
Forum Math. 15 (2003), 377–393 Forum
Mathematicum

( de Gruyter 2003

Filtering modules of finite projective dimension

Henning Krause and Øyvind Solberg

(Communicated by Rüdiger Göbel)
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Abstract. For a right artinian ring L we show that for every nb 0 there exists a pure-injective
L-module Pn such that the L-modules of projective dimension at most n are precisely the di-
rect factors of L-modules having a finite filtration in products of copies of Pn. This is a conse-
quence of a general description of certain contravariantly finite resolving subcategories of
ModL. It leads in addition to a one-to-one correspondence between equivalence classes of (not
necessarily finitely generated) cotilting modules and resolving subcategories of ModL which
are closed under products and admit finite resolutions and special right approximations. As
an application it is shown that every finitely presented partial cotilting module over an artin
algebra admits a complement.
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1 Introduction

Let L be a ring (associative with 1) and consider the category ModL of (left)
L-modules. In this paper we study the modules of finite projective dimension and
prove the following result.

Theorem 1. Let L be a right artinian ring. Then there exists for every integer nb 0 a

pure-injective L-module Pn such that the L-modules of projective dimension at most n

are precisely the direct factors of L-modules X having a filtration

X ¼ X0KX1K � � �KXl ¼ 0

such that Xi=Xiþ1 is isomorphic to a product of copies of Pn for all i.

We denote by pdX the projective dimension of a L-module X and recall that

Fin:dimL ¼ supfpdX jX A ModL and pdX < yg



is the finitistic dimension of L. It is conjectured that this dimension is always finite,
and we have now a countable test set for this conjecture.

Corollary. Fin:dimL ¼ supfpdPn j nb 0g.

Our analysis of modules with finite projective dimension is based on a number of
formal properties. Recall that a class X of L-modules is resolving if X is closed under
extensions, kernels of epimorphisms, and contains all projectives. Moreover, X is de-
finable ifX is closed under products, filtered colimits, and pure submodules. For every
nb0, the class of L-modules X with pdXan is resolving and definable, provided that
L is right artinian (since this is well-known to be true for n ¼ 0). Therefore Theorem
1 is a consequence of the following result. It describes the objects of an arbitrary class
which is resolving and definable. Recall that a ring L is said to be semi-primary if
there exists a nilpotent ideal a such that L=a is semisimple.

Theorem 2. Let L be a semi-primary ring with radical r satisfying r l ¼ 0. Suppose
that X is a class of L-modules which is resolving and definable. Then every L-module
C has a minimal right X-approximation XC ! C, where XC and YC ¼ KerðXC ! CÞ
are pure-injective if C is pure-injective. Moreover, for every L-module C the following

are equivalent:

(1) C belongs to X;

(2) C is the direct factor of a L-module X having a filtration

X ¼ X0KX1K � � �KXl ¼ 0

such that Xi=Xiþ1 is isomorphic to a product of copies of XL=r for all i;

(3) Ext1LðC;YL=rÞ ¼ 0;

(4) Ext jLðC;YL=rÞ ¼ 0 for all jb 1.

We recall that a map f : X ! C is a right X-approximation of C if X belongs to X
and every map X 0 ! C with X 0 in X factors through f.
The module YL=r in Theorem 2 plays a very special role and it turns out that a class

X of L-modules is resolving and definable if and only if there is a pure-injective L-
module T such that X ¼ ?T where

?T ¼ fX A ModL jExt iLðX ;TÞ ¼ 0 for all ib 1g:

Therefore it is natural to ask to what extent a module T with X ¼ ?T is deter-
mined by X. Also, one can ask to what extent classes X of modules can be classified
by modules T satisfying X¼ ?T . For a complete answer to these questions some extra
assumptions on X are needed. We obtain a one-to-one correspondence between sub-
categories of ModL and equivalence classes of cotilting modules which is the ana-
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logue of a correspondence established by Auslander and Reiten for finitely presented
modules over artin algebras [5]. Here, a L-module T is a cotilting module if

(T1) idT < y;

(T2) Ext iLð
Q

T ;TÞ ¼ ð0Þ for all i > 0 and all products
Q

T of copies of T;

(T3) there exists an injective generator I and a long exact sequence 0! Tn ! � � � !
T1 ! T0 ! I ! 0 with Ti in ProdT for all i ¼ 0; 1; . . . ; n.

Two cotilting modules T and T 0 are called equivalent if ProdT ¼ ProdT 0, where
ProdT denotes the closure under products and direct factors of T. Moreover, for a

subcategory X of ModL a right X-approximation X !f C of a module C is special
if f is an epimorphism and Ext1LðX;Ker fÞ ¼ ð0Þ.

Theorem 3. Let L be a ring. Then there is an one-to-one correspondence between

equivalence classes of cotilting modules and resolving subcategories of ModL which

are closed under products and direct factors and admit finite resolutions and special

right approximations.

The correspondence is given by T 7! ?T and X 7! XXX?.

The final part of this paper discusses complements for partial cotilting modules. Re-
call that T is a partial cotilting module if (T1) and (T2) hold. A L-module T 0 is a com-
plement for T if T q T 0 is a cotilting module. Note that even for artin algebras such
complements need not to exist if one restricts to the category of finitely presented
modules. We provide various criteria for the existence of complements and get as a
consequence the following result.

Theorem 4. Let L be an artin algebra. Then every finitely presented partial cotilting

module admits a complement.

This describes the main results of this paper which is divided into two parts. The first
part (Sections 2–3) contains the material on approximations and filtrations with re-
spect to suitable subcategories X of ModL. The second part (Sections 4–6) discusses
Ext-orthogonal complements and cotilting theory.

Acknowledgements. The work on this paper started while the first author visited
NTNU at Trondheim. It is a pleasure to thank Idun Reiten and Øyvind Solberg for
their hospitality. Both authors want to thank Lidia Angeleri-Hügel and Aslak B. Buan
for all helpful comments and discussions.

2 Constructing approximations

Let L be an associative k-algebra over some commutative ring k. We denote by
ModL the category of (left) L-modules, and right modules over L are identified with
the left modules over the opposite ring Lop. We fix a minimal injective cogenerator
I for Mod k and denote by D ¼ Homkð�; IÞ the corresponding functor Mod k !
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Mod k. Note that D induces exact functors between ModL and ModLop. We have
for every L-module X a natural map fX : X ! D 2X , defined by fX ðxÞðaÞ ¼ aðxÞ for
x A X and a A DX . The map fX is a split monomorphism if and only if X is pure-
injective. In particular, a L-module is pure-injective if it is of the form DY for some Y
in ModLop.
Let X be a class of L-modules. Given a L-module C, a map f : X ! C is a right

X-approximation of C if X belongs to X and every map X 0 ! C with X 0 in X factors
through f. The approximation f is minimal if every endomorphism e : X ! X with
f � e ¼ f is an isomorphism. A minimal right X-approximation of C is unique up to
a non-canonical isomorphism, and it is often denoted by XC ! C. Of course, there is
the dual concept of a left X-approximation of C, and a minimal one is usually de-
noted by C ! X C .
In this section we construct X-approximations, assuming that X satisfies some spe-

cial conditions. We start with some preparations.

Lemma 2.1. Let X be a class of pure-injective L-modules which is closed under prod-

ucts. Then every L-module has a left X-approximation.

Proof. We use the category ðmodLop;AbÞ of additive functors modLop ! Ab from
finitely presented Lop-modules to abelian groups. The fully faithful functor

F : ModL! ðmodLop;AbÞ; C 7! �nL C

identifies the pure-injective L-modules with the injective objects of the abelian
category ðmodLop;AbÞ. The fact that X is closed under products implies the exis-
tence of a map f : C ! X with X in X such that K ¼ KerF ðfÞ is contained in
KerF ðf 0Þ for all f 0 : C ! X 0 with X 0 in X. Now fix such a map f 0. Clearly, Fðf 0Þ
factors through the canonical map FðCÞ ! FðCÞ=K. Using the injectivity of F ðXÞ,
we conclude that Fðf 0Þ factors through FðfÞ. Thus f 0 factors through f and f is a
left X-approximation. r

Lemma 2.2. Let X be a class of L-modules which is closed under coproducts and sat-

isfies D2XJX.

(a) Every pure-injective L-module C has a right X-approximation f : X ! C such that

X is pure-injective.

(b) If f : XC ! C is a minimal right X-approximation of a pure-injective L-module C,
then XC and Ker f are pure-injective.

Proof. (a) Let c : DC ! Y be the left DX-approximation which exists by Lemma 2.1.
Now choose a left inverse p : D2C ! C for the natural map C ! D2C and put f ¼
p �Dc. Then it is easily checked that f : DY ! C is a right X-approximation of C.
(b) Let C be pure-injective, and suppose f : XC ! C is a minimal right X-

approximation. Since C ! D 2C is a split monomorphism, XC and Ker f are direct
factors of D2X and D 2 Ker f respectively. Thus X and Ker f are pure-injective. r
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Minimal approximations do not exist in general. However, there is the following
lemma which is due to Enochs.

Lemma 2.3 ([8, p. 207]). Let X be a class of L-modules which is closed under filtered

colimits. Then every L-module having a right X-approximation has a minimal right

X-approximation.

The next lemma is well-known as Wakamatsu’s Lemma.

Lemma 2.4 ([5, Lemma 1.3]). Let X be a class of L-modules which is closed under

extensions, and let

0! Y ! X !f C ! 0

be an exact sequence of L-modules.

(a) If f is a minimal right X-approximation, then Ext1LðX;YÞ ¼ 0.

(b) If Ext1LðX;Y Þ ¼ 0 and X belongs to X, then f is a right X-approximation.

Recall that a class X of L-modules is resolving if X is closed under extensions, kernels
of epimorphisms, and contains all projectives. Furthermore, a right X-approximation

X !f C is special if f is an epimorphism and Ext1LðX;Ker fÞ ¼ ð0Þ. Hence Waka-
matsu’s Lemma states that a surjective minimal right X-approximation for X exten-
sion closed, is special. An easy application of part (b) in Wakamatsu’s Lemma gives
the following lemma which is due to Auslander and Reiten.

Lemma 2.5 ([5, Proposition 3.7]). Let X be a class of L-modules which is resolving, and
let

0! C1 ! C ! C2 ! 0

be an exact sequence of L-modules. Suppose there are right X-approximations
fi : Xi ! Ci with Ext1LðX;Ker fiÞ ¼ 0 for i ¼ 1; 2. Then there exists a right X-
approximation f : X ! C with Ext1LðX;Ker fÞ ¼ 0. Moreover, there are exact se-

quences

0! X1 ! X ! X2 ! 0 and

0! Ker f1 ! Ker f! Ker f2 ! 0:

We are now in a position to prove the main result of this section. To this end fix a
class X of L-modules and consider the following conditions on X:

(X1) X is resolving;

(X2) X is closed under filtered colimits;
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(X3) X is closed under D2;

(X4) X is closed under products.

Note that (X2) implies that X is closed under coproducts.

Theorem 2.6. Let L be a semi-primary ring and let X be a class of L-modules satisfy-
ing (X1)–(X3). Then every L-module C has a minimal right X-approximation XC ! C,

where XC and YC ¼ KerðXC ! CÞ are pure-injective if C is pure-injective.

Proof. We use induction on the number n such that rnC ¼ 0. If n ¼ 1, then C is semi-
simple and therefore pure-injective. Thus C has a right X-approximation by Lemma
2.2, which can be chosen to be minimal by Lemma 2.3. Now assume the assertion for
n� 1 and consider the exact sequence

0! rC ! C ! C=rC ! 0:

We have minimal approximations for the end terms and obtain an approximation
for C by applying Lemma 2.5, in combination with part (a) of Lemma 2.4. Again,
a minimal approximation for C exist by Lemma 2.3. The pure-injectivity of XC and
KerðXC ! CÞ follows from Lemma 2.2. This completes the proof. r

Recall that a class X of L-modules is contravariantly finite if every L-module has a
right X-approximation.

Corollary 2.7. Let L be right artinian and denote by X the class of L-modules having
finite projective dimension. Then the following are equivalent:

(1) X is contravariantly finite;

(2) X is closed under coproducts;

(3) Fin:dimL < y.

Proof. (1)) (2) Let fXigi A I be a set of modules in X. Let X ! qi A I Xi be a right X-
approximation. Then X is in the category XN of modules of projective dimension at
most N for some N. Since every L-module has a minimal right XN -approximation,
there is a minimal right XN -approximation Xqi A I Xi

! qi A I Xi. This approximation
is a direct factor for the approximation X ! qi A I Xi, therefore Xqi A I Xi

! qi A I Xi

also is a minimal right X-approximaiton. It follows that qi A I Xi is a direct factor of
Xqi A I Xi

and consequently X is closed under coproducts.
The implication (2) ) (3) is straightforward. For the last implication observe now

that the projective L-modules satisfy (X1)–(X3) since L is right artinian. Thus for
every nb 0, the modules of projective dimension at most n satisfy (X1)–(X3). There-
fore X is contravariantly finite if Fin:dimL < y, by Theorem 2.6. r

The assumption on the ring L in Corollary 2.7 is not really needed. In fact, Aldrich
et al. have shown that the modules of projective dimension at most n form a contra-
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variantly finite subcategory of ModL for any ring L and every nb 0; see [1]. Results
which are closely related but di¤erent have been obtained more recently in [10] by
Trlifaj.

3 Constructing filtrations

We fix again a class X of L-modules. In this section we use the construction of X-
approximations from the preceding section to construct for each object in X a special
filtration.

Theorem 3.1. Let L be a semi-primary ring with radical r satisfying r l ¼ 0. Let X be a

class of L-modules which is resolving and closed under products and direct factors.

Suppose there exists a minimal right X-approximation XL=r ! L=r and let YL=r be its

kernel. Then X is contravariantly finite inModL.Moreover, for every L-module C the

following are equivalent:

(1) C belongs to X;

(2) C is the direct factor of a L-module X having a filtration

X ¼ X0KX1K � � �KXl ¼ 0

such that Xi=Xiþ1 is isomorphic to a product of copies of XL=r for all i;

(3) Ext1LðC;YL=rÞ ¼ 0;

(4) Ext jLðC;YL=rÞ ¼ 0 for all jb 1.

Proof.We fix a minimal right X-approximation f : XL=r ! L=r. For every cardinal k
we get an exact sequence

0! Y k
L=r ! X k

L=r !
fk

ðL=rÞk ! 0

such that fk is a right X-approximation, since X is closed under products. Moreover,
Ext1LðX;Y k

L=rÞ ¼ 0 since Ext1LðX;YL=rÞ ¼ 0 by Wakamatsu’s lemma.
Now fix a L-module C and consider the filtration

C ¼ r0CK r1CK � � �K r lC ¼ 0:

Each factor r iC=r iþ1C is semi-simple and therefore a direct factor of ðL=rÞk for some
cardinal k. Thus we can add a semi-simple module C 0 and get a new filtration

C q C 0 ¼ C0KC1K � � �KCl ¼ 0

such that Ci=Ciþ1GðL=rÞk for all i. We get from Lemma 2.5 a rightX-approximation
c : X ! C q C 0 with a filtration

X ¼ X0KX1K � � �KXl ¼ 0
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such that Xi=Xiþ1GX k
L=r for all i. Clearly, the composite of c with the projection

C q C 0 ! C is a right X-approximation of C.
(1)) (2) Suppose that C belongs to X and let X ! C be the approximation which

has been constructed in the first part of the proof. The identity C!C factors through
X ! C and therefore C is a direct factor of X which has a special filtration.
(2) ) (1) This is clear since X is closed under extensions and direct factors, and

every product of copies of XL=r belongs to X.
(1) ) (4) We have Ext1LðX;YL=rÞ ¼ 0 by Lemma 2.4. Using the fact that X is re-

solving, we get by dimension shift that Ext jLðX;YL=rÞ ¼ 0 for all jb 1.
(4) ) (3) This is trivial.
(3) ) (1) Fix a L-module C. The construction in the first part of this proof shows

that for some approximation c : X ! C q C 0 the kernel Y ¼ Kerc has a filtration

Y ¼ Y0KY1K � � �KYl ¼ 0

such that Yi=Yiþ1GY k
L=r for all i. Now suppose that Ext1LðC;YL=rÞ ¼ 0. Thus

Ext1LðC;YÞ ¼ 0 and therefore the inclusion C! C q C 0 factors through c. It follows
that C is a direct factor of X. We conclude that C belongs to X. r

Remark 3.2. Let X be a resolving class of L-modules with a minimal right X-
approximation XL=r ! L=r. Then X is closed under products if and only if every
product of copies of XL=r belongs to X.

We are now in a position to prove our result about modules of finite projective
dimension.

Proof of Theorem 1. Let L be right artinian and denote by X the class of modules
having projectives dimension at most n. Then the class of projective L-modules
satisfies (X1)–(X4), and this carries over to X. We have therefore a minimal right
X-approximation Pn ! L=r by Theorem 2.6. Now apply Theorem 3.1. r

4 Ext-orthogonal classes

Let X and Y be classes of L-modules. Then we define

X? ¼ fY A ModL jExt iLðX ;YÞ ¼ 0 for all X A X and ib 1g;

?Y ¼ fX A ModL jExt iLðX ;YÞ ¼ 0 for all Y A Y and ib 1g:

For a L-module T we write T? ¼ fTg? and ?T ¼ ?fTg.
We have seen in Theorem 3.1 that every class X satisfying (X1)–(X4) is of the

form X ¼ ?T for some appropriate module T. Next we study the modules T having
the property that ?T satisfies (X1)–(X4).

Lemma 4.1. Let T be a pure-injective L-module. Then ?T is closed under filtered

colimits.
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Proof. If T is pure-injective, then W�iðTÞ is pure-injective for all ib 1. Therefore
Ext iLðlim�! Xj;TÞG lim � Ext iLðXj;TÞ for any filtered system fXjg. Thus ?T is closed

under filtered colimits. r

Lemma 4.2. Let T be a pure-injective L-module. Then ?T is closed under pure sub-

modules and pure factor modules.

Proof. Since ?T is resolving, it is enough to show that ?T is closed under pure factor
modules. Let 0! A! B! C ! 0 be a pure exact sequence with B in ?T .
A L-module X belongs to ?T if and only if Ext1LðX ;TÞ ¼ 0 for T ¼

Qy
i¼0W

�iðTÞ.
Clearly, Ext1LðX ;TÞ ¼ 0 implies Ext iLðX ;TÞ ¼ 0 for all ib 1. Using the fact that T
is pure-injective, the assertion follows by applying HomLð�;TÞ to the pure exact
sequence 0! A! B! C ! 0. r

Recall that a class X of L-modules is definable if there exists a family of coherent
functors Fi : ModL! Ab such that a L-module C belongs to X if and only if
FiðCÞ ¼ 0 for all i. Here, a functor F : ModL! Ab is coherent if there exists an
exact sequence

HomLðY ;�Þ ! HomLðX ;�Þ ! F ! 0

where X and Y are finitely presented L-modules. The following lemma shows that the
definition coincides with the one given in the introduction.

Lemma 4.3 ([6, Section 2.3]). A class X of L-modules is definable if and only if X is

closed under products, filtered colimits, and pure submodules.

Lemma 4.4. Let X be a class of L-modules which is definable. Then D 2XJX.

Proof. Given L-modules X and C with X finitely presented, we have

D2 HomLðX ;CÞGHomLðX ;D2CÞ:

If F : ModL! Ab is a coherent functor, we have therefore D2ðFðCÞÞGFðD2CÞ.
Thus D2XJX since X is definable. r

Corollary 4.5. Let L be a semi-primary ring and X be a class of L-modules. Then the

following are equivalent:

(1) X ¼ ?T for some pure-injective module T, and X is closed under products;

(2) X is resolving and definable;

(3) X satisfies (X1)–(X4).

Proof. (1) ) (2) Clearly, ?T is resolving. Lemma 4.1 and 4.2 imply that X is closed
under filtered colimits and pure submodules. Thus X is definable by Lemma 4.3.
(2) ) (3) Use Lemma 4.3 and 4.4.
(3) ) (1) The module L=r has a minimal right X-approximation f : X ! L=r by

Theorem 2.6. Applying Theorem 3.1, we obtain X ¼ ?T for T ¼ Ker f. r
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Remark 4.6. For the implications (1)) (2)) (3) in Corollary 4.5, no assumption on
L is needed.

We collect now our findings and obtain the proof of Theorem 2. This result describes
the objects in a class of modules which is resolving and definable.

Proof of Theorem 2. Let X be a class of modules which is resolving and definable.
Then X satisfies (X1)–(X4). Now apply Theorem 2.6 and 3.1. r

5 Cotilting modules

In the previous sections the subcategories of prime interest have been subcategories
of ModL satisfying (X1)–(X4). Over a semi-primary ring such subcategories were
characterised in Corollary 4.5. It is then natural to ask if this characterisation is valid
outside the class of semi-primary rings. We do not know if any such extension exists.
Over a semi-primary ring L a subcategory X of ModL satisfying (X1)–(X4) is

shown to be a contravariantly finite subcategory of ModL, where every L-module
has a minimal (in particular a special) right X-approximation. Even when adding the
condition of contravariantly finiteness of X in ModL to the conditions (X1)–(X4), a
characterisation of subcategories X satisfying these conditions is unknown to us in
general. However, adding in addition that the resolution dimension of ModL with
respect to the subcategory X is finite, we prove that X corresponds to pure-injective
cotilting modules T over L via X ¼ ?T .
More generally, this section is devoted to finding a one-to-one correspondence

between equivalence classes of cotilting modules and resolving subcategories X of
ModL closed under products where ModL has finite resolution dimension with re-
spect to X and every L-module has a special right X-approximation. This yields an
analogue of the characterisation of finitely generated cotilting modules over artin al-
gebras given in Theorem 5.5 in [5]. Furthermore, we characterise the subcategories
corresponding to pure-injective cotilting modules.

Let L be a ring. Recall from [3] that a L-module T is a cotilting module if

(T1) idT < y;

(T2) Ext iLð
Q

T ;TÞ ¼ ð0Þ for all i > 0 and all products
Q

T of copies of T;

(T3) there exists an injective generator I and a long exact sequence 0! Tn ! � � � !
T1 ! T0 ! I ! 0 with Ti in ProdT for all i ¼ 0; 1; . . . ; n.

The following characterisation of cotilting modules in terms of subcategories of
ModL is given in Theorem 4.2 in [3], where we note the dependence on two sub-
categories, X and X?.

Theorem 5.1 ([3, Theorem 4.2]). Let X be class of modules in ModL closed under

kernels of epimorphisms and such that XXX? is closed under products. The following

are equivalent.
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(1) There exists a cotilting module T with idT a n such that X ¼ ?T;
(2) Every left L-module has a special X-approximation and all modules Y in X? have

idY a n.

To give our characterisation of a cotilting module in terms of properties of one sub-
category of ModL we need to recall the following notions and Proposition 1.8 with
remark from [5].
Let X be a subcategory of ModL. Recall that the resolution dimension of a L-

module C with respect to X, resdimXðCÞ, is the smallest positive integer n such that
there exists a long exact sequence 0! Xn ! � � � ! X1 ! X0 ! C ! 0 with Xi in X
for all i ¼ 0; 1; . . . ; n. If no such integer exists, resdimXðCÞ ¼y. The resolution di-
mension of ModL with respect to X is defined as

resdimXðModLÞ ¼ supfresdimXðCÞ jC A ModLg:

Lemma 5.2 ([5, Proposition 1.8]). Let X be a subcategory ofModL containing all pro-

jective L-modules and closed under extensions and direct factors, where all L-modules
have a special right X-approximation. Let Y ¼ fY A ModL jExt1LðX;YÞ ¼ ð0Þg.
(a) The subcategory Y is a covariantly finite extension closed subcategory of ModL

containing all injective modules. Moreover, for any L-module C there exists a left

Y-approximation 0! C ! Y C ! X C ! 0, such that X C is in X.

(b) X ¼ fX A ModL jExt1LðX ;YÞ ¼ ð0Þg.

Proof. (a) It is clear from the definition of Y that Y is closed under extension and
contains all injective L-modules.
Let C be in ModL, and let 0! C ! IðCÞ ! W�1ðCÞ ! 0 be the injective enve-

lope of C. Then we obtain the following commutative diagram

0 0???y

???y
YW�1ðCÞ YW�1ðCÞ???y

???y

0 ���! C ���! E ���! XW�1ðCÞ ���! 0����

???y

???y

0 ���! C ���! IðCÞ ���! W�1ðCÞ ���! 0???y

???y
0 0

where 0! YW�1ðCÞ ! XW�1ðCÞ ! W�1ðCÞ ! 0 is a special right X-approximation of
W�1ðCÞ. Since Y is extension closed and contain all injective modules, it follows that
E is in Y and that 0! C ! E ! XW�1ðCÞ ! 0 is a left Y-approximation.
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(b) Let X 0 ¼ fX A ModL jExt1LðX ;YÞ ¼ ð0Þg. It is clear that X is contained in X 0.
Let X 0 be inX 0, and let 0!YX 0 ! XX 0 ! X 0 ! 0 be a special rightX-approximation
of X 0. Since YX 0 is in Y, it follows immediately that X 0 is a direct summand of XX 0 ,
hence in X and therefore X ¼ X 0. r

Now we describe the subcategories X of ModL corresponding to cotilting modules T
such that X ¼ ?T .

Proposition 5.3. Let L be a ring, and let X be a resolving subcategory of ModL
closed under products and direct factors with resdimXðModLÞ < y, such that every

L-module has a special right X-approximation. Then there exists a cotilting module T

such that X ¼ ?T .

Proof. Let I be an injective cogenerator for ModL, and let Y ¼ fY A ModL j
Ext1LðX;Y Þ ¼ ð0Þg. Let resdimXðModLÞ ¼ n. Since Ext iLðC;YÞ can be computed
using a (finite) resolution of C in X for Y in Y, it follows that Extnþ1L ðC;Y Þ ¼ ð0Þ for
all L-modules C. Hence Y is contained in the full subcategory of ModL consisting
of all modules of injective dimension at most n. It follows from this and Lemma 5.2
(b) that there exists an exact sequence

0! Tn �!
fn

Tn�1 �!
fn�1 � � � �!f2 T1 �!f1 T0 �!f0 I�!0

of special right X-approximations. The modules Ker fi for i ¼ 0; 1; . . . ; n and I are in
Y, consequently Ti for i ¼ 0; 1; . . . ; n are in XXY. Let T ¼

‘n
i¼0 Ti. Since T is in Y,

the injective dimension of T is at most n.
Since T is in XXY and X is resolving and closed under all products, we obtain

that Ext iLð
Q

T ;TÞ ¼ ð0Þ for all ib 1 and all products
Q

T of T. This shows that T is
a cotilting module.
Since T is in Y, the subcategory X is contained in ?T .
Before proving the converse inclusion we show that ?T is cogenerated by ProdT .

Let X be in ?T . Then we have the following commutative diagram

0 0???y

???y

K1 K1???y

???y

0 ���! E ���! T0 ���! W�1ðXÞ ���! 0???yf

???y

����

0 ���! X ���! IðX Þ ���! W�1ðXÞ ���! 0???y

???y

0 0
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where X ! IðXÞ is the injective envelope of X in ModL and T0 ! IðX Þ is a spe-
cial right ProdT-approximation with K1 in Y that exists by construction of T. Hence
the morphism f : E ! X is a split epimorphism, and therefore X is a submodule of
a product of T. Let 0! X ! TX ! X 0 ! 0 be a left ProdT-approximation of X.
Since T is a cotilting module, the long exact sequence induced by this short exact se-
quence shows that X 0 is in ?T again. This shows that ProdT is an injective cogen-
erator for ?T . Since resdim?TðModLÞ is finite, it follows from [4] that any L-module
C has a special right ?T-approximation. This is also shown in Proposition 3.3 in [3],
but we have included the argument since we need the construction later.
Let W be in XXX?. Since W is in ?T there exists an exact sequence 0!W !f0

T0 !
f1
T1 !

f2 � � �, where fi induces a left ProdT-approximation of Coker fi�1. Denote
by Li the kernel Ker fiþ1. Since W is in X? and all modules in X? have finite injec-
tive dimension, Ext iLðL;WÞ ¼ ð0Þ for all i > m and any L-module L, where m ¼
idLW . In particular for L ¼ Lmþ1, hence ð0Þ ¼ Extmþ1L ðLmþ1;WÞFExt1LðLmþ1;LmÞ
and Lm is in ProdT . Since Ext iLðProdT ;WÞ ¼ ð0Þ for all i > 0, it follows that
Ext1LðLm;Lm�1ÞFExtmLðLm;WÞ ¼ ð0Þ. Therefore Lm�1 is in ProdT . Inductively W

is in ProdT , and XXX? ¼ ProdT .
For any L-module C there is an exact sequence

0! Kn ! Xn�1 ! Xn�2 ! � � � ! X1 ! X0 ! C ! 0

of special right X-approximations. Then Kn is in
?ðX?Þ ¼ X by dimension shift, so

that Kn is in XXX?. For C in ?T the extension groups Ext iLðC;KnÞ ¼ ð0Þ for all
i > 0. By dimension shift the exact sequence 0! Kn ! Xn�1 ! Kn�1 ! 0 splits, and
therefore Kn�1 is in XXX? ¼ ProdT . By induction the exact sequence 0! K1 !
X0 ! C ! 0 splits and C is in X. This shows that ?T is contained in X and conse-
quently X ¼ ?T . This completes the proof of the proposition. r

Next we prove that every cotilting module T in ModL gives rise to a subcategory X
of ModL as described in the previous result.

Proposition 5.4. Let L be a ring, and let T be a cotilting module. Then ?T is a resolving

subcategory of ModL closed under products and direct factors with resdim?TðModLÞ
< y, such that every L-module has a special right ?T-approximation.

Proof. The subcategory ?T of ModL is clearly resolving and closed under direct
factors by definition. Let the injective dimension of T be n. Then any n-th syzygy is
in ?T , hence resdim?TðModLÞa n < y. By Proposition 3.3 in [3] every L-module
has a special right ?T-approximation.
Let XT be the full subcategory of ModL consisting of L-modules X which fit into

an exact sequence

0! X !g0 T0 !
g1

T1 !
g2 � � �

with Ti in ProdT for all i. Since T is a cotilting module, for any X in XT with a co-
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resolution as above we have that Ext iLðX ;TÞFExt iþjL ðCoker gj�1;TÞ for all jb 1.

For jb idT ¼ n these groups are zero, hence X is in ?T and XT J ?T .
Using similar arguments as in the second last part of the proof of the previous re-

sult we obtain that ?TJXT and consequently ?T ¼ XT .
Assume that fXigi AG is in ?T for some index set G. Then for each i we have an

exact sequence

0! Xi ! TXi

0 ! TXi

1 ! TXi

2 ! � � �

with TXi

j in ProdT . Then the sequence

0!
Q

Xi !
Q

TXi

0 !
Q

TXi

1 !
Q

TXi

2 ! � � � ;

is exact. By the above description of ?T it is immediate that
Q

i AG Xi is in
?T , hence

?T is closed under products. r

The next result that we quote from [3] is the final piece we need to give the charac-
terisation of cotilting modules in terms of subcategories of ModL.

Proposition 5.5 ([3, Lemma 2.4]). Let L be a ring, and let T be a cotilting module. Then
?T X ð?TÞ? ¼ ProdT .

Two cotilting modules T and T 0 are called equivalent if ProdT ¼ ProdT 0. Combin-
ing the previous results we have the following characterisation of cotilting modules.

Theorem 5.6. Let L be a ring. Then there is an one-to-one correspondence between

resolving subcategories X of ModL closed under products and direct factors with

resdimXðModLÞ < y, such that every L-module has a special right X-approximation
and equivalence classes of cotilting modules over L.
The correspondence is given by X 7! XXX? and T 7! ?T .

All known examples of cotilting modules are pure-injective. It is an open problem
whether or not all cotilting modules are pure-injective. Mantese et al. have shown
that a cotilting module T with injective dimension at most 1 is pure-injective if and
only if CogenðTÞ is closed under filtered colimits [9]. Here CogenðTÞ denotes the full
subcategory of ModL consisting of modules which are cogenerated by T.
Using the previous results and results from Sections 2 and 4 we obtain the follow-

ing characterisation of when a cotilting module is pure-injective.

Proposition 5.7. Let L be a ring, and let T be a cotilting L-module. Then the following
are equivalent:

(1) ?T is closed under pure factor modules;

(2) ?T is closed under filtered colimits and pure submodules;
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(3) every L-module has a minimal right ?T-approximation and D2ð?TÞJ ?T;

(4) T is pure-injective.

Proof. (1)) (2) Clearly, ?T is closed under coproducts. Given a filtered system fXig
of L-modules, the canonical map

‘
i Xi ! lim�! Xi is a pure epimorphism. Thus ?T is

closed under filtered colimits.
Since ?T is resolving and closed under pure factor modules, ?T is closed under pure

submodules.
(2) ) (3) Every L-module has a right ?T-approximation by Proposition 5.4. This

can be chosen to be minimal by Lemma 2.3. In addition, D 2ð?TÞJ ?T by Lemma
4.4, since ?T is definable by Lemma 4.3.
(3)) (4) First recall from Theorem 5.6 how the cotilting module corresponding to

?T is constructed. We take an injective cogenerator of ModL and take a sequence of
special right ?T-approximations

0! Tn ! Tn�1 ! � � � ! T1 ! T0 ! I ! 0:

This sequence of approximations we can choose to be a sequence of minimal right
?T-approximations. Let T 0 ¼

‘n
i¼0 Ti. Then ProdT ¼ ProdT 0. By Lemma 2.2 all the

modules Ti for i ¼ 0; 1; . . . ; n are pure-injective, since I is pure-injective. Hence T is
pure-injective.
(4) ) (1) Use Lemma 4.1. r

6 Complements of partial cotilting modules

Let L be a ring. A L-module T is called a partial cotilting module if

(T1) idT < y;

(T2) Ext iLð
Q

T ;TÞ ¼ ð0Þ for all i > 0 and all products
Q

T of copies of T.

A L-module X is said to be a complement of a partial cotilting module T, if T q X is
a cotilting module.
Restricting to the category of finitely presented modules over an artin algebra, a

partial cotilting module does not always have a complement. However, in tilting
theory various criteria are known for a partial tilting module to have a (possibly in-
finitely generated) complement [2].
This section is devoted to characterising when a partial cotilting module has a

complement. The first result is an easy consequence of our characterisation of cotilt-
ing modules, and the proof follows the proof for the case of finitely presented partial
cotilting modules over artin algebras.

Proposition 6.1. Let L be a ring, and let T be a partial cotilting module. Then T has a

complement if and only if ?T contains a resolving subcategory X containing ProdT
and closed under products and direct factors with resdimXðModLÞ < y, such that

every L-module has a special right X-approximation.
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Proof. Assume that X is a subcategory of ?T as described above. Then ð?TÞ?JX?.
Since T is in ð?TÞ?, the module T is in XXX?, which corresponds to a cotilting
module by Theorem 5.6. Hence T has a complement.
The other implication is immediate using Theorem 5.6. r

Let X be an extension closed subcategory of ModL. A module I in X is called Ext-
injective in X if Ext1LðX ; IÞ ¼ ð0Þ for all X in X.
The following result characterises when a pure-injective partial cotilting module T

has a complement which is Ext-injective in ?T . The corresponding result for partial
tilting modules is proved in [2].

Theorem 6.2. Let L be a ring, and let T be a partial cotilting module. Then the fol-

lowing are equivalent.

(1) T has a complement which is Ext-injective in ?T;

(2) ?T is closed under products and each L-module has a special right ?T-
approximation.

Proof. Assume that T has an Ext-injective complement X in ?T . Then ?ðT q XÞJ
?T . Since X is in ð?TÞ?, we have that ?ðT qXÞ ¼ ?T . Since T q X is a cotilting mod-
ule, the subcategory ?ðT q XÞ ¼ ?T is closed under products and each L-module has
a special right ?T-approximation.
Conversely, since T has finite injective dimension, ?T is a resolving subcategory

of ModL closed under products with resdim?TðModLÞ < y, where each L-module

has a special right ?T-approximation. Hence ð?TÞX ð?TÞ?, which contains ProdT ,
corresponds to a cotilting module T 0 by Theorem 5.6 where T is a direct factor of
a product of copies of T 0. We conclude that T has an Ext-injective complement
in ?T . r

Next we use that each L-module has a special right ?T-approximation provided that
T is pure-injective [7]. Combining this with Lemma 4.2, Theorem 5.6 and Proposition
5.7, we obtain the following consequence of Theorem 6.2.

Corollary 6.3. Let L be a ring, and let T be a pure-injective partial cotilting module.

Then the following are equivalent.

(1) T admits a complement which is pure-injective and Ext-injective in ?T;

(2) T admits a complement which is Ext-injective in ?T;

(3) ?T is closed under products.

It is well-known that for an artin algebra L a finitely presented partial cotilting
module does not necessarily have a finitely presented complement. If one passes to
arbitrary modules, it is shown in [2] that a finitely presented partial tilting module
has a complement provided that the ring L is left coherent. We have the dual result
for artin algebras.
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Corollary 6.4. Let L be an artin algebra, and let T be a finitely presented L-module. If
T is a partial cotilting module, then T has a complement which is pure-injective and

Ext-injective in ?T .

Proof. Let X be a finitely presented L-module. Then X is pure-injective and the
functor

Ext iLð�;X Þ : ModL! Ab

is isomorphic to DHomLðTrDðW�iþ1ðXÞÞ;�Þ, where HomLðTrDðW�iþ1ðXÞÞ;�Þ is
a coherent functor for all i > 0. Here, we denote by TrY the transpose for a finitely
presented right L-module Y . This shows that the subcategory ?X is definable for any
finitely presented X. Now the claim follows directly from the above result. r
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