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ABSTRACT 
IP forwarding is one of the main bottlenecks in Internet backbone routers, 
as it requires performing the longest-prefix match at 10Gbps speed or 
higher. IPv6 forwarding further exacerbates the situation because its search 
space is quadrupled. We propose a high-performance IPv6 forwarding 
algorithm TrieC, and implement it efficiently on the Intel IXP2800 
network processor (NPU). Programming the multi-core and multithreaded 
NPU is a daunting task. We study the interaction between the parallel 
algorithm design and the architecture mapping to facilitate efficient 
algorithm implementation. We experiment with an architecture-aware 
design principle to guarantee the high performance of the resulting 
algorithm. 

This paper investigates the main software design issues that have dramatic 
performance impacts on any NPU based implementation: memory space 
reduction, instruction selection, data allocation, task partitioning, latency 
hiding, and thread synchronization. In the paper, we provide insight on 
how to design an NPU-aware algorithm for high-performance networking 
applications. Based on the detailed performance analysis of the TrieC 
algorithm, we provide guidance on developing high-performance 
networking applications for the multi-core and multithreaded architecture. 

Categories and Subject Descriptors     C.1.4 [Processor 
Architectures]: Parallel Architectures; C.3 [Special-Purpose 
And Application-Based Systems]: Real-time and Embedded 
Systems; D.1.3 [Programming Languages]: Concurrent 
Programming – parallel programming; D.2.2 [Software 
Engineering]: Design Tools and Techniques;  

General Terms    Performance, Algorithms, Design, 
Experimentation 

Keywords    Network processor, IPv6 forwarding, table lookup, 
parallel programming, multithreading, pipelining, thread-level 
parallelism.  

1. INTRODUCTION 
Due to the rapid growth of Internet bandwidth and the ever-

increasing size of routing tables, IP forwarding (address lookup) 
has become a big challenge in backbone routers. It will make IP 
forwarding even more demanding by the inevitable migration 
from IPv4 32-bit address space to IPv6 128-bit address space. 

Traditionally core routers rely on ASIC/FPGA to perform IP 
forwarding at line-rate speed (10Gbps+) [12][23][24]. As the 
network processor unit (NPU) emerges as a promising candidate 
for a networking building block, NPU is expected to retain the 
same high performance as that of ASIC and to gain the time-to-
market advantage from the programmable architecture. Up to now, 
many companies, including Intel[14], Freescale[10], AMCC[3] 
and Agere[1] have developed their own programmable NPUs. 

The advent of the multi-core and multithreaded NPU has given 
rise to a new paradigm for parallel algorithm design and 
implementation. Unfortunately, the results of general-purpose 
multi-processing research are not directly applicable to such 
system-on-chip (SOC) based multi-core and multithreaded 
architectures due to their specific processing requirements [17][2]. 
For example, in order to hide latencies of frequent memory 
accesses, much more fine-grained interaction is required among 
tasks on the same core. Furthermore, NPUs need to process 
packets in real time, which makes the performance budget of the 
data-path program rather tight. For example, to meet the OC-192 
(10Gbps) speed, at most 57 clock cycles are allowed for an Intel 
1.4-Ghz IXP2800 to process a minimal IPv4 packet. Under such a 
stringent constraint, data-path algorithms for multi-core and 
multithreaded NPUs must consider the following: 

• typical parallel programming issues, such as data allocation 
and task partitioning, to reduce memory latencies; 

• micro-architectural factors that impact performance, such as 
instruction scheduling and selection; This work was supported by the Intel China IXA University Program, the 

National Natural Science foundation of China under Grant No. 60473068, 
and the Anhui Province-MOST Co-Key Laboratory of High Performance 
Computing and Its Application.  
 
 
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
PPoPP’06   March 29-31, 2006, New York, NY, USA. 

• thread-level parallelism for hiding memory latencies; 

• thread synchronization for coordinating potential 
parallelism among packets. 

The savings achieved by these optimization techniques, 
whether applied manually or by the compiler, may vary from a 
few cycles to hundreds of cycles. For example, reallocating data 
from DRAM to SRAM on an Intel IXP2800 can save more than 
150 clock cycles per memory access. If two memory accesses are Copyright © 2006 ACM 1-59593-189-9/06/0003...$5.00. 
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scheduled in consecutive cycles, the issuing cycle of the second 
memory access can be hidden completely. We believe that high 
performance can be achieved through close interaction between 
algorithm design and architectural mapping, from high-level 
decisions on data allocation and task partitioning down to low-
level micro-architectural decisions on issues such as instruction 
selection and scheduling. This potential for increased performance 
motivates the development of architecture-aware networking 
algorithms that exploit the unique architectural properties of an 
NPU to achieve high performance. TrieC is one such NPU-aware 
IPv6 forwarding algorithm specifically designed to exploit the 
architectural features of the SOC based multi-core and 
multithreaded systems. 

Because the NPU is an embedded SOC with modest memory 
space, reducing memory footprint is the highest priority for almost 
every networking application. Furthermore, saving memory space 
opens other optimization opportunities for data allocation. For 
example, moving data from DRAM to SRAM can dramatically 
reduce memory latencies. In addition, the NPU includes unique 
architectural features, such as fast bit-manipulation instructions, 
non-blocking memory access, and hardware supported 
multithreading. Although these features can be exploited to 
improve the algorithm performance, making effective use of them 
is a challenging task for algorithm designers and implementers. 

Running IPv6 forwarding at line-rate requires a highly efficient 
parallel algorithm specifically designed for and implemented on a 
multi-core and multithreaded NPU architecture. To study potential 
optimization opportunities, we carefully investigated six software 
design issues: space reduction, instruction selection, data 
allocation, task partitioning, latency hiding, and thread 
synchronization. For each opportunity, we considered the 
following specific design issues that might be trouble spots in 
IPv6 forwarding implementation: 

• how to compress the routing table effectively while still 
maintaining fast search and update speed. 

• how to use fast bit-manipulation instructions to make the 
search of compressed routing table faster. 

• how to allocate compressed routing tables properly onto 
the NPU hierarchical memory system to reduce memory 
access latency while balancing memory access load. 

• how to partition work appropriately onto multiple cores 
and multiple threads to make effective use of on-chip 
resources. 

• how to use multithreading to overlap local computation 
and memory accesses. 

• how to synchronize thread execution on such a 
multithreaded architecture.  

After answering all these questions, we propose a high-
performance IPv6 forwarding algorithm TrieC that addresses these 
issues and runs efficiently on the Intel IXP2800. 

To summarize, the goal of this paper is to identify the key 
issues in designing networking algorithms on an SOC based multi-
core and multithreaded NPU, and provide guidance on how 
effectively to exploit NPU architectural features to address these 
performance bottlenecks to attain high performance. Although we 

experimented on the Intel IXP2800, the same high-performance 
can be achieved on other similar NPUs [1][3][10]. The main 
contributions of the paper are as follows: 

•  A scalable IPv6 forwarding algorithm was proposed and 
efficiently implemented on the IXP2800. Experiments show 
that its speedup is almost linear and it can run even faster 
than 10Gbps. 

•  We carefully studied and analyzed algorithm design and 
performance issues. We practiced on incorporating 
architecture awareness into parallel algorithm design. 

•  We conducted experiments on a cycle-accurate simulator that 
enables us to provide suggestions to system designers on 
possible architectural improvements and to compiler writers 
on compiler optimizations. 

 To the best of our knowledge, this is the first IPv6 forwarding 
implementation that achieves 10Gbps speed on an NPU for large 
routing tables with up to 400,000 entries. Our experiences may be 
applicable to parallelizing other networking applications on other 
multi-core and multithreaded NPUs as well. Furthermore, the 
software design issues studied, such as instruction selection, data 
allocation, task partitioning, and latency hiding, are essential to 
make applications run efficiently on a general-purpose multi-core 
and multithreaded system. The guidelines we provide are helpful 
for algorithm designers who want to exploit architectural features 
to develop high-performance applications on these systems. 

The rest of this paper is organized as follows. Section 2 
introduces related work. Section 3 explains the NPU-aware IPv6 
forwarding TrieC algorithm. Section 4 discusses related design 
issues. Section 5 gives simulation results and performance 
analysis of Intel IXP2800 implementation. Section 6 presents 
guidance on effective NPU programming. Finally, section 7 
concludes and discusses our future work. 

2. RELATED WORK 
The most popular data structure for the longest prefix match is 

a binary trie [21][23]. To reduce memory accesses, various kinds 
of techniques, such as prefix expansion and multi-bit trie [26], 
have been proposed. A multi-bit trie expands a set of arbitrary 
length prefixes to a set of fixed length prefixes to reduce the path 
length, and thus the memory access times. The fixed prefix 
lengths are called search strides. However, its worst-case memory 
requirement is O(2k*N*W/k), where k, N and W are search stride, 
number of prefixes, and maximum prefix length, respectively. For 
example, basic-24-8-DIR [11] is such a hardware implementation 
of the prefix expansion technique. It requires at most two memory 
accesses per lookup, but more than 32 Mbytes of memory. 

Waldvogel et al employed binary search on a hash table 
organized by prefix length, which needs log2W memory accesses 
in the worst case [30]. However, it requires to reconstruct the 
whole routing table during update in O(N*log2W) time. Multiway 
range tree [27] reduces both search time and update time to 
O(k*logkN). However, when applied to IPv6 forwarding its 
memory requirement is as large as O(k*N*logkN). 

Lampson et al introduced multicolumn search for IPv6 
forwarding, which avoids the multiplicative factor of W/M 
inherent in basic binary search through conducting a binary search 
in columns of M bits and then moving between columns with pre-
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computed information [18]. Its disadvantage is that approximately 
fifteen memory accesses per lookup are required in the worst case. 

The Lulea scheme [8] and Tree Bitmap [9] are closest in spirit 
to ours in that all use multi-bit tries and bit maps to compress 
redundant storage in trie nodes. However, both methods try to 
minimize the memory space at the cost of extra memory accesses. 
For example, the Lulea algorithm introduces a summary array to 
pre-compute the number of bits set in the bitmap and thus it needs 
an extra memory access per trie node. Our algorithm uses a built-
in bit-manipulation instruction to calculate the number of bits set, 
and thus it is much more efficient than Lulea. 

Ternary Content Address Memory (TCAM) based schemes 
[19], reconfigurable fast IP lookup engine [29], Binary Decision 
Diagrams [24], are hardware-based IP lookup schemes. They 
achieve high lookup speed at the cost of high power consumption, 
and complicated prefix update. 

There were some efforts in developing high-performance 
applications for multi-core and multithreaded architectures. 
Parallelizing non-numeric applications for the non-blocking 
multithreaded architecture was discussed in [25]. Manually 
parallelizing SPEC2000 for speculative multithreaded architecture 
was reported in [22]. Improving server software performance for 
simultaneous multithreaded architecture was analyzed in [20]. Our 
paper focuses on designing an architecture-aware IPv6 forwarding 
algorithm for the multi-core and multithreaded NPUs. 

This paper presents an IPv6 forwarding algorithm TrieC, which 
employs bitmap compression on fixed-level multi-bit trie. This 
algorithm can conduct high-speed IPv6 lookup while maintaining 
reasonable memory requirements. 

3. BASIC FORWARDING ALGORITHM 
IP forwarding algorithms based on the longest prefix match 

generally adopt a trie (tree), in which a prefix is stored along a 
path from the root to a leaf node. To reduce the path length, and 
thus memory access times, the prefix expansion technique is 
applied to visit the expanded routing tables in the fixed strides at 
the cost of increased table size. 

 
Figure 1. Routing table and its prefix expansion with stride 3 

In Figure 1(a), the routing table has three entries (* means 
don’t-care bits), whose prefix length is 1, 2, and 3, respectively. 
After a 3-bit prefix expansion, the table size increases to 4 (shown 
in Figure 1(b)), whereas the expanded table can be searched 
directly using a 3-bit prefix index. Obviously, reducing memory 
accesses is at the expense of increasing table size. Therefore, the 
key problem here is how to choose appropriate strides to strike a 
balance between these two aspects. Gupta and Mckeown used a 
two-level trie for IPv4 lookup [11], with the most significant 24-
bit prefix being the first level, and the remaining 8 bits being the 
second level. 

3.1 IPv6 Forwarding 
The length of an IPv6 address is expanded to 128 bits, which 

makes the straightforward application of prefix expansion 
impossible due to the explosive memory requirements. 
Fortunately, the IPv6 routing tables used in core routers have the 
following characteristics: 

• The statistics of existing IPv6 routing tables show that 
approximately only 5% of the prefixes have a length greater 
than or equal to 48 bits [15][4]. 

• Only aggregatable global unicast addresses, those in which 
the FP field is always set to ‘001’, need to be looked up. 
Additionally, the lowest 64 bits are allocated to interface ID 
and should be ignored by core routers [7]. 

The basic idea of TrieC is to exploit these features by: 

• ignoring the highest three bits and the lowest 64 bits 
• building a multi-level compressed trie tree to cover the 

prefixes whose lengths are longer than 3 bits and shorter than 
49 bits 

• searching for remaining prefixes by means of hashing 
 In view of the resource constraints of NPUs and the high-speed 

requirements of networking applications, the following design 
issues should be considered as well: 

• Because 2n-m next-hop (routing) information is produced 
when an m-bit prefix is expanded to an n-bit prefix (m<n), 
redundancy compression is needed to save memory space. 

• Although DRAM is much cheaper today than SRAM, 
balancing memory speed and memory space is still desirable 
when designing routing-table data structures. 

• Searching compressed Trie trees should not become a new 
performance bottleneck. 

• Multithreading must be used to hide memory latency. 

3.2 Modified Compact Prefix Expansion 
The preferred IPv6 address notation is x:x:x:x:x:x:x:x, where 

each ‘x’ is the hexadecimal value of the corresponding 16 bits in a 
128-bit address. The symbol ‘::’ represents multiple groups of 16-
bit zeros. Similar to the IPv4 prefix notation, an IPv6 address 
prefix is represented by an “ipv6-address/prefix-length” pair, 
where the prefix-length is a decimal value specifying the length of 
a prefix (the leftmost contiguous bits). For example, 
12AB:0000:0000:CD30:0000:0000:0000:0000/60 is a legal 
representation of the 60-bit prefix: 12AB00000000CD3. 

The modified compact prefix expansion (MCPE) technique is 
motivated by the fact that there is much redundant next-hop 
information in the expanded routing tables after the traditional 
prefix expansion technique is applied. For example, if IPv6 
prefixes (2002:4*::/18,A) and (2002:5*::/20,B) are expanded to 
24-bit prefixes, a total of 64(=224-18) new prefixes are formed as 
shown in Figure 2(a), where next-hop indices, A appears in two 
different blocks 48 times, and B appears in one block  16 times.  

 The basic idea of MCPE is to use a bit vector to compress the 
continuously identical next-hop index and store those indices only 
once. Taking Figure 2(b) as an example, the three address blocks, 
each containing a sequence of identical next-hop index, are 
compressed to three entries (A, B, A) and stored in the Next-Hop 
Index Array (NHIA). All 64 address prefixes, whose leftmost 18 

1*/1 

10*/2 

111/3 

A 

B 

C 

100 

101 

B 

B 

110 A 

111 C 

(a) (b) 
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bits are the same, are grouped to form an entry in the table, with 
the leftmost 18 bits acting as the index (Tindex). The lowest 6 bits 
are used as another index to search a bit vector BitAtlas to locate 
the correct next-hop index in NHIA. Each bit of the 64-bit 
BitAtlas corresponds to an original prefix in the address group, 
with the least significant bit corresponding to the first prefix of the 
group. If the next-hop index corresponding to bit I is the same as 
that corresponding to bit I-1, bit I is set to 0; otherwise bit I is set 
to 1, indicating that a different next-hop index starts in NHIA. In 
Figure 2 (b), bit 0 is always set to 1, because it starts a new NHIA 
entry; bit 16 is set to 1, because its NHIA entry is B, which is 
different from the previous entry A; bit 32 is set to 1, because its 
NHIA entry is A, which is different from the previous entry B. 

Next-Hop24-bit Index

A2002:7F*::/24

…....................

A2002:71*::/24
A2002:70*::/24
A2002:6F*::/24

…....................

A2002:61*::/24
A2002:60*::/24
B2002:5F*::/24

…....................

B2002:51*::/24
B2002:50*::/24
A2002:4F*::/24

…....................

A2002:41*::/24
A2002:40*::/24

(a) Traditional prefix expansion (b) Modified compact prefix expansion

NHIA

.......................

.......................

.......................

0000 0000
0000 0000
0000 0000
0000 0001
0000 0000
0000 0001
0000 0000
0000 0001

6-bit BAindex

nulABA2002:4*::/18

18-bit Tindex

.......................

 
Figure 2. Prefix expansion vs. MCPE 

Assume address 2002:6A*:: is searched. Firstly, the highest 18 
bits are used as Tindex to locate the MCPE entry 2002:4*::/18. 
Secondly, the lowest 6 bits ‘101010’(42) are used as BAindex to 
locate the bit position in BitAtlas. As a total of 3 bits are set from 
bit 0 to bit 42, the third element ‘A’ in NHIA is the lookup result. 

Therefore, the key to accelerating the search of such a 
compressed tree is to efficiently compute the number of bits set. 
NPUs with hardware support to such computation are desirable, as 
they do not create a new performance bottleneck. The Intel 
IXP2800 has a built-in bit-manipulation instruction, 
POP_COUNT, which can calculate the number of bits set in a 32-
bit register in three clock cycles. Therefore, MCPE compression 
technique can be efficiently implemented on the IXP2800. 

The example TrieC table in Figure 2 (b) is called TrieC18/6. 
Similarly, TrieCm/n is designed to represent 2m+n compressed 
(m+n)-bit prefixes. By using the MCPE technique, the TrieC tree 
could greatly eliminate redundancy while preserving the high-
speed indexing ability of traditional prefix expansion technique. 

3.3 Data Structures 
 The stride series we use is 24-8-8-8-16, and the corresponding 

trie nodes are three tables: TrieC15/6 table (ignoring the format 
prefix field ‘001’), TrieC4/4 table, and Hash16 table. The 
TrieC15/6 table forms the first level of a tree that stores all the 
prefixes whose lengths fall into [1:24]. The TrieC4/4 tables form 
the second to the fourth level of the tree, where prefix lengths 

belong to [25:32], [33:40], and [41:48], respectively. The Hash16 
table stores all the prefixes whose lengths belong to [49:64]. 

The next-hop index, which stores the lookup result, is shown in 
Figure 3(a). Each NHI entry is 2-bytes long. If the most 
significant bit is set to 0, NHI[14:6] stores the next-hop ID and 
NHI[5:0] stores the original prefix length. Otherwise, NHI[14:0] 
contains a pointer to the next level TrieC. The original prefix 
length is kept for supporting incremental prefix updates [13]. 

Index into Next Level TrieC1
Prefix LengthNext-Hop ID0

6bits9bits1bit

(a) Next-Hop Index

Next-Hop Index 4Next-Hop Index 3
Next-Hop Index 2Next-Hop Index 1

26BitAtlas

0123

(b) Basic TrieC15/6 entry

Reserved
Index into ExtraNHIA table

26BitAtlas

0123

(c) TrieC15/6 entry with ExtraNHIA

Next-Hop Index 3Next-Hop Index 2
Next-Hop Index 124BitAtlas

0123

(d) Basic TrieC4/4 entry

Index into ExtraNHIA table
Reserved24BitAtlas

0123

(e) TrieC4/4 entry with ExtraNHIA

NHI TotalEntropy
NHI TotalEntropy-1
………………….
NHI 2
NHI 1

NHI TotalEntropy
NHI TotalEntropy-1
………………….
NHI 2

NHI 1

 

Figure 3. NHI and tables used in the TrieC algorithm 

The TrieC15/6 table contains 215 entries named TrieC15/6_entry. 
Each entry is 16-bytes long, and belongs to one of the two types: 
Basic and ExtraNHIA. Basic entry supports up to four NHIs 
(Figure 3 (b)), and ExtraNHIA allows more NHIs (Figure 3 (c)).   
For each entry: 

1. TrieC15/6_entry[127:64]: stores the 64-bit vector BitAtlas. 
Two terms are used to describe the bit vector. TotalEntropy 
counts the number of bits set in BitAtlas, and thus 
represents the size of NHIA or ExtraNHIA. 
PositionEntropy counts the number of bits set from bit 0 up 
to a particular bit position in BitAtlas. 

2. TrieC15/6_entry[63:0]: stores up to 4 NHIs or a pointer to 
an ExtraNHIA. If TotalEntropy is not greater than 4, 
TrieC15/6_entry[63:0] stores NHI1, NHI2, NHI3 and NHI4 
orderly. Otherwise, TrieC15/6_entry[63:32] stores a 32-bit 
pointer that points to an ExtraNHIA  

As in the case of TrieC15/6, each TrieC4/4 table contains 24 
entries and each entry is 8-bytes long. The structures of the 
TrieC4/4 entries Basic and ExtraNHIA are shown in Figure 3(d) 
and 3(e), respectively. The fourth level of NHI in the TrieC tree is 
interpreted slightly differently. If the flag bit is set to 1, TrieC 
must search the Hash16 table. The Hash16 table uses a cyclic 
redundancy check (CRC) as its hash function, which is known as a 
semi-perfect hash function [16]. The structure of a Hash16 entry 
is a (prefix, next-hopID, pointer) triple. 

3.4 IPv6 Forwarding Algorithm 
Figure 4 displays the pseudo code of an MCPE-based TrieC 

search algorithm. We will use an example to show how to search 
these TrieC tables. 

Assume that the following routes are already in the TrieC 
tables: (2002:4C60::/18, A) and (2002:4C6F::/28, B). The first 
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route requires a TrieC15/6 entry that corresponds to the 24-bit 
prefixes from 2002:40*::/24 to 2002:7F*::/24. The second route 
further requires a TrieC4/4 entry on the second level because its 
length is 28 bits. 

  
Figure 4. Pseudo code to search TrieC multi-level table trees 

00000000000000000000000000000000 0x200C01101010000000000001001001100001
Interface ID

00000 0000 001001

nullA 180Index118A0

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0011 0000
0000 0001

。。。。。。。。。。。。。。。。。。

001100

nullnull28B00000 0000
0000 0001

。。。。。。。。。。。。。。。。。。

TrieC4/4

0110

NHI[14:0]<<4+DstIP[103:100]

1010

Destination IPv6Address   2002:4C6A::200C

Example Routing Table:

2002:4C60::/18 A

2002:4C6F::/28 B

Next-hop ID=B

PositionEntropy=2

Tindex

Tindex

BAindex BAindex

TrieC15/6

24 bits 8 bits 8 bits 8 bits 16 bits

PositionEntropy=1

 
Figure 5. Searching example based on TrieC trees 

Consider a search for an IPv6 address, DetIP, 
2002:4C6A::200C. Ignoring the leftmost three bits ‘001’ in the 
format prefix field, DstIP[124:110] (‘0000 0000 0001 001’)  is 
used to search  the TrieC15/6, and  the TrieC15/6_entry located at 
position 9 is returned (lines 2-3 in Figure 4). Then DstIP[109:104] 
(‘001100’)  is used to determine bit position (12) in  BitAtlas, and  
the total bits set from bit 0 to bit 12 (PositionEntropy) is 
calculated. Because PositionEntropy is 2, the second basic entry 
is retrieved (lines 4-5). As the flag bit of the NHI entry is 1, the 
second level TrieC4/4 needs to be further searched (lines 9-22). 

Because the base address of the second level of the TrieC tree 
is NHI[14:0]<<4, NHI[14:0]<<4+DstIP[103:100] is calculated as 
Tindex, and DstIP[99:96] is used as BAindex, respectively, to 
search the second level of the TrieC tree. The PositionEntropy of 

the corresponding TrieC4/4 entry is 1, indicating that the first NHI 
entry of table TrieC4/4 needs to be examined. The flag bit of this 
NHI is 0, indicating that NHI[14:6] stores the corresponding next-
hop ID for the destination IPv6 address (line 14), and the lookup 
finishes successfully. Figure 5 shows how various bits are actually 
used in each search step. IPv6_Lookup_TrieC (IN DstIP, OUT Next-HopID) { 

1. Current_Block = TrieC15_6; 
2. Tindex   = DstIP [124:110]; 4.  NPU-AWARE FORWARDING ALGO. 3. Bit_Vec  = GetBitVec (Current_Block, Tindex); 
4. BAindex = DstIP [109:104]; Figure 6 draws the components of the Intel IXP2800 [14], in 

which 16 Micro-engines (MEs), 4 SRAM controllers, 3 DRAM 
controllers, and high-speed bus interfaces are shown. Each ME 
has eight hardware-assisted threads of execution, and 640-words 
local memory of single-cycle access. There is no cache on each 
ME. Each ME uses the shared buses to access off-chip SRAM and 
DRAM. The average access latency for SRAM is about 150 
cycles, and that for DRAM is about 300 cycles. We implemented 
TrieC algorithm in MicroengineC, which is a subset of the ANSI 
C plus parallel and synchronization extensions, and simulated it 
on a cycle-accurate simulator. In the following, we will discuss 
the design decisions we have made in the implementation of TrieC 
algorithm for achieving line-rate speed. 

5. NHI = GetNHI(Bit_vec, BAindex); 
6. if (NHI.flag = 0) return NHI.Next-HopID; 
7. else { // search TrieC4/4 tables, base[i] is base of (i+1)th-level TrieC tree 
8.      Current_Block = TrieC4/4 at Base[0]+NHI[14:0]; 
9.       for (i=1;i<=3;i++)  { 
10.             Tindex   = DstIP[103-8*(i-1):100-8*(i-1)]; 
11.             Bit_vec = GetBitVec (Current_Block, Tindex);  
12.             BAindex= DstIP[99-8*(i-1):96-8*(i-1)]; 
13.             NHI = GetNHI (Bit_Vec, BAindex); 
14.             If (NHI.flag = 0) return NHI.Next-HopID; 
15.             else  { 
16.                 if (i!=3) Current_Block=TrieC4/4 at Base[i]+NHI [14:0]<<4; 
17.                 else break;  //search longer prefix in Hash16 
18.             } 
19.       } 

 
Figure 6. IXP2800 component diagram without I/O Interfaces 

4.1  Memory Space Reduction 
The NPU is generally an embedded SOC whose memory size is 

limited. SRAM and DRAM are two types of commonly used NPU 
memory, whose size is of megabyte magnitude, to store routing 
tables. On the Intel IXP2800, the size of DRAM is approximately 
eight times as large as that of SRAM, however its latency is 
approximately twice as large as that of SRAM. Therefore, 
tremendous performance gain could be achieved if routing tables 
could be stored in SRAM. The first decision we made is to 
compress the routing tables as much as possible to fit them into 
SRAM. MCPE is such an enabling technique that allows IPv6 
routing tables to be stored in SRAM so that the memory access 
latency will be dramatically reduced. 

4.2 Instruction Selection 
Searching compressed routing tables requires computing 

TotalEntropy and PositionEntropy. These are time-consuming 
tasks in traditional RISC/CISC architecture, as it usually takes 
more than 100 RISC/CISC instructions (ADD, SHIFT, AND, and 

20.       if (Hash (DstIP [79:64])) return Next-HopID;   
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21.       else return Default-Next-HopID; 
22. } 
}// IPv6_Lookup_TrieC 
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BRANCH) to compute the number of bits set in a 32-bit register. 
Without direct hardware support, calculation of TotalEntropy 
and PositionEntropy will become a new performance bottleneck 
in MCPE-based forwarding algorithm. 

With POP_COUNT (3-cycle IXP2800 instruction), the 
number of instructions used to compute TotalEntropy and 
PositionEntropy is reduced by more than 97% compared with 
other RISC/CISC implementations. This is essential for the TrieC 
algorithm to achieve the line rate. 

Another useful bit-manipulation instruction is BR_BSET that 
jumps to a new location if the bit being examined is set. In the 
TrieC algorithm, the flag bit in an NHI entry is often checked, and 
then a conditional branch is followed. Because it normally takes 
three instructions (SHIFT, AND, JUMP) to perform such checking 
and branching operations in a RISC machine, BR_BSET can save 
two cycles for every checking-and-branching operation. 

Compared with RISC architecture, the NPU normally has much 
faster bit-manipulation instructions. Appropriately selecting these 
instructions can dramatically improve the performance of NPU-
aware algorithms. However, current compiler technology cannot 
always generate such instructions automatically. It is the 
programmer’s responsibility to select them manually through 
intrinsic or in-line assembly.  

The last level of the TrieC tree is the Hash16 table. There are 
two ways of computing hash in the Intel IXP2800, a centralized 
hash coprocessor shared by all MEs, and a CRC unit on each ME. 
We chose CRC to compute the hash function because: 

• it provides good hash result for address lookup [16];  
• the CRC unit runs much faster than the centralized hash 

coprocessor does and it takes only 5 clock cycles to compute 
a 32-bit CRC;  

• the CRC unit can run in parallel on each ME. In general, an 
operation that can run in parallel in each ME is a preferred 
implementation means for an architecture-aware algorithm. 

4.3 Data Allocation 
The Intel IXP2800, like other NPUs, has a complex memory 

hierarchy that comprises single-cycle local memory, scratchpad, 
SRAM, and DRAM. For TrieC implementation, whether SRAM or 
DRAM to be used, and where and how to distribute the 
compressed tables greatly affects the ultimate lookup speed. 

In addition to the aforementioned size and speed differences 
between SRAM and DRAM, different access granularities must be 
considered as well. For example, on the Intel IXP2800, SRAM is 
optimized for 4-byte word access, while DRAM is optimized for 
at least 16-byte burst access; therefore, data structures must be 
optimized for the specific type of memory. 

 There are four SRAM controllers on the IXP2800 that allow 
parallel access, and three DRAM controllers, with each DRAM 
controller having four memory banks that can be accessed in an 
interleaved manner. To evaluate the performance impacts of 
parallel SRAM access and interleaved DRAM access, we 
designed the following four settings. Experimental results show 
that the first three settings can meet the OC-192 speed even in the 
worst case. 

• All the tables are stored in one SRAM controller; 

• Tables are properly distributed on four SRAM controllers; 
• Tables are properly distributed on SRAM and DRAM in a 

hybrid manner; 
• All the tables are distributed on DRAM, and data structures 

are redesigned to facilitate the burst access. 
There is another useful feature that can be effectively exploited 

on the IXP2800: adjacent SRAM locations can be fetched in one 
SRAM read instruction (maximally 64 bytes). By limiting the 
node sizes of Tries15/6 and TriesC4/4 to less than 64 bytes, 
memory vectorization optimization can be applied to significantly 
reduce the number of SRAM accesses. 

4.4 Task Partitioning 
There are two general ways to partition tasks onto multiple 

MEs on the Intel IXP2800: multi-processing [5] and context 
pipelining [6]. Multi-processing applies two parallelizing 
techniques. First, multi-threading is applied to a task allocated to 
one ME. In an Intel IXP2800, a maximum of 8 threads can be 
used per ME. Secondly, a task can use multiple MEs if needed. 
For example, if a task needs 2 MEs, a maximum of 16 task threads 
can run in parallel. Each thread instance runs independently, 
assuming no other thread instances exist. Such a run-to-
completion programming model is similar to the sequential one, 
and it is easy to be implemented. In addition, the workloads are 
easier to be balanced. However, threads allocated on the same ME 
must compete for shared resources, including registers, local 
memory, and command (data) buses.  For example, if a task 
requires more local memory than one ME can support, the context 
pipelining approach must be used instead. 

Context pipelining is a technique that divides a task into a 
series of smaller sub-tasks (contexts), and then it allocates them 
onto different MEs. These contexts form a linear pipeline, similar 
to an ASIC pipeline implementation. The advantage of context 
pipelining is to allow a context to access more ME resources.  
However, the increased resources are achieved at the cost of 
communication between neighboring MEs. Furthermore, it is hard 
to perform such partitioning if workloads cannot be determined at 
compile time. The choice of which method to use should depend 
on whether the resources can be effectively utilized on all MEs. 

4.5 Latency Hiding 
Hiding memory latency is another key to achieving high-

performance of TrieC implementation. We hide the memory-
access latency by overlapping the memory access with the 
calculation of bit vector index in the same thread. In Figure 4, 
operations listed in line 3 and 4 can run in parallel so that the 
BAindex computation is hidden completely by the memory 
operation GetBitVec(). Similarly, operations in line 11 and 12 can 
also be overlapped. Compiler based thread scheduling should be 
able to perform such an optimization automatically [28]. 

4.6 Packet Ordering 
Networking applications normally require packet ordering, 

which means that packets within the same flow must be sent out in 
the same order in which they arrived. In other words, only packets 
belonging to different network flows can run in parallel. We 
exploit the thread-level parallelism by adopting an out-of-order 
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execution and in-order-delivery strategy, in which double signal 
rings are used to synchronize parallel thread execution.  

First, the input packets are assigned to each thread in sequence 
by implementing a signal ring. Thread 0 sends a signal to thread 1, 
thread 1 to thread 2, and so on. Thread 7 of one ME sends a signal 
to thread 0 of its next neighbor ME. Because each thread waits for 
its turn to receive a packet, each thread starts its execution 
according to the packet arrival order. On the IXP2800, special 
instructions can be used to send a signal from one thread to 
another. They can locate in the same ME or in two different MEs. 

Then each thread works independently, without waiting for 
other threads. In the end, another signal ring is used to enforce the 
packet exit order in the same way as on the receiving side, i.e., 
each thread waits for its turn to send its processed packet out. We 
found out when the length of the signal ring is small, the ring is an 
efficient way to synchronize thread execution among MEs. 

5. SIMULATION AND PERFORMANCE 
ANALYSIS 

Because IPv6 is not yet widely deployed, existing IPv6 tables, 
which have normally less than 1000 prefixes[15][4], are too small 
to reflect the future growth of the IPv6 network. We used three 
different ways to generate nine IPv6 routing tables in the 
experiment. In order to measure the performance impact of the 
Intel IXP2800 architecture on the TrieC algorithm, we 
experimented with the following implementations: 

• Using two kinds of bit manipulation instructions to calculate 
TotalEntropy and PositionEntropy (see section 5.4) 

• Allocating Trie trees onto SRAM, DRAM, and the hybrid of 
SRAM and DRAM, respectively (see section 5.5) 

• Comparing multi-processing vs. context pipelining task 
allocation model (see section 5.6) 

• Overlapping local computation with memory access or 
conditional branch instructions (see section 5.7) 

• With and without enforcing packet order (see section 5.8) 

5.1 Experimental Setup 
The prefix length distributions of IPv6 routing tables used in 

the simulation are shown in Table 1. 

Table 1. Prefix length distributions 
 1-24 bits 

(%) 
25-32 bits 

(%) 
33-40 bits 

(%) 
41-48 bits 

(%) 
49-64 bits 

(%) 
Total 
(%) 

Group A 4.22 69.41   5.52 14.61 6.24 100.00
Group B 0.06   7.40 15.54 71.32 5.68 100.00
Group C 2.14 38.41 10.52 42.97 5.96 100.00

Group A is generated according to the average prefix 
distributions of CERNET [4], 6Bone, 6Net, and Telstra BGP IPv6 
routing tables [15]. It represents the characteristics of existing 
IPv6 routing tables. Group B is generated according to the non-
random IPv6 table generator proposed by M. Wang et al. [31]. It 
represents the ideal IPv6 routing tables. Group C is the mean of A 
and B. It represents the future IPv6 tables. In each group, we 
generated three tables with 200,000, 300,000 and 400,000 entries 
respectively. All prefix values are generated randomly. 

5.2 Compression Effects 
The memory requirements of these nine different IPv6 tables 

are shown in Figure 7. The memory requirement of each table 
increases along with its increasing table size. Specifically, the 
memory consumption of table B-400K is approximately 35 
Mbytes. It is slightly higher than the 32 Mbytes of the basic-24-8-
DIR approach for IPv4 lookup [11]. However, it is significantly 
less than the estimated memory requirement of a multibit trie, 
which requires more than 820 Mbytes at the 8-bit stride for 400K 
IPv6 entries. With such a huge compression rate, the resulted 
routing tables can be stored in SRAM. 

In the worst case, TrieC needs eight memory accesses and one 
hash operation. As shown in Figure 8, there is no relation between 
the average memory accesses and the table sizes. The number of 
average memory accesses depends only on the prefix length 
distributions of the IPv6 tables. For example, the average memory 
accesses of group-B are all close to four because the percentages 
of the 41-48-bit prefixes are all higher than 70%. On average, the 
number of memory accesses is far less than eight, proving that the 
percentage of the ExtraNHIA nodes is extremely low. In fact, the 
simulation shows it is only 3.6%. 
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Figure 7. Memory requirements of nine IPv6 tables 
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Figure 8. Average memory accesses 
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Figure 9. TrieC forwarding rates and relative speedups. 
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Figure 9 shows the lookup rates and relative speedups using the 
minimal packet size on the Intel IXP2800. When the minimal IPv6 
packet is 69 bytes (9-byte PPP header + 40-byte IPv6 header + 20-
byte TCP header), a forwarding rate of 18.16Mpps (Million 
Packets Per Second) is required to achieve the OC-192 line rate. 
The data was collected after all optimizations previously 
mentioned were applied and the routing tables were stored in four 
SRAM channels. The speedup is almost linear and it reaches up to 
21.45Mpps for 32 threads. The sub-linear speedup is due to the 
saturation of the ME command request FIFO. The TrieC is a 
memory-bound algorithm in which each thread issues eight 
outstanding memory requests per packet in the worst case. If these 
memory requests cannot be processed in time, the lookup 
performance will drop. We found that for each ME, the speedup is 
linear for up to 4 threads. The slowdown is evident when the 
number of threads is increased from 5 up to 8. The FIFO fullness 
ratio, which is defined as the number of elements in the FIFO 
divided by the FIFO size, can be used to measure whether the 
memory request FIFO is full or not. It increases from 9% for one 
thread to 52% for eight threads. That is, in 8-thread mode, a 
memory request stays six times longer in the FIFO than it does in 
1-thread mode. This architectural constraint prevents the TrieC 
algorithm from having a 100% linear speedup. 

Because our implementation is well over the line-rate speed 
when 4 MEs (32 threads) are fully used, we want to know the 
exact minimal number of threads required to meet the OC-192 line 
rate. Table 2 shows that on average group A needs only 9 threads, 
group B 17 threads, and group C 11 threads, respectively. 

Table 2. Minimal threads required for supporting line rate 

Forwarding rate (Mpps) Routing 
table 

Minimum Number 
of Threads  Single thread Multithreads

Group A 9 3.72 23.84 
Group B 17 1.81 21.36 
Group C 11 2.55 21.32 

 Considering there are sixteen MEs on the Intel IXP2800, two 
MEs for IPv6 forwarding use only 1/8 of the entire ME budget. 
Therefore, TrieC leaves enough room for other networking 
applications, such as packet classification and traffic management, 
to meet the line-rate performance. 

5.4 Instruction Selection 
NPUs that do not have POP_COUNT normally support 

another bit-manipulation instruction, FFS, which can find the first 
bit set in a 32-bit register in one clock cycle. We can compute 
TotalEntropy and PositionEntropy with FFS by looping through 
the 32 bits and constantly looking for the next first bit set. 

Table 3. Forwarding rates of POP_COUNT vs. FFS 

 1 ME 2 MEs 4 MEs 8 MEs 
FFS 3.00   5.88 11.99 23.95 
POP_COUNT  8.26 16.50 32.14 63.97 
Improvement 175% 180% 168% 167% 

 
Table 3 shows the forwarding rates of the worst-case input 

packets by using two different instructions: POP_COUNT and 
FFS respectively. The testing was done for routing table C-400K. 
The forwarding rate of POP_COUNT is much higher than that of 

FFS. On average, the performance improvement of 
POP_COUNT over FFS can be as high as 180%.  

The lower forwarding rate of FFS is because computational 
time of TotalEntropy depends on the number of bits set in the 
bit-vectors. The more bits are set, the more instructions are 
executed at runtime. This shows that an architecture-aware 
algorithm needs to consider the instruction selection to facilitate 
its implementation because those instructions might have a 
significant impact on the performance of the algorithm. 

5.5 Memory Impacts 
We simulated six data allocation schemes using the worst-case 

minimal-packet input on the IXP2800. Table 4 shows the 
simulation results. We found out: 

Table 4. Forwarding rates on different data allocations 

 1 ME 2 MEs 4 MEs 8 MEs 
1-SRAM 8.20 16.43 30.87 33.62 
4-SRAM 8.26 16.50 32.14 63.97 
DRAM-128 5.59 10.41 12.90 13.04 
DRAM-256 4.52   7.29 12.05 12.34 
Hybrid-1 5.43 10.79 21.08 21.91 
Hybrid-2 4.97   9.46 19.19 21.80 

• The 1-SRAM table allocation scheme can support OC-192 
line rate with three MEs. However, its speedup is leveled up 
at four MEs, because the single SRAM channel becomes the 
bottleneck. The utilization rate of a single SRAM channel is 
up to 92.64% at 4 MEs and 99.98% at 8 MEs. 

• The 4-SRAM configuration obtains almost linear speedup 
from 1 ME up to 8 MEs. Additionally, the utilization rates of 
four SRAM channels are all approximately 15% when this 
configuration meets the OC-192 line rate in the worst case, 
indicating the potential speedup could be even greater. 

• DRAM-128 and DRAM-256 mean that the bit widths of bit-
vector are 128 bits and 256 bits, respectively. As mentioned 
in section 4.3, DRAM on the Intel IXP2800 is optimized for 
burst accesses of at least 16 bytes. Thus, we redesigned the 
TrieC algorithm with the stride series 24-24-16 to reduce the 
number of DRAM memory accesses at the cost of more 
memory consumption. The simulation shows that both of 
these two data allocation schemes cannot support the OC-192 
line rate in the worst case. The culprit is the DRAM push bus, 
which is shared by all MEs for reading TrieC trees. This bus 
has a physical limitation of 2.8Gbytes per second. 

• Because the percentage of ExtraNHIA nodes is extremely 
low and the size of the first level of TrieC tree is fixed, we 
can reduce the DRAM push bus pressure by allocating them 
onto SRAM. We experimented on two kinds of hybrid table 
allocations. The Hybrid-1 configuration stores the first level 
of the TrieC tree and all ExtraNHIA nodes in SRAM. The 
Hybrid-2 configuration stores all ExtraNHIA tables in SRAM 
only. The simulation shows that both of them can support the 
OC-192 line rate in the worst case with four MEs. However, 
these two configurations have the disadvantage that their 
DRAM push bus utilizations still remain high, reaching 
87.75% for Hybrid-1 and 96% for Hybrid-2, respectively. 
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Although the two hybrid allocation schemes both meet the OC-
192 line rate, they might not work well in practice because it 
leaves little DRAM bandwidth for other packet processing 
applications. DRAM architectural improvement is required before 
such hybrid schemes can be completely applied in practice. 
Therefore, the 4-channel SRAM-based allocation scheme is, 
practically speaking, the best data allocation scheme. 

5.6 Task Allocation 
The communication method in context pipelining could be a 

scratch ring or a next-neighbor ring (FIFO). Two types of context-
pipelining partitioning were implemented for the two 
communication schemes. We divided the whole forwarding task 
into two pieces according to (1) the algorithm logic; (2) the 
number of memory accesses required per ME. The partitioning 
result is as follows: 

1. The first and second MEs are for the search of TrieC15/6 
table and the 1st-level TrieC4/4 table. 

2. The third and fourth MEs are for the search of 2nd-level, 
3rd-level TrieC4/4 tables and the Hash16 table. 

Because TrieC might end in any stage of context pipelining, it 
is extremely difficult to partition the workload evenly. In addition, 
the communication FIFOs also add the overhead. Each ME must 
check whether the FIFO is full before a put operation and whether 
it is empty before a get operation. These checks take many clock 
cycles when context pipelining stalls. Table 5 shows the 
simulation results using different task allocation policies. It is 
clear that both multi-processing and context pipelining can 
support the OC-192 line rate with four MEs on the Intel IXP2800. 
However multi-processing is preferable for the TrieC algorithm 
because of the dynamic nature of the workload. 

Table 5. Forwarding rate of multiprocessing vs. context pipelining 

 1 ME 2 MEs 4 MEs 
Multi-processing 8.26 16.50 32.14 
Context-pipelining (Scratch ring) -- -- 23.39 
Context-pipelining (NN ring) -- -- 28.74 

5.7 Latency Hiding 
Table 6 reports the performance impact of various latency 

hiding techniques. The MicroengineC compiler provides only one 
switch to turn latency hiding optimizations on or off. We reported 
the combined effects after applying those latency-hiding 
techniques. The MicroengineC compiler can schedule ALU 
instructions into the delay slots of a conditional/unconditional 
branch instruction and a SRAM/DRAM memory instruction. 

Table 6. Improvement from latency hiding techniques 

 1 ME 2 MEs 4 MEs 8 MEs 
Overlapped   8.26 16.50 32.14 63.97 
Without overlapped   7.34 14.68 28.83 57.41 
Improvement 12.53% 12.40% 11.48% 11.43% 

By performing static profiling, we found that twenty ALU 
instructions were scheduled into delay slots, seventeen in the 
delay slots of conditional branch instructions and three for 
memory access. On average, we obtained a performance 
improvement of approximately 12% by applying the latency 
hiding techniques. 

5.8 Overhead of Enforcing Packet Order 
Table 7 shows the overhead of enforcing packet order. Because 

we use double signal rings, the length of the ring decides the 
performance impact of sending a signal through the ring. Even 
though our algorithm uses no more than 8 MEs, we still notice a 
performance loss of over 13%, indicating a hardware solution 
might be more profitable to enforce the packet order. 

On the other hand, our algorithm can still meet the line-rate 
even after adding the overhead of enforcing packet order, 
indicating the scalability of the algorithm implementation. Such 
good algorithm scalability comes partially from the latency hiding 
ability provided by the multithreaded architecture and the out-of-
order execution strategy adopted. 

Table 7. Packet order overhead on TrieC 

 1ME 2MEs 4MEs 8MEs 
Without packet order 8.26 16.50 32.14 63.97 
With packet order 7.26 14.57 28.31 56.49 
Overhead 13.75% 13.25% 13.53% 13.24% 

6. PROGRAMMING GUIDANCE ON NPU 
We have presented TrieC implementations on the Intel 

IXP2800 and analyzed performance impacts on the algorithm. 
Based on our experiences, we provide the following guidelines for 
creating an efficient network application on an NPU. 

• Compress data structures and store them in SRAM whenever 
possible to reduce memory access latency.  

• Multi-processing is preferred to parallelize network 
applications rather than context pipelining because the 
former is insensitive to workload balance. Unless the 
workload can be statically determined, use a combination of 
both to help distribute loads among different processing 
stages fairly. 

• In general, the NPU has many different shared resources, 
such as command and data buses. Pay attention to how you 
use them because they might become a bottleneck in 
algorithm implementation.  

• The NPU supports powerful bit-manipulation instructions. 
Select instructions your application needs even without 
compiler support. 

• Use compiler optimizations to schedule ALU instructions to 
fill the delay slots to hide latency whenever possible. 

• The cost of enforcing packet order can not be neglected in 
practice. A signal ring can be used when the ring is small. 

7. CONCLUSIONS AND FUTURE WORK 
This paper proposed a high-speed IPv6 forwarding algorithm 

(TrieC) and its efficient implementation on the Intel IXP2800. We 
studied the interaction between the parallel algorithm design and 
architecture mapping to facilitate efficient algorithm 
implementation on the NPU architecture. We experimented with 
an architecture-aware design principle to guarantee the high-
performance of the resulting algorithm. Furthermore, we 
investigated the main software design issues that have most 
dramatically performance impacts on networking applications. 
Based on detailed simulation and performance analysis, we 
provided guidlines for creating an efficient network application on 
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an NPU and effectively exploiting the thread-level parallelism on 
multi-core and multithreaded architectures. 

Our performance analysis indicates that we need spend more 
effort on eliminating various hardware performance bottlenecks, 
such as the DRAM push bus. In addition, the heuristics in 
choosing multi-processing vs. context pipelining require more 
study. We will do more research along these two directions. 
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