
796 IEEE Transactions on Dielectrics and Electrical Insulation Vol. 2 No. 5, October 1995 

Automated Recognition of 
Partial Discharges 

A. Krivda 
High Voltage Laboratory, 

Delft University of Technology, 
The Netherlands 

ABSTRACT 
In this work an overview of automated recognition of partial 
discharges (PD) is given. The selection of PD patterns, extrac- 
tion of relevant information for PD recognition and the struc- 
ture of a data base for PD recognition are discussed. Math- 
ematical methods useful for the design of the data base are 
examined. Classification methods are interpreted from a ge- 
ometrical point of view. Some problems encountered in the 
automation of PD recognition also are addressed. 

1. INTRODUCTION 

HE occurrence of PD in electrical equipment had T been recognized as early as the beginning of the cen- 
tury. As it became clear that PD has deleterious effects 
on insulation [l], much effort was spent on investigat- 
ing this phenomenon. New measurement methods were 
introduced, the physics and the chemistry of PD were 
studied [2-61. PD detection gradually evolved into an in- 
dispensable tool for the evaluation of modern insulating 
constructions [7]. 

If PD is found in insulating systems, then, in many 
cases, it is important to identify its character, i.e., in- 
ternal discharges, surface discharges, corona, etc. Such 
information is vital for the manufacturer, the test insti- 
tute, or the user of electrical equipment. For many years 
recognition was performed by eye, i.e., by observation of 
PD patterns on the power frequency ellipse on an oscillo- 
scope screen [3,8]. The interpretation of the patterns on 
the ellipse is, however , dependent on the knowledge and 
experience of experts. The use of computers in PD mea- 
surements [9] opened up new possibilities for automated 
PD recognition [lo-381. It is the purpose of this review 
to give an overview of efforts in the field of automated 
PD recognition and provide a basic bibliography relevant 
to problems encountered during the development of au- 
tomated PD recognition systems. 
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Figure 1. A general recognition procedure. 

2. PD RECOGNITION 
A general recognition procedure is shown in Figure 1 

[39]. It consists of measurements which yield a PD pat- 
tern, feature extraction from the measured pattern, clas- 
sification of the pattern, and a decision process. 
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2.1. PATTERNS FOR P D  RECOGNITION 
PD measurement can be performed in many ways, e.g., 

by measuring the charge displacement in the leads, elec- 
tromagnetic waves, acoustic waves, light [3,4]. The mea- 
surement results in a pattern. There are many types of 
patterns which can be used for PD recognition. Those 
which have already been in some way employed to solve 
this problem are described here. 

2.1.1. CHARGE DISPLACEMENT DETECTION 

By measuring the charge displacement in the leads, PD 
pattern can be observed in the form of various discharge 
distributions and individual pulses. 

(4 
Figure 2. 

H,((o, q )  patterns of (a) multiple-point corona in 
air, at the HV side, (b) surface discharges in air, 
with the rod at the HV side, (c) dielectric bound- 
ed cavity, (d) air bubbles in oil. 

(c> 

Hn(cp, q )  and related distributions 
Figure 2 describes the relationship between the num- 

ber, magnitude and power frequency phase angle of a 
PD event [40-431. Other distributions which can be de- 
rived from the Hn(cp, q )  distribution are e.g., Hqmo+(p) 
the maximum pulse height distribution, Hq,((p) the mean 
pulse height distribution, Hn(cp) the pulse count distribu- 
tion, H ( q )  the number of discharges vs. discharge magni- 
tude, H ( p )  the number of discharges vs. discharge energy, 
see Figure 3 [44-481. The distributions can be obtained 
by measuring discharges with time-resolved techniques 
[49] or by conventional discharge detection systems (IEC 
270) 1481. The distributions proved to be very useful for 
recognition of discharging defects [lo-16,18-26,30,35,37, 
38,42,43]. It has also been observed that the distribu- 
tions can significantly change during the aging of insula- 
tion [lo,  30,41,50-681. This fact has been used to assess 
the degree of insulation degradation and the results have 
been encouraging [30,53,58,59,62,64]. 

It should be kept in mind that many effects such as the 
availability of starting electrons, level of a test voltage, 
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Figure 3. 
Hqmor(p), Hqn(p), Hn(v), H ( q )  and H ( P )  distri- 
butions of surface discharges in air derived from 
the Hn((p, q )  pattern shown in Figure 2. 

strongly influence the shape of the discharge distribu- 
tions. These effects must be kept in mind when utilizing 
the distributions for PD recognition. 

Individual PD pulses 

Pulses are measured with time-resolved techniques with 
a bandwidth of - 500 MHz. Distinct pulse shapes have 
been recorded, e.g., for free conducting particles, float- 
ing parts, and treeing discharges in gas insulated systems 
(GIS) [27,69,70]. The pulse width was successfully used 
to discriminate between PD and noise pulses measured 
by stator slot couplers [71]. It has also been observed 
that the pulse shape of discharges originating from cav- 
ities significantly changes with time as a result of PD- 
induced aging [72-801. This fact could possibly be used 
for the monitoring of insulation systems. Attempts to 
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recognize the degree of insulation degradation during ag- 
ing tests on the basis of the discharge pulse shape have 
already been undertaken [30,34,77]. It should be real- 
ized, however, that the PD pulse shape can exhibit great 
variability due to, e.g. gas composition, gas pressure, or 
statistical effects such as the availability of starting elec- 
trons, which influences overvoltage over a defect [81-891. 
Further, propagation effects in cables, generators, etc. 
significantly distort the pulse shape; the loss of some fre- 
quency components, damping, reflections may occur [49, 
69,70,90-931. These effects must be kept in mind when 
designing systems for automated PD recognition. 

Conditional PD distributions 

These describe memory propagation effects [66,88,94], 
e.g., pl (cp i  I Q+)dpf the probability that i-th pulse on 
the negative half cycle will appear between phase 9,: and 
cpzr +dp%T if the total charge associated with all discharge 
pulses on the previous positive half cycle equals Qt . The 
use of conditional distributions for PD recognition has 
already been suggested [94] but their true potential has 
yet to be assessed. 

Interpulse distributions 

These derive from direct pulse-to-pulse correlations, 
such as the distribution of voltage or time differences 
between two consecutive pulses [62,88,95,96]. Differ- 
ent distributions were recorded for different stages of the 
tree growth in insulation [96]. Also H,(q,  At) distribu- 
tion, which describes the relationship between the num- 
ber, the magnitude and the time between two successive 
discharges has been suggested for PD recognition [97,98]. 
This distribution appeared to be useful for the recogni- 
tion of different discharge sources at dc voltage. 

2.1.2. ELECTROMAGNETIC WAVES 

By measuring electromagnetic waves PD patterns can 
be observed in several forms. 

EM spectrum 

The relative amplitude vs. frequency is measured of the 
electromagnetic phenomena (scanned from - 10 kHz to - 2 GHz). Defects in GIs, such as corona, free conduct- 
ing particle, floating electrodes, particles on the spacer 
produce distinct spectra [99-1031. Glow, streamer and 
leader corona also resulted in distinct spectra [104]. Ra- 
dio frequency spectrum of currents in the generator neu- 
tral lead as measured by a radio frequency current trans- 
former clamped around the neutral and radio noise me- 
ters have been used successfully for the recognition of 
discharges within the stator windings insulation, arcing 
between adjacent ends of a broken coil strand, etc. [105- 
1111. 

Phase-related distributions 

PD events are displayed in the form of phase relat- 
ed distributions, such as Hqmaa:(p), H,(p) etc. The dis- 
charges are recorded at a particular frequency in a range 
of - 300 MHz [loo, 103,112,113]. 

Interpulse distributions 

These show the time difference between two consec- 
utive pulses. The distribution was used to determine 
whether a free conducting particle in GIS had the capa- 
bility of reaching the busbar and the associated proba- 
bility to trigger breakdown [113]. 

2.1.3. ACOUSTIC DETECTION 

By measuring acoustic waves PD patterns can be ob- 
served in the form of: 

Individual pulses 

Pulses have been used for the recognition of faults in 
GIS [17]. 

Frequency spectrum 

This is the relative magnitude vs. frequency of the 
sound waves (scanned to - 2 MHz). Distinct spectra 
have been obtained for various PD sources in oil (coro- 
na, floating electrode, cavities) [114,115] and GIS (coro- 
na, free conducting particle, particle on the spacer) [ lo l l  
1161. There is also strong evidence that the size of cav- 
ities in insulation could be estimated from the spectra 
[114]. 

An interesting approach was used in [117], where acous- 
tic signals recorded in the time domain were transformed 
to Fourier space for each voltage cycle and averaged in 
the Fourier space for a certain period. Distinct spectra 
were obtained for various defects in GIs. Another possi- 
bility is to use the frequency spectrum as above, but in- 
dividual pulses are related to the power frequency phase 
angle. This discharge distribution was employed to iden- 
tify various defects in GIS [116]. 

H,((o, q) ,  Hq,(cp), H,(p) distributions 

These are discussed in Section 2.1.1 but are measured 
acoustically [118-1201. Different distributions were ob- 
tained for branch, bush-like and filamentary trees [119]. 

Impact spectrum 

The frequency of bouncing of a free conducting particle 
in GIS has been used to identify the mode of the particle, 
i.e.. dancing. crossing or oscillatine T1211. 

U. " U L  J 
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2.1.4. LIGHT 
By measuring photon emission, PD patterns can be 

Individual PD pulses 
Pulses are measured with fast photon counting systems 

on a ns scale [122,123]. Distinct pulses were recorded for 
Townsend and streamer discharges in cavities [122]. 

observed. 

Emission s p e c t r u m  
The amplitude vs. wavelength of emitted light [124-- 

1271 can be recorded. Defects in GIs, such as corona, 
floating particles, free conducting particles resulted in 
distinct spectra [127]. The spectrum of PD also changed 
during the development of carbon traces on the surface 
of organic materials exposed to surface discharges [125]. 
Corona discharges in nitrogen, helium, air and SF6 re- 
sulted in distinct spectra [124,126]. 

Various phase-related distributions 
These have been employed in the observation of the 

early stages of electrical breakdown where electrolumi- 
nescence related to charge injection, the development of 
microchannels, and tree growth has been studied [128-- 
1371. 

2.1.5. INFRARED RADIATION 
Pulses recorded in the infrared part of the optical emis- 

sion spectrum correlated with the ac test voltage were 
used to identify the formation of leader discharges in GIS 
[103]. 

Note that not all possible combinations ‘measuring 
method/PD pattern’ were mentioned. For example, con- 
ditional, direct pulse-to-pulse PD distributions can also 
be constructed, among others, for PD measured acousti- 
cally. 

It can be seen that there are basically two types of 
pat terns: individual pulses and various distributions (un- 
conditional, conditional, direct pulse-to-pulse distribu- 
tions, frequency spectrum, etc.). For recognition purpos- 
es, a type of PD pattern must be selected which is able 
to distinguish between various PD sources. The above- 
mentioned patterns are, in many cases, indeed suitable 
for this task. This can be seen in Figure 2, where Hn(cp, q )  
distributions of four PD sources are shown. Different PD 
sources produced different PD patterns. 

The choice of detection method depends on local con- 
ditions, e.g. when electrically based measurement is im- 
possible due to the high level of disturbances, an acoustic 
measurement of PD to measure the patterns can be con- 
sidered. It should be borne in mind that the measure- 
ment must be executed carefully and use must be made 
of all available knowledge in the field [3,4,90,138-1401. 
Badly performed measurements cannot provide a reliable 
basis for PD recognition. 

90 180 270 360 
(b) O 40 phase windows 

Figure 4. 
(a) H,(yl, q )  pattern of surface discharges in air, 
with the rod at  the HV side, in a 3-d view. (b) 
Two-dimensional projection of the H,,((P, q )  pat- 
tern. Gray level indicates the number of PD. 
2.2. FEATURE EXTRACTION FOR PD 

RECOGNITION 
The following step in automated PD recognition is 

the feature extraction from measured discharge patterns. 
The aim of feature extraction is to reduce the dimen- 
sionality of an original PD pattern by calculating cer- 
tain’features’ or’properties’ of the pattern [39,141-1441. 
The essential condition here is that the features must 
distinguish between different PD sources as well as orig- 
inal patterns do. The features are usually derived on the 
basis of past experience, theoretical insight, intuition or 
simple guesswork [145]. The number of features should 
be as low as possible. The lower the number of features, 
the faster the speed of classification. Also, the features 
must be extracted from original patterns in real time, e.g. 
in 1 s on moderately fast computers. Consider, for exam- 
ple, the Hn(cp,q) pattern shown in Figure 4. Even with 
low resolution, say, 40 phase windows and 28 magnitude 
windows, a total of 40 x 28 = 1120 parameters have to be 
employed for recognition. This is not a very efficient way 
of handling the information due to memory consumed, 
computational complexity, and so on. By describing the 
Hpmaz(p),  Hpn(P), Hn(P) ,  H ( q )  and H ( P )  distributions 
(which can be derived from the basic Hn(cp, q )  pattern), 
see Figure 3, by statistical parameters such as skewness, 
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Feature 
Skewness+ 
Skewness- 
Kurtosis+ 
Kurtosis- 
Peaks+ 
Peaks- 
Asymmetry 
cc 
Phase 

Distribution 
H,ma=(cp) Hqn(cp) WCp) H ( q )  H ( P )  

-0.04 -0.04 0.18 1.24 1.75 
0.27 0.24 0.34 

-0.88 -0.93 -0.94 0.70 2.65 
-0.72 -0.80 -0.64 

4.00 3.00 2.00 
2.00 3.00 3.00 

-0.55 -0.53 -0.02 
0.50 0.49 0.36 

14.30 

kurtosis and asymmetry, a total of 29 features was cal- 
culated and successfully used for PD recognition [25,48]. 
In Table 1, an example of a set of 29 statistical param- 
eters, called a ‘fingerprint’, is shown. The computation 
of all 29 features took - 3 s on a 486 computer. Note 
that a significant reduction in recognition parameters was 
achieved: 29 instead of 1120 parameters. 

0.10 

c a a 
0.05 

zi 
4 

0.00 

2 4  2.65 2.9 
FRACTAL DIMENSION 

Figure 5. 
Fractal dimension and lacunarity calculated for 
the Hn(p,q) patterns shown in Figure 2. Each 
letter represents a single H,,(p,q) pattern: A: 
multiple-point corona in air, at the HV side, B: 
surface discharges in air, with the rod at the HV 
side, C: dielectric bounded cavity, D: air bubbles 
in oil. 

Recently, fractal features have been introduced to de- 
scribe H,(cp,q) patterns [35]. In this case, a H,(p,q) 
pattern was reduced to just two dimensions by calculat- 
ing fractal dimension and lacunarity from the pattern. 
Fractal dimension describes surface roughness, and la- 

cunarity the denseness of the Hn(p, q )  pattern, features 
which are apparently relevant descriptors of the Hn(cpl q )  
patterns. Figure 5 shows fractal features calculated for 
the H,(p,q) discharge patterns shown in Figure 2. It 
can be seen that two fractal features enable distinction 
between PD sources as well as the original 1120 dimen- 
sional H,(p,q) pattern can. This can be considered to 
be a very efficient feature extraction. 

Another example of feature extraction is the descrip- 
tion of a PD pulse shape as measured with time-resolved 
techniques by its peak amplitude, area of the pulse, rise 
time, fall time, and width [34]. In this case point-by- 
point digital description of discharge pulse (e.g. by 256 
points) was replaced by five parameters. Another possi- 
bility would be to describe the PD pulse shape by sever- 
al Fourier transform [146] or wavelet transform [147] or 
Karhunen-Loive transform [148] coefficients. In all cases 
a significant reduction of the dimensionality of original 
PD data was achieved. 

In addition to the ‘quantitative’ features discussed above, 
also ‘qualitative’ or ‘abstract’ features can be used for 
recognition. Such abstract features have been used in the 
development of an expert system for fault recognition in 
GIS [17] in the form of, e.g. the physics of acoustic wave 
propagation, the knowledge about the architecture, and 
the operation of GIS. 

It should be realized that the features are usually pure 
descriptors of original PD patterns, and they are not nec- 
essarily predictable in terms of basic physical processes 
[88]. But if the aim is discharge recognition, the use of 
such features for recognition purposes can be justified. 

When features are calculated, it is important to verify 
whether the features indeed contain sufficient informa- 
tion that can be used for PD recognition. When only 
two features are calculated, then such a check can easily 
be performed by making a scatter plot of data in feature 
space as has been done in case of fractal features, see Fig- 
ure 5. However, there are usually far more features cal- 
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culated, e.g. 29 statistical parameters for the description 
of EIqmor(~) ,  EIq,,(p) distributions, five features for the 
description of the PD pulse shape in the example above, 
and so on. If this is the case, the use of rather complex 
mathematical techniques for discriminating among PD 
patterns is unavoidable [39,141,144,149-1541. Some of 
the techniques are briefly discussed in this work. 
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Figure 6. 
Four possible cases of classification of a pattern 
of unknown origin in feature space. m: pattern of 
defect A, 0:  pattern of defect B, 1: pattern clas- 
sified to defect A, 2: pattern classified to defect 
B, 3: pattern classified to none of the defects, 4: 
pattern classified to both defects. A single point 
represents one PD pattern. 

2.3. CLASSIFICATION AND DECISION 
The aim of classification is to assign a label to a PD 

pattern of unknown origin from previously collected pat- 
terns with known labels, such as treeing discharges, coro- 
na, etc. This means that a data base of previously col- 
lected patterns must be available, and that feature space 
must be partitioned into regions, i.e., borders between 
patterns of various PD sources must be defined. In the 
case of two defects, say defects A and B, four possible 
situations of classification are possible, see Figure 6. A 
pattern of unknown origin can belong to defect A, defect 
B, none of them, and in the case of an overlap between 
defects A and B, to both defects. The last case can occur 
when features are badly designed or when there is indeed 
no difference between patterns from which features were 
extracted. 

There are a number of methods available for classi- 
fication purposes: conventional classifiers, fussy classi- 
fiers, neural networks [39,141-143,154-1731. Some of the 
methods and the way they create borders for classifica- 
tion purposes are discussed below. 

On the basis of the classification result, i.e., when a 
PD pattern of unknown origin has been identified such 
as treeing discharges, a decision has to be made, for in- 
stance ‘go’, ‘no-go’ decision for the operation of power 
apparatus [174]. The decision is based on the knowl- 
edge of the potential danger of different defects derived 
from past experience. The decision is usually made by 
humans, although the decision process also can be auto- 
mated [ 175- 1771. 

3. DATA BASE FOR PD RECOGNITION 
Provided that a type of PD pattern has been selected 

that is able to distinguish between various PD sources, 
and features with a sufficient discriminating power have 
been calculated from the pattern, then a data base of 
previously collected patterns can be created. Patterns 
of unknown origin can now be compared to the known 
patterns stored in the data base. A carefully designed 
database for PD recognition should produce the high lev- 
el of similarity between a fingerprint to be classified and 
an insulation defect in the case of a correct recognition, 
and the low level of similarity in all other cases. Several 
questions arise when creating the data base. For exam- 
ple, what should the structure of the data base be? How 
many features are sufficient for recognition? Are stored 
patterns in the data base representative of a particular 
PD source? How many patterns of one and the same PD 
source are required for future successful classification? 

I I 

CIPUmm uv 

Figure 7. 
The structure of a data base for PD recognition. 

3.1. STRUCTURE OF A DATA BASE 
A reasonable way of constructing of a data base for 

PD recognition is to divide the data base into several 
levels [48]. An example of such a data base structure is 
shown in Figure 7. It can be seen that this data base 
has four levels. The first level consists of fingerprints, 
which are the basic elements used for PD recognition. 
An example of a fingerprint can be a set of 29 statistical 
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parameters describing the shapes of Hqma+ (’p) , H,, (‘p) , 
etc., distributions as has been discussed above. 

The second level consists of decision surfaces or rules 
or functions derived from the fingerprints. An example 
of such a decision surface is a classification border shown 
in Figure 6 .  After extraction of the decision surfaces one 
does not use the fingerprints for the classification but 
the decision surfaces. The formation of decision surfaces 
from fingerprints is discussed in detail in Section 4. 

The third level consists of problems. A problem is a la- 
bel (name) of a particular PD source. Examples of prob- 
lems are: ‘Dielectric bounded cavity’ which consists of 
decision surfaces derived from, e.g. ten fingerprints of ten 
different models containing a dielectric bounded cavity. 
The problem ‘Corona in air’ consists of decision surfaces 
constructed from, e.g. eight fingerprints of eight identical 
setups causing corona in air. A fingerprint of unknown 
origin can now be assigned to the reference problems by 
using decision surfaces of the problems. The result can 
then be expressed as the percentage of resemblance of 
the fingerprint of unknown origin to the known problems 
in the data base. 

The term ‘problem’ originates from practice. For ex- 
ample, if a manufacturer encounters three types of de- 
fects in a production process, the fingerprints of these de- 
fects can be stored in three, presumably different, prob- 
lems in the data base. 

The fourth level, called device, is a collection of sev- 
eral problems. Examples of devices might be ‘GIs’, ‘High 
Voltage transformer’ among others. The device GIS might 
then consist of problems such as ‘Corona in SFe’, ‘Free 
conducting particle’, or ‘Particle on the spacer’. 

The main reason for such a data base configuration 
originates in industry. For instance, a manufacturer of 
GIS might consider irrelevant problems in large power 
transformers such as surface discharges in oil and corona 
in oil. Further, it is convenient to make comparisons of 
a fingerprint of unknown origin with as few as possible 
known problems. First, the fewer the number of prob- 
lems, the better the recognition: if the number of prob- 
lems decreases, so does the chance of an overlap between 
the problems. Second, it saves computation time. 

3.2. QUALITY OF A DATA BASE 
To create a quality data base for PD recognition, at- 

tention must be paid to several issues. 

(1) Effects influencing discharge patterns should be 
taken into account. For example, for phase-related distri- 
butions, changes in the level of a test voltage, the avail- 
ability of starting electrons [88,43]. Also, as a result of 
PD induced aging, patterns can change with time [30,41, 

50,53,58,59,62-681. To build a data base where PD pat- 
terns with all possible variations in voltage levels, avail- 
ability of electrons, aging time, etc., could be stored, is a 
very difficult task. Some progress has been made in re- 
cent years by creating data bases with collected patterns, 
e.g. at 1.5 discharge inception voltage or with effects of 
aging taken into account [lo-381, but much work has yet 
to be done. 

(2) The number of features used for recognition must 
be determined [39]. Usually as many features a s  possible 
are extracted from patterns [154]. This is done in the 
expectation that the features will discriminate not only 
PD sources collected at the present time but also in the 
future. Also the cost of experiments can be high. 

However, the higher the number of features, the longer 
the time required to calculate the features, and the longer 
the classification takes. Some of the features also may be 
useless for pattern recognition purposes, because they 
may have no discriminating power. An optimum be- 
tween these two opposite objectives must be found. If 
it appears that a reduction in the number of features is 
necessary then forward selection strategy could be used 
[154]. The method selects the best m out of p features 
by maximizing (or minimizing) certain criteria. In this 
case, it could be called ‘recognition power of features’. 
The method first examines all features to find the one 
which is the best for recognition. This single ‘best’ fea- 
ture is retained and tried in conjunction with each of the 
remaining ( p  - 1) features to find the pair which is the 
best for recognition. This pair is retained and tried with 
( p  - 2) features to find the triple which is the best for 
recognition, and so on. It takes a few minutes on a mod- 
erately fast computer to select a few best features out 
of ten when - 500 patterns are involved in the proce- 
dure. Other approaches, such as dynamic programming 
and a branch and bound algorithm can be found in [178- 
1801. It should be realized, however, that even with these 
methods selected features may not be optimal and only 
an exhaustive search over all possible combinations of 
features can give a best subset of features [181]. 

(3) The number of fingerprints in each problem should 
be approximately 5 to 2Ox the number of features [160]. 
This is known as the ‘curse of dimensionality’ [39,145]: 
the higher the number of features, the higher must be the 
number of fingerprints to fill the multidimensional space, 
and to determine correctly the borders between patterns 
of PD sources in the feature space. This is illustrated 
in Figure 8, where the true and the small sample size 
population of two defects is shown in the feature space. 
A data base with only a small number of fingerprints 
is insufficient for the correct determination of borders 
between defects, no matter whether neural networks, the 
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Figure 8. 
Classification borders for (a) true and (b) small 
sample size population of fingerprints of two PD 
sources in feature space. A single point repre- 
sents one PD pattern. W: pattern of defect A, 
0:  pattern of defect B. 

centour score, or some other classification method is used 
for a further classification of a fingerprint of unknown 
origin [182-1841. The relationship between the number 
of features and the number of fingerprints is, however, 
not linear but exponential. The heuristic rule mentioned 
above is in many cases sufficient. I t  is also important to 
have a, large number of fingerprints in order to describe 
statistical effects in measured PD phenomena. For ex- 
ample, patterns of the same PD source measured under 
identical conditions, i.e., the same test voltage level, the 
same test sample, can be highly similar but are rarely 
the same. This will be reflected in the scatter of feature 
values extracted from the patterns. 

(4) It should be verified whether calculated features 
such as statistical parameters, discriminate between PD 
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0.0 0.0 

-0.5 -0.5 

-1.0 -1.0 

-1.5 -1.5 

Figure 9. 
A visual comparison of two fingerprints: cavity 
and treeing discharges in 6/10 kV polyethylene 
cable. The fingerprints consist of 15 values of 
statistical parameters (the skewness, the kurto- 
sis) describing the shapes of HPn(p) and H,,((p) 
discharge distributions. Data were taken from 
~ 5 1 .  
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A FINGERPRINT OF DEFECT B 

FEATURE 1 
Figure 10. 

Fingerprints of two different defects in feature 
space with mutually correlated features. A sin- 
gle point represents one PD pattern. No differ- 
ence between two groups can be found when the 
groups are examined feature by feature. 

sources as well as original PD patterns, e.g. Hgmar(p), 
and Bqn(cp), etc. distributions [39,141,144,154]. When 
only two features are extracted from a discharge pat- 
tern, the scatter plot of data in feature space provides 
sufficient information on the discriminating abilities of 
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the features, see Figure 5, where the scatter plot of data 
in fractal feature space is shown. Usually there are far 
more than two or three features extracted from original 
discharge patterns, e.g. 29 statistical parameters which 
describe the shapes of Hqm,,(p), Hqn(p), etc., distribu- 
tions. In this case, a simple method to assess differences 
(or the similarity) between fingerprints would be to look 
at individual features as shown in Figure 9. This method, 
however, does not reveal differences between fingerprints 
when features are mutually correlated, see Figure 10. By 
looking at each feature separately, no difference between 
two groups would be found. To overcome this prob- 
lem, the use of mathematical techniques which reduce 
multidimensional feature space to two or three dimen- 
sions is recommended [39,141,144,154]. Fingerprints of 
PD sources are then viewed in this new, two or three- 
dimensional space and the structure of data is assessed. 
The knowledge on the data structure in the feature space 
can also help in the selection of a classification method. 
Two groups of methods can be used to discover struc- 
tures in data: mapping techniques and cluster analysis 
methods [39,141,144,149-154,185-1931. 

3.3. MAPPING TECHNIQUES 
Mapping techniques project fingerprints in a multidi- 

mensional feature space on new artificially created axes. 
The number of new axes is substantially lower than the 
dimension of the original space. More than fifteen meth- 
ods are available for this purpose [194-2061. Two of the 
methods, the principal component analysis and discrim- 
inant analysis which are widely used and can be found 
in most commercial statistical packages, are briefly dis- 
cussed. 

*p’y 0 FINGERPRINT OF DEFECT A 

A FINGERPRINT OF DEFECT B 

0 CENTROID OF FINGERPRINTS 

I?- 

/ 
/ 

FIRST PRINCIPAL t PERPENDICULAR PROJECTIONS 

OF FINGERPRINTS ON LINE Y OF DATA 
_. 

FEATURE 1 = X1 

Figure 11 
Principal component analysis of data. 

3.3.1. PRINCIPAL COMPONENT ANALYSIS 

This mapping technique reduces the dimensions by 
finding principal components of the data. Principal com- 

ponents are linear combinations of features which de- 
scribe the maximum variance in the data (the maximum 
spread in the data) [39,144,154]. 

To understand the principle of this method, five finger- 
prints in a two-dimensional space are shown in Figure 11. 
It can be seen that perpendicular projections of the fin- 
gerprints onto one line Y ,  give positions of the finger- 
prints with almost the same efficiency as that obtained 
with two features. The line Y which is the principal com- 
ponent of the data, is in this example given by a linear 
combination of the two features 

where X1 and Xz are the first and the second feature. 
The parameters a1 and a2 are determined by maximis- 
ing the variance in the data. No a priori knowledge of 
the membership of individual fingerprints to a particular 
defect is required in this analysis. 
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Figure 12. 
Resulting scatter plot of fingerprints on two prin- 
cipal components. The original 29-dimensional 
space of statistical parameters was reduced to a 
2-dimensional space of the principal components. 
Each letter represents a single fingerprint. A: 
single-point corona in air a t  the HV side, B: di- 
electric bounded cavity and C: surface discharges 
in air with the rod at the HV side. 

An example of the resulting plot of actual fingerprints 
onto two principal components is shown in Figure 12. 
Here, the 29-dimensional space of statistical parameters 
(skewness, kurtosis, etc., describing the shapes Hqmcz(v), 
Hpn(p), etc., distributions as shown in Figure 3) was 
reduced to a two-dimensional space of principal compo- 
nents. Each letter represents a single fingerprint. Three 
main groups can be identified: A stands for fingerprints 
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of single-point corona in air at the HV side, B corre- 
sponds to a dielectric bounded cavity and C indicates 
surface discharges in air with a rod at the HV side. It 
can be seen that the first component separates corona 
discharges from the other defects. The second compo- 
nent separates the dielectric bounded cavities from sur- 
face discharges. The separation of groups was successful 
in this case. It should be also noted that 29 statistical 
parameters (in this case their linear combination) indeed 
contain sufficient information to distinguish between var- 
ious discharge sources. 

The principal component analysis provides a quick way 
of assessing the structures in data. However, it should be 
kept in mind that maximizing the variance in the data 
may not necessarily reveal actual groups in the data, as is 
shown in the following section on discriminant analysis. 

3.3.2. DISCRIMINANT ANALYSIS 

In discriminant analysis, a linear combination of p fea- 
tures X I ,  X2,  . . . , X ,  

D = zClXl+ U2X2 + . . . + ?+XP (2) 
is called the discriminant function [194]. The factors U' 
are weights determined by maximising the separation be- 
tween defects. To perform the analysis, a priori knowl- 
edge of the membership of individual fingerprints to a 
particular defect is required. 

Y 

' x2 ' 
Figure 13. 

Example of discriminant analysis and principal 
component analysis applied to  two-dimensional 
data. XI and Xz are features, the line D is the 
discriminant function and the line Y is the prin- 
cipal component of the data. 0: fingerprint of 
defect A, A: fingerprint of defect B, 0: perpen- 
dicular projection of defect A fingerprint, A: per- 
pendicular projection of defect B fingerprint, 

The difference between discriminant analysis and prin- 
cipal component analysis is illustrated in Figure 13, where 
two elongated clusters are shown. Discriminant analysis 
creates the maximum separation between the clusters, 
which is found at line D. Perpendicular projections of the 

-e -6 -a 1 4 7 

D I S C R X M I W T  FUNCTION 1 

Figure 14. 
Discriminant analysis applied to  actual PD da- 
ta. The original 15-dimensional space of statis- 
tical parameters (the skewness, the kurtosis, etc. 
describing the shapes of Ipq,,((p) and Ip,,((p) dis- 
tributions) was reduced to a 2-dimensional space 
of discriminant functions. Each letter represents 
a single fingerprint. A: dielectric bounded cavity, 
B: surface discharges in air, C: surface discharges 
in oil, D: corona in air and E: floating parts in 
air. The analysis was performed on data taken 
from [15]. 

An example of discriminant analysis applied to actual 
PD data is shown in Figure 14. The fingerprints in the 
15-dimensional space of statistical parameters (skewness, 
kurtosis, etc. describing the shapes of Hq,(cp) and H,(cp) 
distributions [15]) were mapped to two dimensions. The 
two discriminant functions successfully separate the fin- 
gerprints of five different defects. 

The discriminant analysis yields the best linear separa- 
tion between defects in a multidimensional space. When 
compared to the principal component analysis, the dis- 
criminant analysis requires a priori knowledge of the mem- 
bership of individual fingerprints to a particular defect. 

Principal component analysis and discriminant analy- 
sis are linear methods, i.e. they separate data in a lin- 
ear fashion. To separate data in a nonlinear way, other 
methods have to be used, such as multidimensional scal- 
ing [195,196], Sammon's nonlinear mapping [197], etc. 
[154,205]. The use of mapping techniques is restricted 
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to a small number of fingerprints (usually < 200). As 
the number of fingerprints increases, scatter plots of da- 
ta might become rather unclear. 

3.4. CLUSTER ANALYSIS 

Cluster analysis also tries to recognize groups without 
a priori knowledge. This means that no labels indicating 
the membership of an individual fingerprint to a partic- 
ular defect are required. There are more than a hun- 
dred algorithms available for the clustering of data (hard 
and fuzzy partition algorithms) and it should be realized 
that there is no ‘best’ procedure [39,141,144,149,150, 
154,185-193,207-2161. The use of cluster analysis is il- 
lustrated with the group average clustering method. The 
method forms final groups in data in the following way 
[39,144,-154,2171. 
1. Each fingerprint is declared as a group and distances 

between all groups are calculated; 
2. Two groups with the smallest distance are fused to- 

gether and declared to be one group. In this way the 
total number of groups in the data is reduced by one. 

3. Distances between all groups are again calculated. The 
choice of distance is important. The group average 
method calculates the average distance between two 
groups. 

4. Steps 2 and 3 are repeated until just one group is left. 
I A 

B C 

.. _________ 
FEATURE 1 (4 

B 

I 
50% 1W% 

Figure 15. 
(a) Scatter plot of fingerprints in feature space. 
A single letter represents one PD pattern. (b) 
Tree structure of the data in (a) obtained by the 
group average clustering method. 

The algorithm results in a tree structure which allows 
a detailed examination of the relationship between indi- 
vidual fingerprints. The use of the method is explained in 

an example shown in Figure 15, where the scatter plot of 
fingerprints in feature space and the corresponding tree 
structure is shown. The scale in the lower part of Fig- 
ure 15(b) shows the dissimilarity between fingerprints as 
a percentage of the distance between the last two groups 
that were fused together. In this example the last two 
groups were AB and C .  It follows that similar fingerprints 
will be connected at relatively low dissimilarity levels, 
whilst differing fingerprints will be connected at relative- 
ly high dissimilarity levels. By looking for main ‘branch- 
es’ in such tree structures, different groups of fingerprints 
can be identified. It can be seen that a fingerprint C is 
an outlier in the data and does not belong to any of 
the known groups. This is reflected in the tree structure 
where a separate branch for the fingerprint was formed. 
Similarly, separate branches for fingerprints in the groups 
A and B were formed. Because of the larger spread of 
fingerprints in group A in the feature space, the individ- 
ual fingerprints of this group are mutually connected at 
higher dissimilarity levels in the tree structure. 

ILm -I 
(a 
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Figure 16 
Hqmar(p), Hqn(p) and Hn(p) distributions of 
electrode bounded cavity at the HV side obtained 
during first 2 min (virgin stage), after 5 min (con- 
ditioned stage) and after 90 min (aged stage) of 
the voltage application. Distributions were col- 
lected over a period of 2 min at a voltage level 
50% above discharge inception. 

:I CONDITIONED 

50L 100% OL 

Figure 17. 
Tree structure for fingerprints of electrode bound- 
ed cavities collected at different times after the 
voltage application. Each letter represent a single 
fingerprint. A: cavity aged 2 min (virgin stage), 
B: cavity aged 5 min (conditioned stage), C: cav- 
i t y  aged 90 min (aged stage). Corresponding dis- 
charge distributions are shown in Figure 16. 
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To demonstrate the use of the method on actual PD 
data, fingerprints collected during 90 min aging of elec- 
trode bounded cavities (diameter 5 to 9 mm, height 0.4 
to 0.5 mm) were analyzed [67]. PD distributions signif- 
icantly changed during this relatively short period, see 
Figure 16 and Table 2, where the distributions obtained 
during first 2 min, after 5 min and after 90 min are shown. 
The distributions were collected over a period of 2 min at 
a voltage level 50% above the discharge inception (PD da- 
t a  were collected from at least seven samples of cavities 
per aging time). From the distributions, 29 statistical 
parameters were calculated and analyzed by the group 
average method, without any a priori knowledge of the 
aging time when the fingerprints were collected. The tree 
structure obtained by the method, see Figure 17, reflects 
changes in the PD distributions and groups the data ac- 
cording to their aging time. On the basis of such a tree 
structure a data base of PD patterns obtained during ag- 
ing can be made and used for recognition in the future. 
The method was extensively applied to analyze PD data 
obtained during aging on a number of artificial defects 
and industrial HV components, with encouraging results 
[2 18-2201. 

Table 2. 
Classification of fingerprints of each aging stage 
from Figure 16 by the centour score method. 
Each classification category was represented by 
at least 210 fingerprints. HVelb: HV electrode 
bounded. 

I I HVelb I HVelb I HVelb 1 
virgin 

aged 83% 

I 

FEATURE 1 FEATURE 1 FEATURE 1 
(a) (b) (C) 

Figure 18. 
(a) Two well-separated clusters. (b) One cluster 
consisting of two different groups. (c) One clus- 
ter consisting of two similar groups. Each dot 
represents one fingerprint. 

It should be noted that clustering algorithms usual- 
ly recognize clusters which are well separated, see Fig- 
ure 18(a). Sometimes, however, different groups do not 
form separated clusters, although the groups occupy dif- 
ferent positions in feature space. This situation is shown 
in Figure 18(b). In such cases, there is no  clwtering 

method which could distinguish between situations shown 
in Figures 18(b) and (c). In this case the use of mapping 
techniques would be more appropriate to discover the 
data structure. The classification of a fingerprint of un- 
known origin to two groups shown in Figures 18(a) and 
(b), can still be successful. The groups must then be 
known a priori, so that borders between the groups are 
known and satisfactory classification can take place. In 
the case shown in Figure 18(c) no difference can be found 
between the fingerprints of two groups. 

Discovering structures in the data is a difficult task and 
there is no best method to perform this task [39,144,154, 
1871. Each method examines the data in its own way, 
and it is best according to a criterion which the method 
optimizes [144,154]. Scatter plots of fingerprints in two- 
dimensional space obtained by mapping techniques give 
the first impression of the structures in the data. Here, 
principal component analysis and discriminant analysis 
can each serve as a starting point. Other methods, such 
as multidimensional scaling and Sammon's mapping [197] 
are also recommended. Of the cluster analysis methods 
the group average method is preferred. It produces a 
tree structure which allows a detailed examination of the 
data. 

There are, however, many problems related to discov- 
ering structures in data, such as the determination of 
the correct number of clusters in data, validation of in- 
dividual clusters, validation of tree structures and so on. 
Numerous examples on the use of the methods can be 
found [144,154,185,187,221-2241. 

4. CLASSIFICATION OF 
FINGERPRINTS 

The aim of classification is to assign a label to a PD 
pattern of unknown origin from previously collected pat- 
terns with known labels (treeing discharges, corona, etc.). 
A number of approaches and classification methods have 
been used in the past for PD recognition: expert systems 
[ll, 12,171, hidden Markov models [24], fuzzy logic [29, 
2251, neural networks [20-23,26-29,31-34,36,37] and con- 
ventional classification methods [15,18,25]. Each meth- 
od has advantages and disadvantages in its use. To en- 
sure that a classification method is suitable for a par- 
ticular recognition task, it is especially important that a 
geometrical interpretation of the classification is under- 
stood. The border formation between fingerprints of dif- 
ferent PD sources is explained with reference to examples 
of classification with neural networks (adaptive systems) 
and conventional classifiers (nonadaptive systems). 

4.1. NEURAL NETWORKS 
Neural networks (NN) have been successfully applied 

to a number of pattern classification problems [165,166]. 
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Figure 19 

General structure of a neural network. 

They have also been used in PD recognition, although 
with mixed results [20-23,26-29,31-34,36,37]. 

N N  provides brain-like capabilities for solving prob- 
lems: they learn by example [156,157,161,165-1731. N N  
belong to nonparametric methods. This means that it 
is usually not necessary to make any assumptions about 
data structure. In statistics, various preliminary condi- 
tions, e.g. data from normal populations, must be fulfilled 
in order to carry out the analysis. The structure of NN 
is based on a mutually connected three-layer system, see 
Figure 19: input layer, hidden layer(s) and output layer. 

The input layer may have several input neurons or 
processing elements, and is driven by values of features 
extracted from PD patterns. For example, the input 
data can be values of statistical parameters describing 
the shapes of Hqma+(p), Hqn(p), etc. distributions [20, 
21,231. 

The hidden layer (or layers) characterizes the typical 
structure of a N N  and is different for the diverse net- 
works. The main purpose of the hidden layers is to ex- 
tract classification information from the presented data. 

The output layer is defined according to user expec- 
tations. It can be represented by one or more neurons 
whose outputs indicate the final classification of a PD 
pattern of unknown origin to  the known patterns. 

4 

To assess the classification potential of an N N ,  it is 
important to understand how they classify fingerprints. 
Because there are many types of N N  which classify fin- 
gerprints in a different way [226-2421, only some of them 
are explained. 

1 - 
FEATURE 1 (b) FEATURE 1 (a) 

Figure 20. 
Classification with the back-propagation neural 
network with: (a) two neurons in the hidden lay- 
er, (b) six neurons in the hidden layer. Hyper- 
planes (lines in 2-d space) are generated by the 
neurons N1  to N6 in the hidden layer and are 
shown by thin lines. Borders between the groups 
are determined by weight connections between 
the hidden and the output layer, and they are 
shown here by thick lines. The arrows in (b) show 
borders which were generated far away from the 
data. U: Fingerprint of unknown origin, M: fin- 
gerprint of defect A, .: fingerprint of defect B. 

The back-propagation network (with one hidden layer 
and a sigmoid transfer function) separates data by hyper- 
planes (lines in 2-d space, planes in 3-d space, etc.). De- 
tailed mathematical analysis can be found [227,230,231, 
233,236,2431. The hyperplanes are generated by neurons 
in the hidden layer (one hyperplane per neuron). Weight 
connections between the input layer and the hidden layer 
determine the slope and shift of the hyperplanes. Weight 
connections between the hidden layer and the output lay- 
er serve as logical functions which decide on which side 
of a hyperplane a testing fingerprint is. This is shown in 
Figure 20(a). Fingerprints of two defects can be separat- 
ed in this case by the network with two neurons in the 
hidden layer. A testing fingerprint is then classified ac- 
cording to its position relative to  the hyperplanes. Such 
a classification procedure can, however, cause problems. 
It can be seen that a fingerprint of unknown origin U is in 
the present situation classified to be defect B, yet it ap- 
parently does not belong to the defect B. It follows that 
more neurons are required in the hidden layer to separate 
fingerprints of both defects from the surrounding space, 
see Figure 20(b). In this case, six neurons are used for 
such a separation of fingerprints. However, in more than 
two dimensions, the structure of data is unknown and 
it is difficult to estimate the number of neurons in the 
hidden layer. Furthermore, even if a sufficient number of 
neurons is supplied, the hyperplanes can still be gener- 
ated far away from natural borders between the groups 
in the data so that a misclassification of a fingerprint of 
unknown origin can still occur, see Figure 20(b). Note 
that it does not really matter what kind of features are 
used as the input for N N  (statistical parameters, fractal 



features, etc.) because the classification is determined by 
the classification principle of the network. 
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Figure 21. 

The principle of the smallest distance classifier. 
One dot represents one fingerprint. A fingerprint 
of unknown origin is assigned to  a defect with the 
smallest distance between the fingerprint and a 
defect. 

The Kohonen self-organizing map, or learning vector 
quantization network are the smallest distance classifiers 
[232] , i.e., the networks classify a fingerprint of unknown 
origin to  a defect with the smallest distance between the 
fingerprint and the defect, see Figure 21. This can cause 
problems in classification, because a fingerprint of un- 
known origin which is far away from reference data can 
still be classified as one of the known defects, as is shown 
in Figure 21. The use of these NN can be justified only if 
it is certain that a fingerprint of unknown origin belongs 
to one of the known categories. 

An example of a fingerprint classification of actual PD 
data by the three types of NN described above is shown 
in Table 3. The input data were 15 values of statisti- 
cal parameters as described in [26]. I t  can be seen that 
NN indeed classified correctly the fingerprints of defects 
they have been trained to recognize, in this case corona 
discharges in sF.3 and cavity discharges in a GIS spacer. 
However, a fingerprint of free conducting particle in GIS 
(with values of statistical parameters completely differ- 
ent from those of corona discharges in sF6 and cavity 
discharges in the GIS spacer) was classified as cavity dis- 
charges in the spacer. The results confirm the classifica- 
tion principle of the back-propagation network, Kohonen 
self-organizing map and learning vector quantization net- 
work. 

Some NN, such as the radial basis function network 
[229], fuzzy adaptive resonance theory (ART) network 
[237], restricted Coulomb energy network [226] can over- 
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Figure 22. 
Border formation between fingerprints of differ- 
ent PD sources in feature space by radial basis 
function neural network. 0: fingerprint of defect 
A, A: fingerprint of defect B. 
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come the problems discussed above. For example, the ~ * a  v 
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Figure 23. 

Border formation between fingerprints of differ- 
ent PD sources in feature space by fuzzy Artmap 
neural network. 0: fingerprint of defect A, A: 
fingerprint of defect B. 

radial basis function network encloses data in feature 
space by hyperspheres (circles in 2-d space, spheres in 
3-d space, etc.) as shown in Figure 22. One hypersphere 
is generated by one neuron in the hidden layer. If a fin- 
gerprint of unknown origin falls outside a hypersphere, it 
is not assigned to  any of the known defects. The fuzzy 
ART network encloses data in feature space by hyper- 
cubes (squares in 2-d space, cubes in 3-d space, etc.) as 
shown in Figure 23. Again if a fingerprint of unknown 
oriein falls outside a hvDercube. it is not assigned to any 
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Fingerprint 
to be 
classified 
Corona in SF6 
Cavity in GIS Spacer 

- 
Back Learning vector Kohonen 

propagation quantization self-organizing 
N N  N N  map 

1 0  1 0 0.9 0 
0 1 0 1 0 0.9 

I Cond. part. in SF6 I 0 1 0.9 I 0 1  1 1 0  I 0.9 

of the known defects. It can be seen that these N N  can 
provide crucial ‘I do not know’ answers and it would be 
interesting to apply the networks to PD recognition in 
the future. 

There are, however, some other problems which com- 
plicate the use of N N  in real applications. For example, 
the values of learning coefficients of NN have to be de- 
termined (however, only rough rules are available), clas- 
sification can depend on a value of convergence criteria, 
learning times can be long, small sample size problems 
can occur [26,184,243]. Furthermore, many types of neu- 
ral networks lack the modularity principle [239]. This 
principle says that one neural network trained to recog- 
nize, e.g. defects A and B, and another network trained 
to recognize defects C and D can be combined to a single 
network able to recognize defects A, B, C and D without 
additional learning. Usually, when there is a requirement 
of adding new defects for recognition, e.g. defects C and 
D, to a previously trained network (the one which recog- 
nizes defects A and B), the network has to be completely 
retrained. It should be kept in mind that the N N  learning 
process can consume a lot of time, - 3 h in these applica- 
tions [20,21,26], although months of learning time have 
been reported in handwritten character recognition. 

The progress in the N N  field should be monitored care- 
fully. When such types of N N  have finally been designed 
that can overcome the problems mentioned here, their 
use for PD recognition will be justified. 

4.2. CONVENTIONAL CLASSIFIERS 

There are a number of conventional classifiers avail- 
able for classification purposes: Bayes classifiers [39] , 
Parzen classifiers [39,244,245], nearest neighbor classi- 
fiers [246], discriminant function classifiers [39,154,155], 
the centour score [160] and so on. In these methods, pa- 
rameters such as the mean values, standard deviations 
of the features for different problems are first calculated. 
Then the distance between a fingerprint of unknown ori- 
gin and, for instance, the mean value is calculated, e.g. 
by using the Pythagoras theorem. By statistical testing, 
such as xa statistics, it can then be determined whether 

U 
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Figure 24. 

Border formation with the centour score meth- 
od. a: fingerprint of defect A, A: fingerprint of 
defect B. 

the distance between the fingerprint of unknown origin 
and a particular problem in a data base is small enough 
to assign the fingerprint to the problem. For example, 
the centour score method creates percentile contours in 
the form of hyperellipsoids (ellipses in 2-d space) around 
the mean values of features for a particular problem, see 
Figure 24. The size and the shape of hyperellipsoids is 
determined by the standard deviation of each feature and 
mutual correlation of the features [160]. If a fingerprint 
to be classified falls outside, e.g. the 1% contour, then the 
probability that the fingerprint belongs to this problem is 
< 1%. It can then be concluded that the fingerprint does 
not belong to  a given problem. If the values of features of 
a fingerprint to be classified are equal to the mean values 
of a particular defect, then the fingerprint belongs with 
100% probability to the problem. Examples of classifica- 
tion with the centour score method are shown in Table 2. 
It can be seen that the classifications were correct in all 
cases. The centour method has been applied successfully 
to the recognition of artificially created defects in insu- 
lation and actual HV components [25,48]. The use of 
the centour score is, however, restricted to normally dis- 
tributed data of a particular defect. By the careful design 
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Figure 25. 

(a) Border formation with the centour score 
method in the case of the supposition of normally 
distributed data of defect A. (b) Border forma- 
tion with the centour score method when finger- 
prints of defect A were split into two normally 
distributed data. 0: fingerprint of defect A, A: 
fingerprint of defect B. 

of a data base for discharge recognition, e.g. by splitting 
a non-normal distribution into several normal ones, this 
condition can be fulfilled so that there is no need to be 
afraid of misclassification. This situation is shown in Fig- 
ure 25. If the fingerprints of defect A are considered as 
normally distributed data (which is obviously not true 
in this case) then the centour score (suitable for classifi- 
cation of normally distributed data) would wrongly esti- 
mate borders for the defect A, see Figure 25(a). When 
the fingerprints of defect A are split into two subgroups, 
then successful determination of borders (and thus clas- 
sification) takes place with the centour score method. It 
can be seen from this example that the knowledge of data 
structure and the geometrical principle of border forma- 
tion by a classification method are crucial points (among 
many others) in successful classification. 

It should be noted that in pattern recognition the com- 
monly used Bayes classifiers [39] assign a fingerprint of 
unknown origin to one of known categories. This is a 
serious disadvantage of the approach because the clas- 
sifiers can not provide crucial ‘I do not know’ answers. 
The results obtained by various Bayes classifiers [218] re- 
sembled those shown in Table 3: a fingerprint which does 
not belong to any of the known problems was classified 
as one of the known problems. 

abductive modeling methods [248-2511. The use of ab- 
ductive modeling is particularly interesting. This tech- 
nique attempts to find the best possible hypothesis to 
explain data. It has gained in popularity in the field of 
artificial intelligence in recent years, and it would be in- 
teresting to apply the method to PD recognition as well, 
especially for such complicated task as the recognition 
of multiple PD sources. This task has already been at- 
tempted (in a visual [43,252-2551 and an automated way 
[37]) with positive preliminary results, but PD patterns 
were classified with the back-propagation NN [37] which 
suffers from disadvantages as has been discussed above 
[26,236,243]. 

Because there are so many classification methods, it 
is important to select the correct one. When several 
competing classifiers are available, such as the centour 
score method, the back-propagation NN then the per- 
formance of each classifier should be assessed [39,154, 
256-2581. Some of the methods can easily be rejected by 
simple reasoning on their classification principle. For ex- 
ample, if it is required that a classification method must 
provide ‘I do not know’ answer as discussed above, then 
the minimum distance classifiers will hardly be a good 
choice. To obtain the statistical evaluation of the per- 
formance of a classifier, methods such as ‘leave one out’ 
can be used [259]. The procedure is as follows: the i- 
th fingerprint is deleted from a data set consisting of n 
fingerprints and the parameters such as the mean values 
and standard deviations, for a particular defect are cal- 
culated from remaining (n - 1) fingerprints. The deleted 
fingerprint is then classified to the collection of all defects 
and the response of a classification is noted, e.g. correct, 
incorrect, ‘I do not know’. The whole procedure is then 
repeated for all fingerprints of all defects. By counting 
correct, incorrect, and ‘I do not know’ answers the per- 
formance of various classifiers can be estimated from the 
error count. The method has been used for the eval- 
uation of the performance of the centour score method 
in PD recognition, [67]. The method is especially suit- 
able for a data base with a small number of fingerprints. 
When the number of fingerprints in the data base in- 
creases the method can be time consuming. The method 
is known to produce an unbiased estimate of the error 
rate, although the estimate has a large variance. Some 
other methods for the estimation of the performance of 
classifiers and alternatives to this approach can be found 
in [154,163,258,260-2631. 

5. CONCLUSIONS 
There are of course many other, even more complicat- 

ed, methods, such as the use of Parzen windows [39,244, 
2451, potential functions [247], fuzzy classifiers [164], and 

N this work an overview of automated PD recognition I is given. It can be concluded that there are many ways 
to achieve this goal. 
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The first important step is to select a type of PD 
pattern that has good discriminating power. Especial- 
ly H n ( p , q )  PD distribution and its derivates such as 
Hqmaz(9), Hqn(p)j etc. distributions have been exten- 
sively used for recognition. The shape of individual PD 
pulses and various frequency spectra provide another way 
to recognize partial discharges. 

To reduce the dimension of original PD data, Hn(p, q )  
distribution, ‘features’ or ‘properties’ of the data should 
be extracted from the data. There is no unique way to 
do this. Statistical parameters (skewness, kurtosis) and 
fractal features (fractal dimension, lacunarity) are just 
few examples of such features. The trade-off between 
the number of features, time for the calculation of the 
features, discriminating power of the features and the 
final speed of classification should be considered when 
designing the features. 

To create a data base for reliable PD recognition, vari- 
ous aspects such as the effects of test voltage level, aging, 
availability of starting electrons, must be taken into ac- 
count. A number of mathematical methods are available 
to organize the data base. Mapping techniques and clus- 
ter analysis methods can be used for this purpose but it 
should be realized that there is no ‘best’ method. 

Many classification methods can be used for a final 
classification of a PD pattern of unknown origin to the 
known patterns. Satisfactory results were reported es- 
pecially with the centour score method. NN produced 
mixed results in PD recognition. However, the progress 
in the NN field should be monitored. New types of NN 
might classify PD patterns more reliably. It would also 
be useful to  apply methods such as abductive modeling 
for PD recognition in the future. 

Results presented to date now dealt mostly with recog- 
nition of single PD sources. Future automated recogni- 
tion systems should also be able to recognize multiple PD 
sources and to pinpoint the most dangerous one. Possi- 
bilities for monitoring the aging of insulation by means 
of PD recognition should also be further investigated. 
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