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Performance of Comorbidity Scores to Control for Confounding in
Epidemiologic Studies using Claims Data
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Glynn1,4

Comorbidity is an important confounder in epidemiologic studies. The authors compared the predictive
performance of comorbidity scores for use in epidemiologic research with administrative databases. Study
participants were British Columbia, Canada, residents aged ≥65 years who received angiotensin-converting
enzyme inhibitors or calcium channel blockers at least once during the observation period. Six scores were
computed for all 141,161 participants during the baseline year (1995–1996). Endpoints were death and health
care utilization during a 12-month follow-up (1996–1997). Performance was measured by using the c statistic
ranging from 0.5 for chance prediction of outcome to 1.0 for perfect prediction. In logistic regression models
controlling for age and gender, four scores based on the International Classification of Diseases, Ninth Revision
(ICD-9) generally performed better at predicting 1-year mortality (c = 0.771, c = 0.768, c = 0.745, c = 0.745) than
medication-based Chronic Disease Score (CDS)-1 and CDS-2 (c = 0.738, c = 0.718). Number of distinct
medications used was the best predictor of future physician visits (R 2 = 0.121) and expenditures (R 2 = 0.128)
and a good predictor of mortality (c = 0.745). Combining ICD-9 and medication-based scores improved the c
statistics (1.7% and 6.2%, respectively) for predicting mortality. Generalizability of results may be limited to an
elderly, predominantly White population with equal access to state-funded health care. Am J Epidemiol
2001;154:854–64.
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Comorbidity scores can be useful tools for controlling for
confounding in epidemiologic analyses in which claims-
based data are used. However, little is known about the rela-
tive performance of various available comorbidity scores in
predicting a variety of outcomes (1). Particular measures
often seem to be chosen for convenience rather than perfor-
mance. The construct “comorbidity” reflects the aggregate
effect of all clinical conditions a patient might have, exclud-
ing the disease of primary interest (2). Because there is no
“gold standard,” researchers validate measures of comorbid-
ity by how well they predict worse health outcomes, more
health care utilization, and increased health care expenditures.

The predictive performance of claims-based comorbidity
scores depends on several factors, including 1) the clinical
conditions included in a score and their relative weights; 
2) the distribution of comorbid conditions in the source pop-
ulation; 3) the endpoint of a study, for example, 1-year mor-
tality; and 4) the accuracy of the administrative data (3). The
predictive performance of two scores can validly be com-
pared when factors 2–4 are held constant. Several studies
have explored the predictive validity of comorbidity mea-
sures in claims data (4–13). However, only a few publica-
tions compared the performance of two comorbidity scores
in the same populations and for the same endpoints (11, 12,
14). We are unaware of any direct comparison of medica-
tion-based versus diagnosis-based scores or more than two
scores in the same population.

In this study, we compared the performance of six
claims-based comorbidity scores in predicting 1-year mor-
tality, long-term-care admission, number of hospitaliza-
tions, physician visits, and expenditures for physician 
services. The study population was a cohort of British
Columbia, Canada, residents aged 65 years or more who
had hypertension.

MATERIALS AND METHODS

The study population included all British Columbia resi-
dents aged 65 years or more on March 31, 1996, for whom
at least one health care encounter was paid for by the

 at Pennsylvania State U
niversity on M

arch 1, 2014
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/


Performance of Comorbidity Scores 855

Am J Epidemiol Vol. 154, No. 9, 2001

Ministry of Health (for prescription medication, medical
service, or hospitalization) during the 4 months prior to the
baseline year (April 1, 1995–March 31, 1996). As part of a
larger policy study (15), data on all filled prescriptions,
health care utilization, and expenditures were available for
all patients who had filled at least one prescription for an
angiotensin-converting enzyme inhibitor or calcium channel
blocker from January 1, 1995, to December 31, 1997.
Patients who died or were admitted to long-term care during
the baseline period were excluded. The cohort of eligible
patients (n � 141,161) was followed for 1 year after base-
line (April 1, 1996–March 31, 1997). Comorbidity was
assessed during the baseline year, and all endpoints were
assessed during the follow-up year.

Scores

Original research on the metric properties of comorbidity
indices for claims data was identified by a literature search
using MEDLINE (National Library of Medicine, Bethesda,
Maryland) and HealthStar (HealthStar, Inc., Long Beach,
California) databases, bibliographies, and expert consulta-
tions. We identified six distinct indices of comorbidity for
use in administrative databases (4, 7–9, 11, 14). Four of the
six scores use diagnostic information from International
Classification of Diseases, Ninth Revision (ICD-9) codes
and are based on the Charlson index originally designed for
clinical data (16). Two of the scores are based on outpatient
drug utilization data.

Diagnosis-based scores. The Charlson index is a list of
19 conditions; each is assigned a weight (1 to 6). The Charlson
index score is the sum of the weights for all conditions that a
patient has. Although the index might seem rather simple, it
was associated with a 2.3-fold (95 percent confidence interval:
1.9, 2.8) increase in the 10-year risk of death per increment in
comorbidity level in a cohort of 685 breast cancer patients
(16), and similar results were found for postoperative survival
in patients with hypertension or diabetes (17).

For the Deyo and Romano implementations of the
Charlson index, we used the corresponding sets of five-digit
ICD-9-CM (Clinical Modification) diagnoses, as delineated
in these authors’ original publications (5, 8). These two
scores differ only modestly in the ICD-9-CM codes that map
the Charlson index conditions (5).

For the D’Hoore implementation of the Charlson comor-
bidity index, we used the first three digits of the ICD-9 code,
as described by D’Hoore et al. (9). The Ghali adaptation of
the Charlson index was calculated with the reduced set of
diagnoses specified by Ghali et al. (11).

The four scores were calculated by using ICD-9 codes
derived from all hospital discharges, which can contain up to
16 diagnoses. In addition to these original scores based on
hospitalization only, we also calculated scores based on the
diagnoses associated with all inpatient and outpatient physi-
cian services or procedures received during the baseline year.

The original Charlson weights were applied to the Deyo,
Romano, and D’Hoore scores. The published weights were
applied to the Ghali score (refer to table 4 in reference (1)).

As a simple measure, we also used the number of distinct

diagnoses, that is, different first-three-digit ICD-9 codes dur-
ing the baseline year. There were two categories, hospital dis-
charge diagnoses and hospital plus ambulatory diagnoses.

Prescription-medication-based scores. For the Chronic
Disease Score (CDC), outpatient pharmacy dispensing data
are used to assign patients to chronic disease groups. An inte-
ger weight is given to each comorbidity category represented
by selected medication classes, and all weights are summed to
obtain an overall score. The CDS was developed by an inter-
disciplinary expert group of researchers and practitioners and
was refined after several pilot studies. CDS-1 was tested
among 122,911 Group Health Cooperative (Washington
State) enrollees. A multivariate logistic regression model
showed that with an increasing CDS-1 score, the probabilities
of 1-year hospitalization and of 1-year mortality increased
steadily. Compared with patients who were in the lowest
CDS-1 score category, those in the highest category (7+) had
a 10-fold higher probability of dying in the next year. An
extended version of the score, CDS-2 (14), was designed
specifically to predict future health care utilization.

To calculate the CDS-1 score, we followed the original
coding (7). For the CDS-2 score, the published weights used
to predict primary care visits were adopted. (14). Drugs that
have become available since 1992 were assigned to an
appropriate category based on the condition for which the
medication is prescribed. For example, only cimetidine was
originally specified as an indicator for ulcer disease, and we
expanded this list to include any H (histamine)

2
antagonist

or proton pump inhibitor. For drugs that were available
when the score was developed but for which their indica-
tions have since been expanded to include one of the scored
chronic diseases, the disease categories were not changed
for that drug (e.g., methotrexate for cancer but now used
more frequently for rheumatoid arthritis).

We used number of distinct prescription drugs (distinct
chemical entities) dispensed during the baseline year as a
crude comorbidity measure. Medications whose first eight
digits of the American Hospital Formulary Services code
(18) were equal were considered the same substance.

Other utilization measures. Two other simple utilization
measures were also considered as predictors: 1) Number of
hospitalizations for any reason and any length during the
baseline year. Elective hospitalizations and unplanned emer-
gency hospitalizations were differentiated. 2) Number of
physician visits for any reason during the baseline year.

Endpoints

The primary endpoint was mortality during the follow-up
year. Secondary endpoints were long-term-care admissions,
hospitalizations (elective and emergency), number of physi-
cian visits (including services in hospitals), and expenditures
for physician services during the follow-up year.
Expenditures were measured by payments by the provincial
government. For patients who left the cohort for reasons
other than dying during the follow-up year, numbers of physi-
cian visits and expenditures were extrapolated to an annual
count (19). The rate of emigration from British Columbia is
very low among residents aged 65 years or more (20).
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Data quality

In British Columbia, pharmacists enter pharmacy
dispensing data—including medication, strength, and num-
ber of units—into a computer network when a prescription
is filled, and underreporting and misclassification appear to
be minimal (21). Although previous reports indicate reason-
able levels of accuracy and completeness of diagnostic cod-
ing (22), misclassification of ICD-9 diagnoses is probably
similar to that found in research in which other administra-
tive databases are used (23–26). British Columbia pays all
medication and medical services costs for residents aged 65
years or more. Data on medical services include accurate
information on the amount paid in Canadian dollars.

Data analysis

For each endpoint, three baseline regression models were
fitted to the data by modeling endpoints as a function of age,
gender, and age plus gender combined. For each of the six
comorbidity scores, models were constructed containing only
the score as well as the score plus age and gender.
Dichotomous endpoints (mortality, long-term-care admis-
sions) were modeled by fitting logistic regression models; c
statistics (i.e., the area under the receiver operating character-
istic (ROC) curve) were calculated as measures of discrimina-
tion (27). The c statistic ranges from 0 to 1, with 1 indicating a
perfect prediction and 0.5 a chance prediction; for example, the
Framingham Heart Study could predict the incidence of coro-
nary heart disease based on age, blood pressure, smoking, dia-
betes, and low density and high density lipoprotein cholesterol
levels with a c statistic of 0.77 (28). It has been suggested that
c statistics of 0.7–0.8 could be considered acceptable and those
of 0.8–0.9 excellent (29); higher values are rarely observed and
are described as outstanding. Asymptotic 95 percent confi-
dence limits were reported for c statistics (30). Because multi-
ple hospitalizations occurred in less than 5 percent of patients
during follow-up, we categorized patients as those without and
those with one or more hospitalizations. For continuous out-
comes (expenditures for physician services), we fitted linear
regression models and reported R2 statistics to reflect the pro-
portions of explained variance (31). Since number of physician
visits per year varied widely around a mean of 10.9 (standard
deviation (SD), 12.4), we considered it a continuous variable.
Expenditure and visit data were considerably skewed to the
right and therefore were log-transformed (32). Predictive per-
formance should not be compared across outcomes but across
scores within outcomes. Spearman’s correlation coefficients
with two-sided p values were calculated among scores and uti-
lization measures during the baseline year.

Another way to quantify the performance of scores is to
estimate how much confounding by comorbidity would be
avoided by adjusting for each of the six scores, assuming an
underlying null association between an exposure and out-
come. Since the scores represent measurable confounding
by comorbidity, it can be controlled for in stratified analy-
ses. The true amount of confounding caused by comorbidity
might be larger but remains unknown. The difference in
confounding that can be adjusted between scores reflects the

relative capacity of each score to adjust for confounding.
Scores that perform equally may do so by controlling for
different qualities of comorbidity; that is, the scores are not
necessarily nested within each other.

To determine how much confounding would be avoided
by adjusting for each score, we used actual outcome data and
the observed associations between scores and outcome, and
we considered various assumptions about the prevalence of
exposure and the exposure-comorbidity association. For sim-
plicity, we assumed a dichotomous exposure and a dichoto-
mous comorbidity measure. The apparent or crude relative
risk (RR) of an exposure (E)-outcome (O) association in the
presence of confounding (crude RREO) is related to the asso-
ciations between confounder (C) and exposure (OREC) as
well as confounder and outcome (RRCO; refer to the
Appendix). To ensure comparability, and on the basis of the
observed distribution of scores, we dichotomized all six
scores by choosing cutpoints closest to the 75th percentile.
That is, only 25 percent of patients with the highest scores
were coded as having a notable degree of comorbidity. We
used the observed prevalence of comorbidity Pr(C) and the
observed confounder-mortality association and varied OREC
from 0.2 to 8. The prevalence of exposure Pr(E) was varied
between 0.1 and 0.3. The underlying exposure-outcome
association was assumed to be constant, with RREO � 1.

RESULTS

Population

At the beginning of the baseline year, the population of
141,161 patients was on average aged 75.4 years (SD, 6.7),
and 58 percent were female. The distributions of the comor-
bidity indices during the baseline period are shown in table 1.
During the follow-up year, the average numbers of elective
hospitalizations (0.1; SD, 0.3) and emergency hospitaliza-
tions (0.2; SD, 0.4) were unchanged, and the number of
physician visits increased slightly (10.9; SD, 12). A total of
1,221 Can $ was spent on average per patient per year (SD,
1,627). During the follow-up year, 5,569 deaths occurred, and
3,317 patients were admitted to long-term-care facilities. No
study patients migrated permanently out of the province.

Correlations at baseline

Correlations between ICD-9-based and medication-based
scores were 0.31 or lower (table 2). Medication-based scores
were highly correlated with number of distinct medications
received (r > 0.6) and weakly correlated with number of
emergency hospitalizations during baseline (r < 0.20).
Conversely, ICD-9-based scores were more highly correlated
with hospitalizations (r ≥ 0.30) but not as well correlated with
number of medications (r ≤ 0.35). Number of physician visits
correlated highly with number of different ICD-9 diagnoses 
(r � 0.76 for hospital and ambulatory codes combined).

Performance

The Romano adaptation of the Charlson index performed
best in predicting 1-year mortality; the c statistic was 0.771 in
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a model including age and gender (table 3). This finding rep-
resents an improvement of 0.09 (11.7 percent) over an age-
and-gender model alone (c � 0.681). Deyo’s version per-
formed similarly, but the three-digit ICD-9-based D’Hoore
score and Ghali’s adaptation seemed to perform less well.
Both CDS-1 and CDS-2 did not perform as well (table 3).

Performance for predicting long-term-care admissions
was generally better, and the rank order was the same

(Romano (5, 6) > Deyo (8) > D’Hoore (9, 10) > Ghali (11) >
CDS-1 (7) > CDS-2 (14)); however, age contributed consid-
erably to the prediction (table 4). Future emergency hospital
admissions were best predicted by number of medications
prescribed during the baseline year compared with ICD-9-
based scores, followed by medication-based scores. Number
of distinct medications seemed to be the best predictor for
future physician visits and expenditures for physician ser-

TABLE 1. Distributions of six comorbidity scores and several utilization measures during the baseline
year, British Columbia, Canada, April 1995–March 1996

CDS*-1 (7)

CDS-2 (14)

Deyo (8)

D’Hoore (9, 10)

Ghali (11)

Romano (5, 6)

No. of nonemergency hospitalizations

No. of emergency hospitalizations

No. of distinct prescription drugs†

No. of distinct ICD-9 diagnoses‡

No. of physician visits

4.4 (2.3)

3.1 (1.3)

0.5 (1.1)

1.2 (1.8)

0.4 (1.2)

0.5 (1.1)

0.1 (0.5)

0.2 (0.6)

7.4 (5.1)

3.5 (2.7)

8.8 (8.6)

Score/measure
(reference no.)

Mean
(standard deviation)

%
with 0 Median 75th

percentile Maximum

6.4

0.0

73.8

56.1

86.7

73.3

88.6

85.2

1.7

6.1

5.3

4.0

2.8

0.0

0.0

0.0

0.0

0.0

0.0

6.0

3.0

6.0

6

3.6

1

2

0

1

0

0

10

5

12

19.0

12.1

12.0

18.0

11.0

14.0

39.0

15.0

55.0

39.0

184.0

* CDS, Chronic Disease Score.
† Prescription medications that have different chemical structures but may be part of the same therapeutic

group.
‡ International Classification of Diseases, Ninth Revision (ICD-9) diagnoses whose first three digits differ.

TABLE 2. Spearman’s correlation coefficients of six comorbidity scores and selected utilization measures*,† during the
baseline year, British Columbia, Canada, April 1995–March 1996

CDS-2

Deyo 

D’Hoore 

Romano

Ghali

No. of prescription drugs‡

No. of diagnoses§

No. of elective hospitalizations

No. of emergency hospitalizations

No. of physician visits

0.653

0.296

0.298

0.305

0.240

0.646

0.257

0.135

0.219

0.298

CDS‡-1
(7)

CDS-2
(14)

Deyo
(8)

D’Hoore
(9, 10)

Romano
(5, 6)

0.293

0.306

0.301

0.202

0.779

0.327

0.170

0.236

0.371

0.587

0.892

0.659

0.343

0.287

0.333

0.470

0.321

0.594

0.409

0.349

0.319

0.231

0.321

0.341

0.654

0.351

0.289

0.348

0.477

0.332

* All p values of the reported Spearman's correlation coefficients, <0.0001.
† Number(s) in parentheses, reference number(s).
‡ CDS, Chronic Disease Score.
§ Prescription medications that have different chemical structures but may be part of the same therapeutic group.
¶ International Classification of Diseases, Ninth Revision diagnoses whose first three digits differ.

Ghali
(11)

No. of
prescription

drugs§

No. of
diagnoses¶

No. of
non-

emergency
hospital-
izations

No. of
emergency

hospital-
izations

0.275

0.251

0.263

0.490

0.273

0.422

0.218

0.308

0.470

0.113

0.218

0.711

0.222

0.288 0.313
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vices but also a good predictor for long-term-care admis-
sions. CDS-2 performed poorly in predicting physician 
visits, despite the fact that its weights were specifically
designed to perform well for this endpoint.

Performance of scores based on hospital and ambulatory
ICD-9 codes was only slightly better than using hospital dis-
charge codes alone (table 4). We observed a 1.3 percent
improvement in the Romano score based on hospital dis-
charge diagnoses (c � 0.757) when compared with the
Romano score based on both ambulatory and hospital data
(c � 0.770). Only number of distinct diagnoses performed
better when hospital discharge diagnoses, and not ambula-
tory codes, were used.

In the regression analyses, each score and age were mod-
eled as linear terms. When age and the scores were divided
into tertiles and were included in the models as ordinal vari-
ables, their predictive performance for mortality decreased
marginally (<0.5 percent). Scores were also divided into two
categories, with cutpoints chosen to be closest to the 75th
percentile. Doing so decreased performance an average of
1.7 percent except for the D’Hoore score, which decreased
by 2.7 percent (table 3). When quadratic terms of the scores
were added to regression models, the c statistics improved
less than 0.5 percent for all scores except those for the CDS-
2, which improved by 0.9 percent.

Because ICD-9-based and medication-based scores were
not strongly correlated, we fitted models including both types
of scores to improve the predictive value (table 5). Combining
the CDS-1 with ICD-9-based scores improved the prediction
for all outcomes. The improvements in c statistics were
smaller for ICD-9-based scores (e.g., Deyo � CDS-1 � 2
percent; Romano � CDS-1 � 1.7 percent at predicting 
mortality) but larger for medication-based scores (e.g., CDS-
1 � Romano � a 6.2 percent improvement over CDS-1
alone). The combination of ICD-9-based scores and number
of medications performed equally well or better than the com-
bination of ICD-9-based scores and CDS-1 score (table 5).

Figure 1 shows the percentage of confounding bias that
would be controlled by each of the comorbidity scores,
assuming there is no underlying association between an
exposure and outcome (RREO � 1). There is no confounding
bias if there is no association between exposure and comor-
bidity (OREC � 1). If the exposure is associated with comor-
bidity and the odds ratio is 3.0, then the comorbidity, as
measured by the Romano or Deyo score, would cause a bias
of 47 percent, and the crude exposure-outcome relative risk
would be estimated to be 1.47. Because this represents the
amount of measured confounding, we assume that this con-
founding can be adjusted by using the Romano or Deyo
score in a stratified analysis. On the other hand, the medica-
tion-based CDS-1 score would control only 28 percent of
the bias, or 60 percent of that controlled by the Romano or
Deyo score. For rare exposures (Pr(E) � 0.1), the Romano
and Deyo scores adjusted equally well and outperformed the
medication-based scores by about 40 percent. D’Hoore’s
score performed only slightly better than the medication-
based scores. For more frequent exposures (Pr(E) � 0.3),
the relative order was unchanged.

Because of the extremely skewed distribution of the Ghali
score, a binary cutpoint occurred between a raw score of 0
and 1 and thus led to a prevalence of confounding of only 13
percent compared with 25 percent for all other scores.
Therefore, to avoid unfair comparisons, figure 1 does not
show the Ghali score.

DISCUSSION

In an elderly population, ICD-9-based comorbidity scores
tended to perform better than medication-based scores in
predicting future mortality and morbidity. This finding is
consistent with the hypothesis that diagnosed conditions not
treated by drugs, and pairs of diagnosed conditions treated
by only one drug (e.g., hypertension and angina treated by
one calcium channel blocker), are important to count. The

TABLE 3. Prediction of 1-year mortality by six comorbidity scores* measured 1 year earlier, British
Columbia, Canada, 1995–1997

CDS§-1 (7)

CDS-2 (14)

Deyo (8)

D’Hoore (9, 10)

Romano (5, 6)

Ghali (11)

Age + gender + CDS-1

Age + gender + CDS-2

Age + gender + Deyo

Age + gender + D’Hoore

Age + gender + Romano

Age + gender + Ghali

Score
(reference no.) Model†

Continuous score Binary score‡

c
statistic

95%
confidence

interval

0.738

0.718

0.768

0.745

0.771

0.745

0.731, 0.744

0.711, 0.725

0.762, 0.775

0.739, 0.752

0.764, 0.777

0.738, 0.752

0.721

0.715

0.757

0.719

0.758

0.742

* Scores modeled as continuous variables and as binary variables.
† Age was entered as a linear term into all models.
‡ The cutpoint for the dichotomous transformation of all six scores was chosen as the one closest to the 75th

percentile of each score.
§ CDS, Chronic Disease Score.

c
statistic

95%
confidence

interval

Difference

0.714, 0.728

0.708, 0.722

0.751, 0.763

0.712, 0.726

0.751, 0.764

0.735, 0.749

0.017

0.003

0.011

0.027

0.013

0.003
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contrary hypothesis, that medication-based scores would
capture important diagnoses that failed to be coded into the
database, was not supported. It has been shown that the

more ill patients are, the less likely that some comorbid con-
ditions will be treated (33, 34). In particular, medications
that have some preventive effects (e.g., oral antidiabetics or

TABLE 4. Prediction of 1-year mortality and 1-year health care utilization by six comorbidity scores and several measures of
utilization measured 1 year earlier, British Columbia, Canada, 1995–1997

Demographics
Age
Gender
Age + gender

CDS†-1 (7)
CDS-1
Age + gender + CDS-1

CDS-2 (14)
CDS-2
Age + gender + CDS-2

Deyo (8)
Deyo
Age + gender + Deyo

D’Hoore (9, 10)
D’Hoore
Age + gender + D’Hoore

Romano (5, 6)
Romano
Age + gender + Romano

Ghali (11)
Ghali
Age + gender + Ghali

No. of distinct prescription drugs§
No. of prescription drugs
Age + gender + no. of

prescription drugs

No. of distinct ICD-9 diagnoses¶
No. of diagnoses
Age + gender + no. of diagnoses

No. of elective hospitalizations
No. of hospitalizations
Age + gender + no. of 

hospitalizations

No. of emergency hospitalizations
No. of emergency hospitalizations
Age + gender + no. of

emergency hospitalizations

No. of physician visits
No. of physician visits
Age + gender + no. of physician

visits

0.667
0.543
0.681

0.659
0.733

0.633
0.718

0.694 (0.656)‡
0.768 (0.757)

0.675 (0.651)
0.745 (0.752)

0.696 (0.657)
0.771 (0.757)

0.649 (0.618)
0.745 (0.733)

0.677

0.745

0.626 (0.659)
0.721 (0.748)

0.562

0.704

0.634

0.732

0.627

0.727

Score/measure
(reference no.)

and model* Mortality

Binary outcome (c statistic) Continuous outcome (R 2)

Nonemergency
hospitalization

Emergency
hospitalization

0.527
0.528
0.544

0.561
0.575

0.579
0.588

0.580 (0.562)
0.598 (0.589)

0.578 (0.563)
0.589 (0.590)

0.585 (0.563)
0.603 (0.591)

0.552 (0.540)
0.576 (0.570)

0.598

0.609

0.545 (0.585)
0.564 (0.605)

0.557

0.589

0.555

0.583

0.527

0.550

0.601
0.515
0.605

0.590
0.637

0.605
0.645

0.601 (0.581)
0.653 (0.649)

0.597 (0.578)
0.639 (0.645)

0.604 (0.582)
0.655 (0.649)

0.577 (0.560)
0.642 (0.636)

0.632

0.668

0.555 (0.602)
0.619 (0.657)

0.533

0.619

0.593

0.658

0.533

0.612

0.776
0.553
0.776

0.597
0.792

0.601
0.787

0.644 (0.639)
0.812 (0.815)

0.669 (0.635)
0.806 (0.809)

0.649 (0.641)
0.813 (0.816)

0.622 (0.603)
0.796 (0.796)

0.634

0.798

0.608 (0.676)
0.794 (0.822)

0.574

0.794

0.651

0.808

0.567

0.786

* All continuous variables, including age and comorbidity scores, were entered as linear terms into the models.
† CDS, Chronic Disease Score.
‡ Numbers in parentheses, corresponding statistics when only International Classification of Diseases, Ninth Revision (ICD-9) codes from

hospital discharge diagnoses were used.
§ Prescription medications that have different chemical structures but may be part of the same therapeutic group.
¶ ICD-9 diagnoses whose first three digits differ based on ambulatory and hospital diagnoses; values in parentheses based on hospital

discharge diagnoses only.

Long-term-care
admissions

Physician
visits

Expenditures
for physician

services

0.007
0.000
0.007

0.049
0.055

0.060
0.067

0.059 (0.045)
0.064 (0.051)

0.073 (0.043)
0.076 (0.049)

0.062 (0.046)
0.067 (0.051)

0.042 (0.033)
0.046 (0.037)

0.118

0.121

0.051 (0.057)
0.056 (0.061)

0.021

0.028

0.044

0.049

0.055

0.061

0.005
0.000
0.006

0.048
0.053

0.064
0.070

0.050 (0.032)
0.054 (0.037)

0.063 (0.031)
0.066 (0.036)

0.052 (0.033)
0.056 (0.037)

0.031 (0.022)
0.034 (0.026)

0.124

0.128

0.036 (0.042)
0.041 (0.046)

0.017

0.023

0.033

0.037

0.03

0.035
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lipid-lowering drugs) are prescribed less frequently for very
ill patients, causing them to seem healthier according to
their medication-based scores.

The enhanced Chronic Disease Score (CDS-2), which
was designed to predict future physician visits, performed
better than its predecessor (CDS-1) in predicting visits and

expenditures. However, both were outperformed by number
of distinct medications received during the baseline year,
which was the best predictor of future physician services
and expenditures, and it performed better than both CDSs in
predicting mortality, hospitalizations, and long-term-care
admissions, perhaps because conversion of number of dis-

TABLE 5. Prediction of 1-year mortality and 1-year health care utilization by models in which ICD-9*-based and drug-based
comorbidity scores measured 1 year earlier were combined, British Columbia, Canada, 1995–1997

Age

Gender

Age + gender

Age + gender + CDS*-1 + Deyo (8)

Age + gender + CDS-1 + D’Hoore
(9, 10)

Age + gender + CDS-1  + Romano 
(5, 6)

Age + gender + CDS-1 + Ghali (11)

Age + gender + CDS-1 + no. of
elective hospitalizations

Age + gender + CDS-1 + no. of
emergency hospitalizations

Age + gender + CDS-1 + no. of 
diagnoses‡

Age + gender + CDS-1 + no. of
physician visits

Age + gender + no. of prescription
drugs§ + Deyo (8)

Age + gender + no. of prescription
drugs + D’Hoore (9, 10)

Age + gender + no. of prescription
drugs + Romano (5, 6)

Age + gender + no. of prescription
drugs + Ghali (11)

Age + gender + no. of prescription
drugs + elective hospitalizations

Age + gender + no. of prescription
drugs + emergency 
hospitalizations

Age + gender + no. of prescription
drugs + no. of diagnoses

Age + gender + no. of prescription
drugs + no. of physician visits

0.667

0.543

0.681

0.782

0.766

0.783

0.768

0.747

0.760

0.751

0.753

0.781

0.767

0.783

0.770

0.751

0.759

0.751

0.752

Model
(reference no.)†

Mortality

Binary outcome (c statistic) Continuous outcome (R 2)

Nonemergency
hospitalization

Emergency
hospitalization

0.527

0.528

0.544

0.605

0.597

0.608

0.590

0.604

0.595

0.581

0.576

0.624

0.618

0.627

0.616

0.626

0.617

0.609

0.611

0.601

0.515

0.605

0.661

0.651

0.662

0.655

0.643

0.668

0.640

0.638

0.680

0.674

0.680

0.678

0.670

0.684

0.668

0.670

0.776

0.553

0.776

0.815

0.811

0.817

0.803

0.803

0.814

0.802

0.796

0.818

0.814

0.819

0.807

0.808

0.815

0.804

0.800

* ICD-9, International Classification of Diseases, Ninth Revision; CDS, Chronic Disease Score; for information about CDS-1, see
reference (7).

† All continuous variables, including age and comorbidity scores, were entered as linear terms into the models.
‡ ICD-9 diagnoses whose first three digits differ based on ambulatory and hospital diagnoses; values in parentheses based on hospital

discharge diagnoses only.
§ Prescription medications that have different chemical structures but may be part of the same therapeutic group.

Long-term-care
admissions

Physician
visits

Expenditures
for physician

services

0.007

0.000

0.007

0.088

0.098

0.090

0.076

0.068

0.080

0.088

0.086

0.137

0.145

0.138

0.131

0.126

0.129

0.133

0.130

0.005

0.000

0.006

0.079

0.089

0.080

0.067

0.063

0.070

0.075

0.066

0.137

0.145

0.138

0.132

0.130

0.131

0.132

0.128
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FIGURE 1. Percentage of relative bias, by comorbidity, that can be controlled by five comorbidity scores as a function of the exposure-
comorbidity association OR

EC
and the prevalence of exposure Pr(E). An exposure-mortality association of RR

EO
= 1 was assumed. As shown,

the Romano and Deyo scores completely overlap in both plots. The prevalence of comorbidities, Pr(C), varies according to the observed preva-
lences of the scores in a British Columbia, Canada, population aged ≥65 years that used antihypertensives, 1995–1997. RR, relative risk; E,
exposure; O, outcome; CDS, Chronic Disease Score; c, c statistic; p, prevalence; C, confounder = comorbidity; OR, odds ratio. CDS-1, reference
(7); CDS-2, reference (14); Romano, references (5, 6); Deyo, reference (8); D’Hoore, references (9, 10).

tinct drugs into number of chronic diseases involves loss of
information on disease severity. Although the CDS consid-
ers multiple drug therapy versus monotherapy of heart 
disease and respiratory illness, it fails to do so for other
diagnoses and does not account for medication changes as
disease progresses.

Zhang et al. (35) suggested combining multiple Deyo
scores based on ICD-9 diagnoses from different data
sources, including hospital discharge, outpatient physician
services, and auxiliary services (nursing facilities, home
health aid, etc.), to improve performance. With a model that

adjusted for age and gender, these authors reported a 3 per-
cent improvement in the c statistic to predict mortality
(0.702 to 0.724) in a random sample of Medicare enrollees.
When we constructed a model that included the same set of
covariates but without auxiliary information, we observed
only a 1.5 percent improvement (0.757 to 0.768), which is
closer to the 1.1 percent improvement observed in a recent
study of breast cancer patients (36). Additional improve-
ment (2 percent) was achieved when we combined the ICD-
9-based score with the medication-based CDS-1 score.
Since the combination that included number of distinct med-
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ications received during the baseline year performed equally
well, we suggest its combination with the Romano or Deyo
score as an easily applicable and improved measure of
comorbidity.

Our data support earlier findings (12) of almost no differ-
ence between modeling comorbidity scores as a continuous
variable or as several categories. Binary coding is not recom-
mended for D’Hoore’s score, since it lost 2.7 percent of its c
statistic when compared with a continuous model. Including
quadratic terms of the scores makes interpretation of coeffi-
cients more difficult, with almost no gain in prediction.

In their original publication, Ghali et al. claimed that their
score performed almost 15 percent better in predicting mor-
tality than the Deyo score did (c � 0.70 vs. c � 0.61) (11).
However, they empirically chose the weights of their
abridged Charlson score to optimize prediction of mortality
in their sample of patients with coronary bypass surgery. In
our study of elderly recipients of antihypertensive medica-
tions, who constitute about one third of the total British
Columbia population aged 65 years or more, generic scores
such as those of Deyo or Romano performed better. This
conclusion confirms earlier findings of Roos et al. (37) that
performance of the Deyo score in predicting 1-year mortal-
ity can change considerably in specific disease groups, such
as patients undergoing prostatectomy (c � 0.64), cholecys-
tectomy (c � 0.70), or bypass surgery (c � 0.75).

Although the c statistics of the CDS-1 and Romano scores
are statistically different, the question remains whether it is
worthwhile to purchase and process diagnostic data in addi-
tion to pharmacy data to improve the c statistic from 0.738
to 0.783 (CDS-1 combined with Romano), an improvement
of 9 percent in terms of the range between chance (c � 0.5)
and perfect (c � 1.0) prediction. On the basis of detailed dis-
charge data that included demographics and up to four
comorbidities per patient, Hannan et al. (38) reported a c
statistic of 0.742 for prediction of in-hospital mortality in
patients with bypass surgery in New York State. After
important clinical predictors were added, including ejection
fraction, >90 percent narrowing of the left main vessel, and
reoperation, the c statistic improved to 0.790, that is, 9.6
percent of the range from chance to perfect. Other authors
(39) concluded that there is a significant difference between
c � 0.72 and c � 0.74 in National Cholesterol Education
Program guidelines I and II in predicting cardiovascular
mortality. From this and other examples, it appears that large
investments yield only small numeric gains in c statistics
above 0.75. Whether those gains are worthwhile depends on
the benefits of a “truer” analysis and the costs of error,
which are unique to each problem.

In addition to measuring the relative predictive abilities of
scores, we estimated their relative abilities to reduce con-
founding bias. Although our analyses of the effects on con-
founding bias relied on simplifying assumptions (e.g.,
dichotomous comorbidity measures and a single con-
founder), they suggest that more confounding could possi-
bly be controlled by the Romano and Deyo scores than by
the other scores.

The present study estimated and ranked the performance of
six published comorbidity scores for a variety of endpoints in

claims databases, but the generalizability of our results may
be limited to an elderly, predominantly White population aged
65 years or more with equal access to state-funded health
care. Performance of the Deyo score in the British Columbia
population was better than in a random sample of Medicare
enrollees (35). We caution against assuming performances
will be similar in patient subgroups with specific diagnoses or
of low-income (Medicaid) status. Relative performance
depends on data quality. Similar studies of comparative per-
formance are needed with other databases.

Although comorbidity scores are useful because they are
easy to use and they save time and resources (a major issue
when analyzing massive health care databases), they pro-
vide only a limited ability to control for confounding (1).
Adjusting for a score should not be regarded as successfully
controlling for confounding, because a summary score
imposes on the analysis a fixed model of the relation
between comorbidities and outcome, which is likely to dif-
fer among populations (40, 41). In addition, when the out-
comes of a particular disease are studied, effects may be
underestimated if the disease is a major ingredient of the
score. If the goal is to control confounding as best as the
data permit, scores are still useful for preliminary analyses
to indicate the direction and magnitude of confounding,
which can guide decisions about further analyses. The ben-
efit versus the cost of using more thorough approaches to
control confounding versus comorbidity scores is a topic
that requires further research.
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APPENDIX

We derived an equation that relates the apparent relative
risk of an exposure-outcome association in the presence of
confounding to the associations between confounder and
exposure as well as confounder and outcome.

Assuming a 2-by-2 table of a dichotomous exposure and
a dichotomous confounder, let e be the prevalence of
exposed patients with the confounder present. The associa-
tion between confounder and exposure can then be mea-
sured by the confounder-exposure odds ratio or ORCE,
which is a function of e and the marginal probabilities of
exposure Pr(E) and confounder Pr(C) (e.g., Walker (42)):

Assuming no underlying true exposure-outcome association

112ORCE �
e 31 � Pr1C2 � Pr1E2 � e 4
3Pr1C2 � e 4 3Pr1E2 � e 4 .
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or RREO � 1, Walker (42) showed that the apparent or crude RREO is a function of e, the marginal probabilities Pr(E) and Pr(C),
and the confounder-outcome association RRCO:

Solving equation 1 for e

e can be found as the solution to a quadratic equation.
Substituting the derived term for e in equation 2 yields the crude RREO as a function of ORCE, RREO, RRCO, and the mar-

ginal probabilities Pr(E) and Pr(C).

e21ORCE � 12 � e 3 � Pr1C2ORCE � Pr1E2ORCE � Pr1E2 � Pr1C2 � 1 4 � Pr1C2ORCEPr1E2 � 0,

122crude RREO �
e 3RRCO � 1 4 � Pr1E2

3Pr1C2 � e 4 3RRCO � 1 4 � Pr1E2 � 1
 
1 � Pr1E2

Pr1E2 .
• y µ

a
b

c
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