
High-performance IPv6 Forwarding Algorithm for Multi-core
and Multithreaded Network Processor

Xianghui Hu
University of Sci. and Tech. of China

Dept. of Computer Sci. and Tech.
Hefei, China, 230027

xhhu@mail.ustc.edu.cn

Xinan Tang
Intel Compiler Lab.

SC12, 3600 Juliette Lane
Santa Clara, California 95054

xinan.tang@intel.com

Bei Hua
University of Sci. and Tech. of China

Dept. of Computer Sci. and Tech.
 Hefei, China, 230027

bhua@ustc.edu.cn

ABSTRACT
IP forwarding is one of the main bottlenecks in Internet backbone routers,
as it requires performing the longest-prefix match at 10Gbps speed or
higher. IPv6 forwarding further exacerbates the situation because its search
space is quadrupled. We propose a high-performance IPv6 forwarding
algorithm TrieC, and implement it efficiently on the Intel IXP2800
network processor (NPU). Programming the multi-core and multithreaded
NPU is a daunting task. We study the interaction between the parallel
algorithm design and the architecture mapping to facilitate efficient
algorithm implementation. We experiment with an architecture-aware
design principle to guarantee the high performance of the resulting
algorithm.

This paper investigates the main software design issues that have dramatic
performance impacts on any NPU based implementation: memory space
reduction, instruction selection, data allocation, task partitioning, latency
hiding, and thread synchronization. In the paper, we provide insight on
how to design an NPU-aware algorithm for high-performance networking
applications. Based on the detailed performance analysis of the TrieC
algorithm, we provide guidance on developing high-performance
networking applications for the multi-core and multithreaded architecture.

Categories and Subject Descriptors C.1.4 [Processor
Architectures]: Parallel Architectures; C.3 [Special-Purpose
And Application-Based Systems]: Real-time and Embedded
Systems; D.1.3 [Programming Languages]: Concurrent
Programming – parallel programming; D.2.2 [Software
Engineering]: Design Tools and Techniques;

General Terms Performance, Algorithms, Design,
Experimentation

Keywords Network processor, IPv6 forwarding, table lookup,
parallel programming, multithreading, pipelining, thread-level
parallelism.

1. INTRODUCTION
Due to the rapid growth of Internet bandwidth and the ever-

increasing size of routing tables, IP forwarding (address lookup)
has become a big challenge in backbone routers. It will make IP
forwarding even more demanding by the inevitable migration
from IPv4 32-bit address space to IPv6 128-bit address space.

Traditionally core routers rely on ASIC/FPGA to perform IP
forwarding at line-rate speed (10Gbps+) [12][23][24]. As the
network processor unit (NPU) emerges as a promising candidate
for a networking building block, NPU is expected to retain the
same high performance as that of ASIC and to gain the time-to-
market advantage from the programmable architecture. Up to now,
many companies, including Intel[14], Freescale[10], AMCC[3]
and Agere[1] have developed their own programmable NPUs.

The advent of the multi-core and multithreaded NPU has given
rise to a new paradigm for parallel algorithm design and
implementation. Unfortunately, the results of general-purpose
multi-processing research are not directly applicable to such
system-on-chip (SOC) based multi-core and multithreaded
architectures due to their specific processing requirements [17][2].
For example, in order to hide latencies of frequent memory
accesses, much more fine-grained interaction is required among
tasks on the same core. Furthermore, NPUs need to process
packets in real time, which makes the performance budget of the
data-path program rather tight. For example, to meet the OC-192
(10Gbps) speed, at most 57 clock cycles are allowed for an Intel
1.4-Ghz IXP2800 to process a minimal IPv4 packet. Under such a
stringent constraint, data-path algorithms for multi-core and
multithreaded NPUs must consider the following:

• typical parallel programming issues, such as data allocation
and task partitioning, to reduce memory latencies;

• micro-architectural factors that impact performance, such as
instruction scheduling and selection; This work was supported by the Intel China IXA University Program, the

National Natural Science foundation of China under Grant No. 60473068,
and the Anhui Province-MOST Co-Key Laboratory of High Performance
Computing and Its Application.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’06 March 29-31, 2006, New York, NY, USA.

• thread-level parallelism for hiding memory latencies;

• thread synchronization for coordinating potential
parallelism among packets.

The savings achieved by these optimization techniques,
whether applied manually or by the compiler, may vary from a
few cycles to hundreds of cycles. For example, reallocating data
from DRAM to SRAM on an Intel IXP2800 can save more than
150 clock cycles per memory access. If two memory accesses are Copyright © 2006 ACM 1-59593-189-9/06/0003...$5.00.

168

scheduled in consecutive cycles, the issuing cycle of the second
memory access can be hidden completely. We believe that high
performance can be achieved through close interaction between
algorithm design and architectural mapping, from high-level
decisions on data allocation and task partitioning down to low-
level micro-architectural decisions on issues such as instruction
selection and scheduling. This potential for increased performance
motivates the development of architecture-aware networking
algorithms that exploit the unique architectural properties of an
NPU to achieve high performance. TrieC is one such NPU-aware
IPv6 forwarding algorithm specifically designed to exploit the
architectural features of the SOC based multi-core and
multithreaded systems.

Because the NPU is an embedded SOC with modest memory
space, reducing memory footprint is the highest priority for almost
every networking application. Furthermore, saving memory space
opens other optimization opportunities for data allocation. For
example, moving data from DRAM to SRAM can dramatically
reduce memory latencies. In addition, the NPU includes unique
architectural features, such as fast bit-manipulation instructions,
non-blocking memory access, and hardware supported
multithreading. Although these features can be exploited to
improve the algorithm performance, making effective use of them
is a challenging task for algorithm designers and implementers.

Running IPv6 forwarding at line-rate requires a highly efficient
parallel algorithm specifically designed for and implemented on a
multi-core and multithreaded NPU architecture. To study potential
optimization opportunities, we carefully investigated six software
design issues: space reduction, instruction selection, data
allocation, task partitioning, latency hiding, and thread
synchronization. For each opportunity, we considered the
following specific design issues that might be trouble spots in
IPv6 forwarding implementation:

• how to compress the routing table effectively while still
maintaining fast search and update speed.

• how to use fast bit-manipulation instructions to make the
search of compressed routing table faster.

• how to allocate compressed routing tables properly onto
the NPU hierarchical memory system to reduce memory
access latency while balancing memory access load.

• how to partition work appropriately onto multiple cores
and multiple threads to make effective use of on-chip
resources.

• how to use multithreading to overlap local computation
and memory accesses.

• how to synchronize thread execution on such a
multithreaded architecture.

After answering all these questions, we propose a high-
performance IPv6 forwarding algorithm TrieC that addresses these
issues and runs efficiently on the Intel IXP2800.

To summarize, the goal of this paper is to identify the key
issues in designing networking algorithms on an SOC based multi-
core and multithreaded NPU, and provide guidance on how
effectively to exploit NPU architectural features to address these
performance bottlenecks to attain high performance. Although we

experimented on the Intel IXP2800, the same high-performance
can be achieved on other similar NPUs [1][3][10]. The main
contributions of the paper are as follows:

• A scalable IPv6 forwarding algorithm was proposed and
efficiently implemented on the IXP2800. Experiments show
that its speedup is almost linear and it can run even faster
than 10Gbps.

• We carefully studied and analyzed algorithm design and
performance issues. We practiced on incorporating
architecture awareness into parallel algorithm design.

• We conducted experiments on a cycle-accurate simulator that
enables us to provide suggestions to system designers on
possible architectural improvements and to compiler writers
on compiler optimizations.

 To the best of our knowledge, this is the first IPv6 forwarding
implementation that achieves 10Gbps speed on an NPU for large
routing tables with up to 400,000 entries. Our experiences may be
applicable to parallelizing other networking applications on other
multi-core and multithreaded NPUs as well. Furthermore, the
software design issues studied, such as instruction selection, data
allocation, task partitioning, and latency hiding, are essential to
make applications run efficiently on a general-purpose multi-core
and multithreaded system. The guidelines we provide are helpful
for algorithm designers who want to exploit architectural features
to develop high-performance applications on these systems.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 explains the NPU-aware IPv6
forwarding TrieC algorithm. Section 4 discusses related design
issues. Section 5 gives simulation results and performance
analysis of Intel IXP2800 implementation. Section 6 presents
guidance on effective NPU programming. Finally, section 7
concludes and discusses our future work.

2. RELATED WORK
The most popular data structure for the longest prefix match is

a binary trie [21][23]. To reduce memory accesses, various kinds
of techniques, such as prefix expansion and multi-bit trie [26],
have been proposed. A multi-bit trie expands a set of arbitrary
length prefixes to a set of fixed length prefixes to reduce the path
length, and thus the memory access times. The fixed prefix
lengths are called search strides. However, its worst-case memory
requirement is O(2k*N*W/k), where k, N and W are search stride,
number of prefixes, and maximum prefix length, respectively. For
example, basic-24-8-DIR [11] is such a hardware implementation
of the prefix expansion technique. It requires at most two memory
accesses per lookup, but more than 32 Mbytes of memory.

Waldvogel et al employed binary search on a hash table
organized by prefix length, which needs log2W memory accesses
in the worst case [30]. However, it requires to reconstruct the
whole routing table during update in O(N*log2W) time. Multiway
range tree [27] reduces both search time and update time to
O(k*logkN). However, when applied to IPv6 forwarding its
memory requirement is as large as O(k*N*logkN).

Lampson et al introduced multicolumn search for IPv6
forwarding, which avoids the multiplicative factor of W/M
inherent in basic binary search through conducting a binary search
in columns of M bits and then moving between columns with pre-

169

computed information [18]. Its disadvantage is that approximately
fifteen memory accesses per lookup are required in the worst case.

The Lulea scheme [8] and Tree Bitmap [9] are closest in spirit
to ours in that all use multi-bit tries and bit maps to compress
redundant storage in trie nodes. However, both methods try to
minimize the memory space at the cost of extra memory accesses.
For example, the Lulea algorithm introduces a summary array to
pre-compute the number of bits set in the bitmap and thus it needs
an extra memory access per trie node. Our algorithm uses a built-
in bit-manipulation instruction to calculate the number of bits set,
and thus it is much more efficient than Lulea.

Ternary Content Address Memory (TCAM) based schemes
[19], reconfigurable fast IP lookup engine [29], Binary Decision
Diagrams [24], are hardware-based IP lookup schemes. They
achieve high lookup speed at the cost of high power consumption,
and complicated prefix update.

There were some efforts in developing high-performance
applications for multi-core and multithreaded architectures.
Parallelizing non-numeric applications for the non-blocking
multithreaded architecture was discussed in [25]. Manually
parallelizing SPEC2000 for speculative multithreaded architecture
was reported in [22]. Improving server software performance for
simultaneous multithreaded architecture was analyzed in [20]. Our
paper focuses on designing an architecture-aware IPv6 forwarding
algorithm for the multi-core and multithreaded NPUs.

This paper presents an IPv6 forwarding algorithm TrieC, which
employs bitmap compression on fixed-level multi-bit trie. This
algorithm can conduct high-speed IPv6 lookup while maintaining
reasonable memory requirements.

3. BASIC FORWARDING ALGORITHM
IP forwarding algorithms based on the longest prefix match

generally adopt a trie (tree), in which a prefix is stored along a
path from the root to a leaf node. To reduce the path length, and
thus memory access times, the prefix expansion technique is
applied to visit the expanded routing tables in the fixed strides at
the cost of increased table size.

Figure 1. Routing table and its prefix expansion with stride 3

In Figure 1(a), the routing table has three entries (* means
don’t-care bits), whose prefix length is 1, 2, and 3, respectively.
After a 3-bit prefix expansion, the table size increases to 4 (shown
in Figure 1(b)), whereas the expanded table can be searched
directly using a 3-bit prefix index. Obviously, reducing memory
accesses is at the expense of increasing table size. Therefore, the
key problem here is how to choose appropriate strides to strike a
balance between these two aspects. Gupta and Mckeown used a
two-level trie for IPv4 lookup [11], with the most significant 24-
bit prefix being the first level, and the remaining 8 bits being the
second level.

3.1 IPv6 Forwarding
The length of an IPv6 address is expanded to 128 bits, which

makes the straightforward application of prefix expansion
impossible due to the explosive memory requirements.
Fortunately, the IPv6 routing tables used in core routers have the
following characteristics:

• The statistics of existing IPv6 routing tables show that
approximately only 5% of the prefixes have a length greater
than or equal to 48 bits [15][4].

• Only aggregatable global unicast addresses, those in which
the FP field is always set to ‘001’, need to be looked up.
Additionally, the lowest 64 bits are allocated to interface ID
and should be ignored by core routers [7].

The basic idea of TrieC is to exploit these features by:

• ignoring the highest three bits and the lowest 64 bits
• building a multi-level compressed trie tree to cover the

prefixes whose lengths are longer than 3 bits and shorter than
49 bits

• searching for remaining prefixes by means of hashing
 In view of the resource constraints of NPUs and the high-speed

requirements of networking applications, the following design
issues should be considered as well:

• Because 2n-m next-hop (routing) information is produced
when an m-bit prefix is expanded to an n-bit prefix (m<n),
redundancy compression is needed to save memory space.

• Although DRAM is much cheaper today than SRAM,
balancing memory speed and memory space is still desirable
when designing routing-table data structures.

• Searching compressed Trie trees should not become a new
performance bottleneck.

• Multithreading must be used to hide memory latency.

3.2 Modified Compact Prefix Expansion
The preferred IPv6 address notation is x:x:x:x:x:x:x:x, where

each ‘x’ is the hexadecimal value of the corresponding 16 bits in a
128-bit address. The symbol ‘::’ represents multiple groups of 16-
bit zeros. Similar to the IPv4 prefix notation, an IPv6 address
prefix is represented by an “ipv6-address/prefix-length” pair,
where the prefix-length is a decimal value specifying the length of
a prefix (the leftmost contiguous bits). For example,
12AB:0000:0000:CD30:0000:0000:0000:0000/60 is a legal
representation of the 60-bit prefix: 12AB00000000CD3.

The modified compact prefix expansion (MCPE) technique is
motivated by the fact that there is much redundant next-hop
information in the expanded routing tables after the traditional
prefix expansion technique is applied. For example, if IPv6
prefixes (2002:4*::/18,A) and (2002:5*::/20,B) are expanded to
24-bit prefixes, a total of 64(=224-18) new prefixes are formed as
shown in Figure 2(a), where next-hop indices, A appears in two
different blocks 48 times, and B appears in one block 16 times.

 The basic idea of MCPE is to use a bit vector to compress the
continuously identical next-hop index and store those indices only
once. Taking Figure 2(b) as an example, the three address blocks,
each containing a sequence of identical next-hop index, are
compressed to three entries (A, B, A) and stored in the Next-Hop
Index Array (NHIA). All 64 address prefixes, whose leftmost 18

1*/1

10*/2

111/3

A

B

C

100

101

B

B

110 A

111 C

(a) (b)

170

bits are the same, are grouped to form an entry in the table, with
the leftmost 18 bits acting as the index (Tindex). The lowest 6 bits
are used as another index to search a bit vector BitAtlas to locate
the correct next-hop index in NHIA. Each bit of the 64-bit
BitAtlas corresponds to an original prefix in the address group,
with the least significant bit corresponding to the first prefix of the
group. If the next-hop index corresponding to bit I is the same as
that corresponding to bit I-1, bit I is set to 0; otherwise bit I is set
to 1, indicating that a different next-hop index starts in NHIA. In
Figure 2 (b), bit 0 is always set to 1, because it starts a new NHIA
entry; bit 16 is set to 1, because its NHIA entry is B, which is
different from the previous entry A; bit 32 is set to 1, because its
NHIA entry is A, which is different from the previous entry B.

Next-Hop24-bit Index

A2002:7F*::/24

…....................

A2002:71*::/24
A2002:70*::/24
A2002:6F*::/24

…....................

A2002:61*::/24
A2002:60*::/24
B2002:5F*::/24

…....................

B2002:51*::/24
B2002:50*::/24
A2002:4F*::/24

…....................

A2002:41*::/24
A2002:40*::/24

(a) Traditional prefix expansion (b) Modified compact prefix expansion

NHIA

.......................

.......................

.......................

0000 0000
0000 0000
0000 0000
0000 0001
0000 0000
0000 0001
0000 0000
0000 0001

6-bit BAindex

nulABA2002:4*::/18

18-bit Tindex

.......................

Figure 2. Prefix expansion vs. MCPE

Assume address 2002:6A*:: is searched. Firstly, the highest 18
bits are used as Tindex to locate the MCPE entry 2002:4*::/18.
Secondly, the lowest 6 bits ‘101010’(42) are used as BAindex to
locate the bit position in BitAtlas. As a total of 3 bits are set from
bit 0 to bit 42, the third element ‘A’ in NHIA is the lookup result.

Therefore, the key to accelerating the search of such a
compressed tree is to efficiently compute the number of bits set.
NPUs with hardware support to such computation are desirable, as
they do not create a new performance bottleneck. The Intel
IXP2800 has a built-in bit-manipulation instruction,
POP_COUNT, which can calculate the number of bits set in a 32-
bit register in three clock cycles. Therefore, MCPE compression
technique can be efficiently implemented on the IXP2800.

The example TrieC table in Figure 2 (b) is called TrieC18/6.
Similarly, TrieCm/n is designed to represent 2m+n compressed
(m+n)-bit prefixes. By using the MCPE technique, the TrieC tree
could greatly eliminate redundancy while preserving the high-
speed indexing ability of traditional prefix expansion technique.

3.3 Data Structures
 The stride series we use is 24-8-8-8-16, and the corresponding

trie nodes are three tables: TrieC15/6 table (ignoring the format
prefix field ‘001’), TrieC4/4 table, and Hash16 table. The
TrieC15/6 table forms the first level of a tree that stores all the
prefixes whose lengths fall into [1:24]. The TrieC4/4 tables form
the second to the fourth level of the tree, where prefix lengths

belong to [25:32], [33:40], and [41:48], respectively. The Hash16
table stores all the prefixes whose lengths belong to [49:64].

The next-hop index, which stores the lookup result, is shown in
Figure 3(a). Each NHI entry is 2-bytes long. If the most
significant bit is set to 0, NHI[14:6] stores the next-hop ID and
NHI[5:0] stores the original prefix length. Otherwise, NHI[14:0]
contains a pointer to the next level TrieC. The original prefix
length is kept for supporting incremental prefix updates [13].

Index into Next Level TrieC1
Prefix LengthNext-Hop ID0

6bits9bits1bit

(a) Next-Hop Index

Next-Hop Index 4Next-Hop Index 3
Next-Hop Index 2Next-Hop Index 1

26BitAtlas

0123

(b) Basic TrieC15/6 entry

Reserved
Index into ExtraNHIA table

26BitAtlas

0123

(c) TrieC15/6 entry with ExtraNHIA

Next-Hop Index 3Next-Hop Index 2
Next-Hop Index 124BitAtlas

0123

(d) Basic TrieC4/4 entry

Index into ExtraNHIA table
Reserved24BitAtlas

0123

(e) TrieC4/4 entry with ExtraNHIA

NHI TotalEntropy
NHI TotalEntropy-1
………………….
NHI 2
NHI 1

NHI TotalEntropy
NHI TotalEntropy-1
………………….
NHI 2

NHI 1

Figure 3. NHI and tables used in the TrieC algorithm

The TrieC15/6 table contains 215 entries named TrieC15/6_entry.
Each entry is 16-bytes long, and belongs to one of the two types:
Basic and ExtraNHIA. Basic entry supports up to four NHIs
(Figure 3 (b)), and ExtraNHIA allows more NHIs (Figure 3 (c)).
For each entry:

1. TrieC15/6_entry[127:64]: stores the 64-bit vector BitAtlas.
Two terms are used to describe the bit vector. TotalEntropy
counts the number of bits set in BitAtlas, and thus
represents the size of NHIA or ExtraNHIA.
PositionEntropy counts the number of bits set from bit 0 up
to a particular bit position in BitAtlas.

2. TrieC15/6_entry[63:0]: stores up to 4 NHIs or a pointer to
an ExtraNHIA. If TotalEntropy is not greater than 4,
TrieC15/6_entry[63:0] stores NHI1, NHI2, NHI3 and NHI4
orderly. Otherwise, TrieC15/6_entry[63:32] stores a 32-bit
pointer that points to an ExtraNHIA

As in the case of TrieC15/6, each TrieC4/4 table contains 24
entries and each entry is 8-bytes long. The structures of the
TrieC4/4 entries Basic and ExtraNHIA are shown in Figure 3(d)
and 3(e), respectively. The fourth level of NHI in the TrieC tree is
interpreted slightly differently. If the flag bit is set to 1, TrieC
must search the Hash16 table. The Hash16 table uses a cyclic
redundancy check (CRC) as its hash function, which is known as a
semi-perfect hash function [16]. The structure of a Hash16 entry
is a (prefix, next-hopID, pointer) triple.

3.4 IPv6 Forwarding Algorithm
Figure 4 displays the pseudo code of an MCPE-based TrieC

search algorithm. We will use an example to show how to search
these TrieC tables.

Assume that the following routes are already in the TrieC
tables: (2002:4C60::/18, A) and (2002:4C6F::/28, B). The first

171

route requires a TrieC15/6 entry that corresponds to the 24-bit
prefixes from 2002:40*::/24 to 2002:7F*::/24. The second route
further requires a TrieC4/4 entry on the second level because its
length is 28 bits.

Figure 4. Pseudo code to search TrieC multi-level table trees

00000000000000000000000000000000 0x200C01101010000000000001001001100001
Interface ID

00000 0000 001001

nullA 180Index118A0

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0011 0000
0000 0001

。。。。。。。。。。。。。。。。。。

001100

nullnull28B00000 0000
0000 0001

。。。。。。。。。。。。。。。。。。

TrieC4/4

0110

NHI[14:0]<<4+DstIP[103:100]

1010

Destination IPv6Address 2002:4C6A::200C

Example Routing Table:

2002:4C60::/18 A

2002:4C6F::/28 B

Next-hop ID=B

PositionEntropy=2

Tindex

Tindex

BAindex BAindex

TrieC15/6

24 bits 8 bits 8 bits 8 bits 16 bits

PositionEntropy=1

Figure 5. Searching example based on TrieC trees

Consider a search for an IPv6 address, DetIP,
2002:4C6A::200C. Ignoring the leftmost three bits ‘001’ in the
format prefix field, DstIP[124:110] (‘0000 0000 0001 001’) is
used to search the TrieC15/6, and the TrieC15/6_entry located at
position 9 is returned (lines 2-3 in Figure 4). Then DstIP[109:104]
(‘001100’) is used to determine bit position (12) in BitAtlas, and
the total bits set from bit 0 to bit 12 (PositionEntropy) is
calculated. Because PositionEntropy is 2, the second basic entry
is retrieved (lines 4-5). As the flag bit of the NHI entry is 1, the
second level TrieC4/4 needs to be further searched (lines 9-22).

Because the base address of the second level of the TrieC tree
is NHI[14:0]<<4, NHI[14:0]<<4+DstIP[103:100] is calculated as
Tindex, and DstIP[99:96] is used as BAindex, respectively, to
search the second level of the TrieC tree. The PositionEntropy of

the corresponding TrieC4/4 entry is 1, indicating that the first NHI
entry of table TrieC4/4 needs to be examined. The flag bit of this
NHI is 0, indicating that NHI[14:6] stores the corresponding next-
hop ID for the destination IPv6 address (line 14), and the lookup
finishes successfully. Figure 5 shows how various bits are actually
used in each search step. IPv6_Lookup_TrieC (IN DstIP, OUT Next-HopID) {

1. Current_Block = TrieC15_6;
2. Tindex = DstIP [124:110]; 4. NPU-AWARE FORWARDING ALGO. 3. Bit_Vec = GetBitVec (Current_Block, Tindex);
4. BAindex = DstIP [109:104]; Figure 6 draws the components of the Intel IXP2800 [14], in

which 16 Micro-engines (MEs), 4 SRAM controllers, 3 DRAM
controllers, and high-speed bus interfaces are shown. Each ME
has eight hardware-assisted threads of execution, and 640-words
local memory of single-cycle access. There is no cache on each
ME. Each ME uses the shared buses to access off-chip SRAM and
DRAM. The average access latency for SRAM is about 150
cycles, and that for DRAM is about 300 cycles. We implemented
TrieC algorithm in MicroengineC, which is a subset of the ANSI
C plus parallel and synchronization extensions, and simulated it
on a cycle-accurate simulator. In the following, we will discuss
the design decisions we have made in the implementation of TrieC
algorithm for achieving line-rate speed.

5. NHI = GetNHI(Bit_vec, BAindex);
6. if (NHI.flag = 0) return NHI.Next-HopID;
7. else { // search TrieC4/4 tables, base[i] is base of (i+1)th-level TrieC tree
8. Current_Block = TrieC4/4 at Base[0]+NHI[14:0];
9. for (i=1;i<=3;i++) {
10. Tindex = DstIP[103-8*(i-1):100-8*(i-1)];
11. Bit_vec = GetBitVec (Current_Block, Tindex);
12. BAindex= DstIP[99-8*(i-1):96-8*(i-1)];
13. NHI = GetNHI (Bit_Vec, BAindex);
14. If (NHI.flag = 0) return NHI.Next-HopID;
15. else {
16. if (i!=3) Current_Block=TrieC4/4 at Base[i]+NHI [14:0]<<4;
17. else break; //search longer prefix in Hash16
18. }
19. }

Figure 6. IXP2800 component diagram without I/O Interfaces

4.1 Memory Space Reduction
The NPU is generally an embedded SOC whose memory size is

limited. SRAM and DRAM are two types of commonly used NPU
memory, whose size is of megabyte magnitude, to store routing
tables. On the Intel IXP2800, the size of DRAM is approximately
eight times as large as that of SRAM, however its latency is
approximately twice as large as that of SRAM. Therefore,
tremendous performance gain could be achieved if routing tables
could be stored in SRAM. The first decision we made is to
compress the routing tables as much as possible to fit them into
SRAM. MCPE is such an enabling technique that allows IPv6
routing tables to be stored in SRAM so that the memory access
latency will be dramatically reduced.

4.2 Instruction Selection
Searching compressed routing tables requires computing

TotalEntropy and PositionEntropy. These are time-consuming
tasks in traditional RISC/CISC architecture, as it usually takes
more than 100 RISC/CISC instructions (ADD, SHIFT, AND, and

20. if (Hash (DstIP [79:64])) return Next-HopID;

10 11 12

15 14 13

9

16

2 3 4

7 6 5

1

8

RDRAM Controller
(2Gbytes)

QDR SRAM Controller
(4x64)Mbytes

Multi-Threaded (x8)
Micro-engine (ME) Array

Per-EngineLocal
Memory, CAM, Signal

Interconnect

32b

64b

21. else return Default-Next-HopID;
22. }
}// IPv6_Lookup_TrieC

172

BRANCH) to compute the number of bits set in a 32-bit register.
Without direct hardware support, calculation of TotalEntropy
and PositionEntropy will become a new performance bottleneck
in MCPE-based forwarding algorithm.

With POP_COUNT (3-cycle IXP2800 instruction), the
number of instructions used to compute TotalEntropy and
PositionEntropy is reduced by more than 97% compared with
other RISC/CISC implementations. This is essential for the TrieC
algorithm to achieve the line rate.

Another useful bit-manipulation instruction is BR_BSET that
jumps to a new location if the bit being examined is set. In the
TrieC algorithm, the flag bit in an NHI entry is often checked, and
then a conditional branch is followed. Because it normally takes
three instructions (SHIFT, AND, JUMP) to perform such checking
and branching operations in a RISC machine, BR_BSET can save
two cycles for every checking-and-branching operation.

Compared with RISC architecture, the NPU normally has much
faster bit-manipulation instructions. Appropriately selecting these
instructions can dramatically improve the performance of NPU-
aware algorithms. However, current compiler technology cannot
always generate such instructions automatically. It is the
programmer’s responsibility to select them manually through
intrinsic or in-line assembly.

The last level of the TrieC tree is the Hash16 table. There are
two ways of computing hash in the Intel IXP2800, a centralized
hash coprocessor shared by all MEs, and a CRC unit on each ME.
We chose CRC to compute the hash function because:

• it provides good hash result for address lookup [16];
• the CRC unit runs much faster than the centralized hash

coprocessor does and it takes only 5 clock cycles to compute
a 32-bit CRC;

• the CRC unit can run in parallel on each ME. In general, an
operation that can run in parallel in each ME is a preferred
implementation means for an architecture-aware algorithm.

4.3 Data Allocation
The Intel IXP2800, like other NPUs, has a complex memory

hierarchy that comprises single-cycle local memory, scratchpad,
SRAM, and DRAM. For TrieC implementation, whether SRAM or
DRAM to be used, and where and how to distribute the
compressed tables greatly affects the ultimate lookup speed.

In addition to the aforementioned size and speed differences
between SRAM and DRAM, different access granularities must be
considered as well. For example, on the Intel IXP2800, SRAM is
optimized for 4-byte word access, while DRAM is optimized for
at least 16-byte burst access; therefore, data structures must be
optimized for the specific type of memory.

 There are four SRAM controllers on the IXP2800 that allow
parallel access, and three DRAM controllers, with each DRAM
controller having four memory banks that can be accessed in an
interleaved manner. To evaluate the performance impacts of
parallel SRAM access and interleaved DRAM access, we
designed the following four settings. Experimental results show
that the first three settings can meet the OC-192 speed even in the
worst case.

• All the tables are stored in one SRAM controller;

• Tables are properly distributed on four SRAM controllers;
• Tables are properly distributed on SRAM and DRAM in a

hybrid manner;
• All the tables are distributed on DRAM, and data structures

are redesigned to facilitate the burst access.
There is another useful feature that can be effectively exploited

on the IXP2800: adjacent SRAM locations can be fetched in one
SRAM read instruction (maximally 64 bytes). By limiting the
node sizes of Tries15/6 and TriesC4/4 to less than 64 bytes,
memory vectorization optimization can be applied to significantly
reduce the number of SRAM accesses.

4.4 Task Partitioning
There are two general ways to partition tasks onto multiple

MEs on the Intel IXP2800: multi-processing [5] and context
pipelining [6]. Multi-processing applies two parallelizing
techniques. First, multi-threading is applied to a task allocated to
one ME. In an Intel IXP2800, a maximum of 8 threads can be
used per ME. Secondly, a task can use multiple MEs if needed.
For example, if a task needs 2 MEs, a maximum of 16 task threads
can run in parallel. Each thread instance runs independently,
assuming no other thread instances exist. Such a run-to-
completion programming model is similar to the sequential one,
and it is easy to be implemented. In addition, the workloads are
easier to be balanced. However, threads allocated on the same ME
must compete for shared resources, including registers, local
memory, and command (data) buses. For example, if a task
requires more local memory than one ME can support, the context
pipelining approach must be used instead.

Context pipelining is a technique that divides a task into a
series of smaller sub-tasks (contexts), and then it allocates them
onto different MEs. These contexts form a linear pipeline, similar
to an ASIC pipeline implementation. The advantage of context
pipelining is to allow a context to access more ME resources.
However, the increased resources are achieved at the cost of
communication between neighboring MEs. Furthermore, it is hard
to perform such partitioning if workloads cannot be determined at
compile time. The choice of which method to use should depend
on whether the resources can be effectively utilized on all MEs.

4.5 Latency Hiding
Hiding memory latency is another key to achieving high-

performance of TrieC implementation. We hide the memory-
access latency by overlapping the memory access with the
calculation of bit vector index in the same thread. In Figure 4,
operations listed in line 3 and 4 can run in parallel so that the
BAindex computation is hidden completely by the memory
operation GetBitVec(). Similarly, operations in line 11 and 12 can
also be overlapped. Compiler based thread scheduling should be
able to perform such an optimization automatically [28].

4.6 Packet Ordering
Networking applications normally require packet ordering,

which means that packets within the same flow must be sent out in
the same order in which they arrived. In other words, only packets
belonging to different network flows can run in parallel. We
exploit the thread-level parallelism by adopting an out-of-order

173

execution and in-order-delivery strategy, in which double signal
rings are used to synchronize parallel thread execution.

First, the input packets are assigned to each thread in sequence
by implementing a signal ring. Thread 0 sends a signal to thread 1,
thread 1 to thread 2, and so on. Thread 7 of one ME sends a signal
to thread 0 of its next neighbor ME. Because each thread waits for
its turn to receive a packet, each thread starts its execution
according to the packet arrival order. On the IXP2800, special
instructions can be used to send a signal from one thread to
another. They can locate in the same ME or in two different MEs.

Then each thread works independently, without waiting for
other threads. In the end, another signal ring is used to enforce the
packet exit order in the same way as on the receiving side, i.e.,
each thread waits for its turn to send its processed packet out. We
found out when the length of the signal ring is small, the ring is an
efficient way to synchronize thread execution among MEs.

5. SIMULATION AND PERFORMANCE
ANALYSIS

Because IPv6 is not yet widely deployed, existing IPv6 tables,
which have normally less than 1000 prefixes[15][4], are too small
to reflect the future growth of the IPv6 network. We used three
different ways to generate nine IPv6 routing tables in the
experiment. In order to measure the performance impact of the
Intel IXP2800 architecture on the TrieC algorithm, we
experimented with the following implementations:

• Using two kinds of bit manipulation instructions to calculate
TotalEntropy and PositionEntropy (see section 5.4)

• Allocating Trie trees onto SRAM, DRAM, and the hybrid of
SRAM and DRAM, respectively (see section 5.5)

• Comparing multi-processing vs. context pipelining task
allocation model (see section 5.6)

• Overlapping local computation with memory access or
conditional branch instructions (see section 5.7)

• With and without enforcing packet order (see section 5.8)

5.1 Experimental Setup
The prefix length distributions of IPv6 routing tables used in

the simulation are shown in Table 1.

Table 1. Prefix length distributions
 1-24 bits

(%)
25-32 bits

(%)
33-40 bits

(%)
41-48 bits

(%)
49-64 bits

(%)
Total
(%)

Group A 4.22 69.41 5.52 14.61 6.24 100.00
Group B 0.06 7.40 15.54 71.32 5.68 100.00
Group C 2.14 38.41 10.52 42.97 5.96 100.00

Group A is generated according to the average prefix
distributions of CERNET [4], 6Bone, 6Net, and Telstra BGP IPv6
routing tables [15]. It represents the characteristics of existing
IPv6 routing tables. Group B is generated according to the non-
random IPv6 table generator proposed by M. Wang et al. [31]. It
represents the ideal IPv6 routing tables. Group C is the mean of A
and B. It represents the future IPv6 tables. In each group, we
generated three tables with 200,000, 300,000 and 400,000 entries
respectively. All prefix values are generated randomly.

5.2 Compression Effects
The memory requirements of these nine different IPv6 tables

are shown in Figure 7. The memory requirement of each table
increases along with its increasing table size. Specifically, the
memory consumption of table B-400K is approximately 35
Mbytes. It is slightly higher than the 32 Mbytes of the basic-24-8-
DIR approach for IPv4 lookup [11]. However, it is significantly
less than the estimated memory requirement of a multibit trie,
which requires more than 820 Mbytes at the 8-bit stride for 400K
IPv6 entries. With such a huge compression rate, the resulted
routing tables can be stored in SRAM.

In the worst case, TrieC needs eight memory accesses and one
hash operation. As shown in Figure 8, there is no relation between
the average memory accesses and the table sizes. The number of
average memory accesses depends only on the prefix length
distributions of the IPv6 tables. For example, the average memory
accesses of group-B are all close to four because the percentages
of the 41-48-bit prefixes are all higher than 70%. On average, the
number of memory accesses is far less than eight, proving that the
percentage of the ExtraNHIA nodes is extremely low. In fact, the
simulation shows it is only 3.6%.

0
5

10
15
20
25
30
35
40

M
em

or
y

re
qu

ire
m

en
ts

(M
B)

200K 300K 400K

Group A Group B Group C DIR-24-8-BASIC(IPv4)

Figure 7. Memory requirements of nine IPv6 tables

2.0

2.2
2.4

2.6
2.8

3.0
3.2

3.4
3.6

3.8

A
ve

ra
ge

 m
em

or
y

ac
ce

ss
es

A-200K B-200K C-200K A-300K B-300K C-300K A-400K B-400K C-400K

Figure 8. Average memory accesses

5.3 Relative Speedups

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31
Threads number

Fo
rw

ar
di

ng
 ra

te
 (M

pp
s)

0

5

10

15

20

25

Sp
ee

du
p

Lookup rate Speedup

Figure 9. TrieC forwarding rates and relative speedups.

174

Figure 9 shows the lookup rates and relative speedups using the
minimal packet size on the Intel IXP2800. When the minimal IPv6
packet is 69 bytes (9-byte PPP header + 40-byte IPv6 header + 20-
byte TCP header), a forwarding rate of 18.16Mpps (Million
Packets Per Second) is required to achieve the OC-192 line rate.
The data was collected after all optimizations previously
mentioned were applied and the routing tables were stored in four
SRAM channels. The speedup is almost linear and it reaches up to
21.45Mpps for 32 threads. The sub-linear speedup is due to the
saturation of the ME command request FIFO. The TrieC is a
memory-bound algorithm in which each thread issues eight
outstanding memory requests per packet in the worst case. If these
memory requests cannot be processed in time, the lookup
performance will drop. We found that for each ME, the speedup is
linear for up to 4 threads. The slowdown is evident when the
number of threads is increased from 5 up to 8. The FIFO fullness
ratio, which is defined as the number of elements in the FIFO
divided by the FIFO size, can be used to measure whether the
memory request FIFO is full or not. It increases from 9% for one
thread to 52% for eight threads. That is, in 8-thread mode, a
memory request stays six times longer in the FIFO than it does in
1-thread mode. This architectural constraint prevents the TrieC
algorithm from having a 100% linear speedup.

Because our implementation is well over the line-rate speed
when 4 MEs (32 threads) are fully used, we want to know the
exact minimal number of threads required to meet the OC-192 line
rate. Table 2 shows that on average group A needs only 9 threads,
group B 17 threads, and group C 11 threads, respectively.

Table 2. Minimal threads required for supporting line rate

Forwarding rate (Mpps) Routing
table

Minimum Number
of Threads Single thread Multithreads

Group A 9 3.72 23.84
Group B 17 1.81 21.36
Group C 11 2.55 21.32

 Considering there are sixteen MEs on the Intel IXP2800, two
MEs for IPv6 forwarding use only 1/8 of the entire ME budget.
Therefore, TrieC leaves enough room for other networking
applications, such as packet classification and traffic management,
to meet the line-rate performance.

5.4 Instruction Selection
NPUs that do not have POP_COUNT normally support

another bit-manipulation instruction, FFS, which can find the first
bit set in a 32-bit register in one clock cycle. We can compute
TotalEntropy and PositionEntropy with FFS by looping through
the 32 bits and constantly looking for the next first bit set.

Table 3. Forwarding rates of POP_COUNT vs. FFS

 1 ME 2 MEs 4 MEs 8 MEs
FFS 3.00 5.88 11.99 23.95
POP_COUNT 8.26 16.50 32.14 63.97
Improvement 175% 180% 168% 167%

Table 3 shows the forwarding rates of the worst-case input

packets by using two different instructions: POP_COUNT and
FFS respectively. The testing was done for routing table C-400K.
The forwarding rate of POP_COUNT is much higher than that of

FFS. On average, the performance improvement of
POP_COUNT over FFS can be as high as 180%.

The lower forwarding rate of FFS is because computational
time of TotalEntropy depends on the number of bits set in the
bit-vectors. The more bits are set, the more instructions are
executed at runtime. This shows that an architecture-aware
algorithm needs to consider the instruction selection to facilitate
its implementation because those instructions might have a
significant impact on the performance of the algorithm.

5.5 Memory Impacts
We simulated six data allocation schemes using the worst-case

minimal-packet input on the IXP2800. Table 4 shows the
simulation results. We found out:

Table 4. Forwarding rates on different data allocations

 1 ME 2 MEs 4 MEs 8 MEs
1-SRAM 8.20 16.43 30.87 33.62
4-SRAM 8.26 16.50 32.14 63.97
DRAM-128 5.59 10.41 12.90 13.04
DRAM-256 4.52 7.29 12.05 12.34
Hybrid-1 5.43 10.79 21.08 21.91
Hybrid-2 4.97 9.46 19.19 21.80

• The 1-SRAM table allocation scheme can support OC-192
line rate with three MEs. However, its speedup is leveled up
at four MEs, because the single SRAM channel becomes the
bottleneck. The utilization rate of a single SRAM channel is
up to 92.64% at 4 MEs and 99.98% at 8 MEs.

• The 4-SRAM configuration obtains almost linear speedup
from 1 ME up to 8 MEs. Additionally, the utilization rates of
four SRAM channels are all approximately 15% when this
configuration meets the OC-192 line rate in the worst case,
indicating the potential speedup could be even greater.

• DRAM-128 and DRAM-256 mean that the bit widths of bit-
vector are 128 bits and 256 bits, respectively. As mentioned
in section 4.3, DRAM on the Intel IXP2800 is optimized for
burst accesses of at least 16 bytes. Thus, we redesigned the
TrieC algorithm with the stride series 24-24-16 to reduce the
number of DRAM memory accesses at the cost of more
memory consumption. The simulation shows that both of
these two data allocation schemes cannot support the OC-192
line rate in the worst case. The culprit is the DRAM push bus,
which is shared by all MEs for reading TrieC trees. This bus
has a physical limitation of 2.8Gbytes per second.

• Because the percentage of ExtraNHIA nodes is extremely
low and the size of the first level of TrieC tree is fixed, we
can reduce the DRAM push bus pressure by allocating them
onto SRAM. We experimented on two kinds of hybrid table
allocations. The Hybrid-1 configuration stores the first level
of the TrieC tree and all ExtraNHIA nodes in SRAM. The
Hybrid-2 configuration stores all ExtraNHIA tables in SRAM
only. The simulation shows that both of them can support the
OC-192 line rate in the worst case with four MEs. However,
these two configurations have the disadvantage that their
DRAM push bus utilizations still remain high, reaching
87.75% for Hybrid-1 and 96% for Hybrid-2, respectively.

175

Although the two hybrid allocation schemes both meet the OC-
192 line rate, they might not work well in practice because it
leaves little DRAM bandwidth for other packet processing
applications. DRAM architectural improvement is required before
such hybrid schemes can be completely applied in practice.
Therefore, the 4-channel SRAM-based allocation scheme is,
practically speaking, the best data allocation scheme.

5.6 Task Allocation
The communication method in context pipelining could be a

scratch ring or a next-neighbor ring (FIFO). Two types of context-
pipelining partitioning were implemented for the two
communication schemes. We divided the whole forwarding task
into two pieces according to (1) the algorithm logic; (2) the
number of memory accesses required per ME. The partitioning
result is as follows:

1. The first and second MEs are for the search of TrieC15/6
table and the 1st-level TrieC4/4 table.

2. The third and fourth MEs are for the search of 2nd-level,
3rd-level TrieC4/4 tables and the Hash16 table.

Because TrieC might end in any stage of context pipelining, it
is extremely difficult to partition the workload evenly. In addition,
the communication FIFOs also add the overhead. Each ME must
check whether the FIFO is full before a put operation and whether
it is empty before a get operation. These checks take many clock
cycles when context pipelining stalls. Table 5 shows the
simulation results using different task allocation policies. It is
clear that both multi-processing and context pipelining can
support the OC-192 line rate with four MEs on the Intel IXP2800.
However multi-processing is preferable for the TrieC algorithm
because of the dynamic nature of the workload.

Table 5. Forwarding rate of multiprocessing vs. context pipelining

 1 ME 2 MEs 4 MEs
Multi-processing 8.26 16.50 32.14
Context-pipelining (Scratch ring) -- -- 23.39
Context-pipelining (NN ring) -- -- 28.74

5.7 Latency Hiding
Table 6 reports the performance impact of various latency

hiding techniques. The MicroengineC compiler provides only one
switch to turn latency hiding optimizations on or off. We reported
the combined effects after applying those latency-hiding
techniques. The MicroengineC compiler can schedule ALU
instructions into the delay slots of a conditional/unconditional
branch instruction and a SRAM/DRAM memory instruction.

Table 6. Improvement from latency hiding techniques

 1 ME 2 MEs 4 MEs 8 MEs
Overlapped 8.26 16.50 32.14 63.97
Without overlapped 7.34 14.68 28.83 57.41
Improvement 12.53% 12.40% 11.48% 11.43%

By performing static profiling, we found that twenty ALU
instructions were scheduled into delay slots, seventeen in the
delay slots of conditional branch instructions and three for
memory access. On average, we obtained a performance
improvement of approximately 12% by applying the latency
hiding techniques.

5.8 Overhead of Enforcing Packet Order
Table 7 shows the overhead of enforcing packet order. Because

we use double signal rings, the length of the ring decides the
performance impact of sending a signal through the ring. Even
though our algorithm uses no more than 8 MEs, we still notice a
performance loss of over 13%, indicating a hardware solution
might be more profitable to enforce the packet order.

On the other hand, our algorithm can still meet the line-rate
even after adding the overhead of enforcing packet order,
indicating the scalability of the algorithm implementation. Such
good algorithm scalability comes partially from the latency hiding
ability provided by the multithreaded architecture and the out-of-
order execution strategy adopted.

Table 7. Packet order overhead on TrieC

 1ME 2MEs 4MEs 8MEs
Without packet order 8.26 16.50 32.14 63.97
With packet order 7.26 14.57 28.31 56.49
Overhead 13.75% 13.25% 13.53% 13.24%

6. PROGRAMMING GUIDANCE ON NPU
We have presented TrieC implementations on the Intel

IXP2800 and analyzed performance impacts on the algorithm.
Based on our experiences, we provide the following guidelines for
creating an efficient network application on an NPU.

• Compress data structures and store them in SRAM whenever
possible to reduce memory access latency.

• Multi-processing is preferred to parallelize network
applications rather than context pipelining because the
former is insensitive to workload balance. Unless the
workload can be statically determined, use a combination of
both to help distribute loads among different processing
stages fairly.

• In general, the NPU has many different shared resources,
such as command and data buses. Pay attention to how you
use them because they might become a bottleneck in
algorithm implementation.

• The NPU supports powerful bit-manipulation instructions.
Select instructions your application needs even without
compiler support.

• Use compiler optimizations to schedule ALU instructions to
fill the delay slots to hide latency whenever possible.

• The cost of enforcing packet order can not be neglected in
practice. A signal ring can be used when the ring is small.

7. CONCLUSIONS AND FUTURE WORK
This paper proposed a high-speed IPv6 forwarding algorithm

(TrieC) and its efficient implementation on the Intel IXP2800. We
studied the interaction between the parallel algorithm design and
architecture mapping to facilitate efficient algorithm
implementation on the NPU architecture. We experimented with
an architecture-aware design principle to guarantee the high-
performance of the resulting algorithm. Furthermore, we
investigated the main software design issues that have most
dramatically performance impacts on networking applications.
Based on detailed simulation and performance analysis, we
provided guidlines for creating an efficient network application on

176

an NPU and effectively exploiting the thread-level parallelism on
multi-core and multithreaded architectures.

Our performance analysis indicates that we need spend more
effort on eliminating various hardware performance bottlenecks,
such as the DRAM push bus. In addition, the heuristics in
choosing multi-processing vs. context pipelining require more
study. We will do more research along these two directions.

ACKNOWLEDGMENTS
We’d also like to thank the anonymous reviewers for their

valuable comments, and Julian Horn, C.J., Lin, and Steve
Goodman from Intel, and Prof. Sandhya Dwarkadas from the
Univ. of Rochester for helping improve the quality of this paper.

REFERENCES
[1] Agere, Network Processor,

http://www.agere.com/telecom/network_processors.html.
[2] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L. Calvignac,

G. T. Davis, L. Frelechoux, M. Heddes, A., et al., “IBM
PowerNP Network Processor: Hardware, Software, and
Applications”, IBM J. Res. & Dev., Vol. 47 NO. 2/3
MARCH/MAY 2003.

[3] AMCC, Network Processor,
https://www.amcc.com/MyAMCC/jsp/public/browse/controller.j
sp?networkLevel=COMM&superFamily=NETP.

[4] CERNET BGP View Project, http://bgpview.6test.edu.cn/bgp-
view/index.shtml.

[5] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R.
Ju, “Shangri-La: achieving high performance from compiled
network applications while enabling ease of programming”, in
Proc. of ACM PLDI’05, Chicago, IL, USA, 2005, pp. 224-236.

[6] J. Dai, B. Huang, L. Li, and L. Harrison, “Automatically
Partitioning Packet Processing Applications for Pipelined
Architectures”, in Proc. of ACM PLDI’05, 2005, pp. 237-248.

[7] S. Deering, and R. Hinden, RFC2460, “Internet Protocol,
Version 6（IPv6）Specification”.

[8] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small
Forwarding Tables for Fast Routing Lookups,” in Proc. of ACM
SIGCOMM ’97, Cannes, France, 1997, pp. 3-14.

[9] W. Eatherton, G. Varghese, and Z Dittia, “Tree Bitmap:
Hardware/Software IP Lookups with Incremental Updates,” in
Proc. of ACM SIGCOMM on Computer Communication
Review, Vol. 34, Issue 2, April 2004, pp. 97-122.

[10] Freescale, C-Port Network Processors,
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId
=02VS0lDFTQ3126.

[11] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds”, in Proc. of
INFOCOM’98, Vol. 3, San Francisco, 1998, pp. 1240-1247.

[12] J. Hasan, and T. N. Vijaykumar, “Dynamic Pipelining: Making
IP-lookup Truly Scalable”, in Proc. of ACM SIGCOMM’05,
Philadelphia, USA, 2005, pp. 205-216.

[13] Xianghui Hu, Bei Hua, and Xinan Tang, “TrieC: A High-Speed
IPv6 Lookup with Fast Updates Using Network Processor”, in
Proc. of the International Conference on Embedded Software and
Systems, Xi’an, China, Dec. 2005. pp. 117-128.

[14] Intel, IXP2XXX Product Line of Network Processor,
http://www.intel.com/design/network/products/npfamily/ixp2xxx
.htm.

[15] IPv6 Report, http://bgp.potaroo.net/index-v6.html.
[16] R. Jain, “A Comparison of Hashing Schemes for Address

Lookup in Computer Networks”, IEEE Transactions on
Communications, 40 (10), Oct. 1992, pp. 1570-1573.

[17] C. Kulkarni, M. Gries, C. Sauer, and K. Keutzer, “Programming
Challenges in Network Processor Deployment”, in Proc. of the
International Conference on Compilers, Architecture, and
Synthesis for Embedded System, San Jose, 2003, pp. 178-187.

[18] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups using
Multiway and Multicolumn Search”, in Proc. of INFOCOM’98,
San Francisco, 1998, pp. 1248-1256.

[19] A.J. McAuley, and P. Francis, “Fast Routing Table Lookup
using CAMs”, in Proc. of INFOCOM’93, Vol. 3, pp. 1382-1391

[20] L. K. McDowell, S. J. Eggers, and S. D. Gribble, “Improving
Server Software Support for Simultaneous Multithreaded
Processors”, in Proc. of ASPLOS’00, Cambridge, MA, USA,
2000, pp. 245-256.

[21] D. R. Morrison, “PATRICIA - Practical Algorithm to Retrieve
Information Coded in Alphanumeric”, J. ACM, Vol. 15, No. 4,
1968, pp. 514-534.

[22] M. K. Prabhu and K. Olukotun, “Exposing Speculative Thread
Parallelism in SPEC2000”, in Proc. of ACM PPoPP’05,
Chicago, 2005, pp. 142-152.

[23] M. A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous, “Survey
and Taxonomy of IP Address Lookup Algorithms”, IEEE
Network, Vol. 15, 2001, pp. 8-23.

[24] R. Sangireddy, and A.K. Somani, “High-speed IP Routing with
Binary Decision Diagrams based Hardware Address Lookup
Engine”, IEEE Journal on Selected Areas in Communications,
Vol. 21, Issue 4, May 2003, pp. 513-521.

[25] A. Sodan, G. R. Gao, O. Maquelin, J. Schultz, and X. M. Tian,
“Experiences with Non-numeric Applications on Multithreaded
Architectures”, in Proc. of ACM PPoPP’99, Las Vegas, 1999, pp.
124-135.

[26] V. Srinivasan, and G. Varghese, “Fast Address Lookups using
Controlled Prefix Expansion”, in Proc. of ACM Sigmetrics’98,
June 1998, pp. 1-11.

[27] S. Suri, G. Varghese, and P.R. Warkhede, “Multiway Range
Trees: Scalable IP Lookup with Fast updates”, in Proc. of IEEE
GLOBECOM'01, Vol. 3, Nov. 2001, pp. 1610-1614.

[28] Xinan Tang, Guang R. Gao, “Automatically Partitioning Threads
for Multithreaded Architectures”, in Journal of Parallel
Distributed Computing, 58(2): 159-189, 1999

[29] E. Taylor, J. W. Lockwood, T. S. Sproull, J. S. Turner, and D. B.
Parlour, “Scalable IP Lookup for Programmable Routers”, in
Proc. of INFOCOM’02, Vol. 2, pp. 562-571.

[30] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
High Speed IP Routing Lookups”, in Proc. of ACM
SIGCOMM’97, Vol. 27, 1997, pp. 25–36.

[31] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random
Generator for IPv6 Tables”, in Proc. of IEEE Symposium on
High Performance Interconnects, 2004, pp. 35-40.

177

http://www.sigmod.org/dblp/db/journals/jpdc/jpdc58.html#TangG99
http://www.sigmod.org/dblp/db/journals/jpdc/jpdc58.html#TangG99

	1. INTRODUCTION
	2. RELATED WORK
	3. BASIC FORWARDING ALGORITHM
	3.1 IPv6 Forwarding
	3.2 Modified Compact Prefix Expansion
	3.3 Data Structures
	3.4 IPv6 Forwarding Algorithm

	4. NPU-AWARE FORWARDING ALGO.
	4.1 Memory Space Reduction
	4.2 Instruction Selection
	4.3 Data Allocation
	4.4 Task Partitioning
	4.5 Latency Hiding
	4.6 Packet Ordering

	5. SIMULATION AND PERFORMANCE ANALYSIS
	5.1 Experimental Setup
	5.2 Compression Effects
	5.3 Relative Speedups
	5.4 Instruction Selection
	5.5 Memory Impacts
	5.6 Task Allocation
	5.7 Latency Hiding
	5.8 Overhead of Enforcing Packet Order

	6. PROGRAMMING GUIDANCE ON NPU
	7. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

