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Abstract

The past few years have seen an increasingly tight link
between grid computing and web services, with the latest
standards defining a grid computing architecture as a set
of services built using web services standards and proto-
cols. However, the reputation of these technologies (SOAP,
XML, WSDL, HTTP) is that they are heavyweight and slow,
something that is potentially a concern given the current
and anticipated application mix for high performance grid
architectures. This paper reports the results of a perfor-
mance evaluation carried out on Globus 3.9.4, a reference
implementation of the new GGF standards that are built on
the Web Services Resource Framework (WSRF). The eval-
uation approach combines low interference measurement
(black box) techniques with more sophisticated sampling-
based profiling (gray box) techniques. The results indicate
possible opportunities for optimization, as well as provide
useful input for the designers of grid services.

1. Introduction

Grid computing is increasingly evolving towards a
Service-Oriented Architecture (SOA). The recent addition
of the new Web Services Resource Framework (WSRF) [3]
for modeling and accessing stateful resources is in many
ways the final step needed to transition grid computing fully
into an SOA, with service interactions and other functional-
ity implemented using a web services foundation. With this
transition, everything built using the OGSA (Open Grid Ser-
vices Architecture) specifications becomes a collection of
services [2]. These include both infrastructure services pro-
vided by the underlying grid computing environment, and
application services built on this infrastructure. For exam-
ple, the OGSA architecture defines infrastructure services

1This work was performed while François Taı̈ani was visiting AT&T
Shannon laboratory on the INRIA Postdoc Scholarship Program.

such as an Execution Planning Service and an Authoriza-
tion Service, while users of this architecture can implement
their own applications as services such as perhaps a Simu-
lation Service.

While there are many appealing aspects of SOAs in gen-
eral and WSRF in particular, web services standards and
their associated protocols have the reputation of being slow
and heavyweight. This expectation stems from a number of
factors, but the ones most commonly cited are a reliance on
XML and the inherent execution penalty that results when
multiple layers of software are needed to realize functional-
ity as is the case here. Grid computing, on the other hand,
focuses on sharing computing resources in contexts where
maximum performance is often the goal. The fundamental
tension between these two argues, at the very least, for a
close examination of the performance impact of the use of
web services for grid computing applications.

In this paper, we explore these potential performance is-
sues by evaluating Globus 3.9.4, a reference implementa-
tion of this new grid computing architecture. To do this, we
apply a two step approach:

• Black box testing. We first measure end-to-end laten-
cies on the client for a number of different remote op-
erations. Much of our effort in this first step focuses
on selecting appropriate initial conditions to evaluate
the importance of delayed (“lazy”) initialization, both
at the Globus container (i.e., server) and at the client.

• Gray box testing. In the second step, we use Java pro-
filing capabilities to obtain a more detailed picture of
the container’s behavior. The main challenge here is
to find an appropriate way to relate the performance
data to the unknown structure of the container, and to
represent it in a useful and intuitive way.

The choice of a two-step approach is motivated by the in-
herent tension between granularity and accuracy in perfor-
mance profiling. By adopting a progressive approach mov-
ing from black box to gray box profiling, we are able to
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control the interference caused by the observation, and cor-
relate the results obtained by the different stages of our ex-
periments.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the results from our series of black box ex-
periments. Section 3 then focuses on the sampling-based
profiling experiments. Finally, section 4 offers conclusions
and plans for future research.

2. Black Box Experiments

2.1. Overview

The Globus Java implementation provides a client/server
architecture based on the concept of containers, where a
container hosts grid services that clients can invoke through
a SOAP/WSDL interface. As described above, Globus
uses the new Web Services Resource Framework (WSRF).
WSRF allows grid services to create, manipulate, and delete
resources, i.e., stateful objects. Globus also offers a number
of mechanisms associated with resources, e.g., notifications
that alert subscribers each time the state of a given resource
is modified.

The Java implementations of Globus, and more gener-
ally the web services framework, are characterized by their
extreme flexibility. Service implementations are loaded on
demand in the Globus container using numerous customiza-
tion files (e.g., deployment files, service description files)
that are written in various XML dialects, such as the Web
Service Definition Language, the Web Service Deployment
Descriptor language, and the Resource Specification Lan-
guage. Because of this flexibility, many initialization steps
do not occur until they are actually required. As a con-
sequence, the first execution of an operation usually takes
much more time than its successors.

An additional related issue is that, because of the numer-
ous layers of initialization involved on both the client and
the container, even the notion of being the “first” can be
complex, with numerous sub-cases. For example, a request
can be the first one that a client sends and the first one that
a Globus container receives if the client and the container
have just been started, or it can be the first one sent by a
client while being the tenth received by a container. In gen-
eral, three “entities” have to be created: the container, the
client, and the resource. Each of these can incur its own
on-demand initialization cost, which is reflected in longer
latencies.

2.2. Experiment Description

Our results are based on the example CounterService
provided with Globus to illustrate the use of WSRF. This
service maintains Counter resources, which can be created,
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Figure 1. Experimental Sequences

incremented by a specified number, queried, and destroyed.
We use the unmodified CounterService implementation, but
instrument the provided client code to record execution la-
tencies for different operations related to accessing the ser-
vice.

To evaluate the influence of the different initialization
steps, we measure end-to-end latencies for a number of dif-
ferent invocation sequences (figure 1). These sequences
have been constructed as variants of the following series of
interactions:

1. A Globus container process is started. This corre-
sponds to the right box in figure 1.

2. A client process is started (the left box).
3. The client requests the container to create a counter

resource (the circle inside the container). This step in-
volves a number of smaller steps that are specific to
Globus and the underlying SOAP protocol (creating an
endpoint, creating a locator, invoking the locator, send-
ing the actual create request, and eventually retrieving
the counter port).

4. The client subscribes to changes that might occur in
the new resource using the WSRF notification ser-
vice (subscribe). We measure both the preparation of
the subscription request—creating the request and ini-
tializing a client side notification manager—and the
round-trip time needed by the container to process the
subscription.

5. A series of five add requests on the resource are sent
to the container. The client waits for each request to
complete and for the change notification to arrive be-
fore issuing the next request. Both the request and no-
tification latencies are measured from the point the add
request is sent.

6. The resource is destroyed by the client.
7. The client is stopped.
8. The container is stopped.
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In this basic sequence, the repetition of the add operation
in step 5 serves two purposes. First, it makes it possible to
determine that lazy initialization is in fact used by verifying
that the latency of the first request differs substantially from
the remaining ones. Second, it allows the corresponding
overhead to be calculated by subtracting from the latency
of the first request the stabilized latency of the remaining
requests.

Just using the above sequence is not sufficient, however.
Because the container, client, and resource are all new when
the first add request is issued, it is not possible to tell what
proportion of the measured initialization cost is caused by
the container, the client, or the resource, respectively. To
assess the relative influence of each of these entities, we ex-
tend this original sequence in the following manner. First,
steps 3 to 6 are repeated five times by having the same client
successively create five resources, and sending multiple add
requests to each of them. Then, steps 2 to 7 are also repeated
five times by creating five successive clients, which interact
with the same container (see figure 1). Finally, because la-
tencies are not deterministic, we repeat the whole sequence
50 times—hence, successively launching 50 containers—to
obtained averaged data.

By nesting these repeated sequences, our different exper-
iments cover four essential cases:

Case 1. All 3 entities (container/client/resource) are new.
Case 2. Only the client and the resource are new.
Case 3. Only the resource is new.
Case 4. No entity is new (stabilized latencies).

Thus, these cases provide the different combinations that
are needed to apportion the startup overhead among the con-
tainer, the clients, and the resources. These experiments
also allow us to evaluate the initialization effect on each ba-
sic operation involved in the sequence (resource creation,
notification management, remote invocation).

All latencies are round-trip latencies measured at the
client. The experiments were carried out on a standalone
SMP machine running four 1.60GHz Intel Xeon proces-
sors. The reported times do not contain any actual network
cost—they reflect only the local processing cost of Globus
invocations.

2.3. Results and Discussion

Resource Set Up Latency

Figure 2 shows the latencies measured when setting up a
resource, including creation and subscription, in situations
covered by the first three cases mentioned above. Averaged
times are shown for five successive clients interacting with
the same container (numbered 0 to 4) when each client suc-
cessively initializes five resources (numbered 1 to 5).
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Figure 2. Resource set up latency

In this figure, the unstabilized latencies of Cases 1 and 2
definitely stand out when compared with the stabilized la-
tencies of Case 3. Whereas the average stabilized initial-
ization latency is 384 ms, the first resource of the first
client (Case 1) requires more than 33 s to be initialized
and the first resources of the other clients (Case 2) require
25 s. Clients send creation requests only after both they and
the container have completed their initialization, i.e., both
UNIX process are idle. As a result, the discrepancy in the
observed latencies can only be explained by work associ-
ated with lazy initialization occurring inside the client and
the container.

From the three different cases, we can also infer the rel-
ative influence of the container and the client on the lazy
initialization effect. Table 1 presents a more detailed break-
down of the time spent in each individual step of the re-
source initialization for the three different cases. By sub-
tracting Case 3 (stabilized latencies) from Case 2 where the
client is new but the container is not, we can determine how
much of the overhead is caused by the client being new.
Similarly, by subtracting Case 2 from Case 1 where the
client and container are both new, we obtain a measure of
overhead caused by the container having just been instanti-
ated. Because the times shown are averaged, overheads that
are below 10 ms and/or roughly below 10% of the highest
value are not statistically significant, since they fall below
the standard deviation of the averaged values.

Note that there are certain things that we can not con-
clude from these measurements. For example, it would be
incorrect to conclude that the container spends 8236 ms ex-
ecuting initialization code when it creates a resource for the
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New Client
New Container
Case 1

New Client
Old Container
Case 2

Stabilized
Latencies
Case 3

Container Init
Overhead

Client Init
Overhead

Creating Endpoint 44 46 0 -2 46
Creating Locator 1509 1489 14 20 1475
Invoking Locator 343 348 0 -5 348
Sending Create Request 30273 22382 159 7891 22223
Obtaining Counter Port 1 1 0 0 1
Preparing Subscription 711 705 38 6 667
Sending Subscription Request 541 213 168 328 45
Total 33425 25189 384 8236 24805

Table 1. Detailed resource init latencies (ms), with an evaluation of the lazy evaluation overheads
caused by the container and the clients (rounded results)

first time, even though this figure is listed as the container
initialization overhead in Table 1. It might be, for instance,
that the client has to carry out some extra work because the
container is new.

The table also highlights the relative weights of the cre-
ation and subscription operations in the latencies and in the
lazy optimization overheads. Under the surface, a subscrip-
tion causes the subscriber to be turned into a web service
provider (i.e., a server). A valid assumption would be that
some of the observed lazy initialization caused by the client
is in fact triggered by the subscription. Looking at the table,
this is indeed the case, since the subscription preparation
takes up to 667 ms longer—more that 17 times the stabi-
lized value—when the client is new and the container has
essentially no influence on it. However, 97% of the ob-
served initialization overhead (31997 ms) is caused by the
first five steps of the resource initiation, which is not con-
cerned with the notification subscription. 25% of this over-
head (7904 ms) can be attributed to the client, while the
remaining 75% (24093 ms) is attributable to the container.

Request Latency

Figures 3 and 4 show measured latencies for add operations
on the resource. Figure 3 illustrates the same combinations
as figure 2 for the first add request on each of the 25 re-
sources (i.e., 5 resources for each of the 5 clients). This
figure covers Cases 1 to 3. Figure 4 shows the latencies of
the 25 add requests made by the first client only (i.e., 5 re-
quests on each of the 5 resources the client creates). This
second figure covers Cases 1, 3, and 4. Note that the data in
the figures overlap: the Client 0 row of the Case 3 area in
figure 3 is duplicated in figure 4.

As with resource latencies, we can infer from figure 3
that some lazy initialization is triggered by the container
when an add request is executed for the first time, the effect
being roughly 421 ms. On the other hand and contrary to
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Figure 3. Latency of the first add command

resource initialization, the clients do not seem to cause any
significant lazy initialization; the computed overhead here is
66 ms, which is not statistically significant. This figure does
not cover Case 4 of our classification, and hence, does not
yield any information about resource-related initialization.
Figure 4 covers this case, and shows that there is no resource
related overhead for add requests.

A valid question is whether the time distribution shown
in figure 4 for Client 0 holds for the other clients. In fact, it
does, as table 2 shows. This table summarizes the average
latencies for the add requests and change notification across
all experiments for the four cases mentioned in section 2.2.
In this table, the stabilized latencies for add requests take
all clients into account and are similar to the latency mea-
sured for Client 0 only (159 ms). The last three columns of
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New Cont.
New Client
New Res.
Case 1

Old Cont.
New Client
New Res.
Case 2

Old Cont.
Old Client
New Res.
Case 3

Old Cont.
Old Client
Old Res.
Case 4 (stable)

Cont. Init
Overhead

Client Init
Overhead

Res. Init
Overhead

Add latency 682 261 194 159 421 66 36
Notification 3029 2597 1110 176 432 1487 934

Table 2. Request and notification latencies (ms), with an evaluation of the lazy evaluation overheads
caused by the container, the clients, and the resources (rounded results)
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Figure 4. All add requests of Client 0

the table attempt to evaluate how much lazy initialization is
triggered by each of the entities. These numbers clearly il-
lustrate the lazy-initialization effect related to resources for
change notifications. Specifically, while the average stabi-
lized latency for notification is 176 ms (Case 4), the first
notifications for Resources 2 to 5 (Case 3) take an average
of 1110 ms. Hence, the overhead is approximately 934 ms.

Quite surprisingly, the second highest overhead (934ms)
seems to happen when resources have just been created.
This hints that much of the initialization work such as de-
ployment and hot-plugging occurs when a resource is ac-
tually instantiated, and is repeated regardless of the use of
prior resources of the same type.

2.4. Summary

As demonstrated above, the latencies experienced by the
client are heavily influenced by the initialization state of the
different entities involved. The first notification sent by a
container experiences a 1700% overhead (3029 ms) over the
stabilized latencies for the same operation (176 ms). Simi-

larly, the creation of a resource takes 8700% longer the first
time it is invoked compared to when the system has stabi-
lized (33425 ms compared to 384 ms). As already noted, all
latencies are measured after the container and client have
completed their initial set up, meaning that the overhead
must be caused by this delayed initialization activity. In
addition, the experiments show that even the stabilized la-
tencies are quite high: 159 ms for a round-trip add request
and 176 ms for a notification message. We point out again
that these figures do not include any network delays since
both the client and the service are on the same machine.

3. Gray Box Profiling Experiments

3.1. Overview

To better identify the nature of the lazy initialization
steps, we conducted a series of experiments in which the
Globus container was examined using sampling-based pro-
filing. The objective of these experiments was to relate the
externally-observed latencies with the software structure of
the Globus container. To do this, we used a well-known pro-
filing method based on sampling and also adapted known
visualization techniques to represent our results. This pro-
cess was challenging, however, largely because Globus and
all the required infrastructure needed to execute it constitute
a large and complex collection of software that is difficult
to analyze.

In the following, we first describe our experiments, in-
cluding how the sampling-based profiling is performed and
the results visualized. We then present results from initial
tests.

3.2. Experiment Description

Sampling-based profiling consists of periodically stop-
ping a program’s execution to capture its current control
state [11, 1]. The granularity of the obtained data is usually
coarser than with approaches based on an exhaustive instru-
mentation of the source code, but such sampling-based ap-
proaches are easier to deploy and impose far less overhead.
The motivation for using this approach in this case stemmed
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Figure 5. An example sampling result

Figure 6. Graphical projection of figure 5

from early experiments that showed that a sequence like
the one used for our black box experiments (section 2.2)
causes several million local Java invocations in the client
and the container. In particular, using the same sequence de-
scribed there but with only three add invocations, we traced
1,544,734 local Java invocations at the client, and 6,466,652
at the server using the Java Debugging Interface API [10].

For our profiling experiments, we used SUN’s free Java
profiler hprof [5]. When run in sampling mode, hprof regu-
larly interrupts the JVM and captures the stack trace of the
current active thread. When the JVM terminates, hprof out-
puts a set of weighted stack traces. The weight of each stack
represents the number of times hprof found the active thread
executing this given stack.

Figure 5 illustrates how sampling-based profiling works
on a small example. In this figure, the program has been
sampled six times, and three different stacks have been cap-
tured (the stacks are shown in a call graph for clarity). In
3 out of the 6 samples, the active thread of the program
was executing the first stack; in one sample, it was exe-
cuting the second; and in two samples, the third. As can
be seen, using stacks to capture the program’s execution
state indicates which methods the program is actually ex-
ecuting. Here, this means lib3.Signal.travel in half of the
samples, lib3.Pressure.foo in one sixth of the samples, and

containerclient

create

subscribe

add 3

notify 3

destroy ×5
×5

Java VM

hprof

profiling data

Figure 7. Experimental sequences

lib3.Signal.travel is one third of the samples. Most impor-
tantly, it also indicates on behalf of whom these methods
are being executed. This allows the computation for each
method of an exclusive execution time—the time spent in
the method, exclusive of any nested calls—and an inclusive
execution time—the sum of the exclusive execution time for
the method and the time spent in each of the nested calls
made by the method [4].

Once the experiment is run, the second issue is to rep-
resent the results in such a way that they can be used to
provide useful insight about the software. The primary
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challenge is dealing with the volume of data. For exam-
ple, in the experiments reported below, we ran the work-
load shown in figure 7 on the Globus container and obtained
2896 samples from hprof, including 1745 individual stack
traces. These stacks total more than 55550 individual stack
frames (a frame in a call stack represents a method invo-
cation). They cover the activity of 32 threads, and contain
references to 1861 methods, 724 classes, and 182 different
Java packages. While these results are far less dramatic than
the millions of invocations uncovered by our first tracing at-
tempt, the amount of data generated is still significant.

Our approach is to adapt visualization techniques pro-
posed for software visualization [7, 6, 8] to this context.
Specifically, our approach is inspired by one of the tech-
niques proposed in JINSIGHT [7], where an execution trace
is represented on a stack-depth × time-line diagram in
which stack frames are color-coded according to their class.
We adapted this representation in two major ways:

Package-Level Granularity. Due to the large number of
classes present in our traces (724), our representa-
tion uses package-based rather than class-based color
codes. This is quite flexible since nested packages
might be grouped together with their parent depend-
ing on the level of granularity required.

Depth × Weight Projection. Since sample-based profil-
ing does not provide ordering information on the ob-
served stack traces, a time-line representation is not
appropriate. Instead, to make the internal layering
of the Globus container apparent, we represent each
Globus package according to the frequency and the
stack depths at which it occurs in the sampled traces.

Figure 6 illustrates our presentation technique based on
the toy example of figure 5. The diagrams indicate how of-
ten a given package was encountered in the samples at a
given stack depth. Two diagrams are shown. The first rep-
resents exclusive weights, i.e., only the last invocation of
each stack is considered. Here, only the library lib3 appears,
since in all six samples of figure 5, the active thread is exe-
cuting inside lib3 at a call depth of 6. As mentioned above,
this diagram fails to capture on behalf of which higher-level
packages lib3 is executed. The right hand diagram does just
that. It takes into consideration all the frames of all sampled
stacks, and presents the packages according to their depth
and to the weight of the individual stacks. In this second
diagram, the surface of each library in the diagram is pro-
portional to the time spent by the processor in the library or
in code called by this library at execution time.

3.3. Results

We profiled Globus by having 5 successive resources re-
ceive 5 successive remote invocations from the same client,

package/class count %
java.* 2625 90%

java.net.* 1974 68%
java.net.PlainSocketImpl.socketAccept 1326 46%
java.net.SocketInputStream.socketRead0 639 22%

java.lang.* 290 10%
java.lang.StringBuffer.* 101 3%
java.lang.String.* 54 2%
java.lang.ClassLoader.* 51 2%
java.lang.Class.* 43 1%
java.lang.Throwable.* 24 1%

java.util.* 218 8%
java.util.zip.* 85 3%
java.util.Hash* 108 4%

java.math.* 94 3%
java.math.BigInteger.* 86 3%

java.io.* 30 1%
org.* 210 7%

org.apache.* 162 6%
org.apache.axis.* 111 4%
org.apache.xerces.* 35 1%

org.bouncycastle.* 23 1%
org.globus.* 22 1%

sun.* 34 1%
cryptix.* 11 0.5%
com.* 15 0.5%
javax.* 1 0%
total 2896 100%

Table 3. Breakdown of captured samples ac-
cording to topmost stack frame

as shown in figure 7. Table 3 shows the breakdown of the
samples according to their topmost stack frame, which illus-
trates where the container spends its execution time. Quite
strikingly, most of the container execution time (90%) is
spent inside Java standard libraries, with java.net making up
most of it (68%). In this library, however, most of the time
is accounted for by java.net.PlainSocketImpl.socketAccept,
which is used to wait for client connections rather than be-
ing part of the execution path for a client request. For this
reason, we removed the corresponding samples from our
profiling data in subsequent analysis.

Figure 8 shows the results of container profiling with-
out the socketAccept samples using the approach described
above in section 3.2; a curve is used rather than a bar di-
agram for readability reasons. The diagram shows a clear
split at stack depth 13 (area 1 in the figure). Nearly 40%
of the sampled stacks stop at length 13, which means the
program spends 40% of its execution time at this level.
Depth 13 is also where we find most of the network activ-
ity (java.net), i.e., most of the socketRead0 invocations. On
the other side, the remaining stacks have a far more regular
and widespread distribution along the stack depth (area 2).
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Figure 8. Performance sampling of the Globus container (inclusive)

Note that the package org.apache.axis, an open source Java-
SOAP engine, is particularly prominent in the two areas as
well, although it is found at essentially all stack depths. It
also constitutes most of the container activity at stack depths
of 60 and beyond.

A closer analysis of the profiling data related to area 1 re-
veals that the traces that end in socketRead0 are involved in
the handling of the resource state change notifications. As
noted above, when sending a notification, the container acts
as a client and sends a request to the subscriber of the no-
tification. When in socketRead0, the container has already
sent this notification and is blocked waiting for the client’s
answer. Since these notifications are sent asynchronously
with respect to client processing, however, the time spent in
socketRead0 is outside the critical path of client requests.

Interestingly, the code used to send notifications in the
container is the same as that used in the client to send re-
quests. This suggests that the client probably exhibits the
same behavior when waiting for replies from the container.
Profiling the client using the same technique confirms this
hypothesis, with the results revealing that 62% of the client
execution time is spent in java.net. Of that time, 40% is
spent in socketAccept and 21% in socketRead0. Since the

size of each SOAP message is only a few kilobytes and the
whole experiment executes on a single machine, these high
costs are most likely due to time spent waiting for notifica-
tion messages and responses to requests.

To evaluate the behavior of the container beyond the
blocking time in socketRead0, we ran the same experiments
as in figure 7 but without change notifications. We also split
org.apache.axis into its subcomponents to obtain more de-
tailed information on its role in the container. The graph
corresponding to this second set of experiments is shown in
figure 9. These results confirm our observations about noti-
fications, since the shape of the graph closely matches that
of the earlier figure without the split at stack depth 13. Two
additional observations can also be made, as follows.

Packages. Only a subset of the 182 packages found in the
sampling data seem to have an actual effect on the execution
time. Among them, only three Globus packages are present:
org.globus.axis, org.globus.wsrf, and org.globus.gsi. These
three account for 27% of the stack frames represented on
the diagram, but disappear after stack depth 27. A look at
the distribution of the topmost stack frames confirms that

14th IEEE Int. Symp. on High Perf. Dist. Computing (HPDC), Research Triangle Park, NC, USA, 24-27 July, 2005 (c) IEEE 2005 9



0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Stack Depth

F
re

q
u

e
n

cy

sun.misc java.util
org.apache.naming org.globus.bootstrap
org.apache.xerces java.lang
xjava.security COM.claymoresystems.ptls
java.math COM.claymoresystems.provider
org.globus.gsi java.security
javax.security.auth org.globus.axis
org.oasis.wsrf org.globus.wsrf
java.lang.reflect sun.reflect
org.apache.axis.wsdl.symbolTable org.apache.axis.server
org.apache.axis.AxisEngine org.apache.axis.configuration
org.apache.axis.utils org.apache.axis.encoding
org.apache.axis.SimpleChain org.apache.axis.deployment.wsdd
org.apache.axis.client org.apache.axis (others)
org.apache.axis.transport.http others
java.io java.net

Figure 9. Performance sampling without change notification and org.apache.axis split up

the Globus packages account for less than 2% of the direct
(“exclusive”) execution time. This means that the poor per-
formance observed in section 2 cannot be attributed directly
to the Globus code, but rather is related more to the under-
lying libraries used by the platform.

Package Structure. The diagram shows a clear layered
structure for stack depths less than 28, with most packages
spanning less that a few depth levels. From depth 28 on
however, the relative weight of each package remains quite
regular, and as the decreasing slope of the total number of
samples for each depth suggests, stacks have been sampled
regularly at all lengths from 28 to 75. In this part of the
diagram, no strong software structure seems to be reflected
in the distribution of the packages across the stack depth.
However, the package org.apache.axis.wsdl.symbolTable
is quite prominent, which upon closer inspection corre-
sponds to recursive invocations of the method symbol-
Table.SymbolTable.setTypeReferences. This hints at some
algorithmic issues in WSDL symbol management.

Table 4 gives the package breakdown of samples
after removing low-level packages to obtain a higher

level view of the execution cost. This table con-
firms that org.apache.axis.wsdl takes a significant amount
of execution time (21%). It also shows that SOAP
and XML processing—org.apache.axis as a whole and
org.apache.xerces—have a strong impact on performance
(44%). Finally, enforcing security has a non-trivial cost,
since the Globus Security Infrastructure (GSI) together with
the encryption library rsa together account for 30% of the
samples.

Package count %
org.apache.axis.wsdl 231 21%
org.apache.axis.encoding 66 6%
org.apache.axis (others) 113 10%
org.globus.gsi 249 23%
org.globus.wsrf 49 4%
cryptix.provider.rsa 82 7%
org.apache.xerces 78 7%
org.bouncycastle.asn1 57 5%
others 180 16%
Total 1105 100%

Table 4. Breakdown of samples
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4. Conclusions and Future Work

The trend toward integrating aspects of web services into
grid computing undoubtedly has performance and usability
implications, the full impact of which is yet to be deter-
mined. In this paper, however, we have tried to address at
least a portion of these issues by reporting on the results of a
performance evaluation carried out on Globus 3.9.4, a very
recent reference implementation of the new standards.

The main conclusions of our study are twofold. First,
the performance of Globus is strongly impacted by lazy ini-
tialization, which is used uniformly for multiple types of
software abstractions. Second, even the stabilized latencies
are quite high, on the order of 160 ms for a simple invo-
cation on a single machine. Overall, these numbers paint a
rather pessimistic picture of the performance of Globus and
suggest a significant impact from the trend towards web ser-
vices integration.

While a cause for concern, these conclusions must be
viewed both as tentative and as coming with caveats. For
one thing, the version of Globus tested is still categorized as
an alpha-quality development release and is only the third
such release of the major revision of Globus that added web
services integration. As a result, that performance is less
than optimal is not surprising. Indeed, the overall improve-
ment between the first version we tested (3.9.2) and this one
(3.9.4) was noticeable, with a reduction in round-trip time
from 460 ms to 160 ms. Whether substantial improvements
can still be made, however, remains to be seen.

Furthermore, it is important to note that the main use
of Globus to date has been to provide a middleware layer
to support the scheduling and coordination of high perfor-
mance computing jobs across large area networks. From
this perspective, overheads on the order of hundreds of
milliseconds for stabilized round-trip times or seconds for
startup times may not matter if a job runs for minutes, hours,
or even days. However, if Globus is to be used as a co-
ordination platform for applications having tighter timing
constraints such as would be found for stock trading, health
care monitoring, or gaming, then our experiments suggest
that such an architectural choice should be considered care-
fully. The performance impact might also be unacceptable
even for high performance grid applications if they need to
repeatedly invoke another grid service such as a logging ser-
vice.

Our future work will focus on deeper investigations into
the issues raised in this paper. For example, an important
question is whether the measured latencies might be due
at least partially to some inherent inefficiencies in underly-
ing technologies such as XML, SOAP, or HTTP. If so, then
some major technological shift such as fast XML technol-
ogy [9] might be needed to improve the situation. Beyond
this, our hope is that this work on identifying sources of ex-

ecution overhead can serve as a guide to developers of grid
services, as well as suggest areas in which optimization ef-
forts might be profitable.
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