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Solwing Polynomial Systems for 
the Kinematic Analysis and 
Synthesis of Mechanisms and 
Robot Manipulators 
Problems in mechanisms analysis and synthesis and robotics lead naturally to systems 
of polynomial equations. This paper reviews the state of the art in the solution of such 
systems of equations. Three well-known methods for solving systems of polynomial 
equations, viz., Dialytic Elimination, Polynomial Continuation, and Grobner bases are 
reviewed. The methods are illustrated by means of simple examples. We also review 
important kinematic analysis and synthesis problems and their solutions using these 
mathematical procedures. 

1 Introduction 

Many problems in mechanisms analysis and synthesis and 
robotics lead naturally to systems of polynomial equations. 
Typical constraints state that two points on a rigid body must 
remain a fixed distance apart or that the angle between two 
lines in a rigid body must remain constant. Such constraints 
are generally expressed by vector dot and cross-products and 
they result in polynomial equations usually of the second 
degree. This paper reviews the state of the art in the solution 
of such systems of equations. We also review important 
kinematic analysis and synthesis problems and their solutions 
using these mathematical procedures. Three well-known 
methods for solving systems of polynomial equations, viz., 
Dialytic Elimination, Polynomial Continuation, and Grobner 
bases are reviewed. Let us begin with some mathematical 
preliminaries. 

Polynomial Equations. A polynomial equation is one in 
which the variables appear in positive integral powers. For 
example the equation 

5x2 + 2xy2 + 3y + 8 = 0 (1) 
is a polynomial equation in the variables x and y. The degree 
of each term of the polynomial is the sum of its exponents. 
The terms x2, xy2 and y appearing in Eq. (1) are respectively 
of degrees 2, 3, and 1. The degree of the polynomial is equal 
to the degree of its highest degree term. 

2 Number of Solutions 
Problems in kinematic analysis and synthesis may be posed 

as systems of polynomial equations to be solved simultane­
ously for the unknowns. The unknowns generally represent 
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kinematic information such as the joint angles and displace­
ments of a robot manipulator for a given gripper location. 
The polynomial systems are typically comprised of nonlinear 
equations. Such systems have multiple solutions in contrast 
to systems of linear polynomial equations. In a kinematic 
analysis problem, multiple solutions represent the different 
possible poses of the mechanism under the stated con­
straints. The total degree of a system of polynomial equations 
is the product of the degrees of its individual polynomial 
equations. 

Bezout's Theorem. Bezout's Theorem states that the total 
number of solutions of a polynomial system is equal to the 
total degree of the system. This number, called the Bezout 
number or bound, includes both the finite solutions as well as 
the "so-called" solutions at infinity. The Bezout bound is 
usually a loose upper bound on the number of finite solu­
tions. Consider the system of polynomial equations: 

/ \ : auxy + anx + an = 0, 

f2: a21xy + a22x + a23 = 0. (2) 

/ , is of degree 2 because it contains xy, a term of degree 2. 
Similarly f2 is also of degree 2. Therefore Bezout's Theorem 
states that this system has 2 x 2 = 4 solutions. 

The M-Homogeneous Bezout Number. An alternative to 
the total degree theorem stated above is the multi-homoge­
neous (m-homogeneous) form of Bezout's Theorem which 
may be stated as follows: (see [1]). Given n polynomial 
equations / , , f2, . . . , /„ in n unknowns xx, x2, ..., x„, the 
unknowns are first divided into m groups {xn, ..., xlki), 

K2k2 } , • . . , {X„ .., xmt } where k, is the 
number of elements in the ith group and kx + k2 + ... +km 

= n. Let the degree of equation / with respect to the 
variables of group j be rf7. The m-homogeneous Bezout 
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number is equal to the coefficient of II"! , ap in the product 
njLjCSy'i^y/ay). The value of the m-homogeneous Bezout 
number depends on the grouping of the variables. Many such 
groupings are possible, each one leading to its associated 
w-homogeneous number. The computation of the m-homo-
geneous Bezout number is illustrated with Eq. (2). Here 
there are only two possibilities: either we have one group {xx, 
x2} or we have two groups {xj , {x2}. Let us assign the 
variables x, and x2 to separate groups: {x,}, {x2}. For this 
case kx = 1, k2 = 1, and m = 2. du, the degree of / \ in the 
variable in group 1, viz., {x,}, is clearly 1. Similarly d2l, the 
degree of / , in the variable in group 2, viz., {x2}, is 1. 
Likewise d12 and d22 are both 1. Therefore the product 
n"=1(2yl1rfj7aJ-)for this example, is (a 1 + a2)(al + a2). The 
2-homogeneous Bezout number is the coefficient of a}al in 
this product, and is equal to 2. In numerous situations the 
use of multihomogeneous variables can reduce the number of 
solutions at infinity and provide a good bound on the number 
of finite solutions. 

The BKK Bound. An alternative to the above Bezout 
numbers is a computation due to Bernstein [2], Khovanskii 
[3], and Kushnirenko [4] known as the BKK bound. The form 
of the computations presented in the following is adapted 
from the papers by Canny and Emiris [5], [6]. To understand 
this procedure we must first familiarize ourselves with some 
simple mathematical concepts. The exponent vector of the 
term x\lx2

2 ... xe
n" is the vector (el e2 . . . en)

T. Given a 
polynomial fx in the variables xv x2, . . . , x„, the exponent 
vector set of f1 is the set of all exponent vectors of the terms 
of fv For example the exponent vector set of the polynomial 
equation 5x2x\x3 + 6x3 + 2xl + 8 = 0 in the variables x{, 
x2, x3 is {(2 3 1), (0 0 2), (1 0 0), (0 0 0)}. The first element (2 
3 1) corresponds to the term x2x\x3, the term (0 0 2) 
corresponds to the term x2, etc. 

Another useful concept is that of the Minkowski Sum. Let 
Ax and A2 be two exponent vector sets. Let Qx and Q2 be 
their convex hulls. By convex hull, we mean the smallest 
convex polyhedron containing a given set of points. The 
Minkowski Sum of Qx and Q2 is the set {a + b\a e Qlt 

b e Q2}. The BKK bound on the number of solutions of a 
given system of polynomials flt f2, . . . , / „ in the unknowns 
X], x2, . . . , xn may be constructed as follows. First construct 
the exponent vector sets Ax, ..., An of the given system / , , 
f2, . . . , / „ . Then construct the convex hulls Q,, . . . , Qn of 
the sets Av ..., An. The BKK bound is given by the 
formula S / c { 1 „i(-l)"~ | / |f /0/(£,-lE/Q;), where I ranges 
over all subsets of (l, ..., n), \I\ is the cardinality of I (i.e., 
the number of elements in 7), 2 = represents the Minkowski 
Sum, Vol(Qj) is the volume of the convex hull Qt. Let us 
compute the BKK bound for the system of Eq. (2). The 
exponent vector sets of / , and f2 are respectively {(1 1), 
(1 0), (0 0)} and {(1 1), (1 0), (0 0)}. Their convex hulls are 
shown in Figs. 1(a) and lib). The set of all subsets of the set 
{1, 2} is {{1}, {2}, {1, 2}}. The BKK formula applied to this 
example is 

, area = 2 

(0,0) (1,0) (2,0) e, 
Fig. 2 

( - i f - | ( l l l V 0 / ( G l ) + (-i)(2-|{2,lV0/(Q2) 

+ (-lf~Kum(Vol(Ql+Q2)) (3) 
Figure 2 shows the convex hull of the Minkowski Sum of Qx 

and Q2. Substituting from Figs. 1 and 2 into Eq. (3) we get a 
BKK bound of - 1 / 2 - 1 / 2 + 2 = 1 . 

3 Dialytic Elimination 
Sylvester's Dialytic Elimination procedure [7] has been 

used in kinematics for eliminating one or two unknowns from 
small sets of equations. Recently we have been able to 
modify the dialytic method in order to make it part of a more 
practical approach. In the following, first the basic dialytic 
method is described, then its limitations are pointed out with 
suggestions on how these may be overcome. 

There are six basic steps in using the Dialytic Elimination 
method to solve a set of nonlinear equations. Although the 
steps are easy to explain, the ideas behind Step 2 and Step 3 
at first-sight seem strange, and even incorrect. The basic 
steps are: 

(1) Rewrite equations with one variable suppressed. 
(2) Define the remaining power products as new linear 

homogeneous unknowns. 
(By power products, we mean the variable groups within 

each nominal of a polynomial; for example the power prod­
ucts of Sx\x\ + 3x2X3 - 8x4 are x\x\, x\x\ and x4.) 

(3) Obtain new linear equations so as to have as many 
linearly independent homogeneous equations as linear un­
knowns. 

(4) Set the determinant of the coefficient matrix, of the 
set of equations formed from steps 2 and 3, to zero and 
obtain a polynomial in the suppressed variable. (If one is 
interested in only numerical solutions, this step can be omit­
ted if we calculate eigenvalues in Step 5.) 

(5) Determine the roots of the characteristic polynomial 
or the eigenvalues of the matrix. (This yields all possible 
values for the suppressed variable.) 

(6) Substitute (one of the roots or eigenvalues) for the 
suppressed variable and solve the linear system for the re­
maining unknowns. Repeat this for each value of the sup­
pressed variable. 

These steps can best be explained with a simple example. 
Consider the following two nonlinear equations: 

axy3 + bx3 + cy3 + dx2y + ex2 + f = 0, 

gx4 + hxy3 + ix3 + jx2 + kxy2 + be + m = 0. (4) 

Here, a, b, c, d, e, f, g, h, i, j , k, I and m are known 
coefficients, and x and y are the unknowns. For elimination 
theory it is useful to first suppress one of the variables, say, x 
and rewrite the system as: 

(ax + c)y3 + (dx2)y + (bx3 + ex2 + / ) = 0, 

(hx)y3 + (kx)y2 + (gx4 + be3 + jx2 + be + m) = 0. (5) 

where the entities in brackets are treated as coefficients. The 
two equations are now of the form: 
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Ay3 + By + C = 0, 

Dy3 + Ey2 + F = 0, (6) 

where the new coefficients A, B, C, D, E and F, contain the 
suppressed variable x. 

In Step 2, each power product is considered as a separate 
independent linear unknown. So our system is rewritten as 

Ay, + By2 + Cy3 = 0, 

Dyx + Ey4 + Fy3 = 0. (7) 

In Step 3, we obtain additional equations by multiplying Eqs. 
(7) by y and then y2. The results are four new equations with 
only two new power products. Using the concept of Step 2, 
i.e., labeling every power product as an independent linear 
unknown (_y4 = y5, y5 = y6) we can write these new equa­
tions as: 

Ays + By4 + Cy2 = 0, 

Dy5 + Eyx + Fy2 = 0, 

Ay6 + By, + Cy4 = 0, 

Dy6 + Ey5 + Fy4 = 0. (8) 

Combining Eqs. (7) and (8) we have a system of six homoge­
neous linear equations in six linear unknowns. The newly 
manufactured equations in (8) are dependent on the original 
equations but their dependence is not linear and hence they 
are linearly independent. These six equations in matrix form 
are as follows. 

A 
D 
0 
E 
B 
0 

B 
0 

c 
F 
0 
0 

C 
F 
0 
0 
0 
0 

0 
E 
B 
0 

c 
F 

0 
0 
A 
D 
0 
E 

0 
0 
0 
0 
A 
D 

Since we know that y3 = 1, it is clear that the trivial 
solution of yt = 0, (i = 1, 2, . . . , 6) is not admissible, and 
therefore the determinant of the coefficient matrix must be 
equal to zero. In Step 4, we expand the determinant of the 
coefficient matrix and set the result to zero, to get a polyno­
mial equation in A, B, C, D, E, F. If we then substitute into 
this polynomial the expressions for the suppressed variable 
(viz.: A = ax + c, B = dx2, C = bx3 + ex2 + f, D = hx, E 
= kx, F = gxA + ix3 + jx2 + be + m) we obtain a polynomial 
in the suppressed variable, x, and the original coefficients, a, 
b, c, d, e, f, g, h, i, j , k, I, m. 

In Step 5, we obtain all values of the suppressed variable 
by using a root-finder routine on this polynomial. Finally in 
Step 6, we substitute the computed values of the suppressed 
variable into the linear set of equations and solve for the 
other original variables. In our example, we can use Eq. (9) 
to obtain y as follows; substitute one root of x into (9) and 
set y3 = 1, and then use any five of the resulting equations to 
solve for y2, etc. Then we have y since it is y2. Similarly, all 
the other pairs (x, y) are obtained by repeating Step 6 for 
each of the roots from Step 5. 

In principle, the foregoing procedure will always work if, 
enough new equations can be determined from the original 
equations to obtain an TV X TV system of linear homogeneous 
equations whose determinant is not identically zero. How­
ever, it is important that the value of TV be as small as 
possible. If the procedure introduces extraneous roots, TV is 
larger than its minimum value and the suppressed variable 
polynomial is of higher degree than is necessary. One ap­
proach to obtaining a minimal value of TV for problems in 
kinematic analysis is to use the trigonometric relations that 
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exist among the coefficients of the governing equations to 
generate new linearly independent equations with same 
power products. This was demonstrated in the works of Lee 
and Liang [17] and Raghavan and Roth [18]. Recent papers 
by B. Roth [8], [9], and Innocenti [36], give alternative proce­
dures for manufacturing additional equations to permit the 
construction of a minimal TV X TV system. The computation 
of the univariate polynomial in the suppressed variable re­
quires the expansion of an TV by TV determinant with polyno­
mial entries. Efficient procedures for effecting determinant 
expansion are presented in [10] and [11], Chapter 20. 

Dialytic Elimination and the Eigenvalue Problem. Once 
an TV by TV matrix with polynomial entries has been created 
by the Dialytic Elimination procedure the determinant ex­
pansion step may be eliminated by setting up the problem as 
an eigenvalue problem. The procedure for effecting this was 
developed by Prof. Gene Golub of the Computer Science 
Department, Stanford University. We illustrate this for the 
case where the suppressed variable is of degree at most 2 in 
the entries of the matrix. Let the matrix be A and the 
suppressed variable xx. Then 

A = Bx2 + Cc, + D, (10) 

where A, B, C, and D are matrices with constant entries. 

det(A) = 0 ^ det(Bxf + Cxx + D) = 0. (11) 

This means that we seek those values of x{ for which the 
system (Bx2 + Cxx + D)y = 0 has a nontrivial solution vec­
tor y. Eq. (11) may be written as 

Bxxz + Cz + Dy = 0, (12) 

where z = xxy. The values of xx and z may be computed by 
setting up Eq. (12) as a generalized eigenvalue problem of 
the form Gx = \Hx, as follows. 

The eigenvalues xx may be computed using the QZ-al-
gorithm described in [12], pages 251-264. The eigenvectors 

may be computed using inverse iteration as described in 

[12], pages 238-239. Since the eigenvectors are comprised of 
the power products of the unsuppressed variables, x2, x3, 
..., etc., the values of these variables may be computed once 
the eigenvectors are computed. When the matrix B is invert-
ible we may write Eq. (13) as 

This is in the form of the standard eigenvalue problem which 
may be solved easily using the QR-algorithm also described 
in [12], pages 228-238. Recent examples of applications of 
this approach to problems in robotics and mechanisms are 
presented in [13] and [14]. 

Application to Linkage Analysis Problems. Dialytic Elim­
ination has been used extensively by Duffy and his co-workers 
for the analysis of various single-loop mechanisms. In [15] an 
input-output equation of degree 32 in the tan-half-angle of 
the output angular displacement is obtained for the general 
spatial single-loop 7R mechanism. This problem was first 
posed to the mechanisms community by Prof. F. Freuden-
stein at the 1972 ASME Mechanisms Conference and in a 
subsequent paper. The application of this procedure to vari­
ous classes of single-loop single degree-of-freedom linkages 
with R, P, and C joints is presented in [16]. Lee and Liang 
[17] derive a 16th degree polynomial input-output equation in 

JUNE 1995, Vol. 117/73 
Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the tan-half-angle of the output angular displacement of the 
general spatial 7-link 7R mechanism. The analysis is per­
formed using an extension of Duffy's method. 

Raghavan and Roth [18] developed a solution to the same 
problem using the Denavit-Hartenberg notation and the 4 by 
4 transformation matrices commonly used in the robotics 
literature. They used a new systematic procedure based on 
elimination theory and its basic ideas. They went on to 
elaborate their method to include all six-degree-of-freedom 
open-loop series chains and by implication all closed-loop 
series one-degree-of-freedom,mechanisms [19]. What we now 
know is that a series six-degrees-of-freedom chain has at 
most 16 ways to reach a pose if the chain is composed of all 
revolute joints (6R) or has one prismatic joint and five 
revolute joints (5R1P). If the chain has two prismatic joints 
(4R2P) the maximum drops to 8. While if it has three 
prismatic joints (3R3P) the number drops to two. Further­
more any time three neighboring axes intersect or are paral­
lel, the number is at most 8. By using special structural 
restrictions, such as parallel and intersecting joint axes, it is 
also possible to get 2, 4, 8, and 12 maximum assembly 
variants at each pose [20]. Most recently the methods of 
Raghavan and Roth have also led to studies of special 
manipulator geometry which lead to overconstrained mecha­
nisms. Mavroidis and Roth [21] have developed a systematic 
method for discovering new overconstrained mechanisms, 
verifying previously known overconstrained mechanisms, and 
computing their input-output equations. 

Studies on the analysis of serial linkage manipulators are 
also presented in [14] and [22]. After eliminating all but one 
variable they obtain a single polynomial equation in one 
variable in the form of a determinant. They compute the 
roots of this polynomial using the eigenvalue formulation 
described earlier to minimize computation time. Similar 
eigenvalue formulations have also been studied by M. 
Ghazvini [23]. 

There is currently a lot of interest in different in-parallel 
and hybrid configurations [24], [25]. Husian and Waldron [26] 
present the equations for the inverse and direct kinematics 
problems of a mixed mechanism with two actuated joints and 
four passive joints in each of three parallel branches. The 
so-called generalized Stewart platform direct kinematics 
problem has attracted a lot of attention. It is a six degree-of-
freedom in-parallel mechanism with a base link, a coupler 
link, and six entensible legs connecting base and coupler. The 
direct kinematics problem involves computing the position of 
the coupler given the leg lengths. This problem was first 
posed to the mechanisms community by Prof. K. Waldron at 
a panel session at the 1990 ASME Mechanisms Conference. 
The problem in its most general form (attachment points of 
the legs to the base and coupler may be arbitrarily located) is 
algebraically quite difficult to solve. Special cases of the 
problem where the locations of the leg attachment points 
satisfy geometric constraints are algebraically less difficult 
and have been tackled by various researchers. For example 
Lin, Griffis, and Duffy [27] use variable elimination to effect 
an algebraic solution to the direct kinematics problem for the 
4-4 Stewart platforms (a special class). Zhang and Song [28] 
present a closed-form solution of the forward position analy­
sis for the case where the ball joints are in planes in the base 
and coupler. Innocenti and Parenti-Castelli [29] present a 
closed-form solution for the 5-5 Stewart platform. Their 
analysis results in a 40th degree polynomial equation in one 
unknown. Lazard and Merlet [56] use a combination of 
geometric and algebraic techniques to show that a particular 
three-legged version of the Stewart platform has twelve as­
sembly configurations. 

The problem of solving the direct kinematics of the most 
general form of the generalized Stewart platform has been 
approached by various methods. The original solution and 

proof that there are 40 solutions is due to Raghavan [30], 
who used the polynomial continuation method (to be dis­
cussed in Section 4). Wampler [54], Mourrain [31] and Lazard 
[32] proved the same result using algebraic techniques. Their 
proofs were nonconstructive, i.e., they did not reduce the 
problem to a single polynomial equations in one variable. 
Recently M. Husty [33] has succeeded in developing an 
elimination procedure which reduces the problem to a 40th 
polynomial equation in one variable. A crucial factor in the 
success of his approach is the use of Soma coordinates or 
equivalently quaternions to represent the displacement of a 
rigid body. The use of these coordinates in in-parallel linkage 
problems significantly reduces the overall Bezout count of 
the problem by eliminating numerous solutions at infinity 
which would be present if alternative representations such as 
Euler angles were used. Husty effects his solution by a 
sequential elimination of variables and by the repeated use of 
(a) Sylvester's Resultant for eliminating one variable and (£>) 
polynomial GCD computations. The problem of identifying a 
general Stewart platform with 40 real configurations is as yet 
unsolved. 

While on the subject of Dialytic Elimination and in-paral­
lel mechanisms, it is worth mentioning some important prob­
lems in mechanisms synthesis. The planar Burmester prob­
lem, viz., finding the points on a plane lying on a circle for 
several positions of the plane, is important for the design of 
four-bar linkages for rigid-body guidance, function genera­
tion, and for point-angle syntheses. It is solved algebraically 
by variable elimination in [34], pages 251-253. The spatial 
version of this problem, viz., finding lines in a body which 
have a constant angle and distance relative to a fixed line for 
up to five positions of a body, was solved by Roth [34]. 
Similar problems involving points on circles, cylinders, planes, 
etc. and including finding points on a rigid body lying on a 
sphere for several positions of the rigid body were solved 
numerically by Roth [35]. Recently the first algebraic solution 
of one of those problems was effected by C. Innocenti using 
Dialytic Elimination [36]. These problems are also examined 
in [1] where the m-homogenous Bezout number is used to get 
a tight bound on the number of finite solutions. 

Variable Elimination by Resultants. The determinantal 
polynomial equation in one variable obtained by Dialytic 
Elimination may also be obtained by a more structured and 
rigorous construction of an entity known as the resultant. 
The essential facts on variable elimination by means of 
resultants are presented in [37] and [38]. Alternative proce­
dures for resultant construction, due to A. Cayley [7], page 
87, and F. Macaulay [39] are also very interesting. All of 
these procedures generate enormous matrices for problems 
of moderate size and are generally considered impractical 
with current computing capabilities. In order to exploit spar-
sity in a given system of polynomial equations, Gelfand, 
Kapranov and Zelevinsky have modified the resultant con­
struction procedure and laid the foundations for defining an 
entity now generally known as the sparse mixed resultant 
[40], [41]. Algorithms for its construction have been proposed 
by Pedersen and Sturmfels [42] and the computational as­
pects of this problem have been investigated by Emiris and 
Canny [5], [6]. The algorithms proceed to construct the deter­
minantal equation similar to Dialytic Elimination except that 
the selection of power products used as multipliers to gener­
ate new equations is done in a systematic manner. This 
ensures that the coefficients of each equation appear in the 
determinant a prescribed number of times. For the ith equa­
tion this number Nt is given by 

Ni= E ( - 1 ) " " " W ( E G ; | (15) 

74/Vol. 117, JUNE 1995 Transactions of the ASME 
Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



where Qs is the convex polytope associated with the ;'th 
polynomial. This approach ensures that the final determinan-
tal equation in one variable contains no extraneous roots. 

4 Polynomial Continuation 
Polynomial Continuation is a numerical procedure for 

computing all solutions to a system of polynomial equations. 
The basis for this method is the fact that, generally, small 
changes in the parameters of the system of equations result 
in small changes in the numerical values of the solutions. 
Therefore if we know the solution to a system of polynomial 
equations A, we may compute the solutions of a similar 
system B by tracking the solutions of A as we gradually 
modify its coefficients to those of B in small increments. A 
detailed tutorial on the subject by Wampler et al. is available 
in [1]. The essential ideas are as follows. Consider the follow­
ing system of two polynomial equations in the two variables 

/ , : ( x , - 5 ) 2 + x 2 = 52 , 

f2: Xj + x2 — 4 . 

Simplification and Initial Solution. We omit some terms 
of the two polynomial and add new ones, getting the follow­
ing decoupled system: 

gl: x\ + ( - 4 9 + 230 = 0, 

g2: x\ + ( - 1 4 4 - 16J ) = °-

The roots of g, are ± ( — 7.18 + 1.6i). The roots of g2 are 
+ (12.018 + 0.6650. We thus have the following four pairs as 
starting (xu x2) values for the "deformation phase": 

( -7 .18 + 1.6/, 12.018 + 0.6650, 

( -7 .18 + 1.6/, -12.018 - 0.6650, 

(7.18 - 1.6;, 12.018 + 0.6650, 

(7.18 - 1.6/, -12.018 - 0.665/). 

Next we combine fu f2 and gu g2 with an additional 
parameter t (the parameter which controls the deformation) 
as follows: 

A i = ' ( / i ) + ( i - ' ) G n ) > 

h2 = t(f2) + (l-t)(g2). (16) 

When t = 0, we get the simplified system glt g2, and when 
t = 1, we get the original system fvf2- We vary t from 0 to 1 
in small steps and use the Newton-Raphson iteration proce­
dure to find the solutions of the deformed polynomials at 
each step of the deformation. The solutions from the previ­
ous deformation step serve as the initial guess for the current 
step. The solutions at t = 1 are the solutions of the original 
system of polynomials. 

A systematic procedure for constructing the start system 
(system A above) to solve a system of polynomials / „ . . . , / „ 
for the variables xv ..., xn is as follows. Create a new 
system of polynomials gt = pf'xf' - qf', where dt is the 
degree of ft and ph qt are random (non-zero) numbers. The 
initial guess for the /th variable x,- then consists of the set. 

1i ) 
ak—, k = 1, . . . , d:> where ak are the d\" roots of unity. 

Pi I 
Start Systems for Multi-Homogeneous Systems. In Sec­

tion 2 we stated that the m -homogeneous form often elimi­
nates solutions at infinity. If the m-homogeneous Bezout 
number for a given system fv . . . , / „ is smaller than the 
general Bezout number for a particular grouping of variables 
we would like to construct a start system with the same 

m-homogeneous Bezout number and perform a coefficient 
deformation on this system to compute the solutions of the 
given system fu . . . , / „ . The advantage is this approach is 
that we follow fewer paths than if we use the form with the 
regular Bezout number. 

Continuing with the notation of Section 2, let dj, be the 
degree of equation / with respect to group j . Then the 

m 
corresponding start equation is a product of factors IT /./(x-,, 

7 = 1 

. . . , Xjk) = 0,-where the degree of /;7 is djt. This gives a start 
system with an identical multi-homogeneous structure as the 
target system. Let us demonstrate this with the sample prob­
lem from the previous section. 

/ , : ( x , - 5 ) 2 + x 2 = 52 , 

j 2 : xx + x2 = 5 . 

For the variable grouping {x,}, {x2}, the table of degrees of 
the equations in the two groups is: 

/ , 

h 

Group 1 {xj 
2 
2 

Group 2 {x2} 
2 
2 

So we may construct a start system gu g2 as follows. 

gl = (x 2 - l ) ( x 2 - 1), 

g2 = ( x 2 - 4 ) ( x 2 - 4 ) . 

The degree table of gu g2 is the same as that of fx, f2. The 
solutions to glt g2 may be written by inspection by noting 
that at least one factor from each equation must vanish at a 
solution. The solutions are (1, 2), (1, - 2 ) , ( - 1 , 2), ( - 1 , - 2 ) , 
(2, 1), (2, - 1 ) , ( - 2 , 1), ( - 2 , - 1 ) . The Polynomial Continua­
tion procedure offers no a priori information regarding the 
number of real solutions to a given system of equations. A 
system of polynomials with real-valued coefficients may have 
complex-valued solutions. It is therefore generally advisable 
to architect a start system such that all the start solutions are 
complex-valued. By doing this we ensure that all solutions of 
the target system (the system to be solved) are "hit" by the 
solution-tracking procedure. This may be achieved by con­
structing a start system with random complex-valued coeffi­
cients. 

Another trick to safeguard the numerical stability of the 
process of deforming the start system A into the target system 
B is to use a scheme of the form 

H(x, t) = (1 - t)ei&A{x) + tB(x), 

where © is a random real number. Note that the factor e'@ 

could also be used in Eqs. (16) in the illustrative example. 
This factor improves the numerical stability of the continua­
tion process by avoiding situations where the Jacobian of 
H(x, t) is singular. Singularity of the Jacobian causes a 
failure of the Newton-Raphson based solution-following pro­
cedure and therefore prevents the computation of all solu­
tions of system B. 

The Projective Transformation. A crucial detail in the 
successful implementation of Polynomial Continuation is the 
use of the projective transformation to comfortably track 
solutions at infinity. To do this we associate one homogeniz­
ing variable y-0 to each of the variable groups of a w-homo-
geneous grouping and make the substitution (x;- <- x ; / y 0 ) . 
Then clearing denominators we get a system of n polynomi­
als in n + m variables {xn , . . . , x u . , _y10}, {x21, . . . , x2kv 

y20}, ..., {xml, . . . , xmkm, ym0}. This is an indeterminate 
system or underconstrained system. This indeterminacy may 
be resolved by a procedure due to Morgan [43]. We introduce 

Special 50th Anniversary Design Issue JUNE 1995, Vol. 1 1 7 / 7 5 
Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



an inhomogeneous linear equation for each homogeneous 
group, i.e., 

cj0y,o + CjiXji • • • +cjkjXjkj - 1 = 0 , ( j = 1, . . . , m) (17) 

where y,0 is the homogeneous variable for group / and the 
coefficients c are random complex numbers. These equations 
are used to eliminate the homogeneous variables from the 
system of n homogeneous equations in n + m variables to 
obtain a new system of n inhomogeneous equations in n 
unknowns. This new system may be solved by deforming the 
coefficients of an appropriate start system and tracking the 
solutions. These computed solutions must then be used in 
Eqs. (17) to compute the corresponding values of yJQ, j = 1, 
. . . , m. If y-0 = 0, then the corresponding solution of the 
original system of equations is at infinity. If y.-0 is non-zero 
the corresponding finite solution is given by x(j/ym, j = 1, 

Coefficient Continuation and Parameter Continuation. 
Coefficient Continuation is the name given to the process of 
solving new instances of a problem, a general case of which 
we have already solved. Here the general case becomes the 
start system and the new instance becomes the target or end 
system. We track only the paths beginning at the finite 
solutions of the start system. These converge to the finite 
solutions of the end system. By avoiding all of the paths 
corresponding to the solutions at infinity, this procedure 
results in significant computational savings. If the coefficients 
of a given system of equations are functions of certain 
linkage structural parameters (as is often the case in linkage 
analysis problems) we may use a procedure called Parameter 
Polynomial Continuation. First we solve a generic instance of 
the problem using Polynomial Continuation. This system and 
its solutions become the start system for all other instances of 
the problem. We solve new instances by deforming the struc­
tural parameters of the start system into those of the end 
system. A detailed presentation of these topics is available in 
[1]. 

Applications. Continuation has been used to solve a vari­
ety of problems in kinematic analysis and synthesis. It's 
earliest known application in mechanisms is the so-called 
Bootstrap Method developed in the 1960s by Roth and 
Freudenstein [44]. This was applied to the synthesis of geared 
five-bar mechanisms for path generation. Roth and Freuden­
stein invented several techniques to avoid nonconvergence 
and to direct the continuation towards desirable solutions. 
Many advances have been made in the subject since then and 
the polynomial continuation procedures presented in the 
preceding sections represent the current state of the art. A 
thorough and complete treatment of the subject may be 
found in [1]. In recent times two of the most sought after 
pieces of information in robot kinematics have come to us 
from this method. The numerical proof that the inverse 
kinematics of a general 6R manipulator has 16 solutions [45] 
and the proof that the so-called generalized Stewart platform 
has 40 solutions for the direct kinematics problem [30] were 
first obtained by the continuation method. Most importantly, 
these were done while the true numbers were still in doubt, 
and after some "proofs"of incorrect misleading numbers had 
been obtained by other methods. This speaks very highly of 
this method. Another noteworthy application of Polynomial 
Continuation was the complete solution of the nine-position 
four-bar linkage synthesis problem [46]. This involves finding 
all four-bar linkages whose coupler curve passes through nine 
prescribed points in a plane. Wampler, Morgan, and Sommese 
showed that there are generally 1442 solutions to this prob­
lem. These solutions along with their Robert's cognates give a 
total of 4326 solutions. Other important applications are the 
solution of the planar and spatial Burmester problems. The 

planar Burmester problem requires the computation of points 
on a plane which lie on a circle for five given positions of the 
plane. In general, there are four points satisfying this re­
quirement and they are known as the Burmester points. The 
spatial version of this problem requires the computation of 
lines in a body which remain at a fixed distance and angle 
from a fixed line, there are six such lines. There are many 
other spatial synthesis problems that are easily solved by 
polynomial continuation. One of the most important is the 
computation of points in a rigid body which lie on a sphere 
for seven given positions of the rigid body [1]. In general, 
there are twenty such points. 

5 Grobner Bases 
The Grobner bases method makes it possible to convert a 

set of polynomials fu f2, •••, /„, into an equivalent set g,, 
g2, . . . , g,„, such that the new set has desirable properties 
which may be exploited in the solution of various problems 
concerning the ideal generated by / , , f2, . . . , / „ . The ideal 
generated by a set of polynomials / , , f2, • • • , / „ in the 
variables xx, x2, ..., xn may be loosely defined as the set of 
all elements of the form /,£>, + f2b2 + . . . +/„£>„ where bx, 
b2, ..., bn are arbitrary elements of the set of all polynomi-
(l is i n Xiy - ^ 9 ' • • * ' Xy. 

The two sets / , , f2, ..., /„ and glt g2, . . . , gm are 
equivalent "bases" in the sense that they generate the same 
ideal and therefore have the same set of zeros. For our 
purposes, it is sufficient to understand that when the terms of 
fi,f2, • • • , / „ , and every intermediate result of the algorithm, 
are arranged in the so-called lexicographic order (to be 
described) the set gu g2, . . . , gm is triangularized, i.e., g, 
contains only x1 and each subsequent polynomial contains at 
most one new variable. This reduces the task of solving a 
system of multivariate polynomial equations to that of solving 
a sequence of univariate polynomial equations. The following 
material is adapted from the work of B. Buchberger [47]. 

The lexicographic ordering states that x\lx'2
2 ... x'/^x'/ 

< x{1 x'2
2... x^s^ xj.r if the leftmost nonzero entry in the 

difference of the exponent vectors (i.e., (ilt i2, . . . , ;',.) - (jv 

j 2 , . . . , ;',.)) is negative. For example, x\x\x\ < x\x\x\, 
x\x\x\ < x\x\x\. There are other orderings such as reverse 
lexicographic ordering, graded lexicographic ordering, etc. A 
good description of these is presented in [48]. 

Given two polynomials / and g, we say / may be reduced 
modulo g, if and only if a term in / may be deleted by 
subtracting an appropriate multiple of g from / . For this the 
power product of the leading term of g must divide the 
power product of some term in / . For example if / = 3x^x2 

+ 5xxx2 + 2xx + 8 and g = lx\ + Ax2 + 14, we may reduce 
/ modulo g as follows: 

/ ' = / - ( - \ x 2 g + Sxixl + 2xx - ( y J*! " 6x2 + 8 

Given a set of polynomials G and another polynomial / , 
we say / is in normal form modulo G, if no further reduction 
of / modulo the polynomials in G is possible. 

Definition: Grobner Basis. A set of polynomials G is 
called a Grobner basis if and only if for all / , if hx and h2 

are normal forms of / modulo G, then hx = h2. 
The S-polynomial of a pair of polynomials fx, f2, is de­

fined as a polynomial h such that 

h = ( & A ) / i " (cx/c2)(b/s2)f2, 

where c,- is the leading coefficient of fit st is the leading 
power product of /,-, and b is the least common multiple of 
(su s2). 

Buchberger's algorithm [47] for computing the Grobner 
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basis G of a given set of polynomials F is as follows. We 
assume that the terms of F are arranged such that the 
previously stated requirements on hierarchy and ordering of 
terms are satisfied and further that the terms are arranged in 
decreasing order from left to right. 
(1) Assign all of the elements of F to G, i.e., G = F. 
(2) Construct a set B of all pairs of polynomials in G, i.e., 

B = M, ty\fi> fj e G> fi * ft-
(3) While B is not empty perform the following: 

(a) Pick an element (/ ;, f) of B. 
(b) Remove this element from B, i.e., B = B — {(/), 

(c) Compute h, the ^-polynomial of (/;, f). 
(d) Compute h', the normal form of h modulo G. 
(e) If h' is not equal to 0 perform the following: 
( / ) Include h' in G, i.e., G = G U {h'}\ 
(g) Update B, i.e., B = B U {(g, /z')lg e G}. 

The above steps may be illustrated by the following example. 

/ , : ( * , - 5 ) 2 + * 2 = 52 , 

f2: x 2 + x 2 = 42. 

The equations may be rewritten in lexicographic order as 
follows. 

fx: x\ + x2 — 10xj, 

f2: xf + x2 — 16. 

G = {/„ f2l 
B = {(/„ / 2 » . 
Let us operate on the element (/, , f2) of B. B = B - {(/,, 
/2)} = O- The 5-polynomial of (/1; f2) is / i - / 2 = - 1 0 x , 
+16. This is in normal form modulo G. Let us call it /3 . We 
then update G and 5 . G = {/lf f2, / 3 ) , 5 = {(/„ / 3 ) , (/2 , 
/3)}. Next let us operate on the element ( / „ / 3 ) of 5 . 5 is set 
to B - {(/„ /3)} = {(/2, /3)}. The S-polynomial of ( / „ / 3 ) is 
* i / i + CJC|/10) / 3 = (16/10)xf + XJ5 - 10x2. This may be 
further reduced modulo the elements of G. Subtracting 
(16/10) fx from it we get xf - (116/10) x\ + 16x,. Adding 
(x2/10) / 3 to this polynomial we get — 10x2 + 16x,. Sub­
tracting X, times f3 from this polynomial we get zero. 
Therefore the normal form of the ^-polynomial of (/, , / 3 ) 
modulo G is 0. Next we may examine the element (/2, / 3 ) of 
B. B is set to B - {(/2, /3)} = {}. The 5-polynomial of (/2 , 
/ 3 ) is (16/10)x2 + x? - 16*1. Subtracting (16/10)/, from this 
polynomial gives x, - (16/10)x2. Adding (x2 /10)/3 to this 
polynomial gives zero. Therefore the normal form of the 
S-polynomial of (/2 , / 3 ) modulo G is 0. Since B is empty, the 
algorithm has terminated and G is a Grobner basis. The 
element f3 when set equal to zero is a univariate polynomial 
with the root x1 = 1.6. Substituting this value of xl into jx 

and f2 gives the following polynomials: / , : x2 — 13.44 = 0, 
/ 2 : xf - 13.44 = 0. They both vanish for the same values of 
x2, i.e., ±3.66. So the solutions to the given system of 
equations are (1.6, ±3.66) and this is in agreement with the 
other methods. If upon substitution of the value of xx into fr 

and f2 we got two different polynomials, we would have to 
compute their greatest common divisor (GCD). The roots of 
this GCD would give the acceptable values of x2 correspond­
ing to the solutions of the system fv f2. 

Applications. The existence of Grobner bases was shown , 
in 1964 by H. Hironaka [49] who use the term "standard 
bases." Grobner bases have been applied to various problems 
including the solution of multivariate polynomial equations, 
geometrical theorem proving, and curve and surface impliciti-
zation [50], [51]. To date this method has proved to be 
inefficient for the types of problems commonly encountered 
in mechanism analysis because it generates a large number of 
intermediate polynomials and excessive computational time. 
However variants using the reverse lexicographical ordering 

have proved to be useful in determining the number of 
solutions theoretically possible in various kinematic analysis 
problems. 

The most notable recent applications of Grobner bases to 
mechanisms problems are the works of Mourrain [31], Lazard 
[32], and Faugere and Lazard [52] in connection with the 
direct kinematics problem of the general Stewart platform. 
Lazard represents rigid-body motions as a subvariety of R15 

where the coordinates are the coefficients of R, the rotation 
matrix, T the translation vector, and a vector U defined as 
R'T. The Grobner basis of the ideal of the equations of this 
variety is computed and shown to be of dimension 6 and 
degree 20. The intersection of this variety with the 6 con­
straint equations representing the legs of the Stewart plat­
form is then shown to be a set of dimension 0 and degree 40. 
Mourrain uses Euler parameters to represent rotations and a 
reverse lexicographical ordering to compute the Grobner 
basis of the ideal of the 6 constraint equations representing 
the 6 legs of the Stewart platform. This Grobner basis is 
shown to have codimension 6 and degree 40. Using a Grob­
ner bases computer implementation package named Gb, 
Faugere and Lazard have determined the generic number of 
assembly configurations for in-parallel platform manipulators 
when special classes are created by requiring that two or 
more of the six spherical joints (in either the base or the 
platform) coincide. They also show that the condition that 
some or all of the centers of the spherical joints lie in a single 
plane does not change the generic configurations count for 
each special class. 

6 Summary and Conclusions 
We have reviewed three methods for solving systems of 

polynomial equations arising in kinematic analysis. These are 
the Dialytic Elimination method, Polynomial Continuation, 
and Grobner bases. In our experience, the Dialytic Elimina­
tion procedure is very useful for small problems with up to 6 
variables. It gives the analyst algebraic and geometric insight 
into the problem by permitting studies of the solution space 
as a function of a linkage's structural parameters. When 
combined with the eigenvalue formulation, the Dialytic Elim­
ination procedure often yields computationally-fast solution 
algorithms. This is most beneficial in time-critical applica­
tions such as computer-aided design (CAD) systems, off-line 
manufacturing simulation (CAM) systems, and "real-time" 
motion planning and navigation systems. For example, 
Manocha and Canny [13] solve the general 6R inverse kine­
matics problem in 11 milliseconds on an IBM RS/6000 work­
station using 64 bit IEEE floating point arithmetic. 

Polynomial Continuation is most appropriate for large 
problems with many solutions. It does not readily provide the 
insight available through algebraic methods but it may be 
adapted to provide equivalent information. Conceptually, this 
procedure is very easy to understand and use. The traditional 
complaint against this procedure has been that it is very 
time-consuming and computation intensive. However, recent 
developments such as the use of the projective transforma­
tion, the multi-homogeneous formulation, and Parameter 
Continuation put it on par with any of the other solution 
methods. For example, Parameter Continuation is used to 
compute all 16 solutions of the general 6R inverse kinematics 
problem in 10 seconds on an IBM 370-3090 using double 
precision arithmetic [53], and all 40 solutions of the general 
Stewart platform forward position problem in 14 seconds on 
an IBM RS/6000 using double precision [54]. Another advan­
tage of continuation is that it usually can handle special cases 
without the need for special logic or derivations. 

We have had very limited experience with the Grobner 
bases method and we have not used it to solve any significant 
problem in kinetic analysis. Our colleagues who have exten-
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sive experience with this method indicate that it suffers from 
exploding computations due to the large number of interme­
diate polynomials generated. Therefore its use in the indus­
trial setting is questionable at the present time. Recent 
improvements seem to have considerably reduced the compu­
tation times [52], still the reported times are orders of magni­
tude greater than for the other methods. 

There is a lot of interest in these three methods and 
various researchers are developing analytical, graphical [55], 
and numerical improvements. Based on our experience with 
these methods, we recommend that the analyst use a combi­
nation of Dialytic Elimination and Polynomial Continuation 
because they complement each other. Small problems may be 
solved easily using Dialytic Elimination. For larger problems, 
Polynomial Continuation may be used to determine the num­
ber of finite solutions. If this number is not too large (say, 
under 30) one may try to construct a solution using Dialytic 
Elimination. The eigenvalue formulation may be used for 
time-critical applications. If the number of solutions is large, 
it is advisable to stick with Parameter Continuation or Coeffi­
cient Continuation. 

7 Open Problems 
The following is a list of topics and directions for future 

research that may be of interest to the mechanisms commu­
nity. 
(1) Identification of a general 6-6 Stewart platform with 40 
distinct real-valued configurations. 
(2) Development of a Dialytic Elimination-based solution 
procedure for the general 6-6 Stewart platform forward posi­
tion problem. M. Husty [33] has indicated in his work that 
he generates intermediate polynomials of high degree (320) 
but that his final polynomial in one variable is of degree 40. 
This suggests the presence of ideal properties similar to the 
p.p, p.I, p X 1, (p.p)l — 2(p.l)p properties used in the general 
6R inverse kinematics solution. The identification and use of 
such properties in constructing a univariate determinantal 
equation for this problem would be most interesting. 
(3) Development of a Unified Solution Procedure for all 
Stewart Platforms. Our work on the general 6R inverse 
kinematics problem yielded a solution algorithm which we 
then adapted to arbitrary series chains with R and P joints. 
This resulted in a unified solution procedure for the kine­
matic analysis of arbitrary series chains. The development of 
a similar theory for arbitrary Stewart platforms would be 
most useful and enlightening. 
(4) Evaluation of Sparse Elimination Theory for Kinematic 
Analysis. The sparse resultant was presented briefly in Sec­
tion 3. The theory is fairly new and its appropriateness for 
kinematic analysis is as yet unexplored. An objective evalua­
tion of this new tool would be most beneficial to the mecha­
nisms community. 

References 
1. Wampler, C , Morgan, A., and Sommese, A., 1990, "Numerical 

Continuation Methods for Solving Polynomial Systems Arising in Kine­
matics," ASME Journal of Mechanical Design, Vol. 112, pp. 59-68. 

2. Bernstein, D. N., 1975, "The Number of Roots of a System of 
Equations," Fund. Anal, and Appl., Vol. 9, No. 2, pp. 183-185. 

3. Khovanskii, A. G., 1978, "Newton Polyhedra and the Genus of 
Complete Intersections," Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 12, 
No. 1, pp. 51-61, Jan. -Mar . 

4. Kushnirenko, A. G., 1976, "Newton Polytopes and the Bezout 
Theorem," Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 10, No. 3, 
Jul .-Sep. 

5. Canny, J., and Emiris, I., 1993, "An Efficient Algorithm for the 
Sparse Mixed Resultant," Proc. 10th Intern. Symp. on Applied Algebraic 
Algorithms and Error-Correcting Codes (G. Cohen, T. Mora, and 
O. Moreno, eds.), Led. Notes in Comp. Science, 263, pp. 89-104, Springer 
Verlag, May. 

6. Emiris, I., and Canny, J., 1993, " A Practical Method for the Sparse 
Resultant," Proc. ACM Intern. Symp. on Symbolic Algebra and Computa­
tion, July, pp. 183-192. 

7. Salmon, G., 1964, Lessons Introductory to the Modern Higher Alge­
bra, Chelsea Publishing Co., NY. 

8. Roth, B., 1994, "Computational Advances in Robot Kinematics," 
Advances in Robot Kinematics and Computational Geometiy, (J. Lenarcic 
and B. Ravani, eds.), Kluwer Academic Publishers, Dordrecht, pp. 7-16. 

9. Roth, B., 1993, "Computations in Kinematics," Computational Kine­
matics, (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer Academic 
Publishers, Dordrecht, pp. 3-14. 

10. Horowitz, E., and Sahni, S., 1975, "On Computing the Exact 
Determinant of Matrices with Polynomial Entries," J. of the ACM, Vol. 
22, No. 1, pp. 38-50. 

11. Bocher, M., 1924, Introduction to Higher Algebra, Macmillan Pub­
lishing Co. 

12. Golub, G., and Van Loan, C , 1982, Matrix Computations, Johns-
Hopkins University Press. 

13. Manocha, D., and Canny, J., 1994, "Efficient Inverse Kinematics 
for General 6R .Manipulators," IEEE Trans, on Robotics and Automation, 
October, Vol. 10, No. 5, pp. 648-657. 

14. Kohli, D., and Osvatic, M., 1993, "Inverse Kinematics of General 
6R and 5R,P Serial Manipulators," ASME Journal of Mechanical Design, 
Vol. 115, pp. 922-931. 

15. Duffy, J., and Crane, C , 1980, "A Displacement Analysis of the 
General Spatial 7-Link 1R Mechanism," Mechanism and Machine Theory, 
Vol. 15, pp. 153-169. 

16. Duffy, J., 1980, Analysis of Mechanisms and Robot Manipulators, 
Edward Arnold. 

17. Lee, H. Y., and Liang, C. G., 1988, "Displacement Analysis of the 
General Spatial 7-Link 1R Mechanism," Mechanism and Machine Theory, 
Vol. 23, pp. 219-226. 

18. Raghavan, M., and Roth, B., 1990, "Kinematic Analysis of the 6R 
Manipulator of General Geometry," Robotics Research, The Fifth Inter­
national Symposium, eds. H. Miura and S.-Arimoto, MIT Press, pp. 
263-270. 

19. Raghavan, M., and Roth, B., 1993, "Inverse Kinematics of the 
General 6R Manipulator and Related Linkages," ASME Journal of Me­
chanical Design, Vol. 115, No. 3, pp. 502-508. 

20. Mavroidis, C , and Roth, B., 1994, "Structural Parameters Which 
Reduce the Number, of Manipulator Configurations," ASME Journal of 
Mechanical Design, Vol. 115, pp. 3-10. 

21. Mavroidis, C , and Roth, B., 1994, "Analysis and Synthesis of 
Overconstrained Mechanisms," Proceedings of the 23rd ASME Mechanisms 
Conference, Minneapolis, Sept., DE-Vol. 70, Mechanism Synthesis and 
Analysis, pp. 115-133. 

22. Kohli, D., and Osvatic, M., 1992, "Inverse Kinetics of General 
4R2P, 3R3P, 4R1C, 2R2C, and 3C Manipulators," Proceedings of the 22nd 
ASME Mechanisms Conference, Scottsdale, Sep., DE-Vol. 45, pp. 129-137. 

23. Ghazvini, M., 1993, "Reducing the Inverse Kinematics of Manipu­
lators to the Solution of a Generalized Eigenproblem," Computational 
Kinematics, (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer Aca­
demic Publishers, Dordrecht, pp. 15-26. 

24. Waldron, K., Raghavan, M., and Roth, B., 1989, "Kinematics of a 
Hybrid Series-Parallel Manipulation System," ASME Journal of Dynamic 
Systems, Measurement, and Control, June, pp. 211-221. 

25. Lee, K.-M., and Shah, D. K., 1987, "Kinematic Analysis of a Three 
Degrees of Freedom In-parallel Actuated Manipulator," Proceedings of 
the 1987 IEEE Int'l Conf. on Robotics and Automation, Vol. 1, pp. 
345-350. 

26. Husain, M., and Waldron, K., 1994, "Position Kinematics of a 
Three-Limbed Mixed Mechanism," ASME Journal of Mechanical Design, 
Vol. 116, pp. 924-929. 

27. Lin, W., Griffis, M., and Duffy, J., 1992, "Forward Displacement 
Analyses of the 4-4 Stewart Platforms," ASME Journal of Mechanical 
Design, Vol. 114, pp. 444-450. 

28. Zhang, C , and Song, S., 1994, "Forward Position Analysis of 
Nearly General Stewart Platforms," ASME Journal of Mechanical Design, 
Vol. 116, No. 1, pp. 54-60. 

29. Innocenti, C , and Parenti-Castelli, V., 1993, "Closed-Form Direct 
Position Analysis of a 5-5 Parallel Mechanism," ASME Journal of Me­
chanical Design, Vol. 115, Sep. pp. 515-521. 

30. Raghavan, M., 1993, "The Stewart Platform of General Geometry 
has 40 Configurations," ASME Journal of Mechanical Design, Vol. 115, 
No. 2, June, pp. 277-282. 

31. Mourrain, B., 1993, "The 40 Generic Positions of a Parallel Robot," 
Proc. ACM Intern. Symp. on Symbolic and Algebr. Computation, pp. 
173-182, Kiev, July. 

32. Lazard, D., 1993, "On the Representation of Rigid-Body Motions 
and its Applications to Generalized Platform Manipulators," Computa­
tional Kinematics, (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer 
Academic Publishers, Dordrecht, pp. 175-181. 

33. Husty, M., 1994, "An Algorithm for Solving the Direct Kinematic 
of Stewart-Gough-type Platforms," preprint, McGill Research Centre for 
Intelligent Machines, June 30. 

78/Vol. 117, JUNE 1995 Transactions of the ASME 
Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



34. Bottema, O., and Roth, B., 1990, Theoretical Kinematics, North 
Holland, 1979 (reprinted by Dover Publications, NY). 

35. Roth, B., 1967, "The Kinematics of Motion through Finitely Sepa­
rated Positions," ASME Journal of Applied Mechanics, Vol. 34, No. 3, pp. 
591-598. 

36. Innocenti, C , 1994, "Polynomial Solution of the Spatial Burmester 
Problem," Proceedings of the 23rd ASME Mechanisms Conference, Min­
neapolis, Sep., DE-Vol. 70, Mechanism synthesis and analysis, pp. 
161-166. 

37. Artin, E., 1955, Elements of Algebraic Geometry, lecture notes from 
spring semester—1955 at New York University, (notes by G. Bachman), 
(available at Stanford University Mathematic Library). 

38. van der Waerden, B. L., 1964, Modern Algebra, Vol. 2, Frederick 
Ungar Pub. Co. 

39. Macaulay, F. S., 1964, The Algebraic Theory of Modular Systems, 
Stechert-Hafner Service Agency. 

40. Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., 1991, 
"Discriminants of Polynomials in Several Variables and Triangulations of 
Newton Polytopes," Leningrad Math. J., Vol. 2, No. 3, pp. 449-505 
(Translated from Algebra i Analiz, Vol. 2, 1990, pp. 1-62). 

41. Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., 1994, 
Discriminants and Resultants, Birkhauser, Boston. 

42. Pedersen, P., and Sturmfels, B., 1993, "Product Formulas for Re­
sultants and Chow Forms," Math. Zeitschrifl., Vol. 214, pp. 377-396. 

43. Morgan, A., "A Transformation to Avoid Solutions at Infinity for 
Polynomial Systems," Appl. Math. Comput., Vol. 18, pp. 77-86. 

44. Roth, B., and Freudenstein, F., 1963, "Synthesis of Path-Gener­
ating Mechanisms by Numerical Methods," ASME Journal of Engineering 
for Industry, Vol. 85, pp. 298-307. 

45. Tsai, L-W., and Morgan, A., 1985, "Solving the Kinematics of the 
Most General Six- and Five-Degree-of-Freedom Manipulators by Contin­
uation Methods," ASME Journal of Mechanisms, Transmissions, and Au­
tomation in Design, Vol. 107, pp. 189-200. 

46. Wampler, C , Morgan, A., and Sommese, A., 1992, "Complete 

Solution of the Nine-Point Path Synthesis Problem for Four-bar Link­
ages,"ASME Journal of Mechanical Design, Vol. 114, March, pp. 153-159. 

47. Buchberger, B., 1985, "Grobner Bases: An Algorithmic Method in 
Polynomial Ideal Theory," Chapter 6, Multidimensional System Theory, (N. 
K. Bose, ed.), D. Reidel Pub. Co. 

48. Cox, D., Little, J., and O'Shea, D., 1992, Ideals, Varieties, and 
Algorithms, Springer-Verlag. 

49. Hironaka, H., 1964, "Resolution of Singularities of an Algebraic 
Variety Over a Field of Characteristic Zero: 1, 2," Annals of Math., Vol. 
79, pp. 109-326. 

50. Kapur, D., and Lakshman, Y. H , 1992, "Elimination Methods: An 
Introduction," Symbolic and Numerical Computation for Artificial Intelli­
gence, (B. Donald, D. Kapur, and J. Mundy, eds.) pp. 45-89, Academic 
Press. 

51. Kutzler, B., and Stifter, S., 1986, "On the Application of Buch-
berger's Algorithm to Automated Geometry Theorem Proving," Jour, of 
Symb. Comp., Vol. 2, pp. 389-397. 

52. Faugere, J. C , and Lazard, D., 1995, "The Combinatorial Classes 
of Parallel Manipulators," Mechanism and Machine Theory, in press. 

53. Wampler, C , and Morgan, A., 1991, "Solving the 6R Inverse 
Position Problem Using a Generic-Case Solution Methodology," Mecha­
nism and Machine Theory, Vol. 26, pp. 91-106. 

54. Wampler, C , 1994, "Forward Displacement Analysis of General 
Six-in-Parallel SPS (Stewart) Platform Manipulators using Soma Coordi­
nates," GM R & D Publication 8179, May (submitted to Mechanism and 
Machine Theory). 

55. Zanganeh, K. E., and Angeles, J., 1993, "The Semigraphical Solu­
tion of the Direct Kinematics of General Platform Manipulators," Com­
putational Kinematics (J. Angeles, G. Hommel, and P. Kovacs, eds.) 
Kluwer Academic Publishers, Dordrecht, pp. 165-174. 

56. Lazard, D., and Merlet, J. P., 1994, "The (True) Stewart Platform 
has 12 Configurations," Proceedings of the 1994 IEEE Robotics and Au­
tomation Conference, San Diego, May, pp. 2160-2165. 

Special 50th Anniversary Design Issue JUNE 1995, Vol. 117/79 
Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




