
Distributed Snapshots for Mobile Computing Systems∗

Adnan Agbaria William H. Sanders
Coordinated Science Laboratory and

Electrical and Computer Engineering Department
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana IL 61801, USA
{adnan, whs}@crhc.uiuc.edu

Abstract

Distributed snapshots are an important building
block for distributed systems, and are useful for con-
structing efficient checkpointing protocols, among other
uses. Direct application of these algorithms to mobile
systems is not feasible, however, due to differences in
the environment in which mobile systems operate, rela-
tive to general distributed systems. This paper presents
a distributed snapshot algorithm that is well-suited to
mobile systems, which often have limited bandwidth and
long latencies, and where the mobile hosts may roam
among the different cells within the system. In addition
to presenting the protocol itself, we prove its liveness
and safety. As was the case for the classical distributed
snapshots protocol and distributed systems, we believe
that this protocol will be an important building block for
mobile systems.

1. Introduction

The mobile computing environment introduces new
challenges in the area of fault-tolerant computing. Com-
pared to traditional distributed environments, wireless
networks are typically slower, providing lower through-
put and latency, comparing to wireline networks. In ad-
dition, the mobile hosts have limited computation re-
sources, are often exposed to harsh operating environ-
ment that makes them more likely to fail, and can roam
while operating.

Distributed snapshots is a traditional technique for
providing persistence and fault tolerance in distributed
systems. More specifically, they are key building block
for implementing checkpoint/restart (C/R) protocols [7].
Checkpointingis the act of saving an application’s state

∗This research has been supported by DARPA contract F30602-00-
C-0172.

to stable storage during its execution, whilerestart is
the act of restarting the application from a checkpointed
state. If checkpoints are taken, then when an application
fails, it can be restarted from its most recent checkpoint.
This limits the amount of computation lost because of a
failure to the time that elapsed between the last check-
point and the failure. Checkpointing can also be used in
migrating a process from one computer to another, and
for debugging purposes.

One of the main challenges in implementing C/R
mechanisms is that of maintaining low overhead, since
otherwise the cost of taking a checkpoint will outweigh
its potential benefit. Another problematic challenge is
that of finding a collection of checkpoints, one from each
process, that corresponds to aconsistentview of the dis-
tributed application’s state for restarting. A distributed
application’s state is not consistent if it represents a situ-
ation in which some messagem is received by a process,
but the sending ofm is not in the checkpoint collection.
A collection of checkpoints that corresponds to a consis-
tent distributed state forms arecovery line.

Over the past two decades, intensive research work
has been carried out on providing efficient C/R proto-
cols in traditional distributed computing, e.g., [7, 14].
Recently, more attention has been paid to providing C/R
protocols for mobile systems [15, 11]. Some of these
protocols have been adapted from the traditional dis-
tributed environment; others have been created from
scratch for mobile systems. In both cases, the major-
ity of the protocols can be classified ascommunication-
induced checkpointing(CIC) protocols, in which pro-
cesses take local checkpoints in an uncoordinated man-
ner. The key challenge in creating practical protocols
of this type is finding and maintaining a recovery line
and minimizing the drop in performance due to the large
number offorcedcheckpoints, where usually some pro-
cesses are forced to take checkpoints to ensure that a
recovery line exists [2, 7].

We proved in [3] that the classical distributed snap-
shots protocol presented by Chandy and Lamport [6],
which is acoordinatedprotocol, is the most efficient
of the well-known protocols. This protocol takes the
checkpointson-the-fly, such that it does not suspend any
execution of the system as well as C/R. In addition,
the distributed snapshots protocol determines theglobal
stateof the system. Such global state helps us to detect
some properties, such as deadlock and termination.

In this paper we present a distributed snapshot proto-
col for the mobile environment, that is a robust adapta-
tion of the classical distributed snapshots technique and
that can be used for achieving an efficient C/R proto-
col. It is anadaptive distributed snapshots(hereafter,
ADS) protocol for mobile environments. We first discuss
why the classical distributed snapshots protocol cannot
be applied straightforwardly to the mobile environment.
Based on some observations related to the mobile envi-
ronment and the distributed snapshots protocol, we pro-
vide an adaptation to allow the protocol to be imple-
mented for mobile computing systems. In addition, we
prove the properties of liveness and safety.

The remainder of this paper is organized as follows.
Section 2 describes the system model and basic defi-
nitions. In Section 3, we present our protocol, some
running examples, and proof of liveness and safety for
the protocol. In Section 4, we describe previous related
work, and conclude our work in Section 5.

2. Preliminaries

2.1. System Model

We use the system model presented in [4, 11]. In
this model, a mobile computing system consists ofn
mobile hosts(MHs), h1, · · · , hn, andm mobile support
stations(MSSs), M1, · · · ,Mm, wheren > m. Figure 1
shows an example of a typical mobile computing system
in which the MSSs are connected by a static wired net-
work and each MH is connected by a wireless network
to one MSS. Acell is a logical or geographical coverage
area under an MSS. An MH candirectly communicate
with an MSSMi only if it is present in the cell serviced
by Mi. At any time, every MHhi, 1 ≤ i ≤ n, belongs
to only one cell. The static network provides reliable
First-In-First-Out (FIFO) delivery of messages between
any two MSSs with arbitrary message latency. Similarly,
the wireless network within a cell ensures reliable FIFO
delivery of messages between an MSS and an MH.

Consider Figure 1 when an MHh1 wants to send a
message to another MHh4, h1 first sends the message
to its local MSSM1 over the wireless network. Then,
M1 forwards the message toM3 over the static network.

Figure 1. An example of a mobile comput-
ing system

Finally, M3 forwards the message toh4 over the wire-
less network. Since the location of an MH is not fixed,
beforeM1 forwards the message toM3, it should first
determine the MSS that currently servesh4. This prob-
lem has been tackled through several routing protocols
for mobile networks [5, 8]; we don’t address it here.

When an MHhi leaves a cell served by an MSSMi,
it sends aleave(r) message toMi, wherer is the se-
quence number of the last message received byhi. Af-
ter sending this message,hi neither sends nor receives
any other message fromMi. Then,Mi deleteshi from
its ID list of MHs that are local to its cell. On the other
hand, whenhi enters a new cell served byMj , it sends a
join(hi) message toMj . Then,Mj addshi to its ID list.

In this paper, we consider a distributed computation
in a mobile computing system that consists ofN pro-
cesses,P1, P2, · · · , PN , running concurrently on differ-
ent MHs. For simplicity, we assume that each MH
runs one process andn = N . Message passing is the
only way of communication. The computation is asyn-
chronous. Each processPi is modeled as an automa-
ton with a predefined initial stateei, and a deterministic
transition function from its current state to the next state
based on the current state and theeventit occurs. The
normalpossible events arecomputation , send , and
receive . In addition, we define another two possible
events that can happen:log andcheckpoint . The
log event consist of saving a message in secondary stor-
age, and thecheckpointevent consist of saving the local
state in secondary storage.

Given a processp, we say that the processp is in a
normal state if it performs only normal events, and we
say thatp is in a savingstate if it is able to perform

the log and checkpoint events in addition to the normal
events.

The local historyof a process is a sequence of such
events. Anexecutionis a collection of local histories,
one for each process. For each receive event in an execu-
tion, there is one corresponding send event, and for each
send event, there is at most one receive event. More-
over, if the execution is infinite, then for each send event
there is exactly one corresponding receive event. For a
messagem in the execution,Send(m) denotes the send
event ofm, andRecv(m) denotes the receive event of
m. Events in an execution are related by thehappened
beforerelation [9]; this relation is defined as the transi-
tive closure of the process order and the relation between
the send and receive events of the same message.

2.2. Definitions and Notations

When a failure occurs in a distributed system, we
need to recover from acut of checkpoints (i.e., a set
of checkpoints consisting of one checkpoint from each
process). However, not all cuts of checkpoints arecon-
sistent, i.e., correspond to a state that could have been
reached in the execution. A consistent cut of check-
points is called arecovery line.

Definition 2.1: Given an executionE and a cut of
checkpointsS ∈ E, the partial execution ofE corre-
sponding toS, denoted byE|S , is the collection of local
histories of each processp ∈ E up to the checkpoint
event inS.

Definition 2.2: Given an executionE and a cut of
checkpointsS ∈ E, S is a recovery lineif for every
messagem, if Recv(m) ∈ E|S , thenSend(m) ∈ E|S .

Figure 2. An example of distributed execu-
tion

For example, letE be an execution as presented in
Figure 2. If a failure occurs in processP1 after m3 is
sent, the execution cannot be recovered from the latest

cut of checkpointsS1, since it is not a recovery line. The
reason is thatRecv(m3) ∈ E|S1 , butSend(m3) 6∈ E|S1 .
Thus, the execution needs to rollback to the latest re-
covery line, which isS2. Notice here thatSend(m4)
∈ E|S2 , butRecv(m4) 6∈ E|S2 . We callm4 anin-transit
message relative toS2. In our example,m4 should
be logged in order to be retransmitted by the recovery
mechanism.

Definition 2.3: Given an executionE and a recovery
line R ∈ E, R is called adistributed snapshotif every
in-transit message inE relative toR is logged and can
be retransmitted for further recovery fromR.

Given a mobile systemM and an MSSM ∈M, we
useN (M) to denote all the MSSs inM that areneigh-
bors to M . Two MSSsM1 and M2 are neighbors if
there is a directchannelbetween them in the static net-
work. Moreover, we useC(M) to denote all the MHs
that belong to the cell served byM . Notice here that
since an MH can leave/join a cell dynamically, we as-
sume thatC(M) is updated dynamically according to
any join/leave operation.

3. A Distributed Snapshot Protocol

In this section, we describe our distributed snapshots
protocol for mobile systems. To simplify the presenta-
tion of the ADS protocol and show the differences be-
tween this protocol and the classical distributed snap-
shots protocol [6], we first present the latter protocol as
given by Chandy-Lamport [6] (hereafter, the C-L proto-
col), and then show why this protocol cannot be imple-
mented straightforwardly in mobile systems. We start
by defining some data structures to help us describe the
protocols.

3.1 Data Structures and Variables

In presenting the distributed snapshots protocol, we
consider the following data structures and variables:

Marker - This is the marker message used to coordi-
nate a distributed snapshot. It can be sent by any
machine in the system. It contains an integer num-
ber, which isMarker.num . This number is at-
tached to the marker to indicate the corresponding
snapshot number.

x.num - An integer number, which indicates the latest
snapshot number that the machinex knows.

x.state - A flag variable, which indicates the state of the
machinex. The state could be either normal or sav-
ing.

PM - An integer number, maintains the ID of the first
MSS that sends the new marker toM . Such MSS
is called the parent ofM in the current round of the
protocol.

NM , CM - A data structures for maintainingN (M)
andC(M) respectively for an MSSM .

3.2. The C-L protocol

The classic distributed snapshots protocol [6] works
as follows. LetN (p) be the set of processes that have
direct communication with a processp. If p receives a
marker messageMarker from another processq such
thatq ∈ N (p) ∪ {∅}, p deals with the marker by calling
the functionreceivingpresented in Figure 3.

/* p receives a message from process q */
receiving(msg,q)
/* The marker could be sent by any process */
1: If (msg = Marker), then
2: If ((p.state = normal) and (Marker.num> p.num))

p.state = saving
p.num = Marker.num
Np = N (p) /* N is the set of all the processes */
Checkpoint()
∀x ∈ Np, send(Marker,x)

3: If ((p.state = saving) and (Marker.num= p.num))
If (q ∈ Np), thenNp = Np \ {q}
If (Np = ∅), thenp.state = normal

4: Else/* The message is an application message */
If (p.state = saving) and (q ∈ Np), thenLog(msg)

Figure 3. The behavior of every process p
according to the C-L protocol

As presented in Figure 3, in the C-L protocol, when
a processp receives a marker, it switches to the saving
state, takes a local checkpoint, and forwards the marker
to its neighbors. p logs all the intransit messages.p
identifies an intransit message as an incoming message
from a processq ∈ N (p) such thatp has sent the marker
to q, but has not received it back yet.

In [6], it was specified that this protocol works only
if all the channels provide FIFO delivery. In Figure 4 we
show an example in which the C-L protocol produces an
inconsistent global state if FIFO is violated. In this ex-
ample, processp sends the marker and then the message
m after recording its state toq. However, processq re-
ceivesm before the marker; hence, the cut{C1, C2} is
not consistent.

In mobile systems, FIFO communication between the
MHs may not naturally occur, for many reasons. For ex-

Figure 4. The cut {C1, C2} represents an
inconsistent global state

ample, suppose thath1 andh3 (in Figure 1) are commu-
nicating. Assume thath1 sendsm1 and then moves to
C(M2). After it joins C(M2), assume thath1 sendsm2

to h3. In that case,m2 may arrive ath3 beforem1 does.
A straightforward way to support distributed snap-

shots for mobile computing would be to provide FIFO
among MHs. However, providing FIFO could be im-
practical if it causes delays in message delivery and thus
decreases system performance. Instead, we claim that
the FIFO property should be satisfied only between the
marker messages and the application messages, but not
for any two messages in the system. In other words,
all the application messages that have been sent after
a marker should be received after the marker, and vice
versa.

We now present a distributed snapshots protocol for
mobile computing that makes uses of this idea. The pro-
tocol does not require a FIFO channel between any two
MHs; instead, it insures that for any two MHsh1 andh2

on a mobile system, ifh1 sends a messagem to h2 af-
ter receiving the marker, thenh2 will receive the marker
before receivingm.

3.3. Adaptation to Mobile Systems

In the adaptive distributed snapshots (ADS) protocol,
the MSSs are responsible for forwarding the marker and
logging the intransit messages. Since in mobile systems
the MHs have limited resources [4], we have designed
the protocol such that most of the work done by the
MSSs rather than the MHs. The ADS protocol works
as follows:

• If an MSS M ∈ M receives the marker mes-
sageMarker from another machinex such that
x ∈ N (M) ∪ C(M) ∪ {∅}, M processes with
the message by calling the functionMSS receiving
presented in Figure 5.

• For every MHh ∈ C(M) for an MSSM , if h re-
ceives the marker messageMarker from M such
that Marker.num > h.num, h updates its snap-
shot number and sendsMarker back toM with its

local state. Otherwise, ifMarker.num ≤ h.num,
h updatesMarker.num and sends it back toM .

• An MSS M that is in the saving state saves any
incoming messages from machinex, wherex ∈
NM .

• If an MSSM receives a local state of an MHh ∈
C(M), M saves the local state in stable storage.

• If an MH h joins aC(M) group,h’s first action is
to exchange the marker values betweenh andM .
Subsequently, ifh receives an updated marker, it
does a local checkpoint and sends it back toM . On
the other hand, ifM receives an updated marker
from h, it behaves as if it was receiving a new
marker.

Notice here that the marker could be initialized by
any MSS machine on the system. This is reflected in the
assumption indicated in Step 1, where a marker mes-
sage may come from an empty set. Figure 5 shows
theMSS receivingMarker function that is called by an
MSS machine when it receives a message.

MSS receiving(msg,x) /* x ∈ N (M) ∪ C(M) ∪ {∅} */
1: If (msg = Marker), then
2: If ((M .state = normal) and (Marker.num> M .num))

M .state = saving
M .num = Marker.num
CM = C(M)
NM = N (M) \ {x}
PM = x { Update the parent}
∀y ∈ (NM ∪ CM), send(Marker,y)

3: If ((M .state = normal) and (Marker.num< M .num))
Marker.num =M .num
send(Marker,x)

4: If (M .state = saving) and (Marker.num= M .num))
If (x ∈ CM), thenCM = CM \ {x}
If (x ∈ NM), thenNM = NM \ {x}
If (CM = ∅), thensend(Marker,PM)
If (NM = ∅) and (CM = ∅), thenM .state= normal

5: Else/* The message is an application message */
If (M .state = saving) and (x ∈ NM), thenLog(msg)

Figure 5. An MSS machine M receives a
marker message from another machine x.

Figure 6 shows theMH receivingMarker function
that is called by an MH machine when it receives a
marker from its corresponding MSS machine.

MH receivingMarker (Marker,M)
If (Marker.num> h.num), then

h.num = Marker.num
C = Checkpoint()
send(M , 〈 Marker, C〉)

Else
Marker.num =h.num
send(M , Marker)

Figure 6. An MH machine h receives a
marker message from its corresponding
MSS machine.

3.4. Running Examples

We illustrate here our distributed snapshot protocol
with an example in which we use it with a set of run-
ning on the mobile environment. In these examples, we
illustrate the correct functioning of the protocol under
different scenarios that may happen in a mobile system.
Formal proofs of the protocol properties are given in the
next section.

Consider the example of a mobile system presented
in Figure 1. In the system there are four MSSs,
M1, · · · ,M4, and five MHs,h1, · · · , h5. Assume that at
the beginning of the run, all the local snapshot numbers
are zero. Assume that a snapshot is started byM1. Be-
low we describe in detail a scenario that could happen in
the system during the taking of the snapshot, according
to our protocol.

1. M1 increments the marker number to 1 and broad-
casts the marker toN (M1) = {M2,M3} and
C(M1) = {h1, h2}.

2. h1 sends the messagem1 to h3 before receiving the
marker.

3. h1, h2, andh3 receive the marker and take their
local checkpoints. SinceM2 is still in the saving
state (assume it does not receive the marker back
from h3), then in Step 4 it saves the messagem1.

4. h3 receivesm1, but only after taking its local
checkpoint.

5. The marker continues to propagate until all the
MHs have taken their checkpoints.

At the end of this run, we have a snapshot that con-
sists of a consistent cut (S1 in Figure 7), and the intransit
messagem1 is saved with global checkpoints.

Another running example of the system presented in
Figure 1 is as follows.

Figure 7. An example of a mobile system
for illustrating the protocol

1. M1 increments the marker number to 2 and broad-
casts the marker toN (M1) = {M2, M3} and
C(M1) = {h1, h2}.

2. h1 takes a local checkpoint, leavesC(M1), and
joins C(M4). The token does not reachM4 at this
point.

3. h1 sends the marker toM4. M4 then switches to
saving state and starts the snapshot.

4. h1 sends a message toh5.

5. h5 receives the message sent byh1 only after taking
its local checkpoint.

6. The marker continues to propagate until all the
MHs have taken their checkpoints.

At the end of this run, we have a snapshot that con-
sists of a consistent cut (S2 in Figure 7). Notice that if
h1 does not propagate the marker with it when it joins
C(M4), then we will not get a snapshot, but it will con-
sist of an inconsistent cutS3.

3.5. Protocol Properties

In this section we prove the safety and progress of
the adaptive distributed snapshots protocol. For safety,
we show that the protocol produces distributed snap-
shots. Specifically, we show that all the checkpoints
on the MHs form a recovery line and every in-transit
message relative to this recovery line is logged as well.

For progress, we show that after every snapshot, all the
MSSs and MHs switch to normal state. We start by
proving how fast the marker propagates on the mobile
systems.

Although the routing protocols in a mobile system
are beyond the scope of our work, we believe that the
marker propagation mechanism used here is the fastest
mechanism in mobile environments.

Claim 3.1: Given a mobile systemM, once a marker
is initialized inM, it propagates faster than any other
message inM.

Proof: We prove this claim by observing the marker
routes inM. By the ADS protocol, once an MSSM
initializes (or receives) a marker, it broadcasts it to its
neighbors. Then, every neighbor broadcasts it. Obvi-
ously, any messagem that the MSSM wants to send,
regardless of the used routing protocol, it should sendm
to its neighbor(s) first. Then, the neighbor(s) continues
according to the routing protocols. Hence,m will be
transmitted to some particular paths fromM to its tar-
get. On the other hand, since the marker is sent to all the
neighbors, it will be transmitted to all the possible paths
from M to its target, where it meets the optimum path
in the network during propagation.

Furthermore, since by the ADS protocol, the first op-
eration that an MH does during the join process to a new
cell is to exchange its marker with the corresponding
MSS.

Lemma 3.2: Within a distributed snapshot of the ADS
protocol, every MHh takes a local checkpoint.

Proof: Once a marker is initialized in an MSSM , by
Claim 3.1, the marker propagates to all the MSSs in the
system, where every MSS inN (M) sends it to its neigh-
bors. As a result, since we assume that there is reliable
point-to-point communication between the MSSs, even-
tually every MSS will receive the marker.

In Step 2 of theMSS receiving function (see Fig-
ure 5), when an MSS receives the marker, it broad-
casts the marker to the MHs in its cell. Therefore,
by the reliable assumption within the same cell, ev-
ery MH will receive the marker. As a result, by func-
tion MH receivingMarker (presented in Figure 6), ev-
ery MH takes a local checkpoint within the current dis-
tributed snapshot.

Lemma 3.3: For any two MHsh1 andh2 on a mobile
system, ifh1 sends a messagem toh2 after receiving the
marker, thenh2 will receive the marker before receiving
m.

Proof: We start this by contradiction. In particular,
assume that for some messagem, h2 receives the marker
afterm while h1 has sentm after receiving the marker.
Figure 4 illustrates such a situation, wherep takes the
place ofh1, andq takes the place ofh2. We examine
now all the possible formsh1 andh2 could take in the
system.

First, assume thath1 andh2 belong to the same cell,
for exampleh1, h2 ∈ C(M), for some MSSM . In Step
2 of Figure 5,h1 receives the marker afterM has sent
it to C(M). By the protocol,M should send the marker
to h2 at the same time it sends the marker toh1. On
the other hand, since the messagem is sent byh1 after
receiving the marker, thenM should forwardm to h2

after sending the marker toh2. By the FIFO assump-
tion within the same cell,h2 should receive the marker
beforem, contradicting our assumption.

Second, assume thath1 ∈ C(M1) andh2 ∈ C(M2),
whereM1 6= M2. By [6] and the FIFO assumption be-
tween the MSSs, the marker is received consistently by
the MSSsM1 andM2 with any application message be-
tween them. In other words, if an application message
m′ is sent byM1 to M2 afterM1 has the marker, then
M2 should receive the marker before receivingm′. In
Step 2 of Figure 5, whenM2 receives the marker, it for-
wards it directly toh2. Then, by the FIFO assumption
within the same cell,h2 should receive the marker be-
fore receiving the messagem, again contradicting our
assumption.

Lastly, assume thath2 has not yet receivedm and
joins the cell ofh1 after the marker has been distributed
in this cell. Then by the ADS protocol,h2 will receive
the latest marker that was distributed in this cell before
receiving any further messages, including the message
m, contradicting our assumption.

Lemma 3.4: Every in-transit message is logged by the
ADS protocol.

Proof: By definition, a messagem from h1 to h2 is
in-transit ifh1 sendsm before taking its checkpoint, but
h2 receivesm after taking its checkpoint. By Step 5 in
Figure 5, an MSSM , which is in a saving state, logs ev-
ery incoming message. SinceM switches to the saving
state before the MHs in its cell (Step 2, Figure 5). By
Step 4 in Figure 5,M remains in the saving state until
all its MHs have taken their checkpoints and it receives
the marker back from its neighbors. Thus we guarantee
that every incoming message that could be received by
an MHh ∈ C(M) after a checkpoint is logged byM . In
other words, every in-transit message is logged.

Theorem 3.5: The ADS protocol produces distributed
snapshots for mobile systems.

Proof: By Lemma 3.2, every MH takes a local check-
point during the ADS protocol. By Lemma 3.3, the cut
of checkpoints is a recovery line. Finally, by Lemma 3.4,
every intransit message relative to the recovery line is
logged. Therefore, the ADS protocol produces dis-
tributed snapshots.

Now we prove the progress of the ADS protocol. We
show that if an MSS enters a saving state by the ADS
protocol, it switches to the normal state after a finite pe-
riod of time.

Lemma 3.6: If an MSSM is in a saving state, then
it receives the markers from all the hosts inN (M) ∪
C(M).

Proof sketch: By Step 2 in Figure 5, when an MSSM
switches to the saving state upon receiving (or initializ-
ing) a marker, it defines the setNM to beN (M)∪C(M).
By Step 4, when the marker returns toM from x ∈ NM ,
M extractsx from NM . M switches to the normal state
when it receives the markers back from all the members
of NM .

By Figure 6, if an MHh ∈ C(M) receives a marker,
it sends the marker directly back toM . By assuming of
reliable communication betweenM andC(M), all the
markers should be received back byM . Similarly, by
Step 4 in Figure 5 and the reliable assumption, eventu-
ally everyM ′ ∈ N (M) sends the marker back toM .

Notice here that whileM is in the saving state, the
setNM may change dynamically to reflect the dynamic
change ofC(M), e.g., an MH can join/leave the cell. By
the ADS protocol, if an MHh joins the cellC(M), it
initially exchanges the marker withM . Therefore, ifM
was in the saving state, it updatedNM accordingly.

Corollary 3.7: If an MSSM enters the saving state,
then it will switch back to the normal state after a finite
time.

Proof: Since we assume reliable point-to-point com-
munication betweenM and its MHs, then eventually ev-
ery h ∈ C(M) will send back the marker. In addition,
due to the reliable assumption among the MSSs, even-
tually everyM ′ ∈ N (M) will send back the marker to
M . As a result, eventuallyM will switch to the normal
state.

4. Related Work

A considerable body of work is available on C/R
for traditional distributed systems, e.g., [7, 12, 13]. As
pointed out in [7], the C/R protocols for traditional dis-
tributed systems are classified into three classes: coordi-
nated checkpointing, uncoordinated checkpointing, and

CIC. Observing the C/R protocols for mobile systems,
this major classification still holds, where most of the
protocols belong to CIC.

Pradhan et al. [15] presented an evaluation for C/R
protocols in mobile computing systems. They analyzed
some well-known C/R protocols to determine the main
parameters that affect their performance. These parame-
ters include the wireless bandwidth, the communication-
mobility ratio of the user, and the failure rate of the
mobile host. In order to minimize the overhead of our
protocol, we tried not to minimize the communication
through the wireless bandwidth. Also we keep the ma-
jor work of the protocol to be done by the MSSs, but not
the MHs.

Manivannan and Singhal [11] presented a CIC C/R
protocol for mobile systems. This protocol focuses on
solving the challenging problem of finding and main-
taining a recovery line. Therefore, the protocol pro-
duces some force checkpoints that could increase the
overhead. On the other hand, since our protocol does
not take any additional checkpoints, the recovery line is
limited to the latest cut of checkpoints.

Lin and Dow [10] presented a three-phase hybrid C/R
protocol designed for mobile systems. This protocol
requires coordination among MSSs in the first phase.
Then it applies a CIC technique among the MHs in the
second phase. Lastly, a timeout interval is considered in
the third phase. The ADS protocol does not use the CIC
technique, which complicates the recovery mechanism,
and there are no timeouts.

Acharya and Badrinath [1] presented a CIC check-
pointing protocol for mobile computing systems, where
a process takes a checkpoint whenever a message recep-
tion is preceded by a message transmission. Obviously,
this protocol causes as many forced checkpoints as the
number of messages if the message reception and trans-
mission are interleaved, resulting in high overhead. The
ADS protocol does not have forced checkpoints at all.

5. Conclusions

We have presented a robust adaptation of the classi-
cal distributed snapshots protocol to mobile systems. In
addition to presenting the protocol itself, we present a
proof of correctness and progress of the protocol. As
was the case for the classical distributed snapshots pro-
tocol [6], this protocol facilities solutions for important
problems in distributed systems, such as checkpointing,
and global state detection.

In previous work [3], we identified the distributed
snapshots protocol as the most efficient protocol in dis-
tributed systems among a set of known checkpointing
protocols for distributed systems. We believe that the
adaptive distributed snapshots protocol presented in this

paper is likewise an efficient checkpointing protocol for
the mobile environment, in which efficiency is very im-
portant in meeting the needs of limited resources in the
mobile hosts.

Acknowledgments

We would like to thank Kaustubh Joshi for his helpful
comments and Jenny Applequist for her editorial assis-
tance.

References

[1] A. Acharya and B. R. Barinath. Checkpointing Dis-
tributed Applications on Mobile Computing. InProceed-
ings of the 3rd International Conference on Parallel and
Distributed Information Systems, pages 73–80, Septem-
ber 1994.

[2] A. Agbaria, H. Attiya, R. Friedman, and R. Vitenberg.
Quantifying Rollback Propagation in Distributed Check-
pointing. InProceedings of the 20th Symposium on Re-
liable Distributed Systems, pages 36–45, New Orleans,
USA, October 2001.

[3] A. Agbaria, A. Freund, and R. Friedman. Evaluating Dis-
tributed Checkpointing Protocols. InProceedings of the
23rd International Conference of Distributed Computing
Systems, pages 266–273, Providence, Rhode Island, May
2003.

[4] B. R. Badrinath, A. Acharya, and T. Imielinski. Struc-
turing Distributed Algorithms for Mobile Hosts. InPro-
ceedings of the 14th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 21–28, June
1994.

[5] P. Bhagwat and C. E. Perkins. A Mobile Networking
System Based on Internet Protocol (IP). InProceed-
ings of the USENIX Symposium on Mobile and Location-
Independent Computing, pages 69–82, August 1993.

[6] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems.ACM
Transactions on Computer Systems, 3(1):63–75, Febru-
ary 1985.

[7] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols
in Message-Passing Systems. Technical Report CMU-
CS-99-148, Department of Computer Science, Carnegie
Mellon University, June 1999.

[8] J. Ioannidis, D. Duchamp, and G. Q. Maguire. IP-based
Protocols for Mobile Internetworking. InProceedings of
ACM SIGCOMM Symposium on Communications, Ar-
chitectures and Protocols, pages 235–245, 1991.

[9] L. Lamport. Time, Clocks and Ordering of Events
in Distributed Systems.Communications of the ACM,
21(7):558–565, July 1978.

[10] Cheng-Min Lin and Chyi-Ren Dow. Efficient
Checkpoint-based Failure Recovery Techniques in Mo-
bile Computing Systems.Journal of Information Science
and Engineering, 17:549–573, 2001.

[11] D. Manivannan and M. Singhal. Failure Recovery based
on Quasi-Synchronous Checkpointing in Mobile Com-
puting Systems. Technical Report OSU-CISRC-7/96-
TR36, The Ohio State University, Department of Com-
puter and Information Science, 1996.

[12] D. Manivannan and M. Singhal. Quasi-Synchronous
Checkpointing: Models, Characterization, and Classifi-
cation. IEEE Transactions on Parallel and Distributed
Systems, 10(7):703–713, July 1999.

[13] J. S. Plank.Efficient Checkpointing on MIMD Architec-
tures. PhD thesis, Princeton University, January 1993.

[14] J. S. Plank. An Overview of Checkpointing in Uniproces-
sor and Distributed Systems, Focusing on Implementa-
tion and Performance. Technical Report UT-CS-97-372,
Department of Computer Science, University of Ten-
nessee, July 1997.

[15] D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recovery in
Mobile Environments: Design and Trade-Off Analysis.
In Proceedings of the 26th International Symposium on
Fault-Tolerant Computing (FTCS-26), June 1996.

