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LOCALIZATION THEOREMS IN TOPOLOGICAL HOCHSCHILD

HOMOLOGY AND TOPOLOGICAL CYCLIC HOMOLOGY

ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

Abstract. We construct localization cofiber sequences for the topological
Hochschild homology (THH) and topological cyclic homology (TC) of spec-
tral categories. Using a “global” construction of the THH and TC of a scheme
in terms of the perfect complexes in a spectrally enriched version of the cate-
gory of unbounded complexes, the sequences specialize to localization cofiber
sequences associated to the inclusion of an open subscheme. These are the
targets of the cyclotomic trace from the localization sequence of Thomason-
Trobaugh in K-theory. We also deduce versions of Thomason’s blow-up for-
mula and the projective bundle formula for THH and TC.

1. Introduction

Algebraic K-theory provides a powerful and subtle invariant of schemes. The
K-theory of a scheme encodes many of its arithmetic and algebraic properties,
captures information about its geometry and singularities, and is closely connected
to its étale and motivic cohomology. One of the fundamental underpinnings of the
subject is the localization theorem of Thomason and Trobaugh [40, 7.4], which for
a quasi-separated quasi-compact scheme X provides a cofiber sequence of (non-
connective) K-theory spectra

K(X on (X − U)) −→ K(X) −→ K(U),

for U a quasi-compact open subscheme contained in X . Here K(X on (X − U))
denotes theK-theory of the category of perfect complexes onX which are supported
on the complement of U in X . This localization sequence and the closely related
Mayer-Vietoris sequence for K-theory allow global assembly of local information.

Keller [26] constructed the analogue of the Thomason-Trobaugh localization se-
quence for Hochschild homology (HH) and for the variants of cyclic homology,
including negative cyclic homology (HC−). The Dennis trace (or Chern charac-
ter) connects the localization sequence in K-theory to the localization sequence in
HC−. Using this, together with generalizations to blow-ups along regular sequences
and some resolution of singularity results, Cortiñas, Haesemeyer, Schlichting, and
Weibel [8, 9, 10] recently resolved Weibel’s conjecture bounding below the nega-
tive K-groups and Vorst’s conjecture that Kd+1-regularity implies regularity, for
finite-type schemes of dimension d over a field of characteristic zero.
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The purpose of this paper is to generalize Keller’s localization sequences to topo-
logical Hochschild homology (THH) and topological cyclic homology (TC). Over
the course of the last two decades, THH and TC have revolutionized K-theory
computations. Roughly, topological Hochschild homology for a ring is obtained
by promoting the ring to a ring spectrum and substituting the smash product of
spectra for the tensor product of rings in the Hochschild complex [4]. The THH
spectrum comes with a “cyclotomic” structure (which involves an S1-action and
extra structure maps), and for each prime p, topological cyclic homology is then
defined as a certain homotopy limit over the fixed point spectra. The Dennis trace
map lifts to a “cyclotomic trace” map from K-theory to TC [5], and McCarthy
[31] showed that this captures all the relative information at p for surjections with
nilpotent kernel, just as HC− does rationally [19]. Starting from Quillen’s com-
putation of the K-theory of finite fields, Hesselholt and Madsen have used TC to
make extensive computations in K-theory [20, 21, 22]. Moreover, because of the
close relationship between K-theory and TC (and analogy with HC−), this paper
provides the key ingredients needed to generalize the work of Cortiñas, Haesemeyer,
Schlichting, and Weibel [9, 10] to cases in characteristic p where resolution of sin-
gularities hold. Geisser and Hesselholt have already started applying the results of
this paper in this direction [17].

Between TC and THH is an intermediate theory called TR that has the struc-
ture of a “Witt complex” (the structure whose universal example is the deRham-
Witt complex of Bloch-Deligne-Illusie). The Hesselholt-Madsen computations pro-
ceed by studying this structure on TR. Hesselholt has observed that in all known
examples, the deRham-Witt complex has the same relationship to TR that Milnor
K-theory has to algebraic K-theory. This led Hesselholt and Madsen to conjecture
an “additive” motivic spectral sequence converging to a modified version of TR with
edge homomorphism the universal map from the deRham-Witt complex. Recent
work of Levine [27] axiomatizes the role of localization and Mayer-Vietoris theo-
rems in the construction of the motivic spectral sequence [2, 16], and such theorems
for TR should provide key input to the construction of this conjectural “additive”
motivic spectral sequence. We prove the following results in this direction.

Theorem 1.1. Let X be a quasi-compact and semi-separated scheme. For a quasi-
compact open subscheme U , there are homotopy cofiber sequences

THH(X on (X − U)) −→ THH(X) −→ THH(U)

TR(X on (X − U)) −→ TR(X) −→ TR(U)

TC(X on (X − U)) −→ TC(X) −→ TC(U),

where THH(X on (X − U)) denotes the THH of the spectral category of perfect
complexes on X which are supported on X − U .

For quasi-compact open subschemes U, V with X = U ∪ V , the squares

THH(X) //

��

THH(U)

��

TR(X) //

��

TR(U)

��

TC(X) //

��

TC(U)

��

THH(V ) // THH(U ∩ V ) TR(V ) // TR(U ∩ V ) TC(V ) // TC(U ∩ V )

are homotopy cocartesian.
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Geisser and Hesselholt [18] proved the second statement for THH of rings and
used it to define THH of schemes in terms of Thomason’s hypercohomology con-
struction [38, 1.33]. The relative term THH(X on (X − U)) does not have an
intrinsic description in the context of the Geisser-Hesselholt definition of THH .
Instead, it is most naturally described in terms of a construction of THH for spec-
tral categories, i.e., categories enriched over symmetric spectra, the stable homotopy
theory refinement of DG-categories.

Dundas and McCarthy [14] generalized Bökstedt’s construction of THH to spec-
tral categories. We build on the foundations there and study more general invari-
ance properties; see in particular Theorems 4.9 and 4.12 below. We use these
invariance properties to generalize the localization theorem of Keller to the setting
of spectral categories. Roughly, we show that the THH of a triangulated quotient
is the cofiber on THH ; theorems 6.1 and 6.2 provide precise statements. Although
we work in the context of spectral categories, our localization theorem specializes
to the setting of DG-categories, as DG-categories may be functorially converted
to spectral categories with the same objects and spectral refinements of the Hom
complexes; see for example [33, §6], [13, App A], or Appendix A, among others.
Just as THH of a ring captures much more torsion information than HH of the
ring, THH provides a richer invariant of a DG-category than HH . Using the model
theory comparison of spectral categories and DG-categories, we make the following
observation at the end of Section 3.

Theorem 1.2. THH, TR, and TC as defined in Section 3 are functors from the
category of small DG-categories and DG-functors to the stable category.

We define THH of a scheme in terms of a spectral category refinement DSparf(X)

of the DG-category quotient DDGparf(X) modeling the derived category of perfect
complexes. In Section 7, we prove the following consistency theorem that compares
this definition to the definition of Geisser-Hesselholt.

Theorem 1.3. Let X be a quasi-compact and semi-separated scheme, and DSparf(X)

a spectral category refinement of DDGparf(X). Then THH(DSparf(X)) is equivalent to
the Thomason hypercohomology of the Zariski presheaf of symmetric spectra U 7→
THH(OU).

This theorem in particular constructs a trace map from the K-theory of the
scheme to THH(DSparf(X)) and TC(DSparf(X)). In Section 8, we show that the
trace map factors through Thomason-Trobaugh’s Bass non-connective K-theory
spectrum using their spectral version of Bass’ fundamental theorem. (Appendix B
describes a direct construction of the trace for spectral categories like DSparf(X) that

come from certain complicial Waldhausen categories.)
In addition to Theorem 1.1, we also establish THH and TC versions of two

classical geometric calculations in algebraic K-theory using our general localiza-
tion machinery. First, we prove the following formula for blow-ups along regular
sequences, which already has been applied by Geisser and Hesselholt [17] to prove
the p-adic analogue of Weibel’s conjecture. We state the theorem using the notation
of [9, §1], and prove it in Section 7.

Theorem 1.4. Let X be a quasi-compact and semi-separated scheme. Let i : Y ⊂
X be a regularly embedded closed subscheme, p : X → X ′ the blowup along Y ,
j : Y ′ ⊂ X ′ the exceptional divisor, and write q for the map Y ′ → Y . Then the
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squares

THH(X)
Lp∗

//

Li∗

��

THH(X ′)

Lj∗

��

TC(X)
Lp∗

//

Li∗

��

TC(X ′)

Lj∗

��

THH(Y )
Lq∗

// THH(Y ′) TC(Y )
Lq∗

// TC(Y ′)

are homotopy cocartesian.

We also prove a projective bundle theorem [40, 4.1,7.3] in Section 7.

Theorem 1.5. Let X be a quasi-compact and semi-separated scheme. Let E be an
algebraic vector bundle of rank r over X, and let π : PEX → X be the associated
projective bundle. Then a spectral lift of the derived functor

r−1⊕

i=0

OPEX
(−i)⊗ Lπ∗(−)

induces a weak equivalence

r−1∏

i=0

THH(X) −→ THH(PEX).

The paper is organized as follows. In Section 2, we review the basic definitions
for spectral categories (categories enriched in symmetric spectra). As indicated
above, this is the appropriate setting for studying THH , TR, and TC, and is
a stable-homotopy theory generalization of the setting of DG-categories. In Sec-
tion 3, we review the definition of THH of spectral categories due to Bökstedt
[4] and Dundas-McCarthy [14]. Because of the work of Shipley [35], all techni-
cal hypotheses may now be omitted. We take the viewpoint, first articulated by
Dwyer and Kan, that enriched mapping spaces (or spectra) encode the “higher
homotopy theory” of a category, and we view THH , TR, and TC as invariants of
the higher homotopy theory of the category, as is K-theory [41, 3]. In Section 4,
we list several invariance theorems for THH in this context. Section 5 reviews an
elementary tilting argument for THH , Proposition 5.2, originally due to Dennis
and Waldhausen [42, p. 391]. We demonstrate how to apply the tilting argument
to prove powerful comparison theorems. Using these techniques, in Section 6 we
prove the general localization theorems 6.1 and 6.2, which we apply in Section 7 to
prove Theorems 1.1, 1.3, 1.4, and 1.5 above. In Section 8, we extend the cyclotomic
trace over Bass non-connective K-theory, using Thomason and Trobaugh’s spectral
version of Bass’ fundamental theorem.

The paper contains four appendices. The first reviews the relationship of the
homotopy theory of small DG-categories to the homotopy theory of small spectral
categories. The second discusses the S• construction and a canonical definition of a
trace map for DG-Waldhausen categories. The third gives a version of Theorem 6.1
that is more useful in the context of spectral model categories. The last proves a
technical result in the foundations of TC, which is well-known but difficult to find
in the literature in the generality in which we apply it.

The authors would like to thank the Department of Mathematics and the Math-
ematics Research Center at Stanford University and the Institute for Advanced
Study for their hospitality and support while some of this work was being done.
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The authors would like to thank Lars Hesselholt for asking motivating questions
and for sharing his ideas in this direction, as well as Christian Haesemeyer, John
Rognes, Marco Schlichting, Brooke Shipley, and Charles Weibel for interesting and
useful conversations.

2. Review of spectral categories

Modern constructions of the stable category with point-set level smash products
allow easy generalization of the concepts of simplicial category or DG-category to
the context of spectra. Symmetric spectra in particular often arise naturally as
the refinement of mapping sets. In fact, symmetric ring spectra (the analogue
of DG-rings) and categories enriched in symmetric spectra (the analogue of DG-
categories) predated Smith’s insight that the homotopy theory of symmetric spectra
models the stable category. In older K-theory literature, they were called FSPs (or
FSPs defined on spheres) and FSPs with many objects, respectively, and treatments
generally included hypotheses on connectivity or convergence. A modern approach
to THH and TC, taking advantage of [25] and especially [35] obviates the need
for any such connectivity or convergence hypotheses. In this section, we review the
definition of spectral categories, modules, and bimodules over spectral categories
in terms of enriched category theory.

Definition 2.1. A spectral category is a category enriched over symmetric spectra.
Specifically, a spectral category C consists of:

(i) A collection of objects obC (which may form a proper class),
(ii) A symmetric spectrum C(a, b) for each pair of objects a, b ∈ obC,
(iii) A unit map S → C(a, a) for each object a ∈ obC, and
(iv) A composition map C(b, c) ∧ C(a, b) → C(a, c) for each triple of objects

a, b, c ∈ obC,

satisfying the usual associativity and unit properties. We say that a spectral cate-
gory is small when the objects ob C form a set.

We emphasize that the data in (iii) and (iv) consist of point-set maps (rather
than maps in the stable category) and that “∧” denotes the point-set smash product
of symmetric spectra. The definition of spectral functor between spectral categories
is the usual definition of an enriched functor:

Definition 2.2. Let C and D be spectral categories. A spectral functor F : C → D
is an enriched functor. Specifically, a spectral functor consists of:

(i) A function on objects F : obC → obD, and
(ii) A map of symmetric spectra Fa,b : C(a, b) → D(Fa, Fb) for each pair of

objects a, b ∈ ob C,

which is compatible with the units and the compositions in the obvious sense.

Again, we emphasize that the compatibility condition holds in the point-set
category of symmetric spectra rather than in the stable category. Often we use
the term weak equivalence to mean a spectral functor that is a bijection on objects
and a weak equivalence (stable equivalence of symmetric spectra) on all mapping
spectra. See Definition 4.1 for a more general kind of equivalence.

We have the evident concepts of module and bimodule over spectral categories:
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Definition 2.3. Let C and D be spectral categories. A left C-module is a spectral
functor from C to symmetric spectra. A right D-module is a spectral functor from
Dop to symmetric spectra. A (D, C)-bimodule is a spectral functor from Dop ∧C to
symmetric spectra.

Here Dop denotes the spectral category with the same objects and mapping
spectra as D but the opposite composition map. The spectral category Dop ∧C has
as its objects the cartesian product of the objects,

ob(Dop ∧ C) = obDop × ob C,

and as its mapping spectra the smash product of the mapping spectra

(Dop ∧ C)((d, c), (d′, c′)) = Dop(d, d′) ∧ C(c, c′),

with unit maps the smash product of the unit maps and composition maps the
smash product of the composition maps forDop and C. Explicitly, a (D, C)-bimodule
M consists of a choice of symmetric spectrumM(d, c) for each d in obD and c in
obC, together with maps

C(c, c′) ∧M(d, c) ∧ D(d′, d) −→M(d′, c′)

for each d′ in obD and c′ in ob C, making the obvious unit and associativity diagrams
commute. In particular, for any spectral category C, the mapping spectra C(−,−)
define a (C, C)-bimodule. (This example motivates the convention of listing the
right module structure first.)

Older K-theory literature required “convergence” hypotheses on spectral cate-
gories and bimodules, asking for the homotopy groups of the constituent spaces in
each mapping spectrum to stabilize. These hypotheses appeared necessary at the
time to analyze the homotopy colimits arising in Bökstedt’s construction of THH .
It was thought that these homotopy colimits could be wrong for a non-convergent
symmetric spectrum because the homotopy groups they computed generally differed
from the homotopy groups expected from the underlying prespectrum. Because of
[25, 35], we now understand that it is the homotopy groups of the underlying pre-
spectrum that may be wrong: The homotopy groups of the prespectrum underlying
a symmetric spectrum X do not necessarily agree with the homotopy groups of the
object represented by X in the stable category. In general, every symmetric spec-
trum X admits a (stable) weak equivalence X → X̃ to a symmetric Ω-spectrum X̃,
i.e., one whose underlying prespectrum is an Ω-spectrum (level fibrant with adjoint

structure maps X̃n → ΩX̃n+1 weak equivalences). The correct homotopy groups of

X are the homotopy groups of the underlying prespectrum of X̃; when these agree
under the comparison map with the homotopy groups of the underlying prespec-
trum of X , then X is said to be semistable. In particular, symmetric Ω-spectra
and (more generally) convergent symmetric spectra are semistable. Since we do
not include convergence or even semistability hypotheses, for brevity and clarity
we adhere to the following convention.

Convention. The homotopy groups of a symmetric spectrum X will always mean
the homotopy groups of X as an object of the stable category, and we will denote
these as π∗X . In the rare cases when we need to refer to the homotopy groups
of the underlying prespectrum of X , we will call them the homotopy groups of
the underlying prespectrum, and we introduce no notation for these. Thus, a weak
equivalence of symmetric spectra is precisely a map that induces an isomorphism on
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homotopy groups; it does not necessarily induce an isomorphism of the homotopy
groups of the underlying prespectra.

Although we do not require convergence hypotheses, they tend to hold for ex-
amples of interest. In fact, we can replace an arbitrary spectral category with
a weakly equivalent spectral category that has the same objects but has mapping
spectra that are symmetric Ω-spectra. One way of doing this is to apply the Quillen
model category structures on small enriched categories with a fixed set of objects
described in [33, §6]. The maps in the category are the spectral functors that are the
identity on object sets, the fibrations are the maps C → D that restrict to fibrations
of symmetric spectra C(x, y) → D(x, y) for all x, y and the weak equivalences are
the maps that restrict to weak equivalences C(x, y)→ D(x, y) for all x, y. Fibrant
approximation then gives the following proposition.

Proposition 2.4. ([33, 6.3]) Given a small spectral category C, there exists a small
spectral category CΩ and a spectral functor R : C → CΩ such that:

(i) CΩ has the same objects as C and R is the identity map on objects,
(ii) For every x, y objects of C, CΩ(x, y) is a symmetric Ω-spectrum (i.e., fibrant

in the stable model structure on symmetric spectra), and
(iii) For every x, y objects of C, the map C(x, y) → CΩ(x, y) is a weak equiva-

lence of symmetric spectra.

The construction of CΩ can be made functorial in spectral categories with the
same object sets. Because it is constructed by fibrant replacement, it can be made
compatible with arbitrary spectral functors: For a spectral functor F : C → D,
choosing D → DΩ as above, we can pull back to a category F ∗DΩ with the same
objects as C and with mapping spectra F ∗DΩ(x, y) = DΩ(Fx, Fy). Factoring the
spectral functor C → F ∗D in the Quillen model category of spectral obC-categories,
we obtain a spectral functor C → CΩ as above and a strictly commuting diagram

C

��

// D

��

CΩ // DΩ.

This approach extends to certain more complicated kinds of diagrams. Alterna-
tively, functorial lifts of all diagrams follow from the model structure on all small
spectral categories described in Appendix A where the maps are arbitrary spectral
functors (without restriction on the object set).

Applying cofibrant approximation in a model structure, we obtain the following
complementary proposition.

Proposition 2.5. ([33, 6.3]) Given a small spectral category C, there exists a small
spectral category CCell and a spectral functor Q : CCell → C such that:

(i) CCell has the same objects as C and Q is the identity map on objects,
(ii) For every x, y objects of C, CCell(x, y) is a cofibrant symmetric spectrum,

and
(iii) For every x, y objects of C, the map CCell(x, y)→ C(x, y) is a level equiva-

lence of symmetric spectra.

We also use an analogous proposition in the setting of bimodules.

Proposition 2.6. IfM is a cofibrant (DCell, CCell)-bimodule, thenM(d, c) is cofi-
brant for every c in C and d in D.
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In addition to providing the formal technical results above, the model the-
ory of enriched categories also explains the relationship of spectral categories to
DG-categories. Sharp statements involve categories enriched over HZ-modules
(in symmetric spectra of simplicial sets) or Quillen equivalently, categories en-
riched over symmetric spectra of simplicial abelian groups. For brevity, we will
call these HZ-categories and Ab-spectral categories, respectively. Note that the
category of HZ-modules is symmetric monoidal under ∧HZ and its derived cate-
gory is symmetric monoidally equivalent to the derived category of Z (in partic-
ular, ∧HZ is more like ⊗Z than like ∧). Shipley [36, §2.2] produces a zigzag of
“weak monoidal Quillen equivalences” relating HZ-modules to symmetric spectra
of simplicial abelian groups to differential graded modules. For a fixed object set
O, applying Proposition 6.4 of [33] (or [13, A.3]) to this zigzag gives a zigzag of
Quillen equivalences between the model categories of DG-categories with object set
O, Ab-spectral categories with object set O, and HZ-categories with object set O.

Definition 2.7. Given a small DG-category, an associated Ab-spectral category
model or associated HZ-category model is an Ab-spectral category or HZ-category
(respectively) obtained from the zigzag of Quillen equivalences above.

By neglect of structure, an Ab-spectral category or HZ-category is in partic-
ular a spectral category. We then get an associated spectral category model from
any associated Ab-spectral or HZ-category model. The associated HZ-category
and associated spectral category models are unique up to weak equivalence. Using
functorial fibrant and cofibrant approximation, we can obtain models that are func-
torial in DG-functors that are the identity on object sets. Moreover, we can use the
same trick as we did with fibrant approximations above to get a map of associated
HZ-category models and associated spectral category models for an arbitrary DG-
functor between DG-categories. A straightforward argument proves the following
proposition.

Proposition 2.8. The zigzags of Quillen equivalences above assemble into a functor
from the homotopy category of small DG-categories to the homotopy category of
small spectral categories.

Using the model structure of Appendix A, we can do better. Applying functorial
fibrant and cofibrant approximation functors, we obtain a functor from small DG-
categories to small spectral categories that preserves object sets and weak equiva-
lences.

3. Review of THH, TR, and TC

In this section, we review the definition of THH , TR, and TC of spectral cate-
gories. We begin with a review of the cyclic bar construction for spectral categories
and the variant defined by Bökstedt [4] and Dundas-McCarthy [14] necessary for
the construction of TC. We finish with a brief review of the definition of cyclotomic
spectra and the construction of TR and TC.

The following cyclic bar construction gives the “topological” analogue of the
Hochschild-Mitchell complex.

Definition 3.1. For a small spectral category C and (C, C)-bimoduleM, let

N cy
q (C;M) =

∨

C(cq−1, cq) ∧ · · · ∧ C(c0, c1) ∧M(cq, c0),
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where the sum is over the (q+1)-tuples (c0, . . . , cq) of objects of C. This becomes a
simplicial object using the usual cyclic bar construction face and degeneracy maps:
The unit maps of C induce the degeneracy maps, and the two action maps on M
(for d0 and dq) and the composition maps in C (for d1, . . . , dq−1) induce the face
maps. We denote the geometric realization as N cy(C;M) and write N cy(C) for
N cy(C; C).

The previous construction turns out to be slightly inconvenient to use as the
definition of the topological Hochschild homology of a spectral category. This
construction typically only has the correct homotopy type when the smash products
that comprise the terms of the sum represent the derived smash product. The
analogous problem arises in the context of Hochschild homology of DG-categories,
where the tensor product may fail to have the right quasi-isomorphism type when
the mapping complexes are not DG-flat. Just as in that context, this problem can be
overcome using resolutions, such as the ones in Proposition 2.5 and 2.6. There is a
further more subtle difficulty with this construction, however. WhileN cy(C) obtains
an S1-action by virtue of being the geometric realization of a cyclic complex, the
resulting equivariant spectrum does not have the necessary additional structure to
define TC (a well-known problem with this kind of cyclic bar construction definition
of THH in modern categories of spectra). The correct definition, due to Bökstedt
[4] for symmetric ring spectra and generalized by Dundas-McCarthy [14] to spectral
categories, does not suffer from either of these deficiencies.

We give a revisionist explanation of the Bökstedt-Dundas-McCarthy construc-
tion, taking advantage of later results of Shipley [35] on the derived smash prod-
uct of symmetric spectra. Let I be the category with objects the finite sets
n = {1, . . . , n} (including 0 = {}), and with morphisms the injective maps. For a
symmetric spectrum T , write Tn for the n-th space. The association n 7→ Ωn|Tn|
extends to a functor from I to spaces, where |−| denotes geometric realization.
More generally, given symmetric spectra T 0, . . . , T q and a space X , we obtain a
functor from Iq+1 to spaces that sends ~n = (n0, . . . ,nq) to

Ωn0+···+nq (|T qnq
∧ · · · ∧ T 0

n0
| ∧X),

which is also natural in X . Defining

Dn(T
q, . . . , T 0) = hocolim~n∈Iq+1 Ωn0+···+nq (|T qnq

∧ · · · ∧ T 0
n0
| ∧ Sn),

we obtain a symmetric spectrum (of topological spaces) D(T q, . . . , T 0). The fol-
lowing is the main lemma of [35].

Proposition 3.2. ([35, 4.2.3]) D(T q, . . . , T 0) is canonically isomorphic in the sta-
ble category to the derived smash product of the T i.

This motivates the following definition.

Definition 3.3. Given a small spectral category C, a (C, C)-bimodule M, and
a space X , let V(C;M;X)~n be the functor from Iq+1 to spaces defined on ~n =
(n0, . . . ,nq) by

Ωn0+···+nq (
∨

|C(cq−1, cq)nq
∧ · · · ∧ C(c0, c1)n1 ∧M(cq, c0)n0 | ∧X),

and let

THHq(C;M)(X) = hocolim~n∈Iq+1 V(C;M;X)~n.
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This assembles into a simplicial space, functorially in X , as follows. The degeneracy
maps are induced by the unit maps S0 → C(ci, ci)0 and the functor

(n0, . . . ,nq) 7→ (n0, . . . ,0, . . . ,nq)

from Iq+1 to Iq+2. The face maps are induced by the two action maps onM (for
d0 and dq) and the composition maps in C (for d1, . . . , dq−1) together with a functor
Iq+1 → Iq induced by the appropriate disjoint union isomorphism (ni,ni+1) 7→ n

or (nq,n0) 7→ n for n = ni + ni+1 or n = nq + n0. We write THH(C;M)(X) for
the geometric realization.

THH(C;M)(X) is a continuous functor in the variable X , and so by restriction
to the spheres Sn specifies a symmetric spectrum which we denote THH(C;M).
In fact, the principal virtue of the construction above for THH(C) = THH(C; C)
is that it can be regarded as an orthogonal S1-spectrum indexed on a complete S1-
universe (or alternatively, a Lewis-May genuine equivariant prespectrum) by instead
restricting the continuous functor to the representation spheres SV . The fact that
the symmetric spectrum THH is the restriction of an orthogonal spectrum implies
that it is semistable and so the object that it represents in the stable category agrees
with its underlying prespectrum. With additional hypotheses of “convergence” and
“connectivity”, THH is often an Ω-spectrum [21, 1.4].

The following propositions, which are essentially the “many objects” versions of
[35, 4.2.8-9] and an easy consequence of the theory developed in [35], show that
THH is simply a homotopically well-behaved model of the Hochschild-Mitchell
complex.

Proposition 3.4. There is a natural map in the stable category from THH(C) to
N cy(C) that is an isomorphism when the mapping spectra in C are cofibrant.

Proposition 3.5. A weak equivalence of spectral categories C → C′ induces a weak
equivalence THH(C)→ THH(C′).

Using the results of [33] extracted in Proposition 2.5, we can always replace a
given small spectral category C with the cofibrant replacement CCell → C, where
CCell has the same objects as C and each mapping spectrum in CCell is a cofibrant
symmetric spectrum, level equivalent to the corresponding mapping spectrum in C.
The induced functor THH(CCell) → THH(C) is a weak equivalence of symmetric
spectra (and even of genuine S1-spectra); as a consequence, THH(C) always has
the correct homotopy type even when N cy(C) does not.

We now list the usual bimodule properties of THH that we require in this
paper. Proofs of these properties appear in the literature [14] under more restrictive
hypotheses (i.e., connectivity and convergence).

Proposition 3.6. Let C be a small spectral category.

(i) A weak equivalence of (C, C)-bimodules M → M′ induces a weak equiva-
lence THH(C;M)→ THH(C;M′).

(ii) A cofiber sequence of (C, C)-bimodulesM→M′ →M′′ → ΣM induces a
homotopy cofiber sequence on THH.

(iii) A fiber sequence of level fibrant (C, C)-bimodules ΩM′′ →M→M′ →M′′

induces a homotopy fiber sequence on THH.

Proof. For the first statement, the weak equivalence M → M′ induces a weak
equivalence THHq(C;M) → THHq(C;M

′) for all q. Since THH• is always a
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proper simplicial object, the geometric realization is then a weak equivalence. For
the second statement, we can identify THH• levelwise as the homotopy colimit
(over I•+1) of the orthogonal spectra V(C;M;S(−))~n. The second statement now
follows from the observation that V preserves homotopy cofiber sequences in theM
variable and that homotopy colimits and geometric realization preserve homotopy
cofiber sequences. The third statement follows from the second since homotopy
fiber sequences and homotopy cofiber sequences agree up to sign. �

We now give a minimal review of the definition of TR and TC; we refer the
reader interested in more details to the excellent discussions of TR and TC in
[21, 22]. The constructions start with the fundamental fixed point homeomorphism

(THH(C)(X))H ∼= THH(C)(XH)

for S1-spaces X and subgroups H of S1. This induces weak equivalences of Lewis-
May genuine equivariant spectra

(3.7) rH : ρ∗HΦHTHH(C) −→ THH(C)

(q.v. Appendix D), where ρH is the isomorphism S1 ∼= S1/H and ΦH denotes the
geometric fixed points. The maps r fit together compatibly for H ′ ≤ H . This kind
of structure is called a cyclotomic spectrum; see [21, 1.2] for precise details. For
simplicity, in this paper a map of cyclotomic spectra will mean a map of Lewis-May
genuine equivariant S1-spectra that preserves the above structure maps rH on the
point-set level, since this is what we obtain on THH from a spectral functor; a
proper treatment of cyclotomic spectra should allow more general maps.

For a fixed prime p and each n, let Cpn ⊂ S1 denote the cyclic subgroup of order
pn. We have maps

F,R : THH(C)Cpn −→ THH(C)Cpn−1

where F is the inclusion of the fixed points and R is the map induced by the compos-
ite of the map from the fixed point spectrum to the geometric fixed point spectrum
THH(C)Cp → ΦCpTHH(C) and the cyclotomic structure map rCp

: ΦCpTHH(C)→
THH(C). Technically, we must spectrify the THH prespectrum before taking fixed
point spectra; again, precise details can be found in [21, §1.5].

Definition 3.8. TR•(C) is the pro-spectrum {THH(C)Cpn} under the maps R, and
TR(C) is the homotopy limit. TC(C) is the spectrum (or prospectrum) obtained
from TR(C) as the homotopy equalizer of the maps F and R.

A map of genuine equivariant S1-spectra induces a weak equivalence on fixed
point spectra for all finite subgroups of S1 if and only if it induces a (non-equivariant)
weak equivalence on geometric fixed point spectra for all finite subgroups [30,
XVI.6.4]. It follows that a cyclotomic map of cyclotomic spectra induces a weak
equivalence of fixed point spectra for all finite subgroups of S1 if and only if it is
a non-equivariant weak equivalence. In particular, we obtain the following propo-
sition.

Proposition 3.9. A spectral functor of spectral categories C → D that induces a
weak equivalence on THH induces a weak equivalence on TR and TC.

Likewise, using the same principle on the cofiber of a map of cyclotomic spectra,
we obtain the following proposition. Applying this proposition in examples when
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THH(C) is contractible, localization cofiber sequences on TR and TC follow from
ones on THH .

Proposition 3.10. For a strictly commuting square of spectral categories

A //

��

B

��

C // D,

if the induced square on THH is homotopy cocartesian, then so are the induced
squares on TR and TC.

Finally, we turn to DG-categories. For a DG-category CDG, we can consider
THH of the associated spectral category CS . Proposition 3.5 shows that up to weak
equivalence of cyclotomic spectra, THH(CS) does not depend on the particular
model chosen. Moreover, Propositions 2.8 and 3.9 show that defining THH , TR,
and TC of CDG in terms of THH(CS) constructs THH , TR, and TC as functors
from the category of DG-categories and DG-functors to the stable category; this is
Theorem 1.2.

4. Spectral categories, homotopy categories,

and invariance of THH

In this section, we continue the discussion of the basic properties of spectral
categories and study the natural conditions under which spectral functors induce
equivalences on THH . We review the concept of “Dwyer-Kan equivalence” (Def-
inition 4.1) of spectral categories, which provides a more sophisticated notion of
weak equivalence of spectral categories; Theorem 4.9 below indicates that Dwyer-
Kan equivalences induce equivalences of THH . The mapping spectra of a spectral
category C give rise to an associated “homotopy category” that is an invariant of
the Dwyer-Kan equivalences. Under rather general conditions (q.v. Definition 4.4),
the homotopy category has a triangulated structure and this allows us to formulate
useful “cofinality” and “thick subcategory” criteria for spectral functors to induce
equivalences of THH in Theorems 4.11 and 4.12. Proofs of Theorems 4.9, 4.11,
and 4.12 require the technical tools developed in the next section and are given
there.

Definition 4.1. Let F : C → D be a spectral functor. We say that F is a Dwyer-
Kan embedding or DK-embedding when for every a, b ∈ obC, the map C(a, b) →
D(Fa, Fb) is a weak equivalence.

We say that F is a Dwyer-Kan equivalence or DK-equivalence when F is a DK-
embedding and for every d ∈ obD, there exists a c ∈ ob C such that D(−, d) and
D(−, F c) represent naturally isomorphic enriched functors from Dop to the stable
category.

We can rephrase this definition in terms of “homotopy categories”: Associated
to a spectral category C, we have the following notion of homotopy category.

Definition 4.2. For a spectral category C, the homotopy category π0C is the Ab-
category with the same objects, with morphism abelian groups π0C(a, b), and with
units and composition induced by the unit and composition maps of C. The graded
homotopy category is the Ab∗-category with objects obC and morphisms π∗C(a, b).
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We remind the reader that by convention, π0C(a, b) and π∗C(a, b) denote the
homotopy groups of C(a, b) viewed as an object of the stable category.

Without any further hypotheses on the spectral categories in question, the follow-
ing proposition is a straightforward consequence of the definitions and the Yoneda
lemma for enriched functors.

Proposition 4.3. A spectral functor C → D is a Dwyer-Kan equivalence if and
only if it induces an equivalence of graded homotopy categories π∗C → π∗D.

As we will see in Theorems 4.5 and 4.6 below, the homotopy category in prac-
tice often has a triangulated structure compatible with the mapping spectra. We
formalize this in the following definition.

Definition 4.4. A spectral category C is pretriangulated means:

(i) There is an object 0 in C such that the right C-module C(−, 0) is trivial
(weakly equivalent to the constant functor on the one-point symmetric
spectrum ∗).

(ii) Whenever a right C-moduleM has the property that ΣM is weakly equiv-
alent to a representable C-module C(−, c) (for some object c in C), thenM
is weakly equivalent to a representable C-module C(−, d) for some object
d in C.

(iii) Whenever the right C-modulesM and N are weakly equivalent to repre-
sentable C-modules C(−, a) and C(−, b) respectively, then the homotopy
cofiber of any map of right C-modulesM→ N is weakly equivalent to a
representable C-module.

The first condition guarantees the existence of a zero object in the homotopy
category; the usual argument shows that the left module C(0,−) is also trivial. The
second condition gives a desuspension functor on the homotopy category. For the
third condition, note that maps of right modules from C(−, a) to C(−, b) are in
one to one correspondence with the vertices of the zeroth simplicial set of C(a, b);
using weakly equivalent M and N , the maps then represent arbitrary elements
of π0C(a, b). In the case when all of the mapping spectra of C are fibrant sym-
metric spectra (e.g., after replacing C by CΩ), condition (iii) can be simplified to
considering just the homotopy cofibers of maps C(−, a)→ C(−, b). We explain this
interpretation of condition (iii) in more detail at the end of the section in the proof
of the following theorem.

Theorem 4.5. Any small spectral category C DK-embeds in a small pretriangulated
spectral category C̃.

The category C̃ is closely related to the category of right C-modules, essentially
the closure of (the Yoneda embedding of) C under desuspensions and cofiber se-
quences. The third condition in the definition of pretriangulated spectral category
then indicates the sequences in C that are equivalent to cofiber sequences in C̃.
We therefore use the third condition to define the analogue of Puppe (cofibration)
sequences. We prove the following theorem at the end of the section.

Theorem 4.6. If the spectral category C is pretriangulated, then its homotopy
category is triangulated with distinguished triangles the four term Puppe sequences.
A spectral functor between pretriangulated spectral categories induces a triangulated
functor on homotopy categories.
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Corollary 4.7. A spectral functor C → D between pretriangulated spectral cate-
gories is a Dwyer-Kan equivalence if and only if it induces an equivalence of homo-
topy categories π0C → π0D.

In the context of DG-categories, various analogous conditions have been given to
ensure that the homotopy category of the DG-category is triangulated [26, 6, 11].
Following [6] and [11], we refer to such DG-categories as pretriangulated. We have
the following consistency result that is clear from the model category theory.

Proposition 4.8. If D is a pretriangulated DG-category, then its associated spectral
category is pretriangulated.

As indicated by Proposition 4.3 and Corollary 4.7, we take the perspective that
the mapping spectra encode the homotopy theory of the spectral category. From
this viewpoint, DK-equivalences clearly represent the correct general notion of weak
equivalence of spectral categories. An alternative perspective would not require the
mapping spectra of a spectral category C to encode all of the homotopy theory, but
rather also include an additional notion of weak equivalence of objects of C. For
example, this is appropriate in the context of enriched model categories. For model
categories enriched over symmetric spectra, the homotopy theory is a localization of
the intrinsic homotopy theory of the associated spectral category. The full spectral
subcategory of the cofibrant-fibrant objects is the spectral category whose mapping
spectra encode the homotopy theory of the enriched model category. This subcat-
egory tends not to be preserved under most interesting functors. Under properness
hypotheses, a “cofiber” version of THH works somewhat better; see Appendix C
for more details.

We prove the following invariance theorem for DK-equivalences in the next sec-
tion.

Theorem 4.9. A DK-equivalence C → D induces a weak equivalence THH(C)→
THH(D).

We also prove the following more general theorem for bimodule coefficients. In
the statement, the (C, C)-bimodule F ∗N is the functor from Cop ∧ C to symmetric
spectra defined by first applying F to each variable and then applying N .

Theorem 4.10. Let F : C → D be a DK-equivalence, M a (C, C)-bimodule and
N a (D,D)-bimodule. A weak equivalence M→ F ∗N induces a weak equivalence
THH(C;M)→ THH(D;N ).

We now move on from weak equivalences to Morita equivalences. For objects
a and c of D, say that c is a homotopy factor of a if it is a factor in the graded
homotopy category π∗D, i.e., if there exists an object b in D and a natural isomor-
phism π∗D(−, c) ∼= π∗D(−, a) × π∗D(−, b) of contravariant functors from π∗D to
the category of graded abelian groups. We say that a spectral functor F : C → D
is homotopy cofinal if it induces weak equivalences on mapping spaces and each
object of D is a homotopy factor of the image of some object in C. We prove the
following theorem in the next section.

Theorem 4.11. A homotopy cofinal spectral functor C → D induces a weak equiv-
alence THH(C)→ THH(D).

The previous theorem admits a more sophisticated variant. Given a collection
C of objects in a pretriangulated spectral category D, the thick closure of C is the
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collection of objects in the thick subcategory of π0D generated by C. In terms
of the spectral category D, the thick closure of C is the smallest collection C̄ of
objects of D containing C and satisfying:

(i) If a is a homotopy factor of an object of C̄, then a is in C̄.
(ii) If the right D-module ΣD(−, a) is weakly equivalent to D(−, c) for some

c in C̄, then a is in C̄.
(iii) If the right D-module D(−, a) is weakly equivalent to the cofiber of a map

of right D-modules M→M′ with M,M′ weakly equivalent to D(−, c),
D(−, c′) for c, c′ in C̄, then a is in C̄.

A collection is thick if it is its own thick closure. Since any small spectral category
C embeds as a full spectral subcategory of a pretriangulated spectral category D,
the following theorem, proved in the next section, in particular allows us to always
reduce questions in THH to the case of pretriangulated spectral categories.

Theorem 4.12. Let D be a pretriangulated spectral category. Let C be a set of
objects of D, C̄ its thick closure, and C′ a set containing C and contained in C̄.
Let C and C′ be the full spectral subcategories of D on the objects in C and C′

respectively. Then the inclusion C → C′ induces a weak equivalence THH(C) →
THH(C′).

We close the section with the proof of Theorems 4.5 and 4.6. The argument
involves the well-known properties of categories of enriched functors into a Quillen
closed model category. For any small spectral category C, the category ModC of
right C-modules has a standard model structure (or projective model structure) that
is proper and compactly generated, where the generating cofibrations and generat-
ing acyclic cofibrations are the maps C(−, c)∧f for c in C and f varying through the
generating cofibrations and generating acyclic cofibrations (respectively) of the sta-
ble model structure on symmetric spectra described in [25, 3.3.2,3.4.9] (see also [25,
3.4.2.1,3.4.16]). Consequently, the weak equivalences and fibrations are the maps
that are objectwise weak equivalences and objectwise fibrations (respectively) in the
stable model structure on symmetric spectra. The representable right C-modules
C(−, c) are cofibrant and compact, meaning that maps out of C(−, c) preserve se-
quential colimits. In fact, the set of maps, simplicial set of maps, and symmetric
spectrum of maps out of C(−, c) preserves arbitrary colimits, by the enriched Yoneda
lemma.

In the case when C is small, we can use this theory to prove Theorem 4.6 as
follows. Using Quillen’s theory of cofibration sequences, we obtain a triangulated
structure on the Quillen homotopy category HoModC of ModC . The homotopy
category π0C embeds as a full subcategory of HoModC , and the conditions in the
definition of pretriangulated spectral category implies that π0C is closed under
desuspensions, suspensions, and triangles in HoModC . In the case when C is not
small, ModC does not typically have small Hom-sets. Of course, we can upgrade the
Grothendieck universe, and apply the same arguments as above; a direct argument
is also possible by restricting to the cell modules and using small object arguments
to construct replacements whose values on a given small set of objects are fibrant
symmetric spectra.

Now given a spectral functor F : C → D between small pretriangulated spectral
categories, left Kan extension produces a functor LanF : ModC →ModD left adjoint
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to the functor F ∗ : ModD →ModC . Since F
∗ preserves fibrations and weak equiv-

alences in the model structure above, LanF and F ∗ form a Quillen adjoint pair.
In particular LanF preserves Quillen cofiber sequences and Quillen suspensions. It
follows that the left derived functor of LanF on Quillen homotopy categories is
triangulated; on the representable functors, the left derived functor LanF is just
π0F : π0C → π0D. Again, the case when C or D is not small may be handled by
upgrading the Grothendieck universe or by a straightforward direct argument in
terms of the cell modules.

We also use this model theory to prove Theorem 4.5. By Proposition 2.4, we can
assume without loss of generality that all of the mapping spectra C(x, y) are fibrant
in the stable model structure on symmetric spectra, and so the representable right
C-modules C(−, c) are both cofibrant and fibrant in the model structure on ModC .
In order to remain in the setting of small categories, we do the following cardinality
trick: Let U be the full subcategory of the category of sets consisting of the sets
that are canonical countable colimits of the union of the underlying simplicial sets
of the mapping spectra in C crossed with the underlying sets of countable products
of standard simplices. Because C is small, U is a small set. Writing UModC for the
full subcategory of ModC consisting of the functors that take values in symmetric
spectra whose underlying sets are in U , then UModC is small and closed under all
the typical (countable) constructions of homotopy theory. In particular, UModC is
a Quillen model category with cofibrations, fibrations, and weak equivalences the
maps that are such in ModC . We then get a (closed model) category ModUModC

.

Let C̃ be the full spectral subcategory of UModC consisting of the cofibrant-
fibrant objects. The enriched Yoneda lemma embeds C as a full spectral subcategory
of C̃. Properties (i) and (ii) for C̃ in the definition of pretriangulated spectral

category are clear. For property (iii), consider a map of right C̃-modulesM→ N .
Since the model structure on Mod

C̃
is left proper, after replacingM and N with

fibrant approximations, we obtain an equivalent homotopy cofiber, and so we can
assume without loss of generality thatM and N are fibrant. We assume thatM
is weakly equivalent to C̃(−, a) and N is weakly equivalent to C̃(−, b) for objects

a, b in C̃; since C̃(−, a) and C̃(−, b) are cofibrant and M and N are fibrant, we

can choose weak equivalences C̃(−, a) → M and C̃(−, b) → N . Furthermore, as

C̃(a, b) and N (a) are both fibrant, we can lift the composite map C̃(−, a) → N to

a homotopic map C̃(−, a)→ C̃(−, b). We get a weak equivalence on the homotopy

cofibers. The map C̃(−, a) → C̃(−, b) comes from a map a → b by the Yoneda

lemma. A fibrant approximation of the homotopy cofiber in UModC is in C̃ and
represents the homotopy cofiber ofM→N in Mod

C̃
. This completes the proof of

Theorem 4.5.

5. The Dennis-Waldhausen Morita Argument

In this section, we consider the invariance properties of THH from the perspec-
tive of generalized Morita theory. Dennis and Waldhausen gave a very concrete
argument for the Morita invariance of the Hochschild homology of rings using an
explicit bisimplicial construction [42, p. 391] . We give a broad generalization of this
argument to the setting of spectral categories that provides the technical founda-
tions for the proofs of the theorems of the previous section as well as the arguments
in the remainder of the paper.
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Before explaining the argument, we need notation for a version of Bökstedt’s
construction that provides a flexible model for the two-sided bar construction.

Definition 5.1. Let C be a spectral category,M a right C-module, and N a left
C-module. The Bökstedt two-sided bar construction TB(M; C;N ) is the geometric
realization of the simplicial (orthogonal) spectrum TB•(M; C;N ), where

TBq(M; C;N )(V ) = hocolimIq+2 Ωn0+···+nq+1(Wn0,...,nq+1 ∧ S
V )

and

Wn0,...,nq+1 =
∨

c0,...,cq

|M(cq)nq+1 ∧ C(cq−1, cq)nq
∧ · · · ∧ C(c0, c1)n1 ∧N (c0)n0 |.

Here we have writtenM(c)n for the n-th simplicial set in the symmetric spectrum
M(c) and similarly for N (c)n and C(c, d)n.

The following is the main technical proposition of this section. In it and elsewhere
when necessary for clarity, we write

TB(M(x);x, y ∈ C;N (y)) and THH(x, y ∈ C;P(x, y))

for TB(M; C;N ) and THH(C;P), especially when M, N , and/or P depend on
other variables.

Proposition 5.2 (Dennis-Waldhausen Morita Argument). Let C and D be spectral
categories. Let P be a (D, C)-bimodule and Q a (C,D)-bimodule. Then there is a
natural isomorphism in the stable category

THH(x, y ∈ C;TB(P(w, y);w, z ∈ D;Q(x, z))

≃ THH(w, z ∈ D;TB(Q(x, z);x, y ∈ C;P(w, y)).

The basic idea behind this proposition is easiest to explain using the Hochschild-
Mitchell complex and the usual two-sided bar construction in place of the Bökstedt-
Dundas-McCarthy THH and Bökstedt two-sided bar construction. With these
substitutions, we can identify both

N cy(C;B(P ;D;Q)) and N cy(D;B(Q; C;P))

as the geometric realization of the bisimplicial spectrum with (q, r)-simplices as
pictured.

C(cq−1, x) ∧ · · · ∧ C(y, c1)

Q(x, z)

∧

∧

P(w, y)

∧

∧

D(z, d1) ∧ · · · ∧ D(dr−1, w)

These two constructions are therefore isomorphic in the point-set category of sym-
metric spectra (of topological spaces).

In the case of the Bökstedt construction, we have maps from both

THH(C;TB(P ;D;Q)) and THH(D;TB(Q; C;P))

to a third construction

THH(C;P ;D;Q)
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defined as the geometric realization of the bisimplicial spectrum that in bidegree
(q, r) is the homotopy colimit over Ir+1+q+1 of

Ωn
∨

|C(cq−1, x)nr+1+q
∧ · · · ∧ C(y, c1)nr+1+1∧

P(w, y)nr+1 ∧ D(dr−1, w)nr
∧ · · · ∧ D(z, d1)n1 ∧ Q(x, z)n0 | ∧ S

V ,

where n = n0 + · · ·+ nr+1+q and the wedge is over

y, c1, . . . , cq−1, x ∈ obC, z, d1, . . . , dr−1, w ∈ obD.

Schematically, akin to the picture above, this is:

Ωn
∨

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

C(cq−1, x)nr+1+q
∧ · · · ∧ C(y, c1)nr+1+1

Q(x, z)n0

∧

∧

P(w, y)nr+1

∧

∧

D(z, d1)n1 ∧ · · · ∧ D(dr−1, w)nr

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∧ SV .

The maps to THH(C;P ;D;Q) are induced by pulling outside the inside homotopy
colimit and loops. These maps are not isomorphisms, but they are weak equiva-
lences: Using the cofibrant approximations from Proposition 2.5 and 2.6, Proposi-
tion 5.2 follows from Proposition 3.4 (and its generalization to the two-sided bar
construction).

The following lemma complements Proposition 5.2. Its proof is the usual sim-
plicial contraction (see for example [29, 9.8]).

Lemma 5.3 (Two-Sided Bar Lemma). Let C be a spectral category, let M be a
right C-module, and let N be a left C-module. For any object c in C, the composition
maps

TB•(M; C; C(c,−)) −→M(c) and TB•(C(−, c); C;N ) −→ N (c)

are simplicial homotopy equivalences.

Proposition 5.2 provides a tool for converting objectwise equivalence conditions
into equivalences on THH . We illustrate this with the proof of the theorems of the
previous section.

Let F : C → D be a spectral functor. LetM be a (C, C)-bimodule, N a (D,D)-
bimodule and M → F ∗N a weak equivalence. We describe a criterion, Proposi-
tion 5.6 below, for the map

THH(C;M) −→ THH(D;N )

to be a weak equivalence. For Theorem 4.10, we apply this in the notation above.
For Theorem 4.9, we apply this withM = C and N = D, and for Theorem 4.12, D
will be the spectral category C′ in the statement.
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Consider the commutative diagram

(5.4)

THH(C;TB(M(−,−); C; C(−,−)))
≃

//

��

THH(C;M)

≃

��

THH(C;TB(N (−, F−);D;D(F−,−))
≃ //

��

THH(C;F ∗N )

��

THH(D;TB(N (−,−);D;D(−,−)))
≃

// THH(D;N ).

The arrows marked “≃” are weak equivalences by the Two-Sided Bar Lemma and
Proposition 3.6 above. The map on right is the map we are interested in, and so
our goal is to describe a tool for showing that the two maps on the left are weak
equivalences. The first map is induced by a map of C-bimodules

TB(M(−,−); C; C(−,−)) −→ TB(N (−, F−);D;D(F−,−)),

which is easily seen to be a weak equivalence by the Two-Sided Bar Lemma and
the hypothesis that M→ F ∗N is a weak equivalence. Understanding the second
map is where we apply Proposition 5.2: We obtain a commutative diagram with
the maps labeled “≃” weak equivalences

THH(C;TB(N (−, F−);D;D(F−,−)))

��

≃ // THH(D;TB(D(F−,−);C;N (−, F−)))

��

THH(D;TB(N (−,−);D;D(−,−)))
≃

// THH(D;TB(D(−,−);D;N (−,−)))

by applying Proposition 5.2 with P = N (−, F−) and Q = D(F−,−) on the top
and P = N (−,−) and Q = D(−,−) (for C = D) on the bottom. This reduces
the question of the map THH(C;M)→ THH(C;N ) being a weak equivalence to
showing that the map

(5.5) TB(D(F−, z); C;N (w,F−)) −→ TB(D(−, z);D;N (w,−))

is a weak equivalence for every (fixed) pair of objects w, z in D. We summarize this
in the following proposition.

Proposition 5.6. Let F : C → D be a spectral functor. LetM be a (C, C)-bimodule,
N a (D,D)-bimodule and M → F ∗N a weak equivalence. If the map (5.5) is a
weak equivalence for all w, z in D, then the map

THH(C;M) −→ THH(D;N )

is a weak equivalence.

We apply this criterion in the proof of Theorem 4.9, Theorem 4.10, Theorem 4.11,
and Theorem 4.12.

Proof of Theorem 4.9. Using the Two-Sided Bar Lemma, it suffices to show that
the composition map

TB(D(F−, z); C;D(w,F−)) −→ D(w, z)

is a weak equivalence. Viewing TB(D(F−, z); C;D(w,F−)) as a simplicial object
in the stable category, up to simplicial isomorphism, it only depends on D(F−, z)
as a functor from C to the stable category. By hypothesis, there exists an object c
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in C such that D(−, z) and D(−, F c) are isomorphic as functors from Dop to the
stable category. Since this is just a comparison of simplicial objects in the stable
category, we do not get a direct comparison on geometric realizations (but see also
the proof of Theorem 4.10 below). Nonetheless, since TB is a proper simplicial
orthogonal spectrum, the homotopy groups of TB• are the E1-term of a spectral
sequence that computes the homotopy groups of TB. The E1 differential comes
from the simplicial face maps, and applying the Two-Sided Bar Lemma, we see that
this spectral sequence degenerates at E2 and that (5.5) is a weak equivalence. �

For the proof of Theorem 4.10, we note that the map (5.5) admits a right D-
module generalization, replacing D(−, z) with an arbitrary right D-module φ:

(5.7) TB(F ∗φ; C;N (w,F−)) −→ TB(φ;D;N (w,−)).

We have used φ to denote the right D-module to avoid possible confusion between
the different roles played by the right module φ and the bimodule N .

Proof of Theorem 4.10. The generalization (5.7) of (5.5) is natural in the right D-
module φ. We take advantage of this as follows. Let φ be a right D-module fibrant
approximation of D(−, z). By hypothesis, viewing φ as an enriched functor from

D to the stable category, we have a natural isomorphism f̃ : D(−, F z′) → φ for
some z′ in C; by the Yoneda lemma for enriched functors, this corresponds to an
element f̃ ∈ π0(φ(Fz′)). Since φ(Fz′) is fibrant, we can choose a vertex f in φ(Fz′)0
representing f̃ . Again by the Yoneda lemma, f represents a map of rightD-modules
D(−, F z′)→ φ that induces the natural isomorphism f̃ of enriched functors to the
stable category. In particular, f is a weak equivalence. The map (5.7) is a weak
equivalence for D(−, F z′), and so is a weak equivalence for φ and for D(−, z). �

Theorem 4.11 can be proved using essentially the same argument as the proof
of Theorem 4.9 above, using the fact that a direct sum of maps in the stable
category is an isomorphism if and only if it is an isomorphism on each factor. On
the other hand, given Theorem 4.5, Theorem 4.11 follows from Theorem 4.9 and
Theorem 4.12, which we now prove.

Proof of 4.12. By the discussion preceding the proof of Theorem 4.10 above, we can
take advantage of the right module generalization (5.7) to show that the map (5.5)
is a weak equivalence. We have that (5.7) is a weak equivalence when φ is weakly
equivalent to C′(−, z) for z in C. Using the fact that both sides preserve homotopy
cofiber sequences in the φ variable, it follows that (5.7) is a weak equivalence for

C̃(−, z) for any z in the thick subcategory of π0C̃ generated by π0C. This completes
the proof of Theorem 4.12. �

6. General localization method

In this section, we discuss a general method for producing localization cofiber
sequences in THH . The basic strategy takes advantage of the fact that THH
preserves (co)fiber sequences in the bimodule variable: We apply the Dennis-
Waldhausen Morita argument to identify THH of a spectral category with THH
of another spectral category with coefficients in a bimodule. We obtain all of our
localization fiber sequences by reinterpreting sequences of THH of spectral cate-
gories

THH(A) −→ THH(B) −→ THH(C)
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as the THH of a single spectral category with coefficients in a sequence of judi-
ciously chosen bimodules

THH(B;LB
A
) −→ THH(B;B) −→ THH(B;QB

A
).

where QB
A is the cofiber of a map of (B,B)-bimodules LBA → B. Although we can

make more general statements, the situation we are most interested in is when
the sequence of spectral categories models a triangulated quotient. We prove the
following theorem.

Theorem 6.1. Let F : B → C be a spectral functor between small pretriangulated
spectral categories, and let A be the full spectral subcategory of B consisting of the
objects a such that F (a) is isomorphic to zero in the homotopy category π0C. If
the induced map from the triangulated quotient π0B/π0A to π0C is cofinal, then
THH(C) is weakly equivalent through cyclotomic maps to the homotopy cofiber of
THH(A)→ THH(B).

In general, we call (B,A) a localization pair when B is a pretriangulated spectral
category B and A is a full spectral subcategory such that π0A is thick in π0B; we
say that the localization pair is small when the spectral category B is small. This
definition of localization pair differs slightly from that of Keller [26, 2.4] in that we
do not require a well-behaved ambient category (our additional requirement that
A be thick is for convenience rather than necessity by Theorem 4.12).

In Theorem 6.1, letting Z the full subcategory of objects of C in the thick closure
of the image of A, then (C,Z) is a localization pair and (B,A) → (C,Z) is a map
of localization pairs: It is a spectral functor B → C that takes A into Z. Note that
for any objects x, y in Z, the spectrum Z(x, y) is trivial, and so THH(Z) is trivial.
The inclusion of THH(C) in the homotopy cofiber of THH(Z) → THH(C) is a
weak equivalence and a cyclotomic map. We have the cyclotomic map of homotopy
cofibers

C(THH(A)→ THH(B)) −→ C(THH(Z)→ THH(C)),

and we prove Theorem 6.1 by showing that this map is a weak equivalence. The-
orem 6.1 then naturally appears as a special case of the following theorem, which
essentially says that the cofiber of THH is an invariant of the localization pair.

Theorem 6.2. Let F : (B1,A1)→ (B2,A2) be a map of small localization pairs. If
the induced map of triangulated quotients

π0B1/π0A1 −→ π0B2/π0A2

is cofinal, then the induced cyclotomic map

C(THH(A1)→ THH(B1)) −→ C(THH(A2)→ THH(B2))

is a weak equivalence.

Following Keller [26], we define THH of a localization pair as the cofiber on
THH . The previous theorem provides a perspective and justification for the fol-
lowing definition.

Definition 6.3. Let (B,A) be a small localization pair. We write CTHH(B/A) for
the cyclotomic spectrum obtained as the cofiber of the map THH(A)→ THH(B).
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The rest of the section is devoted to the proof of Theorem 6.2. As indicated
above, we use the Dennis-Waldhausen Morita argument, Proposition 5.2, to rewrite
THH(A) as THH(B;LBA) for an appropriate (B,B)-bimodule LBA .

Lemma 6.4. Let (B,A) be a small localization pair, and let LBA be the (B,B)-
bimodule defined by

LBA(x, y) = TB(B(−, y);A;B(x,−)).

Then THH(A) is naturally weakly equivalent to THH(B;LBA).

Proof. We apply Proposition 5.2 with C = A, D = B, P = B, and Q = B to obtain
natural weak equivalences

THH(B;LBA)
≃

// THH(B;LBA;B;B) THH(A;TB(B;B;B)).
≃

oo

The natural map

THH(A;TB(B;B;B))−→ THH(A;B) = THH(A).

is a weak equivalence since the composition map of (A,A)-bimodules TB(B;B;B)→
B is a weak equivalence by the Two-Sided Bar Lemma 5.3. �

For a small localization pair (B,A), write QB

A
for the (B,B)-bimodule obtained

as the cofiber of the composition map LBA → B. Then by the previous lemma, we
have a natural weak equivalence

THH(B;QB
A) ≃ CTHH(B/A).

Naturality here refers to the fact that a map of small localization pairs F induces
a map of (B1,B1)-bimodules QB1

A1
→ F ∗QB2

A2
and therefore a map

(6.5) THH(B1;Q
B1

A1
) −→ THH(B2;Q

B2

A2
).

Looking at the proof of Lemma 6.4, we see that this map is compatible under the
weak equivalences above with the map on cofibers in the statement of Theorem 6.2.
Thus, to prove Theorem 6.2, we just need to show that the map (6.5) is a weak
equivalence.

For a small localization pair (B,A) and fixed object b in B, the right B-module

LBA(−, b) is the enriched homotopy left Kan extension along A → B of the enriched
functor B(−, b) from A to symmetric spectra. Philosophically, the cofiber of the

map LBA(−, b) → B(−, b) should then represent the right C-module of maps into
the image of b in any spectral category C representing the triangulated quotient, cf.
[11, (1.3)]. From this perspective and viewed through the principles of the Dennis-

Waldhausen Morita argument, THH(B;QB
A) should be equivalent to THH(C).

This is the idea behind the following lemma proved at the end of the section.

Lemma 6.6. Under the hypotheses of Theorem 6.2, the map of (B1,B1)-bimodules

QB1

A1
→ F ∗QB2

A2
is a weak equivalence.

A fundamental property of QB
A is that QB

A(a,−) and QB
A(−, a) are trivial for

any object a in A: The Two-Sided Bar Lemma 5.3 implies that the composition
maps LB

A
(a,−) → B(a,−) and LB

A
(−, a) → B(−, a) are weak equivalences. This

leads to the following technical observation needed below to analyze the map (6.5).
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Lemma 6.7. For a small localization pair (B,A), the maps of bimodules

TB(B;B;QB

A
) −→ TB(QB

A
;B;QB

A
) and TB(QB

A
;B;B) −→ TB(QB

A
;B;QB

A
)

induced by B → QB
A are weak equivalences.

Proof. We prove the first equivalence; the argument for the second is similar. Ex-
panding QB

A
in terms of its definition, we see that TB(QB

A
;B;QB

A
) is the cofiber

of the bimodule map TB(LBA ;B;QB
A) → TB(B;B;QB

A), and so by the Two-Sided

Bar Lemma 5.3, it suffices to see that TB(LBA ;B;QB
A) is trivial. Since LBA =

TB(B;A;B), the bimodule TB(LB
A
;B;QB

A
) is weakly equivalent to

TB(B;A;TB(B;B;QB

A
)),

and applying the Two-Sided Bar Lemma 5.3 again, we see that it is weakly equiv-
alent to TB(B;A;QB

A
). This is trivial because the restriction of QB

A
(x,−) to A is

trivial for any x. �

We can extend QB
A to be a (B,ModB)-bimodule, where ModB denotes the cate-

gory of right B-modules. For x an object of B and φ a right B-module, let QB
A(x, φ)

be the cofiber of the composition map

TB(φ(−);A;B(x,−)) −→ φ(x).

Clearly, QB

A
(x, φ) is isomorphic to QB

A
(x, y) when φ = B(−, y), and QB

A
(x,−) sends

cofiber sequences of right B-modules to cofiber sequences of symmetric spectra and
sends weak equivalences of right B-modules to weak equivalences of symmetric
spectra. The usual category of fractions description of the triangulated quotient
π0B/π0A and the fact that QB

A is trivial when either variable is in A then implies

that QB
A(−, y) and QB

A(−, y′) are weakly equivalent right B-modules when y and y′

are isomorphic in π0B/π0A. Moreover, when z is isomorphic to w ∨ y in π0B/π0A,
QB

A(−, z) is weakly equivalent as a right B-module to QB
A(−, w)∨QB

A (−, y). Using
these observations and the lemmas above, we can now prove Theorem 6.2.

Proof of Theorem 6.2. We need to show that the map (6.5) is a weak equivalence.
Consider the following commutative diagram

THH(B1 ;F
∗TB(Q

B2
A2

;B2;Q
B2
A2

))

��

THH(B1 ;F
∗TB(B2;B2;Q

B2
A2

))

��

≃
oo

≃
// THH(B1 ;F

∗
Q

B2
A2

)

��

THH(B2 ;TB(Q
B2
A2

;B2;Q
B2
A2

)) THH(B2;TB(B2;B2;Q
B2
A2

))
≃

//
≃

oo THH(B2 ;Q
B2
A2

).

The lefthand horizontal maps are weak equivalences by Lemma 6.7 and the right-
hand horizontal maps are weak equivalences by the Two-Sided Bar Lemma 5.3.
The map (6.5) is the composite of the righthand vertical map and the induced map

on THH of the map of bimodules QB1

A1
→ F ∗QB2

A2
, which is a weak equivalence by

Lemma 6.6. Thus, to see that (6.5) is a weak equivalence, it suffices to show that
one of the vertical maps is a weak equivalence.

Focusing on the lefthand vertical map and applying the Dennis-Waldhausen
Morita argument 5.2, it suffices to show that the map

(6.8) TB(QB2

A2
(F−, y);B1;Q

B2

A2
(x, F−)) −→ TB(QB2

A2
(−, y);B2;Q

B2

A2
(x,−))

is a weak equivalence for every pair of objects x, y in B2. It is clear from Lemmas 6.6
and 6.7 that (6.8) is an equivalence when either x or y is in the image of B1. By
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the remarks above, if an object y in B2 is isomorphic in π0B2/π0A2 to Fy′ for

some object y′ in B1, then Q
B2

A2
(−, y) is weakly equivalent as a right B2-module to

QB2

A2
(−, y′) and the map (6.8) is a weak equivalence for all x. Since π0B1/π0A1

is cofinal in π0B2/π0A2, for any y in B2, there exists w in B2 such that the sum
w∨ y in π0B2/π0A2 is isomorphic to Fz for some z in B1; then as noted above, the

right B2-module QB2

A2
(−, w) ∨ QB2

A2
(−, y) is weakly equivalent to QB2

A2
(−, F z). We

get compatible weak equivalences

TB(QB2

A2
(F−, w);B1;Q

B2

A2
(x, F−)) ∨ TB(QB2

A2
(F−, y);B1;Q

B2

A2
(x, F−))

≃

TB(QB2

A2
(F−, F z);B1;Q

B2

A2
(x, F−))

and

TB(QB2

A2
(−, w);B2;Q

B2

A2
(x,−)) ∨ TB(QB2

A2
(−, y);B2;Q

B2

A2
(x,−))

≃

TB(QB2

A2
(−, F z);B2;Q

B2

A2
(x,−)),

and we see that (6.8) is a weak equivalence for x and y. �

It still remains to prove Lemma 6.6. The proof makes use of Bousfield localization
[7], [23, §3.3] in the category of right B-modules for a small pretriangulated spectral
category B. As discussed in Section 4, the category ModB of right B-modules has a
standard compactly generated stable model structure where the weak equivalences
and fibrations are the maps that are objectwise weak equivalences and fibrations
in the stable model structure on symmetric spectra. The generating cofibrations
and generating acyclic cofibrations are the maps B(−, b) ∧ f for b in B and f
varying through the generating cofibrations and generating acyclic cofibrations,
respectively, of the stable model structure on symmetric spectra. The representable
right B-modules B(−, b) are both cofibrant and compact.

Now let (B,A) be a localization pair. We say that a right B-module ψ isA-local if
it is fibrant and ψ(a) is trivial for every object a of A. In this context, we say that a
map of right B-modules f : φ→ φ′ is an A-local equivalence if it induces a bijection
of morphism sets in the Quillen homotopy category, [φ′, ψ] → [φ, ψ], for every A-
local right B-module ψ. The A-local model structure on right B-modules has the
same cofibrations as the standard stable model structure but has weak equivalences
the A-local equivalences [23, 4.1.2]. This is a compactly generated model structure
with the acyclic cofibrations generated by the acyclic cofibrations in the standard
stable model structure together with the maps of the form B(−, a) ∧ f for a in A
and f a generating cofibration in the stable model structure on symmetric spectra.
The fibrant objects in the A-local model structure are the A-local right B-modules.

More specifically, every acyclic cofibration in the A-local model structure is a
retract of a sequential colimit of pushouts along arbitrary coproducts of the gener-
ating acyclic cofibrations indicated above. The cofiber of such a pushout is weakly
equivalent (in the standard stable model structure) to a wedge of objects of A.
Since objects of B are compact, a standard argument [24, 2.3.17], [32, 2.1] shows
that if a representable right B-module B(−, b) is A-acyclic (A-locally equivalent to
∗), then in the Quillen homotopy category of the standard stable model structure,
B(−, b) is in the thick subcategory generated by the representables from A, and so
b is in A. This implies the following proposition.



LOCALIZATION IN THH AND TC 25

Proposition 6.9. Let (B,A) be a localization pair. The Yoneda functor that in-
cludes B in ModB as the representable functors induces a triangulated embedding
of π0B/π0A in the Quillen homotopy category of the A-local model structure on
ModB.

We now turn to the proof of Lemma 6.6.

Proof. Fixing objects x, y in B1, it suffices to show that the map QB1

A1
(x, y) →

QB2

A2
(Fx, Fy) is a weak equivalence.

We take advantage of the functoriality of QBi

Ai
generalized to modules and the

previous proposition. Choose an A1-local B1-module ψ1 and an A1-local acyclic
cofibration q : B1(−, y) → ψ1. It is clear from the characterization of the gener-

ating A1-local acyclic cofibrations that q induces a weak equivalence QB1

A1
(x, y) →

QB1

A1
(x, ψ1). Moreover, since ψ1(a) is trivial for every object a in A1, we have that

the map ψ1(x)→ Q
B1

A1
(x, ψ1) is a weak equivalence.

The functor F ∗ from right B2-modules to right B1-modules has a left adjoint
LanF defined by left Kan extension. Since LanF takes B1(−, b) to B2(−, F b) for
any object b in B1, LanF takes the generating cofibrations and generating acyclic
cofibrations of the A1-local model structure into the generating cofibrations and
generating acyclic cofibrations of the A2-local model structure, i.e., LanF , F

∗ is a
Quillen adjunction on the local model structures. In particular, LanF takes q to an
A2-local acyclic cofibration B2(−, Fy) → LanF ψ1. Choose an A2-local object ψ2

and an A2-local acyclic cofibration LanF ψ1 → ψ2. Now we have weak equivalences

QB2

A2
(Fx, Fy) −→ QB2

A2
(Fx,LanF ψ1) −→ Q

B2

A2
(Fx, ψ2).

Moreover, since ψ2(a) is trivial for every object a in A2, we have that the map

ψ2(Fx)→ Q
B2

A2
(Fx, ψ2) is a weak equivalence.

Applying Proposition 6.9 and the hypothesis that B1 → B2 induces an embedding
of π0B1/π0A1 into π0B2/π0A2, we see that ψ1(b) → ψ2(Fb) is a weak equivalence
for every object b in B1. Thus, we have shown that in the commutative diagram

ψ1(x)
≃

//

≃

��

QB1

A1
(x, ψ1)

��

QB1

A1
(x, y)

≃
oo

��

ψ2(Fx) ≃
// QB2

A2
(Fx, ψ2) QB2

A2
(Fx, Fy),

≃
oo

the arrows marked “≃” are weak equivalences. It follows that the map QB1

A1
(x, y)→

QB2

A2
(Fx, Fy) is a weak equivalence. �

7. Applications

We now turn to the applications of the general theory of the preceding sections to
THH and TC of schemes. We begin with a discussion of the spectral enrichment of
the derived category of a scheme. Recent work shows that any stable category can
be regarded as enriched in symmetric spectra [12, 13, 34] and one approach would
be to apply this theory in the setting of categories of unbounded complexes to
construct a spectral derived category from first principles. On the other hand, such
an approach would demand a comparison with the DG-category structures that
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arise in nature on categories of complexes. For this reason, we take the simpler
approach of lifting DG-categories to associated spectral categories.

For a scheme X , let KDG(X) denote the pretriangulated DG-category of un-
bounded complexes of sheaves of OX -modules; its homotopy category π0KDG(X)
is the triangulated category typically denoted K(X) of unbounded complexes and
chain homotopy classes of maps. The derived category D(X) is the localization of
K(X) obtained by inverting the quasi-isomorphisms, or equivalently, the triangu-
lated quotient of K(X) by the full triangulated subcategory of acyclic complexes.
The derived category of perfect complexes Dparf(X) is the full triangulated subcat-
egory of unbounded complexes locally quasi-isomorphic to strictly bounded com-
plexes of vector bundles. By choosing a large enough cardinal ℵ and restricting to
the perfect complexes whose underlying sets are in ℵ, we can find a small full pre-
triangulated subcategory KDGparf(X) of KDG(X) consisting of perfect complexes and
having the property that the triangulated quotient of the homotopy category by the
full subcategory of acyclics is equivalent to Dparf(X) via the canonical map. More-
over, when X is quasi-compact and quasi-separated, the full subcategory KDGparf(X)♭
consisting of those complexes in KDGparf(X) that are strictly bounded above and de-
greewise flat OX -modules also has the property that the triangulated quotient of
the homotopy category by the full subcategory of acyclics is equivalent to Dparf(X)
via the canonical map.

Keller [26] and Drinfeld [11] described “quotient” DG-categories whose homo-
topy categories model the quotients of triangulated categories. We obtain small
DG-categories DDGparf(X) and (for X quasi-compact and quasi-separated) DDGparf(X)♭
whose homotopy categories are equivalent to the derived category Dparf . We ob-
tain small spectral categories DSparf(X) and DSparf(X)♭ associated to DDGparf(X) and

DDGparf(X)♭. We now prove Theorems 1.1, 1.4, and 1.3 from the introduction; in all
cases, the results for TR and TC follow from the corresponding results for THH
by Proposition 3.10.

Theorem 1.1 follows from Theorem 6.1: For the first statement, the Thomason-
Trobaugh localization sequence, we apply Theorem 6.1 with B = DSparf(X), A

the full spectral subcategory of DSparf(X) consisting of those complexes that are

supported on X − U , and C = DSparf(U), using a lift B → C of the DG-functor

j∗ : DDGparf(X) → DDGparf(U). The Mayer-Vietoris statement follows from the local-
ization statement and Corollary 4.7 since the inclusion in X of any open set V
containing X −U induces an equivalence on the derived categories of perfect com-
plexes supported on X − U = V − U ∩ V .

For Theorem 1.3, we choose an affine open cover {U1, . . . , Ur} of X . For each
i1, . . . , in let Ui1,...,in = Ui1 ∩ · · · ∩ Uin and let Ai1,...,in = OUi1,...,in

. Since X is

semi-separated, Ui1,...,in = SpecAi1,...,in . We now construct a Čech complex on
THH associated to this cover as follows.

Let A denote the full subcategory of KDGparf(X) consisting of the acyclic com-

plexes, and for each (non-empty) Ui1,...,in , letAi1,...,in denote the full subcategory of
KDGparf(X) of objects acyclic on Ui1,...,in . We have definedDDGparf(X) by Drinfeld’s quo-

tient category construction KDGparf(X)/A. For all i1, . . . , in and U = Ui1 ∩ · · · ∩Uin ,

the DG-functor j∗ : KDGparf(X)→ KDGparf(U) (associated to j : U ⊂ X) induces a DG-

functor KDGparf(X)/Ai1,...,in → D
DG
parf(U) that is a DG-equivalence onto its image.

Moreover, this functor is cofinal in that every perfect complex on U is a direct
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summand of j∗ of a perfect complex on X . We apply functorial factorization to
construct the associated (fibrant) spectral categories Di1,...,in . This constructs a
strictly commuting diagram of spectral functors associated to intersections of the
open sets in the cover. Moreover, comparing this construction with the argument
above for Theorem 1.1, we see that the cyclotomic map

THH(DSparf(X)) −→ holimSr
THH(Di1,...,in)

is a weak equivalence, where S is the partially-ordered set of non-empty subsets of
1, . . . , r.

Each of the categories Di1,...,in has an object called OX whose endomorphism
spectrum is an Eilenberg-Mac Lane ring spectrum of Ai1,...,in . Write HAi1,...,in for
Di1,...,in(OX ,OX). Since the objects called OX in Di1,...,in are compatible under
inclusion of intersections, we obtain a map

holimSr
THH(HAi1,...,in) −→ holimSr

THH(Di1,...,in).

The lefthand spectrum is easily seen to be equivalent to the Čech cohomology
of the Zariski presheaf of symmetric spectra THH(O(−)) associated to the cover
{U1, . . . , Ur}. Geisser and Hesselholt [18, 3.2.1] showed that the homotopy groups of
THH of a commutative ring form a quasi-coherent sheaf, and so the lefthand homo-
topy limit computes the hypercohomology spectrum of THH(O(−)), i.e., THH(X)
as defined by [18, 3.2.3].

Thus, Theorem 1.3 for quasi-compact semi-separated schemes reduces to showing
that each map THH(HAi1,...,in) → THH(Di1,...,in) is a weak equivalence. This
follows from Theorem 4.12.

Next we prove Theorem 1.4. We have functors

Li∗ : DDGparf(X)♭ −→ D
DG
parf(X

′)♭

Lj∗ : DDGparf(Y )♭ −→ D
DG
parf(Y

′)♭.

Each of these is a DG-equivalence to its image. Let B1 = DSparf(X
′)♭ and B2 =

DSparf(Y
′)♭, and let A1 denote the full spectral subcategory of B1 consisting of

objects equivalent to those in the image of Li∗ and A2 denote the full spectral
subcategory of B2 of objects in the image of Lj∗. The map Lp∗ lifts to a map
DSparf(X)♭ → D

S
parf(X

′)♭ that lands in A1 and is a DK-equivalence to A1. Likewise,

Lq∗ induces a DK-equivalence of DSparf(Y
′) with A2. In this way, we obtain a

strictly commuting spectral model for the DG-functors Lp∗, Lq∗, Li∗, and Lj∗ as
a map of localization pairs (B1,A1)→ (B2,A2). By [39, §2.7] or [9, 1.5], this map
induces an equivalence on quotient triangulated categories, and therefore a weak
equivalence CTHH(B1/A1)→ CTHH(B2/A2). Theorem 1.4 now follows.

We close the section with the proof of Theorem 1.5. Let π : PEX → X be the
projective bundle of an algebraic vector bundle E of rank r. Thomason [39, §2.7]
constructed a triangulated filtration

0 ≃ Ar ⊂ Ar−1 ⊂ · · · ⊂ A0 = Dparf(PEX)

of the derived category as follows. Let Ak denote the full subcategory of Dparf(PEX)
consisting of complexes Z such that Rπ∗(Z ⊗OPEX

(i)) = 0 for 0 ≤ i < k. By defi-
nition, A0 = DDGparf(X)(PEX), and since E is rank r, Ar is trivial [39, 2.5]. Further-

more, Ak admits the alternate description as the thick subcategory of Dparf(PEX)
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generated by Lπ∗(−)⊗OPEX
(−j) for k ≤ j < r (see also [9, 1.2]). Let A′

r−1, . . . ,A
′
0

denote the corresponding filtration on DSparf(PEX).

The functor Lπ∗(−) ⊗ OPEX
(−k) from Dparf(X) to Ak admits a refinement to

a DG-functor DDGparf(X) → DDGparf(PEX), which we can lift to a spectral functor

DSparf(X)→ A′
k. Viewed as map of localization pairs (DSparf(X), 0)→ (A′

k,A
′
k+1),

the induced map of triangulated quotients Dparf(X) → Ak/Ak+1 is an equiva-
lence [39, §2.7]. Theorem 6.2 then shows that the induced map THH(X) →
CTHH(A′

k,A
′
k+1) is a weak equivalence. In particular, we obtain split cofiber

sequences of cyclotomic spectra

THH(A′
k+1) −→ THH(A′

k) −→ THH(X),

and hence weak equivalence of cyclotomic spectra

THH(A′
k) ≃ THH(A′

k+1)× THH(X).

for k = 0, . . . , r − 1. This completes the proof of Theorem 1.5.

8. The cyclotomic trace from KB

In this section we show that the cyclotomic trace from K-theory to THH and
TC factors through Thomason-Trobaugh’s construction of Bass non-connective K-
theory KB [40, §6]. Using a version of the Bass fundamental theorem for THH , we
factor the cyclotomic trace map from connective K-theory on affine schemes (com-
mutative rings) throughKB. This factorization holds more generally for maps from
K-theory to any theory satisfying the appropriate analogue of Bass’ fundamental
theorem, and is natural for such functors to a (strict point-set) category of spectra.
Since the trace map admits a model in which it is a map of presheaves restricted to
affine covers, we obtain the factorization KB → THH on the level of presheaves,
which we show lifts to a map of presheaves KB → TC. For quasi-compact semi-
separated schemes, KB is equivalent to the Čech hypercohomology spectrum of its
presheaf by [40, 8.4]. The work of the previous section (and [18]) shows that for such
schemes THH and TC are each equivalent to both the hypercohomology spectrum
and Čech hypercohomology spectrum of their respective presheaves. This then
constructs trace maps KB → TC → THH for all quasi-compact, semi-separated
schemes.

We begin by discussing the analogue of Bass’ fundamental theorem that we
need. For the purposes of this section, we say that a covariant functor F from
commutative rings to some (point-set) category of spectra is a Bass functor when
it comes with a natural transformation τ : ΣF (R)→ F (R[t, t−1]) and satisfies:

(i) For any R, F (R) is connective (πnF (R) = 0 for n < 0),
(ii) For any R and any n ≥ 0, the sequence

0 −→ πnF (R) −→ πnF (R[t])⊕ πnF (R[t
−1]) −→ πnF (R[t, t

−1])

induced by the inclusion maps is exact, and
(iii) For any R and any n > 0, the composite map

πn−1F (R) = πnΣF (R) −→ πnF (R[t, t
−1])

−→ Coker
(
πnF (R[t])⊕ πnF (R[t

−1]) −→ πnF (R[t, t
−1])

)

induced by τ is an isomorphism.
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A map of Bass functors is a natural transformation F → G that commutes with the
maps τ . The key fact we need to apply this theory is the following (well-known)
theorem, whose proof we review at the end of this section.

Theorem 8.1. The K-theory functor and the THH functor admit models that are
Bass functors with the trace map a map of Bass functors.

As an immediate consequence of the definition, a Bass functor in particular
comes with a natural 4-term exact sequences

0 −→ πnF (R)→ πnF (R[t])⊕ πnF (R[t
−1])→ πnF (R[t, t

−1])→ πn−1F (R) −→ 0

for n > 0 with the map πnF (R[t, t
−1]) → πn−1F (R) naturally split. This exact

sequence and splitting are functorial in maps of Bass functors. Bass’ construction
extends these sequences to all n:

Definition 8.2 (Bass’ Construction). For a Bass functor F , let βnF = πnF and
let

τn : βnF (R) −→ βn+1F (R[t, t
−1])

be the map induced by τ for n ≥ 0. Inductively, for n ≤ 0, define

βn−1F (R) = Coker
(
βnF (R[x]) ⊕ βnF (R[x

−1]) −→ βnF (R[x, x
−1])

)

and τn : βn−1F (R)→ βnF (R[t, t
−1]) to be the induced map on cokernels

Coker













βnF (R[x])

⊕

βnF (R[x
−1])

��

βnF (R[x, x
−1])













−→ Coker













βn+1F (R[x, t, t
−1])

⊕

βn+1F (R[x
−1, t, t−1])

��

βn+1F (R[x, x
−1, t, t−1])













Applied to the K-theory functor, Bass’ construction defines Bass’ negative K-
groups. Applied to the THH functor, βnTHH = 0 for n < 0 since the map

π0THH(R[x])⊕ π0THH(R[x−1]) −→ π0THH(R[x, x−1])

is surjective. (It is the map R[x]⊕R[x−1]→ R[x, x−1].) Thomason and Trobaugh
extended Bass’ construction to a construction on spectra suitable for application to
general Bass functors as defined above. The following is essentially a simplification
of [40, 6.3].

Lemma 8.3. Let F be a Bass functor. There exists a functor FB from commutative
rings to spectra and a natural transformation F → FB that is an isomorphism
on πn for n ≥ 0 and induces (as indicated in [40, 6.3]) a natural isomorphism
βnF → πnF

B for n < 0. The functor and natural transformation are functorial in
maps of Bass functors.

We need a few of the details of the construction. Thomason and Trobaugh
construct FB as the homotopy colimit of a sequence of functors

F = F0 = F ′
0 −→ F ′

−1 −→ F ′
−2 −→ · · ·F

′
−k −→ · · · .
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The functor F ′
−k−1 is formed inductively as a homotopy pushout

ΩkF−k
//

��

F ′
−k

Ωk+1F−k−1

for functors F−k which come with natural transformations ΣF−k → F−k−1. The
functor F−k−1 is defined inductively as the homotopy cofiber of the natural map

F−k(R[x])
h
∪F−k(R) F−k(R[x

−1]) −→ F−k(R[x, x
−1]).

The map ΣF−k → F−k−1 comes from the canonical map ΣF−k(R)→ F−k(R[t, t
−1]),

constructed just as in Bass’ construction in algebra, as the induced map on cofibers
coming from the natural commutative diagram

ΣF−k(R[x])
h
∪ΣF−k(R) ΣF−k(R[x

−1]) //

��

ΣF−k(R[x, x
−1])

��

F−k(R[t, t
−1, x])

h
∪F−k(R[t,t−1]) F−k(R[t, t

−1, x−1]) // F−k(R[t, t
−1, x, x−1]).

Our notation differs slightly from that of [40, 6.3]; our F−k is their ΣkF−k. As a
consequence, we get the following observation.

Proposition 8.4. If F is a Bass functor and factors through cyclotomic spectra
(with τ a natural map of cyclotomic spectra), then the functor FB factors through
cyclotomic spectra and the natural transformation F → FB is a natural transfor-
mation of cyclotomic spectra.

Combining the Thomason-Trobaugh lemma with Theorem 8.1, we get a natural
transformation of functors

KB −→ THHB ≃ THH.

As THHB is a cyclotomic spectrum by Proposition 8.4, we can form a functor
TC as the appropriate limit (or pro-object), to obtain the following commutative
diagram of functors.

KB // TCB

��

TC
≃

oo

��

THHB THH
≃

oo

As explained in the introduction to this section, this extends the trace to non-
connective K-theory.

The remainder of the section proves Theorem 8.1. We begin by observing that
THH algebraically satisfies the analogue of Bass’ fundamental theorem. For a
commutative ring R, the Eilenberg MacLane spectrum HR is a commutative ring
spectrum in any of the modern categories of spectra. We have a weak equivalence
of associative ring spectra HR∧TS → HR[t], where TS is the free associative ring
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spectrum on the sphere spectrum (or a cofibrant model of it). We then get a weak
equivalences of THH(R)-modules

THH(R[t]) ≃ THH(R ∧ TS) ≃ THH(R) ∧ THH(TS)

∼= THH(R) ∧HR (HR ∧ THH(TS)).

We also have the identifications

HR ∧ THH(TS) ∼= THHHR(HR ∧ TS) ≃ THHHR(R[t]),

where THHHR(R[t]) is as defined in [15, ????] and is essentially the spectrum
whose homotopy groups are HHR

∗ (R[t]). Since this Hochschild homology is a free
module over R, we obtain the computation

π∗THH(R[t]) ∼= π∗THH(R)⊗R HH
R
∗ (R[t]) ∼= π∗THH(R)⊗R R[t]〈1, σt〉,

where 1 is in degree zero and σt is in degree one. This is an isomorphism of
π∗THH(R)-modules, and is natural in R and TS, though not obviously in R[t].

Writing TS[t−1] for the localization of TS under multiplication by the generator
of π0S (which we are thinking of as t), we have a weak equivalence of associative ring
spectra HR ∧ TS[t−1]→ HR[t, t−1], and as above, we get the weak equivalences

THH(R[t, t−1]) ≃ THH(R ∧ TS[t−1]) ≃ THH(R) ∧HR THH
HR(HR[t, t−1])

and the computation

π∗THH(R[t, t−1]) ∼= π∗THH(R)⊗R HH
R
∗ (R[t, t−1])

∼= π∗THH(R)⊗R R[t, t
−1]〈1, σt〉,

Again, this is an isomorphism of π∗THH(R)-modules, and is natural in R and
TS[t−1], though not obviously in R[t, t−1].

The map R[x]→ R[t, t−1] sending x to t−1 is induced by a map of associative ring
spectra TS → TS[t−1], namely, the map induced by the map S → TS[t−1] sending
the generator of π0S to t−1 in π0TS[t

−1] ∼= Z[t, t−1]. Thus, we can compute the
maps in Bass’ sequence for π∗THH in terms of Hochschild homology. This then
becomes an easy computation with resolutions: the inclusion R[t−1] → R[t, t−1]
induces the map of π∗THH(R) ⊗R R[t−1]-modules that sends 1 to 1 and σt−1 to
−t−2σt. It follows that the sequence of graded abelian groups

0 −→ π∗THH(R) −→ π∗THH(R[t])⊕ π∗THH(R[t−1]) −→ π∗THH(R[t, t−1])

is exact and the map π∗−1THH(R)→ π∗THH(R[t, t−1]) induced by the inclusion
and multiplication by t−1σt induces an isomorphism from π∗−1THH(R) onto the
cokernel of the last map above.

Thomason and Trobaugh [40, §6] proves an analogous formulation of Bass’
fundamental theorem for K-theory: The three term sequence is exact and the
map Kn−1R → KnR[t, t

−1] induced by the inclusion and multiplication by t (in
K1R[t, t

−1]) induces an isomorphism onto the cokernel for n > 1. Since the Den-
nis trace map takes the element t in K1(Z[t, t

−1]) to the element tσt−1 = −t−1σt
in HH1(Z[t, t

−1]), multiplication by the image of t under the trace to THH also
provides an isomorphism from π∗−1THH(R) to the cokernel for π∗THH . We now
have what we need to prove Theorem 8.1.
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Proof of Theorem 8.1. We use the model of the trace map described in [14, §2.1.6],
as modified by [18, §6.3] which is a functor from exact categories (and exact func-
tors) to symmetric spectra of orthogonal spectra. In order to construct this as a
functor on the category of commutative rings, we need a model of the exact cate-
gory of finitely generated projective modules that is strictly functorial in maps of
commutative rings. For this, consider the category P(R) whose objects are pairs
(P,m) where P is a projective submodule of Rm, and whose maps (P,m)→ (Q,n)
are the R-module maps P → Q. This is an exact category in the evident way. A
map of rings R→ R′ induces a map P(R)→ P(R′) by extension of scalars and the
canonical identification R′⊗RRm ∼= R′m; this makes P a functor from commutative
rings to exact categories. Defining K(R) = K(P(R)) and THH(R) = TH(P(R))
(in the notation of [18]), we obtain functors from commutative rings to symmet-
ric spectra of orthogonal spectra and a natural transformation of such functors
K(R)→ THH(R).

We have a bi-exact strictly associative tensor product on P(R) defined by the
usual tensor product and the (lexicographical order) identification Rm ⊗R Rn ∼=
Rmn. As observed in [18, §6.3], it follows that K(R) and THH(R) are natu-
rally associative symmtric ring spectra of orthogonal spectra and the natural map
K(R)→ THH(R) is a ring map. After applying the functor D of [35] in the sym-
metric spectrum direction (for each object V in the orthogonal spectrum direction)
or a fibrant approximation functor in an appropriate category, we can assume with-
out loss of generality that the element t in K1Z is represented by a point-set map
T : S1 → K(Z[t, t−1]). We fix a choice of T .

We define τ : ΣK(R) → K(R[t, t−1]) to be the natural transformation induced
by multiplication with the point-set representative T of t. Likewise, we define
τ : ΣTHH(R) → THH(R[t, t−1]) to be the natural transformation induced by
multiplication by the image of t. This constructs K and THH as Bass functors and
the cyclotomic trace as a map of Bass functors. Looking closely at the construction
of THH in [18, §6.3], we see that the map τ is a natural transformation of cyclotomic
spectra. �

Appendix A. A model structure on the category of small spectral

categories

In this section we describe a model structure on the category of small spectral
categories (without requiring a fixed set of objects) where the weak equivalences
are the weak equivalences defined in Section 2. Specifically, the weak equivalences
are the spectral functors that are bijections on the objects and weak equivalences
on each mapping spectrum. As we have indicated before, from our perspective, the
DK-equivalences rather than these weak equivalences define the correct homotopy
theory on small spectral categories. However, this model structure is significantly
easier to construct and suffices for the application we need: constructing a functor
from the category of DG-categories to the category of spectral categories. (For a
model structure based on DK-equivalences, see the recent preprint of Tabuada [37]
based on the work of Bergner [1] in the simplicial context).

Our model structure on small spectral categories glues together the model struc-
tures on spectral categories on fixed sets of objects obtained by viewing them as
ring spectra with many objects [33, §6], [13, App A]. For a set O, a map of spectral
O-categories F : C → D is a spectral functor that is the identity on the object set
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(which is O for both C and D). In the model structure on spectral O-categories, F
is a fibration or weak equivalence if it induces a fibration or weak equivalence on
each mapping spectrum C(x, y) → D(x, y) for all x,y in O. Cofibrations admit a
description in terms of freely attaching generating cofibrations to mapping spectra,
but are defined by the left lifting property.

For an arbitrary spectral functor F : C → D between arbitrary small spectral
categories, we have two ways of factoring F through a map of spectral O-categories.
The easier way, already discussed in Section 2, is the factorization

C −→ F ∗D −→ D

through the map of spectral ob C-categories C → F ∗D. We recall that F ∗D has
the same objects as C and mapping spectra F ∗D(x, y) = D(Fx, Fy) for each x,y
in obC. We can regard F ∗ as a functor from spectral obD-categories to spectral
obC-categories, which only depends on F : obC → obD. As such, the functor F ∗

has a left adjoint F∗ from spectral ob C-categories to spectral obD-categories. This
gives the factorization

C −→ F∗C −→ D

through the map of spectral obD-categories F∗C → D.

Definition A.1. Let F : C → D be a spectral functor between small spectral
categories. We define F to be:

(i) A cofibration if F∗C → D is a cofibration of spectral obD-categories,
(ii) A fibration if C → F ∗D is a fibration of spectral obC-categories, and
(iii) A weak equivalence if F is a bijection on object sets and induces a weak

equivalence of mapping spectra C(x, y)→ D(Fx, Fy) for all x,y in ob C.

With these definitions, it is straightforward to use the model structure on spectral
O-categories to prove the following theorem.

Theorem A.2. With the definitions above, the category of small spectral categories
becomes a closed model category.

Proof. It is clear that the category of small spectral categories has all limits and
colimits, and that the weak equivalences satisfy two-out-of-three and are closed
under retracts. Thus, it suffices to prove the factorization and lifting properties.

The factorization properties are clear: Given F : C → D, factoring C → F ∗D
in the model category of spectral obC-categories as an acyclic cofibration followed
by a fibration induces a factorization of F as an acyclic cofibration followed by a
fibration as defined above; similarly, factoring F∗C → D in the model category of
spectral obD-categories as a cofibration followed by an acyclic fibration induces a
factorization of F as a cofibration followed by an acyclic fibration, as defined above.

For the lifting properties consider the commutative square on the left

A
A

//

C

��

X

F

��

B
B

// Y

A //

��

A∗X

��

B // B∗Y

C∗A //

��

B∗X

��

B // B∗Y

whereC is a cofibration and F is a fibration as defined above. In the case when C is a
weak equivalence, by replacing B by an isomorphic spectral category, we can assume
without loss of generality that obB = obA and C is the identity on objects. Then
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we can make sense of the middle diagram, which is a commutative square of spectral
obA-categories. In it, the left-hand vertical map is an acyclic cofibration and the
right-hand vertical map is a fibration (of spectral obA-categories). We therefore
obtain a lift B → B∗X from the model structure on spectral obA-categories, and
this gives a lift B → X in the original square. On the other hand, when F is a
weak equivalence, likewise we can assume without loss of generality that it is the
identity on object sets, and we can then make sense of the diagram on the right
above. This is a commutative square in the category of spectral obB-categories,
with the left-hand vertical map a cofibration and the right-hand vertical map an
acyclic fibration. We obtain a lift B → B∗X from the model structure on spectral
obB-categories, and this gives a lift B → X in the original square. �

For the application, we also need the analogous variants of this model struc-
ture for small categories enriched in the intermediate categories that arise in the
comparison between DG-modules, symmetric Ab-spectra, and HZ-modules. The
argument above is purely formal given the model structures on enriched categories
with fixed object sets. This formal argument then establishes all of the required
model structures for small DG-categories, small spectral Ab-categories, small HZ-
categories, and the intermediate categories of small enriched categories. Using
functorial cofibrant and fibrant approximation, we obtain the following corollary.

Corollary A.3. There is a functor from the category of small DG-categories to the
category of small spectral categories that takes each DG-category to an associated
spectral category.

We note that the functor in this corollary lifts strictly commuting diagrams of
DG-categories to strictly commuting diagrams of associated spectral categories.
The corollary does not make any direct implication about diagrams that commute
up to natural isomorphism; however, one can use the usual trick of regarding a
natural isomorphism of functors C → D as a functor from an expanded category
C′ → D to apply the corollary.

Appendix B. The cyclotomic trace for DG-Waldhausen categories

In Section 7, we implicitly constructed the cyclotomic trace connecting the K-
theory of a scheme to the TC and THH of the associated spectral derived category
via the comparison to the Geisser-Hesselholt definition of these spectra in terms
of hypercohomology. This streamlined approach allowed us to avoid the lengthy
technical development necessary for a more intrinsic construction of the cyclotomic
trace, and was sufficient for our applications. In this section, we complete the
theory of TC and THH of spectral derived categories by describing an intrinsic
construction of the cyclotomic trace.

Our construction of the cyclotomic trace follows the perspective of [14, §2.1.6]
that the trace should be regarded as “the inclusion of the objects” from a Wald-
hausen category to a model of THH which mixes the cyclic bar construction and
Waldhausen’s S• construction. In order to enable this mixing, we work with a class
of Waldhausen categories equipped with a DG-enrichment that is compatible with
the Waldhausen structure. We call these DG-Waldhausen categories; they are in
particular complicial biWaldhausen categories [40, 1.2.11].

Definition B.1. A DG-Waldhausen category consists of a small full subcategory
C of the category of complexes of an abelian category AbC (which is part of the
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structure), and a subcategory wC of C called the weak equivalences, satisfying the
following properties.

(i) C contains zero.
(ii) C is closed under pushouts along degreewise split monomorphisms and

pullbacks along degreewise split epimorphisms.
(iii) C is closed under cones and cocones.
(iv) The weak equivalences contain the quasi-isomorphisms of complexes, are

preserved by pushout along degreewise-split monomorphisms and pullback
along degreewise-split epimorphisms, and satisfy Waldhausen’s saturation
and extension properties.

A DG-exact functor from (C, AbC, wC) to (C′, AbC′ , wC′) is an additive functor
AbC → AbC′ that takes C into C′ and wC into wC′.

By abuse of language, we usually call C the DG-Waldhausen category. In the
definition, the cone CX and cocone C′X of a complex X are the usual contractible
complexes that fit into the short exact sequences

0 −→ X −→ CX −→ X [1] −→ 0

0 −→ X [−1] −→ C′X −→ X −→ 0.

Waldhausen’s saturation property on the weak equivalences means that wC satisfies
“two-out-of-three”: for composable maps f, g in C, if any two of the maps f ,g, and
g ◦ f are in wC then so is the third. Waldhausen’s extension property means that
when

0 // X

≃

��

// Y

��

// Z

≃

��

// 0

0 // X ′ // Y ′ // Z // 0

is a commutative diagram of degree-wise split short exact sequences with the maps
X → X ′ and Z → Z ′ in wC, then the map Y → Y ′ is in wC. As a consequence, the
subcategory Cw of wC-acyclic objects (those objects weakly equivalent to 0) is closed
under extensions; the extension property is equivalent to this closure condition.

A DG-Waldhausen category obtains the structure of a pretriangulated DG-
category with the usual mapping complexes and also the structure of a Waldhausen
category (in fact a complicial biWaldhausen category) with the cofibrations the
degreewise-split monomorphisms. Therefore we can construct both its algebraic
K-theory (using the Waldhausen category structure), as well as its THH and TC
(lifting the DG-category structure to an associated spectral category structure).
The weak equivalences of the Waldhausen category structure specify additional
homotopical data beyond that in the mapping spectra: The natural homotopy cat-
egory of the Waldhausen category structure is the localization of the homotopy
category associated to the DG-category with respect to the weak equivalences. In
the terminology of Section 6, this homotopy category is the triangulated quotient
of C by the subcategory Cw of wC-acyclics. Thus, the proper notion of THH and
TC are the THH and TC of the localization pair, CTHH(C, Cw) and CTC(C, Cw).

We now review the construction of algebraic K-theory in preparation for con-
structing the trace map. Recall Waldhausen’s S• construction produces a simplicial
Waldhausen category from aWaldhausen category. In the case of a DG-Waldhausen
category C, the S• construction produces a simplicial DG-Waldhausen category. Let
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Ar[n] denote the category with objects (i, j) for 0 ≤ i ≤ j ≤ n and a unique map
(i, j) → (i′, j′) for i ≤ i′ and j ≤ j′. SnC is defined to be the full subcategory of
the category of functors A : Ar[n]→ C such that:

• Ai,i = 0 for all i,
• The map Ai,j → Ai,k is a cofibration (degreewise-split monomorphism) for
all i ≤ j ≤ k, and
• The diagram

Ai,j //

��

Ai,k

��

Aj,j // Aj,k

is a pushout square for all i ≤ j ≤ k,

where we write Ai,j for A(i, j). The last two conditions can be simplified to the
hypothesis that each map A0,j → A0,j+1 is a cofibration and the induced maps
A0,j/A0,i → Ai,j are isomorphisms. This becomes a DG-Waldhausen category by
taking the abelian category to be the category of functors Ar[n]→ AbC and defining
a map A→ B to be a weak equivalence when each Ai,j → Bi,j is a weak equivalence
in C. Note that A→ B is a degreewise-split monomorphism when each Ai,j → Bi,j
and each induced map Ai,k ∪Ai,j

Bi,j → Bi,k is a degreewise-split monomorphism.
An ordered map {1, . . . ,m} → {1, . . . , n} induces a functor Ar[m] → Ar[n] and
hence a DG-exact functor SnC → SmC, making S•C a simplicial DG-Waldhausen
category. Because each SpC is itself a DG-Waldhausen category, the S• construction
can be iterated to form multisimplicial DG-Waldhausen categories.

For any DG-Waldhausen category D, let wqD denote the DG-category whose
objects consist of a sequence of q composable weak equivalences in D (with w0D =
D). Using this construction and iterating the S• construction, we obtain multi-

simplicial DG-categories w•S
(n)
• C. The inclusion of D as S1D induces an (n + 2)-

simplicial map

ob(w•S
(n)
• C) ∧ S

1
• −→ ob(w•S

(n+1)
• C),

where S1
• denotes the standard simplicial model of the circle (with one non-degener-

ate vertex and one non-degenerate 1-simplex). These structure maps together with

the natural Σn action on the categories wqS
(n)
p C give the collection of simplicial

sets
{diag ob(w•S

(n)
• C) | n ≥ 0}

the structure of a symmetric spectrum. Waldhausen showed that the adjoint at-
taching maps

| diag ob(w•S
(n
• C)| −→ Ω| diag ob(w•S

n+1
• C)|

are weak equivalences for n > 0; i.e., the geometric realization is a positive fibrant
symmetric spectrum of topological spaces.

Definition B.2 (Waldhausen). KC is the (symmetric) spectrum

KC(n) = diag ob(w•S
(n)
• C).

To mix the S• construction with the cyclic bar construction, we use the more
convenient DG-categories w̄qD in place of the DG-categories wqD. For a DG-
Waldhausen category D, let w̄qD be the DG-category that is the full subcategory
of wqD consisting of those objects where each weak equivalence in the the sequence
is also a cofibration (degreewise-split monomorphism). The advantage of w̄qD over
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wqD is that the limit defining its mapping complexes is a homotopy limit. Wald-
hausen also used this construction; the following is a special case of Lemma 1.6.3
of [43].

Proposition B.3. For a DG-Waldhausen category D, the inclusion of ob(w̄•D) in
ob(w•D) is a weak equivalence.

For the construction of the cyclotomic trace, we use the associated spectral
category functor of the previous section to lift the multi-simplicial DG-categories

w̄•S
(n)
• C to multi-simplicial spectral categories, which by abuse, we denote with the

same notation. For any space X , the spaces

|THH(w̄•S
(n)
• C)(X)|

then fit together into a symetric spectrum (indexed on n) of topological spaces.
Let U be a complete S1-universe (a countable dimensional S1-representation with
equivariant inner product containing infinitely many copies of each irreducible rep-
resentation). For each finite dimensional subspace V of U , let WTHHV (C) be the
symmetric spectrum defined by

WTHHV (C)(n) = colimV⊂W⊂U ΩW−V |THH(w̄•S
(n)
• C)(S

W )|,

whereW −V denotes the orthogonal complement. Then for each n, WTHH(C)(n)
is a genuine S1-equivariant Lewis-May spectrum, namely, the spectrification of

the prespectrum |THH(w̄•S
(n)
• C)(SV )|. This defines WTHH(C) as a symmetric

spectrum in Lewis-May spectra.
The spectrum WTHH(C) lies between KC and CTHH(C, Cw). Writing K̄C for

the symmetric spectrum of topological spaces K̄C(n) = | ob w̄•S
(n)
• C|, the suspen-

sion spectra Σ∞K̄C(n) assemble to an equivalent symmetric spectrum of Lewis-May
spectra. The inclusion of objects (via the identity) induces a map of symmetric
spectra of Lewis-May spectra

KC ≃ Σ∞K̄C −→WTHH(C),

natural in DG-exact functors. Likewise, using the free functor from spaces to
symmetric spectra (and Lewis-May spectrifying), we obtain a map of symmetric
spectra of Lewis-May spectra

THH(C) ≃ F0THH(C) −→WTHH(C),

natural in DG-exact functors, induced by the identification of w0S
(0)
• C as C. Finally,

we obtain the comparison map

CTHH(C, Cw) ≃ F0THH(C, Cw) −→WTHH(C),

using the fact that CTHH(C, Cw) is defined as the cofiber of the map THH(Cw)→
THH(C): The functor Cw → w̄1C that sends a wC-acyclic object a to the weak
equivalence 0 → a induces a map from the cone on THH(Cw) to |THH(w•(C))|
that restricts on the face THH(Cw) to the inclusion of THH(Cw) in THH(C) =
THH(w̄0C). This then extends to the map from CTHH(C, Cw) above. Similar
observations construct the symmetric spectrum of Lewis-May spectra

WTC(C) = |TC(w•S
(−)
• C)|

and maps

KC ≃ Σ∞K̄C −→WTC(C)←− F0CTC(C, C
w) ≃ CTC(C, Cw).
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The following is the main theorem of this appendix and is proved below.

Theorem B.4. For a DG-Waldhausen category C, the maps

F0CTHH(C, Cw) −→WTHH(C) and F0CTC(C, C
w) −→WTC(C)

are level equivalences of symmetric spectra of Lewis-May spectra.

We can now define the trace.

Definition B.5. The cyclotomic trace map from K-theory to TC and from K-
theory to THH are the zigzags

WTC(C)

��

F0CTC(C, Cw) ≃ CTC(C, Cw)
≃oo

��

KC ≃ Σ∞K̄C

44iiiiiiiii

**UUUUUUUU

WTHH(C) F0CTHH(C, Cw) ≃ CTHH(C, Cw)
≃

oo

Every map in the diagram is natural in DG-exact functors.

When we restrict to appropriate categories of schemes or pairs of schemes as in
[40, §6], we can factor the trace above through non-connective K-theory. Essen-
tially, we take K̄ and WTHH as our model functors to spectra (which here would
be the point-set category of symmetric spectra of Lewis-May spectra) applied to
the appropriate DG-Waldhausen category model for perfect complexes (as in [40,
§3]), depending on the kind of naturality required for the maps of schemes. For any
of these models, we get natural and suitably associative pairings

K̄(X on (X − U)) ∧Kf (Z[t, t
−1]) −→ K̄(X [t, t−1] on (X [t, t−1]− U [t, t−1]))

and

WTHH(X on (X − U)) ∧Kf(Z[t, t
−1])

−→WTHH(X [t, t−1] on (X [t, t−1]− U [t, t−1])),

where Kf (Z[t, t
−1]) denotes the Waldhausen K-theory symmetric ring spectrum of

the exact category with objects the canonical free modules

0,Z[t, t−1], (Z[t, t−1])2, (Z[t, t−1])3 . . . .

The arguments presented in Section 8 extend to this context to construct the non-
connective cyclotomic trace.

The remainder of the section proves Theorem B.4. A version of the Additivity
Theorem, as always, provides the key lemma. Given DG-Waldhausen categories
A,B,C and DG-exact functors φ : A → B, ψ : C → B, let E(A,B, C) be the DG-
Waldhausen category where an object consists of:

(i) A tuple (a, b, c) of objects a ∈ A, b ∈ B, and c ∈ C, and
(ii) A degreewise-split short exact sequence in B,

0 −→ φa −→ b −→ ψc −→ 0.

The mapping complex in E(A,B, C) from (a, b, c) to (a′, b′, c′) is

(B.6) A(a, a′)×B(φa,b′) B(b, b
′)×B(ψc,ψc′) C(c, c

′),

which is isomorphic to

(B.7) A(a, a′)×B(φa,φa′) B(b, b
′)×B(b,ψc′) C(c, c

′).
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Note that each of the maps

B(b, b′) −→ B(φa, b′),

B(b, b′) −→ B(b, ψc′),

A(a, a′)×B(φa,b′) B(b, b
′) −→ B(ψc, ψc′),

B(b, b′)×B(b,ψc′) C(c, c
′) −→ B(φa, φa′)

is a degreewise-split epimorphisms, and so the limits in (B.6) and (B.7) are homo-
topy limits.

We have DG-exact functors

α : E(A,B, C) −→ A

β : E(A,B, C) −→ B

γ : E(A,B, C) −→ C

induced by the forgetful functor and a DG-exact functor

σ : A× C −→ E(A,B, C)

induced by σ(a, c) = (a, φa⊕ψc, c) (and the split short exact sequence). The version
of the additivity theorem we prove compares the maps induced on THH by σ and
α ∨ γ.

Theorem B.8 (Additivity Theorem). The functors

THH(A) ∨ THH(C) −→ THH(E(A,B, C)) −→ THH(A) ∨ THH(C)

induced by σ and α ∨ γ are inverse weak equivalences.

Proof. Consider the DG-exact functor φ′ : A → E(A,B, C) that takes a in A to
(a, φa, 0). By (B.6), we see that this is a DK-embedding. Now by Theorem 6.1,
it suffices to show that the functor ψ′ : B → E(A,B, C) (sending c to (0, ψc, c))
induces an equivalence from homotopy category π0B to the triangulated quotient
π0E(A,B, C)/π0A. This is a straightforward calculation from (B.7). �

We can apply this to understand the effect both of w̄q and Sp on THH . An
element of w̄q of C is a sequence of degreewise-split maps

c0 −→ · · · −→ cq

such that each quotient ci/ci−1 is in Cw. Choosing quotients, we get a DK-
equivalent DG-category W̄q that is a DG-Waldhausen category. Furthermore, we
can identify W̄q+1C as E(W̄qC, C, Cw), for the functor φ : W̄qC → C that sends the
sequence pictured above to cq. As a consequence we get the following corollary.

Corollary B.9. For all q, the map

THH(Cw) ∨ · · · ∨ THH(Cw)
︸ ︷︷ ︸

q factors

∨THH(C) −→ THH(w̄qC)

induced by the map that sends (a1, . . . , aq, c) to

c −→ c⊕ a1 −→ · · · −→ c⊕ a1 ⊕ · · · ⊕ aq

is a weak equivalence.
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Similarly, for any DG-Waldhausen category D, the DG-Waldhausen category
SrD is DK-equivalent (via a DG-exact functor) to the DG-category E(Sr−1D,D,D)
for the functor φ : SrD → D that takes {Ai,j} to A0,r−1. We use this observation
to prove the following corollary.

Corollary B.10. For each n and q, the map

Σ|THH(w̄qS
(n)
• C)| −→ |THH(w̄qS

(n+1)
• C)|

is a weak equivalence.

Proof. We can write Σ|THH(w̄qS
(n)
• C)| as the geometric realization of a multi-

simplicial object with one more simplicial direction, THH(w̄qS
(n)
• C) ∧ S1

• , where
S1
• denotes the standard simplicial model of the circle. The map in the statement is

induced by the map on geometric realizations of the map of multi-simplical objects

THH(w̄qS
(n)
• C) ∧ S

1
• −→ THH(w̄qS

(n+1)
• C).

Using the standard isomorphisms

Srw̄q ∼= w̄qSr, SrSp ∼= SpSr,

and writing D = w̄qSp1 · · ·SpnC, we are looking at maps of the form
∨

r

THH(D) −→ THH(SrD).

Using the relationship of SrD and E(Sr−1D,D,D) as above, we see by induction
that this map is a weak equivalence. �

Combining these two corollaries, we prove Theorem B.4.

Proof of Theorem B.4. We can identify the map CTHH(C, Cw) → |THH(w̄•Cw)|
described above as the induced map on geometric realization of the map of simplicial
objects

THH(Cw) ∨ · · · ∨ THH(Cw)
︸ ︷︷ ︸

• factors

∨THH(C) −→ THH(w̄•C),

and is a weak equivalence by Corollary B.9. For n > 0, the n-th level of the sym-
metric spectrum of spectra F0CTHH(C, Cw) is ΣnCTHH(C, Cw). It now follows
from Corollary B.10, that the map

F0CTHH(C, Cw) −→ WTHH(C)

is a level equivalence of symmetric spectra of spectra. �

Appendix C. THH and TC of small spectral model categories

Our treatment of THH and TC of spectral categories in the body of the paper
took the perspective of having all the homotopy information encoded in the mapping
spectra. In the context of closed model categories enriched over symmetric spectra,
the weak equivalence encode an additional localization. We can extract a spectral
category satisfying the hypotheses of the main discussion of the paper from such a
model category by restricting to the full spectral subcategory of cofibrant-fibrant
objects. However, this subcategory is not usually preserved by naturally-occurring
functors between model categories, which tend to preserve only cofibrant or only
fibrant objects.
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In this appendix, we present a construction of THH of a spectral model cat-
egory in terms of either the full subcategory of cofibrant or fibrant objects. The
construction is in terms of a “cofiber THH” description, exactly as in the THH of
localization pairs constructed in Section 6. Since the quotient of the subcategory
of cofibrants by the acyclic cofibrants is the homotopy category of the model cate-
gory, we can regard this pair as analogous to a localization pair, although it may not
satisfy the hypotheses of the definition. Nevertheless, a similar (but easier) proof
applies to compare the THH of this pair to the THH of the cofibrant-fibrants.
The main theorem of this section is the following.

Theorem C.1. Let M be a small closed model category enriched over symmetric
spectra (satisfying the symetric spectrum version of SM7). Write A for the subcat-
egory of acyclic objects (objects weakly equivalent to the zero object), and subscripts
c and f for the subcategories of cofibrant and fibrant objects, respectively, of M
and A. In the following diagram of cyclotomic spectra, the vertical map is always a
weak equivalence, the left-hand map is a weak equivalence if M is left proper, and
the right-hand map is a weak equivalence if M is right proper.

THH(Mcf)

��

CTHH(Mf ,Af ) CTHH(Mcf ,Acf ) //oo CTHH(Mc,Ac)

Since for any pair of objects in Acf , the symmetric spectrum of maps is trivial,
THH(Acf) is trivial, and it then follows that the vertical map is a weak equivalence.

Of the remaining statements in the theorem, we treat the case of the right
horizontal map in detail; the case of the left horizontal map is similar (and in
fact follows by considering the opposite category). As in Section 6, we define the

(Mc,Mc)-bimodule LMc

Ac
by

LMc

Ac
(x, y) = TB(Mc(−, y);Ac;Mc(x,−))

and QMc

Ac
as the cofiber of the composition map LMc

Ac
→Mc. The following lemma

lists the properties of QMc

Ac
we need in the proof of the theorem.

Lemma C.2. Let x be an object of Mc.

(i) For y in Mcf , the mapMc(x, y)→ Q
Mc

Ac
(x, y) is a weak equivalence.

(ii) IfM is right proper, then QMc

Ac
(x,−) preserves weak equivalences.

Proof. Since the mapping spectrum from a cofibrant acyclic object to a fibrant
object is trivial, for any object y in Mcf , L

Mc

Ac
(x, y) is trivial, and the map

Mc(x, y) → Q
Mc

Ac
(x, y) is a weak equivalence. This proves (i). To prove (ii), it

suffices to show that for any object y and any fibrant approximation y → y′, the
map QMc

Ac
(x, y)→ QMc

Ac
(x, y′) is a weak equivalence. Factor the initial map ∗ → y′

as an acyclic cofibration followed by a fibration a′ → y′, and let a be a cofibrant
approximation of the pullback y ×y′ a′.

a
≃

// // y ×y′ a
′ //

����

a′

����

y
≃

// y′
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We obtain from this fibration pullback square (and the symmetric spectrum version
of SM7) the homotopy (co)cartesian square ofMc-modules on the left below, and
from this, the homotopy cocartesian square of symmetric spectra on the right below.

Mc(−, a) //

����

Mc(−, a′)

����

Mc(−, y) //Mc(−, y′)

QMc

Ac
(x, a) //

����

QMc

Ac
(x, a′)

����

QMc

Ac
(x, y) // QMc

Ac
(x, y′)

The hypothesis that M is right proper implies that the map a → a′ is a weak
equivalence and therefore that a is in Ac. It follows that Q

Mc

Ac
(x, a) and QMc

Ac
(x, a′)

are trivial, and that QMc

Ac
(x, y)→ QMc

Ac
(x, y′) is a weak equivalence. �

As in Section 6, we have a natural weak equivalence relating CTHH(Mc,Ac)
with THH(Mc;Q

Mc

Ac
), compatible with the map from THH(Mc). Applying part (i)

of the lemma, to complete the proof of the theorem, it suffices to show that the
map

THH(Mcf ;Q
Mc

Ac
) −→ THH(Mc;Q

Mc

Ac
)

is a weak equivalence.
Our strategy as in Section 6 is to apply the Dennis-Waldhausen Morita ar-

gument 5.2 to reduce to proving an objectwise statement. For this, we use the
weak equivalence of (Mc,Mc)-bimodules TB(Mc;Mc;Q

Mc

Ac
) → QMc

Ac
. Then the

Dennis-Waldhausen Morita argument gives us a weak equivalence

THH(Mcf ;TB(Mc;Mc;Q
Mc

Ac
)) ≃ THH(Mc;TB(QMc

Ac
;Mcf ;Mc))

and likewise the analogous weak equivalence with Mcf replaced by Mc. Now it
suffices to show that the map

THH(Mc;TB(QMc

Ac
;Mcf ;Mc)) −→ THH(Mc;TB(QMc

Ac
;Mc;Mc))

is a weak equivalence. This map is induced by the map of (Mc,Mc)-bimodules

TB(QMc

Ac
;Mcf ;Mc) −→ TB(QMc

Ac
;Mc;Mc)

and so it suffices to show that the map

TB(QMc

Ac
(−, y);Mcf ;Mc(x,−)) −→ Q

Mc

Ac
(x, y)

is a weak equivalence for each pair of objects x,y in Mc. This is clear from the
Two-Sided Bar Construction Lemma and part (i) of the lemma when y is inMcf .
It then follows for arbitrary y by part (ii) of the lemma.

Appendix D. The cyclotomic structure map in THH

The fact that the cyclotomic structure map (3.7) is a weak equivalence is essential
to the computation of TR, TC, and K-theory and also to the structure of the
theory we present in this paper. In this paper, it is the key fact that lets us deduce
equivalences on TR and TC from equivalences on THH . Proofs in the literature
apply connectivity hypotheses that we do not assume and that do not apply in our
examples of interest. For this reason, we include an argument that applies in our
context. The argument uses only the basic tools of equivariant homotopy theory
and is independent of the arguments in the main body of the paper. Because the
aim of this appendix is purely a technical result, we will not provide a comprehensive
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review, but instead assume the reader is familiar with the basic references such as
[21] for THH and TC and [28] for equivariant stable homotopy theory.

In this appendix, we fix a small spectral category C, an integer r > 1, a complete
S1-universe U , and an isometric isomorphism ρ = ρCr

: UCr → U , compatible
with the isomorphism S1/Cr ∼= S1. Recall that the S1-equivariant Lewis-May
prespectrum THH(C) is constructed as follows. For a space X , write V(C;X)~n for
the functor from Iq+1 to spaces defined on ~n = (n0, . . . ,nq) by

Ωn0+···+nq (
∨

|C(cq−1, cq)nq
∧ · · · ∧ C(c0, c1)n1 ∧ C(cq, c0)n0 | ∧X),

write

Tq(X) = hocolim~n∈Iq+1 V(C;X)~n,

and let T (X) be the geometric realization of this cyclic space. Then T (X) has
the canonical structure of an S1-space; when X is an S1-space, we give T (X) the
diagonal S1-action. For V a finite dimensional S1-subspace of U ,

THH(C)(V ) = T (SV ).

These S1-spaces assemble to the genuine S1-equivariant Lewis-May prespectrum
THH(C).

Since T (SV ) is the geometric realization of a cyclic object, we can understand
the action of Cr ⊂ S1 in terms of the r-th edgewise subdivision sdr T (S

V ). This is
the geometric realization of the simplicial Cr-space

Tr(•+1)−1(S
V ) = hocolim~n∈Ir(•+1)−1 V(C;SV )~n.

An element of this homotopy colimit can only be a Cr-fixed point when ~n is of the
form

(m0, . . . ,mq,m0, . . . ,mq, . . . ,m0, . . . ,mq)

for a sequence ~m = (m0, . . . ,mq) repeated r times. For such an ~n,

V(C;SV )~n = Ωr(m0+···+mq)(
∨

|C(cr(q+1)−2, cr(q+1)−1)mq
∧ · · ·

∧ C(c(r(q+1)−q−1, cr(q+1)−q)m0 ∧ C(c(r−1)(q+1)−2, c(r−1)(q+1))mq
∧ · · ·

∧ C(c0, c1)m1 ∧ C(cr(q+1)−1, c0)m0 | ∧ S
V )

has a Cr-action induced by the Cr-action of rotating the loop coordinates, the Cr-
action of rotating the circle of maps, and the Cr-action on SV . Viewing Ωrm as
based maps out of Srm, the Cr fixed points are the Cr-equivariant maps out of Srm;
for such a map, restricting to fixed points gives a based map from Sm = (Srm)Cr

to

(
∨

|C(cr(q+1)−2, cr(q+1)−1)mq
∧ · · · ∧ C(cr(q+1)−1, c0)m0 | ∧ S

V )Cr

=
∨

|C(cq−1, cq)mq
∧ · · · ∧ C(c0, cq)m0 | ∧ S

V Cr

.

Thus, restricting to fixed points induces a map

V(C;SV )Cr

~n −→ V(C;S
V Cr

)~m ∼= V(C;S
ρ(V Cr )))~m.

This induces a map

ΦCrTHH(C) −→ ρ∗THH(C),

which induces the restriction map rCr
of (3.7).
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We can identify ΦCrTHH(C) as (the associated spectrum of) the prespectrum
whose V -th space (for V in UCr) is

X(V ) = colim
WCr=V

(THH(C)(W ))Cr = T ( colim
WCr=V

SW )Cr .

Let V̄ be the union of the S1-subspaces W of U with WH = V . Then V̄ is an
infinite dimensional subspace, but

X(V ) = T (SV̄ )Cr .

Thus, it suffice to show that the maps

(D.1) V(C;SV̄ )Cr

~n −→ V(C;S
V̄ Cr

)~m = V(C;SV )~m

are weak equivalences.
The space SV̄ is a model for the space ΣV ẼF [Cr], meaning that for H < S1 the

fixed point space (SV̄ )H is (SV )H if H contains Cr and is contractible otherwise.
It follows that for any based CW Cr-spaces Y , Z, the map

F (Y, Z ∧ SV̄ )Cr −→ F (Y Cr , ZCr ∧ SV )

is a homotopy equivalence, where F denotes the Cr-space of based maps (cf. [28,
II.9.3–4]). In particular, the maps (D.1) are a weak equivalences, and this completes
the argument.
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