If, for the unbounded growth, the limiting value of the G function is
c2, we have in general G(W, 0) ≥ c2, and the curve G takes an upward turn
in the vicinity of x = W . This means that equation (2) acquires an additional
root corresponding to the cancer growing to its carrying capacity, W . In the
systems with unrestricted growth this was equivalent to an unlimited growth of
the cell population.

It is useful to note the following: in systems with a limited size, the function
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G(x, y(x)) is always bounded away from zero. Therefore, strictly speaking, we
can always find a threshold value βt such that for β > βt, only one root is
present. However, if W À sv, such values of β are very large compared to βc,
and in most cases are probably not achievable.

3 Stability

Let us suppose that (x0, y0) with x0 ≥ 0 and y0 ≥ 0 is a solution of system (1-2),
and consider the stability of the corresponding equilibrium. The Jacobian of the
system can be written as a 2 × 2 matrix, {mij}, with

m11 = F + x0F
′ − βy0Gx, m12 = x0F

′ − β(G + y0Gy),

m21 = βy0Gx, m22 = βy0Gy,

where the functions F and G and their derivatives are evaluated at the point
(x0, y0): Gx = ∂G/∂x|x=x0,y=y0

, and similarly with Gy and F ′. The equilibrium
is stable if the following two conditions hold:

m11 + m22 < 0, (4)

m11m22 − m21m12 ≥ 0. (5)

3.1 Saddle points

Condition (5) is equivalent to the positivity of the derivative of G in the direction
defined by the implicit relation ya = xF (x + y), equation (1). Differentiating
it, we get: ady = Fdx + xF ′(dx + dy). The directional derivative is equal to
(Gxdx+Gydy) = [Gx(a−F ′x0)+Gy(F +x0F

′)]/(a−F ′x0). The denominator
is positive, so this expression has the same sign as the left hand side of condition
(5).

The equilibria are defined by the roots of equation (3). Since G(0, 0) = 0, all
the odd roots of equation (3) will correspond to a positive, and the even ones to
a negative slope of the left hand side of equation (3). This means that all even
equilibria are saddles. This is because in such cases the directional derivative is
negative, condition (5) is violated, and therefore there are two real eigenvalues
of opposite signs. On the other hand, an odd root can be either a sink, a source
or a spiral (stable or unstable). This is because for such a root, condition (5) is
always satisfied, so that we could either have complex eigenvalues, or real roots
of the same sign (positive or negative).

In the presence of a saddle, an infinite outcome (corresponding to an unchecked
cancer growth) is possible. For large values of x, we have

ẋ = xF∞ − βyG∞(y), (6)

ẏ = y(βG∞(y) − a), (7)

where limx→∞ G(x, y) = G∞(y) and limx→∞ F (x, y) = F∞. The growth of y
becomes negative as y increases if limy→∞ G∞(y) = 0, which suggests that y

6



settles to a finite value which makes the right hand side of equation (7) zero,
such that the outcome (∞, const) is observed. If limy→∞ G∞(y) = const > 0,
then for large enough values of β we can have an outcome of the form (∞,∞).

3.2 Properties of the internal equilibrium

Let us first show that for large values of β, there will be an equilibrium, (x0, y0),
such that limβ→∞ x0 = 0 and limβ→∞ y0 = 0. We call this equilibrium the “in-
ternal equilibrium”. Its existence follows from equation (3) and the properties
of the function G. We know that y(0) = 0, and also that G(0, 0) = 0. It is also
clear that there is an interval of x, [0, ξ], where G is a growing function. There-
fore, by continuity, for all β ≥ a/G(ξ, y(ξ)), there will be a solution of equation
(3). From monotonicity of the function G, the value of x at the intersection
with a/β decays with β. From equation (1) it follows that there is an interval
of x, [0, ξ1], where y is a growing function of x. Therefore, we conclude that for
large enough β, there is an equilibrium whose x and y values decay with β and
approach 0 in the limit β → ∞.

Let us evaluate the left hand sides of inequalities (4) and (5) for small values
of x0 and y0. First, we express β from equation (2): β = a/G(x0, y0). Then we
approximate the curve y(x) by its Taylor series for small values of x0:

y0 = Fx0/a+(a+F )F ′(x0/a)2+(a+F )((F ′)2+1/2(a+F )F ′′)(x0/a)3+O[(x0/a)4],
(8)

where the function F and its derivatives are evaluated at 0. This expression
follows from expanding both sides of equation (1) in Taylor series in terms of x0

and y0, solving for y0 and using a Taylor expansion of this expression. Now, let
us multiply the left hand side of inequality (4) by G(x0, y0), and use expression
(8). Expanding in terms of small x0, we obtain:

G(x0, y0)(m11 + m22) = (F ′Gx + Gxy − Gxx/2)x2

0

+
1

a

(

(a + 1)F ′′Gx + (a + 2)F ′Gxy + Gxyy +
1

2
((a − 1)Gxxy − F ′Gxx) − 1

3
aGxxx

)

x3

0

+O([x0]
4). (9)

Here the functions F and G and their derivatives2 are evaluated at zero. To
derive the above expression we also used the fact that the function G and its
y-derivatives are equal to zero if x = 0, and F (0) = 1.

Next, we evaluate the left hand side of inequality (5) in the same manner:

G(x0, y0)(m11m22 −m21m12) = aGxx0 + (aF ′Gx + 2Gxy + aGxx)x2

0
+ O([x0]

3).

We can see that the expression above is always positive, so condition (5) is
satisfied for large enough values of β. This means that the two eigenvalues (if
real) have the same sign. Condition (4) however is not necessarily satisfied,

2Here we assume that the functions F and G are differentiable at zero. Non-differentiable
functions are handled similarly by using generalized expansions.
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Growth law Fitted formula RMS error

Exponential F = 0.083 271.6
Logistic F = 0.11(1 − x/(4.9 × 103)) 96.2

Surface F = 0.81/(x + 134.6)1/3 137.0
Linear F = 265.0/(x + 22 × 103) 119.6

Gompertz F = 2.80x log[1.32 × 105/(x + 1.27 × 105)] 96.6

Table 1: Fitted growth functions for figure 6, and their root mean square errors.

Figure Model ε β a f0 RMS error

6(b) slow1 790.6 2.06 0.274 0.26 96.5
6(b) slow2 537.3 1.4 0.169 0.198 104.4
6(b) fast 40.0 0.152 0.011 0.40 89.4

7(a) slow1 755.0 2.109 0.17 0.82 6.00
7(a) slow2 6× 10−5 0.189 0.195 0.79 5.76
7(a) fast1 92.0 0.50 0.2 0.77 5.72
7(a) fast2 2×10−7 0.71 0.69 0.34 4.18

7(b) slow1 0.1 3.44 4.03 0.53 1.23
7(b) slow2 410 3.37 0.56 0.996 1.90
7(b) fast1 0.1 1.08 1.11 0.60 1.56
7(b) fast2 59.8 0.92 0.56 0.995 1.90

Table 2: Fitted model parameters for figures 6(a) and 7(a),(b).

as follows from expression (9). The expansion can be positive or negative,
depending on the particular properties of the functions F and G.

Next, we would like to investigate whether the eigenvalues are real or com-
plex. For the eigenvalues to have an imaginary part, the following condition has
to be satisfied:

(m11 − m22) + 4m12m21 < 0. (10)

Performing a Taylor expansion of the above expression for small values of x0

and y0 at internal equilibrium, we obtain:

G(x0, y0)((m11−m22)+4m12m21) = −4aG2

xx2

0
−2Gx(2aF ′Gx+6Gxy+3aGxx)x3

0
+O([x0]

4).

We can see that this quantity is always negative. Therefore, we conclude that
the internal equilibrium has complex eigenvalues for sufficiently large values of
β.

4 Fitting experimental data

The experimental data of [1], figures 1 and 5, was used to fit with the models.
The fitting was performed by using Mathematica, which allows to perform non-
linear least squares fitting procedure on solutions of ODEs defined on a set of
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unknown parameters. The root mean square (RMS) error was calculated as

√

√

√

√

1

n

n
∑

i=1

(f(ti) − xi)2.

Here n is the number of experimental data points in the time-series, and (ti, xi)
are the coordinates of the experimental points, where ti values correspond to
time and xi correspond to the cancer size, in mm4. The fitted function obtained
as a solution of ODEs is denoted as f(.).

First we used various growth laws to fit with the data of [1] (figure 1), where
the growth of uninfected cancer cells was measured. The results are presented in
figure 6(a) of the main text; the best-fitting parameters are listed in Table 1. We
then used the Logistic growth model to fit the data pertaining to cancer-virus
interactions.

The virus growth terms used were G(x, y) = x/(x+y+ ε) for the fast spread
model and G = x/(xy1/3 + ε) for the slow spread model (both contain only one
parameter). Thus, there are 4 unknown parameters to fit: ε, β, a, and f0, the
initial fraction of infected cells at the time when the first measurement took
place. Some examples of well-fitting parameter sets are presented in table 2.
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