
1

SRED: Stabilized RED
Teunis J. Ott T.V. Lakshman Larry Wong

tjo@bellcore.com lakshman@lucent.com larryw@notes.cc.bellcore.com
Bellcore Bell Laboratory Bellcore

Abstract—
This paper describes a mechanism we call “SRED” (Stabilized Random

Early Drop). Like RED (Random Early Detection) SRED pre-emptively
discards packets with a load-dependent probability when a buffer in a router
in the Internet or an Intranet seems congested. SRED has an additional
feature that over a wide range of load levels helps it stabilize its buffer
occupation at a level independent of the number of active connections.

SRED does this by estimating the number of active connections or flows.
This estimate is obtained without collecting or analyzing state information
on individual flows. The same mechanism can be used to identify flows
that may be misbehaving, i.e. are taking more than their fair share of
bandwidth. Since the mechanism is statistical in nature, the next step must
be to collect state information of the candidates for “misbehaving”, and
to analyze that information. We show that candidate flows thus identified
indeed have a high posterior probability of taking a larger than average
amount of bandwidth.

I. INTRODUCTION

Buffer management in routers can be made TCP aware so
that both fairness and throughput are improved. A recent In-
ternet draft (the “RED Manifesto”, [1]) suggests using the Ran-
dom Early Detection scheme proposed by Floyd and Jacobson
[9]. This paper presents a number of ideas that can be used to
strengthen RED-like mechanisms. Unlike for example in [10]
the mechanisms described in this paper do not collect or analyze
state information for individual flows.

The main idea is to compare, whenever a packet arrives at
some buffer, the arriving packet with a randomly chosen packet
that recently preceded it into the buffer. When the two packets
are “of the same flow” we declare a “hit”. The sequence of hits
is used in two ways, and with two different objectives in mind:
� To estimate the number of active flows
� To find candidates for “misbehaving flow”
The definition of “hit" can be flexible. The strongest plausi-

ble requirement is to declare a “hit” only when the two packets
indeed are of the same flow: same destination and source ad-
dresses, same destination and source port numbers, and same
protocol identifiers. Alternatively, one could use a more lax
definition of “hit”, for example only same source address. We
may also choose not to check for a hit for every arriving packet.
Instead, we can test for hits for only a random or deterministic
sub-sequence of arriving packets. Also, we can compare the
arriving packet with not one, but with some K > 1 randomly
chosen packets from the recent past. That would give informa-
tion of the type “J out of K” hits which can be used to more
accurately estimate the number of flows.

The ideas presented are applicable to ATM networks as well.
In ATM, the virtual circuit identifiers are compared and a hit
occurs when the compared cells are from the same virtual circuit.
In that case it probably is wise not to declare a hit when the two
cells are of the same AAL5 frame.

In this paper, we only consider IP networks. For simplicity,
we assume fixed packet sizes and always choose K = 1 so that

J 2 f0; 1g. We do the comparison test for every arriving packet
and declare a hit only when the two packets are from the same
flow.

The paper is organized as follows: Section 2 describes a
means of keeping information about flows that have recently
sent packets. Section 3 describes how that data is used to define
“hits”, and how “hits” are used to estimate the number of active
flows. Section 4 explains the importance of knowing the number
of active flows, and describes a simple version of “Stabilized
RED”. Section 5 describes “Full SRED”. Section 6 describes
simulation results with all “persistent TCP” connections. Section
7 describes a more realistic source model and gives simulation
results obtained with that more realistic model. Finally, Section
8 gives our conclusions.

II. ZOMBIES

A simple way of comparing an arriving packet with a recent
other packet is to compare it with a packet still in the buffer.
This makes it impossible to compare packets more than one
buffer drain time apart. To give the system longer memory, we
augment the information in the buffer with a “Zombie List”. We
can think of this as a list of M recently seen flows, with the
following extra information for each flow in the list: a “Count”
and a “time stamp”. Note that this zombie list or flow cache is
small and maintaining this list is not the same as maintaining
per-flow state. We call the flows in the zombie list “zombies”.

The zombie list starts out empty. As packets arrive, as long
as the list is not full, for every arriving packet the packet flow
identifier (source address, destination address, etc.) is added to
the list, the Count of that zombie is set to zero, and its timestamp
is set to the arrival time of the packet.

Once the zombie list is full it works as follows: Whenever a
packet arrives, it is compared with a randomly chosen zombie in
the zombie list.

(1: Hit) If the arriving packet’s flow matches the zombie we
declare a “hit”. In that case, the Count of the zombie is increased
by one, and the timestamp is reset to the arrival time of the packet
in the buffer.

(2: No Hit) If the two are not of the same flow, we declare a
“no hit”. In that case, with probabilityp the flow identifier of the
packet is overwritten over the zombie chosen for comparison.
The Count of the zombie is set to 0, and the timestamp is set to
the arrival time at the buffer. With probability 1� p there is no
change to the zombie list.

Irrespective of whether there was a hit or not, the packet may
be dropped if the buffer occupancy is such that the system is
in random drop mode. The drop probability may depend on
whether there was a hit or not.

In the simulation with which we tested out SRED, the times-
tamp is implemented but not further used. We anticipate that in



2

a mature form of SRED the timestamp might be used, in case
of a non-hit, to modify the probability that the incoming packet
overwrites the zombie it is compared with: higher probability if
the timestamp is older.

With the constant probability p that in case of a “non-hit” the
incoming flow overwrites the zombie it is compared with, the
time it takes for the zombie list to lose its memory is (roughly)
M=p packets. In the choice of M and p, we conjecture that
there is not much difference in performance between a sensible
choice of M and p and an optimal choice. In this paper, we
always use M = 1000, p = :25. The zombie list therefore
loses its memory roughly once every 4000 packets. When there
are only a few active sources, the system keeps its memory for
a longer time because whenever there is a hit the zombie is
not overwritten: instead more information is accumulated by
increasing the Count.

If an arriving packet causes a hit, that fact by itself is evidence
that the flow of the packet might be misbehaving, in the sense
that “misbehaving” flows are more likely to cause hits than well
behaved flows. If a packet causes a hit and the Count of the
zombie is high, the evidence becomes stronger. We also have
the concept of “Total Occurrence” of a flow: this is the sum of
(Count + 1) over all zombies which have that flow. This is the
total number of packets of the flow of which the zombie list has
a record. We propose to compute this “Total Occurrence” of a
flow only when a packet of that flow causes a hit with a high
Count.

III. THE RELATIONSHIP BETWEEN HITS AND NUMBER OF ACTIVE

FLOWS

We maintain an estimateP (t) for the hit frequency around the
time of the arrival of the t-th packet at the buffer. For the t-th
packet, let

Hit(t) =

�
0 if no hit;
1 if hit;

(3.1)

and let
P (t) = (1� �)P (t� 1) + �Hit(t); (3.2)

with 0 < � < 1, for example (M and p as in section 2 above):

� � p

M
: (3.3)

Then P (t) is an estimate of the frequency of hits for approx-
imately the most recent M=p packets before packet t. We can
also consider this the probability that an arriving packet has a
hit. In this paper we do not use (3.3) but � = 1

M
= :001.

We now have the following.
Proposition 1: P (t)�1 is a good estimate for the effective

number of active flows in the time shortly before the arrival of
packet t.

The argument to support the proposition is the following.
Suppose there are many flows numbered 1; 2; � � �. Suppose that
every time a packet arrives at the buffer, it belongs to flow i with
probability �i. We suppose these probabilities do not change
over time. Hence, a zombie represents flow i with probability
�i. Then, for every arriving packet the probability that it causes
a hit is

PfHit(t) = 1g =
X
i

�i
2: (3.4)

When there are N active flows of identical traffic intensity: �i =
1
N

for 1 � i � N , this gives

PfHit(t) = 1g =
1
N
: (3.5)

In this symmetrical case, Proposition1 is exact or at least roughly
unbiased. In general, we propose to use P (t)�1 as an estimate
for the effective number of active flows even in the asymmetrical
case. For example, if we assume the random case with �i = 2�i

for i 2 f1; 2; � � �g we have an expected value for P (t) of

E[P (t)] =
3

16
: (3.6)

Our estimate for the effective number of active flows is 16
3 =

5:33 . From this we can roughly infer that flows taking more
than 3

16 of the total bandwidth are taking more than their fair
share while those taking less than 3

16 are taking less than their
fair share. If utilization is high enough to warrant punitive action
against bandwidth hogs, this action is taken against flows that
use more than 3

16 of the bandwidth. This will of course change
the �’s.

In general, when there are exactly N flows with probabilities
(�i)Ni=1 (which sum to one) we have

1
N
�

NX
i=1

�2
i � 1: (3.7)

The lower limit is achieved only when all �i are the same, and
hence are all equal to 1

N
. The upper limit is achieved only when

one �i is one and all other �i-s are equal zero. The estimate
of the effective number of active flows behaves in an intuitively
acceptable way.

For the use proposed in this paper, the estimates need not be
perfect. It is enough to have an approximate estimate for the
number of active flows.

To reduce comparison overhead, it is allowable to updateP (t)
not after every packet, but say after every L packets or at prede-
termined epochs. If we get H Hits out of L packets a possible
update rule is

P (new) = (1� L�)P (old) + �H: (3.8)

As long as 0 � L� << 1 this has practically the same effect as
updating after every packet.

IV. SIMPLE STABILIZED RED

Unlike in RED [9], in our current scheme there is no com-
putation of average queue length. The packet loss probability
depends only on the instantaneous buffer occupation and on the
estimated number of active flows. If after further investigation
we find that adding computation of an average buffer occupation
improves performance, that can easily be added. For the time
being, it seems using an averaged buffer occupation does not
improve performance.

In the remainder of this section we assume that all traffic enter-
ing the buffer is TCP. TCP’s windowing scheme is an important
factor in setting the drop probabilities.



3

This assumption that all flows are TCP indeed makes the
number of active flows a very important entity. For example,
suppose we have a certain queuelength caused by many, say
500, flows each with a small window of say 2 packets. Dropping
one packet affects only one of the 500 flows. Assuming all
flows were in congestion avoidance, all other flows increase
their congestion window by one in the next round trip time. On
the other hand, if there were only one flow with a window of
1000 packets, dropping one packet would reduce that window to
500, and it would take 500 round trip times for the window to
grow back to 1000 packets.

Let the target buffer occupation be Q0. Suppose we want to
set a drop probability p, independent of the buffer occupation,
which pushes the system to the target buffer occupation. Clearly,
the optimal value of p depends on the number of active flowsN .
From the example above, p must be larger when N is large, and
must be smaller when N is small, i.e. p must be an increasing
function of N. This can be quantified as below.

It is known that if the drop probability is p and all N active
flows are TCP flows moving “very large” files, every flow will
get a congestion window (cwnd) of the order of p�

1
2 MSSs

(Maximum Segment Sizes), see [4]. The actual average depends
on whether there are delayed acknowledgements or not. The
proportionality factor in the approximation is either close top

2 (no delayed acknowledgements) or close to 1 (with delayed
acknowledgements). We boldly re-phrase this as

cwnd � p�
1
2 ; (4.1)

this is the so-called “square root law”.
For this discussion, the proportionality coefficient is not im-

portant. With N flows, the sum of the N congestion windows
will be of the order of N � p�

1
2 (MSSs, if we assume all flows

have the same MSS). If we disregard the packets and acknowl-
edgements in transit somewhere else in the network, we obtain
the result that N � p�

1
2 and Q0 must be of the same order of

magnitude. Here, Q0 must also be expressed in MSSs. Boldly
requiring equality instead of “same order of magnitude” we get:

N � p�
1
2 = Q0; or p = (

N

Q0
)2: (4.2)

The final result is that p must be of the order of N 2. This holds
only over a limited range of p. We find that if p exceed values
in the range .09 to .15, the drop rate is so high that TCP flows
start spending much their time in time-out, resulting in degraded
performance.

From the above arguments, we propose the following candi-
date drop probability function (which we denote by pzap).

We have a buffer of capacity B bytes. A function psred(q) is
defined as follows:

psred(q) =

8<
:

pmax if 1
3B � q < B;

1
4 � pmax if 1

6B � q < 1
3B;

0 if 0 � q < 1
6B:

(4.3)

pmax in (4.3) is a parameter which in this paper we always
choose equal to :15. We have also tried the values :12 and :09
and found this had no significant impact on the result.

When packet t arrives at the buffer, we first update P (t) as
described in section 3. In what we call “Simple SRED”, if at
the arrival instant the buffer contains q bytes, we drop the packet
with probability pzap which equals

pzap = psred(q)�min(1;
1

(256� P (t))2
): (4.4)

Interesting features of (4.3), (4.4) are (i) that in (4.3) psred
has only three possible levels (0; pmax; and pmax=4) and does
not depend on q in a continuous way, and (ii) that psred depends
only on q, the instantaneous buffer occupation, and not on past
behavior of q. If further analysis indicates these are worthwhile
complications they can be added.

The motivation for choosing (4.3) and (4.4) in this manner is
explained below. First, note that if we fix the drop probability
independent of current buffer occupancy and dependent only
on the estimate of the number of active flows then the buffer
occupancy can vary considerably for a variety of reasons not
accounted for in the determination of drop probabilities. This can
happen because of widely varying round-trip times, flows using
different MSSs, transients caused by new flows before they reach
the equilibrium given by (4.1), etc. Therefore, we need to make
the drop probabilities depend on the buffer occupancy. This is
the role of psred in (4.4). It ensures that the drop probability
increases when the buffer occupancy increases, even when the
estimate P (t) remains the same.

The ratio 4 in (4.3) has the effect that the drop probability
quadruples when the buffer occupancy increases, with constant
P (t), from below B=3 to above B=3. Quadrupling the drop
probability has the long term effect of halving the congestion
windows. By choosing the ratio 4 we achieved that TCP con-
nections reach the new equilibrium after a single packet loss.

In (4.3) we see that as long as

1
256

� P (t) � 1 (4.5)

we use the dropping probability

pzap =
psred

65; 536
� 1

(P (t))2 � psred
65; 536

� (number of flows)2:

(4.6)
When however

0 � P (t) <
1

256
(4.7)

we use
pzap = psred: (4.8)

The latter is for two reasons: First, if the drop probability be-
comes too large, TCP flows spend much or most of their time
in time-out, so further increasing pzap is not sensible. Secondly,
when P (t) becomes small (when hits are rare), estimating P (t)
becomes unreliable.

The numerical results in the subsequent sections use pmax =
:15. In fact, we found that values of pmax in the range :09 to :15
all give very similar results. We suspect we can go somewhat
below :09 and still see no significant change. Higher values
are not a good idea because they merely serve to drive, in the
situation (4.8), too many flows into time-out. Much lower values
allow in the situation (4.8) relatively large congestion windows.



4

The choice of 256 in 4.4 is arbitrary and needs further study.
In section 5, we show that further improvements to pzap are
possible.

The version of SRED described above is what we call “Simple
SRED”. It has the characteristic that the drop probability of a
packet only depends on the instantaneous buffer occupation q
and on the estimate P (t). In the next version of SRED, which
we call “Full SRED” (or shortly SRED), the drop probability
also depends on whether the packet caused a hit.

V. SRED: STABILIZED RANDOM EARLY DROP

In the simple SRED, we use hits only to estimate the number of
active flows which are then used to set the dropping probabilities.
We can also use hits directly in the dropping probabilities. This
is based on the idea that misbehaving flows are likely to generate
more hits. This is because misbehaving flows by definition
have more packet arrivals than other flows and so trigger more
comparisons. Secondly, they are more likely to be present in the
zombie list.

In “Full SRED” we modify the drop probability as follows:

pzap = psred�min(1;
1

(256� P (t))2 )� (1+
Hit(t)
P (t)

): (5.1)

If a fraction �i of all packets are from flow i, 5.1 implies that for
flow i the zap probability (4.4) is multiplied by 

1 +
�iP
j �

2
j

!
: (5.2)

This increases the drop probability for overactive flows and
can also reduce TCP’s bias in favor of flows with short RTTs.

VI. SIMULATION RESULTS FOR SRED

In this section, we show by simulations that SRED as defined
in the previous section is indeed successful in keeping the buffer
occupancy close to a specific target and away from overflow or
underflow.

H1

H2

.

.

.

Hn

H1*

H2*

.

.

.

Hn*

Pa
ck

et
 S

ou
rc

es

Pa
ck

et
 S

in
ks

Bottleneck
Link

Router 1 Router 2

Fig. 1. Two Router Network

Figure 1 shows the network configuration used for the sim-
ulations. We have two routers connected through a DS3 link
(45Mbit/sec) with a link propagation delay of 1 msec. Host H1
sends packets to Host H1*, H2 to H2*, etc. and destinations
send back acknowledgement packets as required by TCP. The
bottleneck link in Router 1 has a buffer of capacity .5 Mbytes.
This translates to a buffer drain time of 88.8 msec.

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 2. SRED with 10 persistent connections, buffer occupation

The links between the hosts and routers are also DS3 links.
We have sets of simulations called symmetrical runs and sets of
simulations called asymmetrical runs. For symmetrical runs, all
links between a host and a router have a propagation delay of 10
msec. In that case the minimal possible round trip time (RTT)
is 42 msec. For the symmetrical runs, the propagation delay
between Host H1 and its router, and between Host H1* and its
router, is 1 msec, and for hosts with higher sequence number
the propagation delays increase linearly to 20 msec. Thus, the
minimal possible RTT varies linearly from 6 msec for pair H1 –
H1* to 82 msec for the pair with the highest sequence number.

All flows have an MSS (Maximal Message Size) of 536 bytes.
This is a typical segment size for TCP. TCP packets are usually
576 bytes long with 40 bytes being the typical header length. For
the time being we assume persistent sources, i.e., a source will
always send a packet whenever the congestion window permits
transmission of a packet. Results for non-persistent sources are
presented in a later section.

A. Symmetrical Network Simulations

Figures 2 – 8 show buffer occupancy behavior for what we
call “Full SRED” with pmax = :15, for 10, 50, 100, 200, 300,
500, and 1000 persistent sources, on the symmetrical network.
The buffer state is plotted using 10 msec samples.

All sources start at time zero a file transfer of an “infinitely
large” file. All sources start in slowstart with the usual initial
values for cwnd etc. The maximal window sizes (advertised
windows) are large enough not to be a constraint. As result
there is a traffic surge right after time zero. We have elected
to show this surge, possibly at the cost of masking some of the
finer detail later in the run. The versions of SRED and RED we
use in our simulations do a good job (after the initial surge) of
keeping the buffer occupancy below or at worst slightly above
B=3, which translates in a delay of at worst slightly over 30
msec. One consequence is that loss is almost always due to the
RED or SRED mechanism. Only in a few cases is there loss due
to buffer overflow, and when this happens it is always during the
initial surge.

The key point to note in the figures that when the number of
flows is less than 256, SRED stabilizes the buffer occupancy to
a level that is independent of the number of flows. This is what
we expect since in this case 4.6 holds. When N > 256, where
(4.8) applies and hence the dropping probability is independent
of the number of active flows, the buffer occupancy increases



5

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 3. SRED with 50 persistent connections, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 4. SRED with 100 persistent connections, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 5. SRED with 200 persistent connections, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 6. SRED with 300 persistent connections, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 7. SRED with 500 persistent connections, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 8. SRED with 1000 persistent connections, buffer occupation

with N, although quite gradually so. (Due to the scale of the
figures the increase is almost imperceptible). The reason for
high numbers of flows we make the drop probability independent
of that number of flows and let the buffer occupancy rise is that
(as explained before) when the drop probability becomes high
(> :15), too many time-outs happen, making TCP performance
poor and highly random.

Another interesting observation is that the buffer occupation
almost never decreases below B=6, i.e. to the point where the
zapping probability becomes zero. This suggest we could make
the band where psred(q) equals pmax=4 even narrower, and put
it closer to the empty level. We have not yet tried what will
happen if we let this band disappear entirely. This may also be
an interesting experiment. There is a risk involved in putting
the lower boundary closer to the empty level: in the rare case
of a very small number of active flows it could cause underflow
while customers still want to send. The current set-up (no drop
unless the buffer occupancy is 83.3 Kbytes or higher) does not
run that risk.

Figures 9 – 11 show the values ofP (t) that were observed for
the results in Figures 2 – 8. There is an initial transient period of
10 seconds when the values of P are high. This is because we
start all TCP sources at the same time. They are all in the slow
start phase and the initial traffic surge causes numerous time-outs
(in particular in Figure 2). During that time there are much fewer
than N active flows, so the high value ofP (t) is (almost) correct.
Note that even during this time, the buffer occupancy is well
stabilized (with the exception of Figure 2). After the transient
period, the values of P (t) decrease but remain somewhat high.
For example, in the case of N = 100 sources, we observe that
P (t) fluctuates around .012 instead of around .01. This can be
explained by (3.7): at any point in time not all 100 congestion



6

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80 90 100

P
(
t
)

Time (sec)

Fig. 9. SRED with 10 persistent connections and SRED, estimated P(t)

0

0.01

0.02

0.03

0 10 20 30 40 50 60 70 80 90 100

P
(
t
)

Time (sec)

Fig. 10. SRED with 100 persistent connections, estimated P(t)

windows are the same, so the estimated P comes out higher than
1=N = :01.

Figures 12 – 14 show buffer occupation behavior in situations
similar to those in Figures 2 – 8, but now with Random Early De-
tection (RED) as in [9]. This version of RED has “w = 1=500”
and “pmax = :075” (see [9] for definitions of “w” and “pmax”,
note that “pmax” in this paper and in [9] have different defini-
tions, the ratio of .5 makes them similar). The drop probability
increases linearly from zero at q = B=6 to pmax at q = B=3.
The comparison between RED and SRED is far from systematic.
For a systematic comparison it would be necessary to compare
optimized versions of the two.

We see that while for SRED the buffer occupancy is indepen-
dent of the number of connections from 10 to 300 connections,
and the buffer occupancy increases only slightly if the number
of connections increases to 1000, for RED the buffer occupancy
increases with the number of connections. Possibly more inter-
esting, for SRED the buffer occupancy almost always is at least

0

0.005

0.01

0.015

0.02

0.025

0 10 20 30 40 50 60 70 80 90 100

P
(
t
)

Time (sec)

Fig. 11. SRED with 1000 persistent connections, estimated P(t)

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 12. RED with 10 persistent connections, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 13. RED with 100 persistent connections, buffer occupation

B=3 = 83 Kbytes. This suggests that the bands in (4.3) can be
shifted downward without causing buffer underflow. This might
also decrease the size of the initial burst of traffic right after time
zero. For RED it seems undesirable to shift the bands down, see
e.g. Figure 12. This is a likely area of further research.

Another interesting phenomenon is the slow recovery, after
the initial burst at time zero, of RED with only 10 sources, and
the “sawtooth” like behavior later on.

B. Asymmetrical Network Simulations

Figures 15 – 16 give individual throughputsof the 100 connec-
tions in the case of an asymmetrical network with 100 persistent
TCP sources, for “Simple SRED” and “Full SRED”.

As expected, we see that in the asymmetrical network con-
nections with short round trip times get higher throughput. We
also see that “Full SRED” reduces this advantage by a small
but noticeable amount (compared with “Simple SRED”). The
squared coefficient of variation of the 100 throughputs is :1039

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 14. RED with 1000 persistent connections, buffer occupation



7

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80 90 100

n
o
r
m
a
l
i
z
e
d
 
t
o
t
a
l
 
t
h
r
o
u
g
h
p
u
t

source number

Fig. 15. 100 Asymmetrical Connections and Simple SRED, individual through-
puts

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80 90 100

n
o
r
m
a
l
i
z
e
d
 
t
o
t
a
l
 
t
h
r
o
u
g
h
p
u
t

source number

Fig. 16. 100 Asymmetrical Connections with Full SRED, individual throughputs

in the case of Simple SRED and :0522 in the case of Full SRED.
This ability of Full SRED to counteract the impact of differential
Round Trip Times increases when the number of active connec-
tions decreases. Routers that “never” carry a single flow that
uses a significant fraction of the bottleneck bandwidth may have
no use for Full SRED. Simple SRED and Full SRED are equally
effective in stabilizing buffer occupation.

VII. A MORE REALISTIC SOURCE MODEL

In this section, we present a more realistic source model with
random file sizes instead of infinitely long ones. Simulation
results using these source models will be presented in the next
section.

The distribution for the file sizes was derived by Neidhardt [2]
from the Bestavros and Crovella measurements [5], [6] of web
access by students at Boston University. The Neidhardt model
has the the following distribution for the file sizes (in bytes).

PfF > fg = (1 + (
f

�
)�)�1; where (7.1)

� is the median;

� > 1;

�� ��1 � Γ(
1
�

)� Γ(1� 1
�

) is the mean:

If 0 < � � 1 (7.1) still is a probability distribution, but that
distribution has no first moment.

For the Bestavros and Crovella data, Neidhardt found

� = 2190; � = 1:15066 :

Hence, the distribution (7.1) has a finite mean but infinite
variance. The mean is 14954 bytes.

For the think time between transfers we used the distribution

PfT > tg = ph(1 + (
t

�h
)�h)�1 + pl(1 + (

t

�l
)�l)�1; (7.2)

where

ph + pl = 1; i:e: a mixture of two distributions as in 7:1; and

ph = 0:4953916; pl = :5046084

�h = 1:0; �h = 1:243437;

�l = 0:0245032; �l = 3:252665:

The mean of this distribution is 2.18 seconds. However, after
sampling, if the think–time came out below 50 msec we re-
sampled. The resulting actual mean think time was about 3.1
seconds. The think time distribution found by Neidhardt from
the Bestavros and Crovella data gives think times 10 times as
large as those in (7.2). We divided the think times by 10 in order
to get a significant load on the bottleneck link with number of
connections in the order of a few thousand.

In our source model, the think time starts only after the the
last byte of the previous file transfer has been acknowledged.

In our simulation, all thinktimes and filesizes are assumed
independent. In the Bestavros and Crovella data, this is definitely
not the case. We do not think this is material for the investigation
at hand. In our simulation, when a new file transfer is about to
start ssthresh is first reset to 64KBytes, cwnd is reset to 1 MSS,
the transfer starts in slowstart, and possibly most important,
the estimated RTT is reset to 3 sec, with an estimated standard
deviation of 0 sec. This mimicks the opening of a new TCP
connection as in http 1.0 (also in the case of an http 1.1 server
with an http 1.0 client).

Figure 17 shows buffer occupancy behavior over time with
2000 TCP connections, each of which has source behavior as
above. Figure 18 gives for the same same simulation the num-
ber of actually active sources as function of time. A source is
considered “actually active” as long as it is sending a file, and
it remains “actually active” until the last byte of the file has
been acknowledged. We see that of the 2000 sources typically
between 200 and 400 are active. This is an overestimate of
the number of flows actually sending packets because while a
source is waiting for its last acknowledgement it is not sending
any packets and also connections in the early stage of slow start
are not very active (the number of packets transferred per Round
Trip Time is low). Figure 19 gives for the same simulation P (t)
as function of time. By comparing Figures 18 and 19 we see that
P (t)�1 underestimates the number of supposedly active flows.
This is due to two causes: (1) many flows supposed to be active
are actually not active yet, or not active anymore (as explained
above) and (2) the active connections have varying congestion
windows. Figure 20 gives the fraction of all active sources that



8

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 17. SRED with 2000 “real” sources, buffer behavior

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100

n
(
t
)

Time(sec)

Fig. 18. SRED with 2000 “real” sources, number of active flows

are transporting a “large” file. A file is considered “large” if it
contains more than 100 KBytes. Figure 21 is a plot of “filesize”
(in bytes) versus “time” (time from sending the first byte until
the last byte is acknowledged) of all files that were transported
in runs already partially described in Figures 17 – 20.

Because (see Figure 17) the drop probability is often close to
pmax=4 = :0375 and drop probability as high as pmax = :15 is
not rare, files often lose packets. If this happens to be one of the
first few packets, where the Round Trip Time estimation and the
Standard Deviation estimation still have their original values, a
long delay results. This explains the seemingly large number of
files with transfer times of over 5 seconds. Of the total of 38,824
files for which the transfer times are given in Figure 21, 1,331
have a transfer time of over 5 seconds and 37,493 have a transfer
time of below 5 seconds. The ones with transfer times below 5
seconds are presumably the files that do not lose any of their first
7 (or so) packets.

The combination of a quickly varying number of active flows,
which transport mostly small files, and where if the file is large
enough the cwnd tends to overshoot (4.1) during slowstart, ex-
plains the relatively wild behavior of the buffer occupation in
Figure 17.

Figure 22 give the buffer occupation behavior for the same
network as the Figures 17 –21, also with 2000 connections and
the same source model, for RED.

Figures 23 – 24 give the buffer occupation behaviors on the
same network with 3500 connections, for Full SRED and RED.

By comparing Figures 17 and 22 – 24 we see again that for
SRED the buffer occupancy remains bounded away from empty,
so that probably the bands in (4.3) can be shifted downward
without causing buffer underflow. For RED it does not seems
likely that the bands can be shifted downward without causing

0

0.01

0.02

0.03

0 10 20 30 40 50 60 70 80 90 100

P
(
t
)

Time (sec)

Fig. 19. SRED with 2000 “real” sources, P(t)

0

0.05

0.1

0.15

0.2

0.25

10 20 30 40 50 60 70 80 90 100

l
a
r
g
e
/
n
(
t
)

Time(sec)

Fig. 20. SRED with 2000 “real” sources, fraction of flows that is large

0

10000

20000

30000

40000

50000

60000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06t
i
m
e
 
t
i
l
l
 
l
a
s
t
 
a
c
k
 
(
m
s
)

size (bytes)

Fig. 21. SRED with 2000 “real” sources, durations

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 22. RED with 2000 “real” sources, buffer occupation



9

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 23. SRED with 3500 “real” sources, buffer occupation

0

100000

200000

300000

400000

500000

0 50 100b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
i
n
 
b
y
t
e
s

Time (sec)

Fig. 24. RED with 3500 “real” sources, buffer occupation

buffer underflow. More work is needed in optimizing both RED
and SRED, and then comparing optimized versions of these
schemes.

VIII. MISBEHAVING FLOWS

As pointed out before, the hit mechanism can be used to iden-
tify candidates for misbehaving flows. This is because hits are
more likely to occur for misbehaving flows. To gauge the ability
of the hit mechanism and the zombie list to identify misbehav-
ing flows, we simulated 100 persistent TCP connections and
one “misbehaving" UDP connection. The UDP source sends a
packet exactly once every 4 msec. Both TCP and UDP packets
are 576 bytes long (this includes headers). The simulation was
done for 100 seconds but the first 15 seconds are not used for
statistics collection. Table 1 gives the total load and numbers
of hits for the one UDP connection and the 100 TCP connec-
tions. For the UDP connection “load” is the number of packets
it received during the last 85 seconds. For the TCP connections
“load” is the sum of the increases in the “next expected” byte at
the 100 destinations, divided by 536 to get MSSs. Doubtlessly
some hits are on packets that were dropped after being tested for
“hit”.

UDP Source TCP Sources
Total Load in packets 20,821 808,300
Load/Connection 20,821 8,083
Total number of hits 494 11,000
Hits/packet .0237 .0136

TABLE I

LOAD AND HITS

UDP Source TCP Sources
Hits with Count = 0 452 10,484
Average Total Occurrence 27.9 17

Hits with Count = 1 38 495
Average Total Occurrence 28.2 18.1

Hits with Count = 2 3 20
Average Total Occurrence 27 18.9

Hits with Count = 3 1 1
Average Total Occurrence 29 12

TABLE II

HITS AND COUNTS

Table 1 shows that the “overactive” connection, with a load
of about 2.58 times that of the average “other” connection, has
a hit/packet ration about 1.74 as large. This roughly agrees with
the ratio of (�i=�j) theory predicts. As in (3.5) we see that
more active flows not only send more packets that can cause
hits, but also have a greater hit probability per packet. The hit
probabilities for the UDP source are slightly smaller than what
is predicted. This is because our UDP source sends packets at a
perfectly constant rate whereas the TCP sources’ rates fluctuate
with the congestion windows.

An even stronger indication that a flow is taking more than
its fair share is a hit with a high Count for the zombie. In
addition, when a hit occurs we can compute the total occurrence
in the zombie list of the flow which causes the hit. This total
occurrence is the sum over all zombies that have the same flow
of (Count+1). Table 2 gives some more information about Hits
and the Counts and average Total Occurrences they encounter.

For the “overactive” connection, a fraction .085 of all hits
has Count � 1. For the TCP connection this fraction is .047.
The overactive UDP connection also has higher average Total
Occurrences.

Thus, a hit indicates a higher posteriorprobability that the flow
in question is misbehaving. A hit with a high count increases the
probability, and a hit with a high count and a high Total Occur-
rence increases the probability even further. These mechanisms
can be used to filter flows and find a small subset of flows that
are possibly misbehaving. These flows can then be monitored to
determine if they are indeed misbehaving (such as by measuring
and policing their rates, and possibly by comparing their actual
rates with their contracted rates).

IX. CONCLUDING REMARKS

We presented a mechanism for statistically estimating the
number of active flows in a bottleneck link. Our mechanism
is based on the idea of comparing the flow identifier of incoming
packets to those from a randomly chosen zombie in a zombie
list that records information regarding flows that have recently
sent packets to the link. A hit is said to occur when the compar-
ison is successful. The number of active flows can be estimated
from the average hit rate. The method does not require keeping
per-flow state.

Next, we observe that for TCP flows the impact of a packet
drop (in terms of a decreased arrival rate) is very high when



10

the bottleneck buffer occupancy is dominated by a few active
flows with large windows and is very little when the bottleneck
buffer occupancy is caused by a large number of connections
with small windows. Hence, mechanisms like RED which try
to control buffer occupancy can benefit by adjusting their drop
probabilities using estimates of the number of active connections.
We present schemes for adjusting drop probabilities such that
the buffer occupancy is controlled to hover around a preset value
independent of the number of active connections. Simulations
using persistent as well as web-like traffic are used to show that
the scheme is effective.

The hit mechanism can also be used to identify misbehaving
flows without keeping per-flow state. Misbehaving sources are
likely to get higher numbers of hits since they send more packets
(resulting in more comparisons) and have a higher probability per
packet of a hit (they have more entries in the zombie list). We also
introduce the concepts of the Count and the Total Occurrence of
a hit and show that a flow sending larger numbers of packets has
more hits with high Count and high Total Occurrence. We give
simulation results which confirm these observations.

Once a small number of possibly misbehaving flows have been
identified they can be monitored closely to determine if they are
indeed misbehaving. For some of these flows, actual behavior
can be compared with their service contract.

Research is needed on how to set parameters in SRED, for
example pmax and psred (see sections 4 and 5) as function of
the buffer occupation. The version of SRED we used in our
simulations does not use averaging of the bufferlength and has a
“psred” function which takes on only three values. Research is
needed on whether it is worth complicating the current version
of SRED. Also, research is needed on how to set Count levels
and Total Occurrence levels that declare a flow to be a candidate
for “misbehaving”. Even more research is needed on what to do
once a flow has been declared “misbehaving”.

REFERENCES

[1] Braden, B. et al (1998) Recommendations on queue management and
congestion avoidance in the internet, IETF RFC (Informational) 2309.
April 1998.

[2] Neidhardt, Arnold L. (1996) Traffic Source Models for the Bestavros and
Crovella data. Private Communication.

[3] Mathis, M., Semke, J. Mahdavi, J. and Ott, T.J. (1997) The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm. Computer Com-
munications Review 27 (3), pp 67 - 82 (July 1997).

[4] Ott, T.J., Kemperman, J.H.B., and Mathis, M. (1996) The Stationary Be-
havior of Idealized TCP Congestion Behavior.
ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps

[5] Cunha, C., Bestavros, A. and Crovella, M. (1995) Characteristics of of
WWW client-based traces, Boston University Tech Report BU-CS-95-010,
Boston, MA. July 1995.

[6] Crovella, M. and Bestavros, A. (1996) Self Similarity in World Wide Web
Traffic: Evidence and possible Causes. Proceedings of SIGMETRICS 1996.

[7] W. Stevens, TCP/IP Illustrated, volume 1, Addison-Wesley, Reading MA,
1994.

[8] G.R. Wright and W.R. Stevens, TCP/IP Illustrated, volume 2, Addison-
Wesley, Reading MA, 1994.

[9] Sally Floyd and Van Jacobson (1993) Random early detection gateways
for congestion avoidance, IEEE/ACM Transactionson Networking, August
1993.

[10] Lin, D. and Morris, R. (1997) Dynamics of Random early Detection Pro-
ceedings of SIGCOMM’97


