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Abstract
The ability to detect intruders in computer systems increases in importance & computers are
increasingly integrated into the systems that we rely on for the arrect functioning of society.
This paper reviews the history of research in intrusion detedion as performed in software in the
context of operating systems for asingle computer, adistributed system, or a network of
computers. There aetwo basic gpproades. anomaly detedion and misuse detedion. Both have
been pradiced sincethe 198%. Both have naturally scaled to use in distributed systems and
networks.

1 Introduction

When a user of an information system takes an adion that that user was not legally
allowed to take, it iscalled intrusion. The intruder may come from outside, or the intruder may
be an insider, who exceals his limited authority to take action. Whether or not the action is
detrimental, it is of concern becaise it might be detrimental to the health of the system, or to the
service provided by the system.

As information systems have mme to be more comprehensive and a higher value asset of
organizations, complex, intrusion detedion subsystems have been incorporated as elements of
operating systems, although not typicdly applicaions. Most intrusion detedion systems attempt
to deted suspeded intrusion, and then they alert a system administrator. The technology for
automated readion to intrusion is just beginning to be fashioned. Original intrusion detection
systems assumed a single, stand-alone procesor system, and detection consisted of post-fado
processing of audit records. Today’s systems consist of multiple nodes exeauting multiple
operating systems that are linked together to form a single distributed system. Intrusions can
involve multiple intruders. The presence of multiple entities only changes the mmplexity, but
not the fundamental problems. However, that increase in complexity is substantial.

This survey states the basic assumptions and il luminates the alternative technical
approaches used to detect intrusions. There have been a number of surveys of intrusion detedion
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that esentially catalog different systems [Anderson80, Cannaday96, Liepens92, Lunt93b,
Kumar94, Smaha94]. Inthis survey we atempt to determine the fundamental approacdhes and
describe the eseence of each approach. To be mncrete, we use existing implementations to
illustrate the mechanics of implementation of each approach.

Intrusion detedion involves determining that some entity, an intruder, has attempted to
gain, or worse, has gained urauthorized accessto the system. None of the automated detection
approaches of which we ae avare seeksto identify an intruder before that intruder initiates
interadion with the system. Of course, system administrators routinely take adionsto prevent
intrusion. These can include requiring passwords to be submitted before auser can gain any
access to the system, fixing known wlnerabilities that an intruder might try to exploit in order to
gain unauthorized access, blocking some or all network access as well as restricting physical
access. Intrusion detedion systems are used in addition to such preventative measures.

Intruders are classfied in two groups. External intruders do not have any authorized
access to the system they attadk. Internal intruders have some authority, but seek to gain
additional ability to take action without legitimate authorization. J. P. Anderson divided internal
intruders into threesubgroups: masqueraders, clandestines, and legitimate [Anderson80Q]. In later
related work Brownell Combs has divided internal intruders into two categories. He separates
internal users who have acounts on the system from pseudo-internal intruders who are, or can
be thought of as being, physically in space of legitimate users, but have no acaounts [ Combs98].
They do however have physical access to the same equipment used by those who have acounts.
He shows how distinguishing the two categories can be distinguished enables better defense
againgt the pseudo-internal intruders.

To limit the scope of the problem of deteding intrusions, system designers make aset of
asuumptions. Total physical destruction of the system, which is the ultimate denial of service, is
not considered. Intrusion detedion systems are usually based on the premise that the operating
system, as well asthe intrusion detedion software, continues to function for at least some period
of time so that it can alert administrators and support subsequent remedial acion.

It isalso assumed that intrusion detedion is not a problem that can be solved once
continual vigilanceisrequired. Complete physicd isolation of a system from all possible,
would-be external intruders is asimple and effedive way of denying external intruders, but it
may be unacceptable becaise physical isolation may render the system unable to perform its
intended function. Some possible solution approadces cannot be used because they are in
conflict with the service to be delivered.

In addition, potential internal intruders legitimately have access to the system for some
purposes. So, it isasumed that at least internal intruders, and possibly external intruders, have
some accss and therefore have some tools with which to attempt to penetrate the system. It is
typically assumed that the system, usually meaning the operating system, does have flaws that
can be exploited. Today, software istoo complicated to assume otherwise. New flaws may be
introduced in each software upgade. Patching the system could eliminate known wulnerabilities.
However, some vulnerabilities are too expensive to fix, or their elimination would also prevent
desired functionality.
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Vulnerabilities are usually assumed to be independent. Even if aknown wilnerability is
removed, a system administrator may run intrusion detedion software in order to detect attempts
at penetration, even though they are guaranteed to fail. Most intrusion detedion systems do not
depend on whether specific vulnerabilities have been eliminated or not. This use of intrusion
detection tools can identify awould-be intruder so that his or her other activities may be
monitored. New vulnerabilities may, of course, be discovered in the future.

2 Approaches

Currently there ae two basic gpproadhesto intrusion detedion. The first approad,
called anamaly detedion, isto define and charaderize @rred static form and/or accetable
dynamic behavior of the system, and then to deted wrongful changes or wrongful behavior. It
relies on being able to define desired form or behavior of the system and then to distinguish
between that and undesired or anomalous behavior. The boundary between acceptable and
anomalous form of stored code and data is precisely definable. One bit of differenceindicates a
problem. The boundary between accetable and anomalous behavior is much more difficult to
define.

The second approad, called misuse detedion, involves charaderizing known ways to
penetrate asystem. Eacd one is usually described as a pattern. The misuse detedion system
monitors for explicit patterns. The pattern may be astatic bit string, for example aspecific virus
bit string insertion. Alternatively, the pattern may describe asusped set or sequence of adions.
Patternstake avariety of formsaswill beillustrated later.

Intrusion detection systems have been huilt to explore both approadches — anomaly
detection and misuse detedion — for the past 15to 20yeas. In some ases, the two kinds of
detection are combined in a wmplementary way in asingle system. There isa consensus in the
community that both approades continue to have value. In our view, no fundamentally different
aternative goproac has been introduced in the past decale. However, new forms of pattern
gpecifications for misuse detedion have been invented. The tedchniques for single systems have
been adapted and scaled to addressintrusion in distributed systems and in networks. Efficiency
and system control have improved. User interfaces have improved, especially those for
specifying new misuse patterns and for interadion with the system security administrator.
Esentially all the intrusion detedion implementations that will be discussed are extensions of
operating systems. They use operating system notions of events, and operating system data
colledion, particularly audit records, astheir base.

The oncept of intrusion detedion appeas to have been first used in the 197G and ealy
198Gs [Anderson80]. Inwhat we will call the first generation of intrusion detection, the
emphasis was on single cmputer systems. Operating system audit records were post-processd.
Both anomaly detedion and misuse detection approaches were invented ealy. Inthe second
generation, the processing became more statistically sophisticaed, more behavior measures were
monitored, and primitive real-time alerts became possible. A seminal paper defining an ealy
sewnd generation intrusion detection system implementation (IDES) appeaed in 1987
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[Denning87.? Intrusion detedion was expanded to addressthe multiple omputersin a
distributed system.

We ae now inthethird generation of operating system based intrusion detedion where
networks are a major focus. The dallenges are to

- manage the volume of data, communications, and processing in large scde networks,

- increase @verage (i.e. be aleto recognize & much errant behavior as possible),

- deaeese false alarms (benign behavior reported as intrusion),

- detect intrusionsin progress and

- react in real-time to avert an intrusion, or to limit potential damage.
The latter challenges are the most daunting.

3 Anomaly Detedion

By definition anomalies are not nominal or normal. The anomaly detedor must be ale
to distinguish between the anomaly and normal. We divide anomaly detedion into static and
dynamic. A static anomaly detedor is based on the assumption that there is a portion of the
system being monitored that should remain constant. All the static detedorsthat we have
studied address only the software portion of a system, and are based on the tadt assumption that
the hardware need not be checked. There eist system administration tools to ched physicd
component configurations and report change; we do not treat such tools here. The static portion
of asystem is composed of two parts. the system code and that portion of system datathat
remains constant. Static portions of the system can be represented as a binary bit string or a set of
such strings (such as files). If the static portion of the system ever deviates from its original
form, either an error has occurred or an intruder has altered the static portion of the system.
Static anomaly detedors are said to chedk for data integrity.

Dynamic anomaly detedors must include adefinition of behavior. Frequently, system
designers employ the notion of an event. System behavior is defined as a sequence (or partially
ordered sequence) of distinct events. For example, many intrusion detedion systems use the
audit recordsthat are (alrealy) produced by the operating system to define the events of interest.
In that case, the only behavior that can be observed is that which results in the aedion of audit
records by the operating system. Events may occur in a strict sequence. More often, such as
with distributed systems, partial ordering of eventsis more gpropriate. In still other cases, the
order is not diredly represented; only cumulative information, such as cumulative processor
usage during atime interval, is maintained. Inthis case, thresholds are defined to separate
nominal resource consumption from anomalous resource mnsumption.

Where it is uncertain whether behavior is anomalous or not, the system may rely on
parameters that are set during initialization to reflea behavior. Initial behavior is assumed to be
normal. It is measured and then used to set parametersthat describe wrrect or nominal behavior.
There istypically an unclea boundary between normal and anomalous behavior as depicted in
Figure 1. If uncertain behavior is not considered anomalous, then intrusion adivity may not be

2 |t should be noted that several seminal systems, such as IDES, came from reseachers at the Stanford Research
Indtitute.

Intrusion Detedion 4 02/09/00



detected. If uncertain behavior is considered anomalous, then system administrators may be
alerted by false alarms, i.e. in cases where there is no intrusion.

NORMAL R ANOMALOUS
Figure 1: Anomalous behavior must be distinguished from normal behavior.

The most common way to draw this boundary is with statistical distributions having a mean and
standard deviation. Oncethe distribution has been establi shed, a boundary can be drawn using
some number of standard deviations. If an observation lies at a point outside of the
(parameterized) number of standard deviations, it is reported as a possble intrusion.

A dynamic anomaly deteaor must define some notion of the “ador”, the potential
intruder. Anador is frequently defined to be auser, i.e. adivity that is identified with an
acount and presumably then with one specific human being. Alternatively, user or system
processes are monitored. The mapping between processes, acounts, and human beingsis only
determined when an alert isto beraised. 1n most operating systems there is clear tracedil ity
from any processto the user/acount for which it isading. Likewise, an operating system
maintains a mapping between a processand the physical devices in use by that process Inthe
next sedions we describe in more detail how both gatic and dynamic anomaly detedors have
been implemented.

Anomaly detedion is performed statically and dynamicaly by first and second
generation detedors. The seand generation detedors are more sophisticated on several
dimensions: definitions of events or behavior of interest, compad representation of signatures,
compilation of initial behavior profiles that charaderize behavior of interest (whether normal or
anomalous), and statistical processing tedhniques for divining the difference between normal and
anomalous behavior. However, one difficult problem continues. coverage, i.e. the percentage of
the kinds of intrusions that a specific detedor will identify. In alater secion we will discuss
extensions of these second generation techniques from single computer and dstributed processor
operating systems to the more loosely conneded networked systems.

It isimportant to note that anomaly detedion which is restricted to events visible to an
operating system, or behavior of that operating system in reaction to usersis limited to activity of
import to the operating system. Because one of the most insidious intrusions is for a user to gain
the privilege of a system administrator, the semantics of the operating system are precisely those
which need to be monitored for this intrusion.

3.1 Static anomaly detedion

Static anomaly detedors define one or several static bit strings to define the desired state
of the system. They archive arepresentation of that Sate, perhaps compressed. Periodically, the
static anomaly detedor compares the achived state representation to a similar representation
computed based on the aurrent state of the same static bit string(s). Any difference signals an
error such as hardware failure or intrusion.
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The representation of static state could be the adual bit strings seleded as the definition
of the static system state. However, that is quite mstly in both storage and comparison
computation. Because the primary objective isto determine if there is a diff erence, not to
identify precisely what that difference might be. The compressed representation is called a
signdure. It isa“summary” value mmputed from a base bit string. The computation is designed
so that a signature is computed from a different base bit string would —with high probability —
have adifgferent value. Signaturesinclude checksums, message-digest algorithms, and hash
functions’.

Some anomaly detedors incorporate meta-data, or knowledge about the structure of the
objedsthat are being chedked. For example, the meta-data for alog file includes its size A log
file that has deaeased in size might be asign of an intrusion, while alog file that has increased
in sizewould be consistent with normal operation. We will shortly describe an intrusion detecor
that stores information about Unix file and diredory objeds. The following sedions provide
implementation detail on two (contrasting) anomaly detedion designs. Tripwire performs
integrity chedks using the signatures and meta-data that describe files. A second system, Self-
Nonself, takes a quite different approach to signatures.

3.1.1Tripwire

Tripwire [Kim93, Kim94] isafile integrity cheder that uses signatures as well as Unix
file meta-data. A configuration file, tw.config, specifies the static system state to be some
portion of the hierarchica Unix file system. Each file defines a bitstring on which one — or more
— signatures is computed. Tripwire periodically monitorsthe file system for added, deleted, or
modified files. For ead file or diredory of interest, the Tripwire configuration file specifies
attributes (meta-data) that are expeded to remain constant. A substantial portion of the meta-data
is fields of the file'sUnix inode. More specificdly, a“seledion mask” is associated with each
file or diredory. It contains a flag for ead distinct field stored inaUnix inode. The mask
specifies which attributes can change, without being reported as an exception, as well aswhich
should not change. Attributes include acesspermisson to the file, inode number, number of
links, user id, group id, size of the file, modification timestamp, and acesstimestamp. In
addition, ten or less signature dgorithms are specified. Chedksums, hash functions and message
digests can be used in concert. Each signature is computed based on file content.

Tripwire isinitialized by building a baseli ne database based on the then-current file
system state and the configuration file. It is assumed that the baseline database describes a
“clean”, unpenetrated system. Based on tw.config, Tripwire builds a baseline database
containing one record per file. While the configuration file may simply name diredories, the
database mntainsareard per file in each (reaursively) named diredory. Note that atw.config
file that namesthe diredory “/”, effedively names the entire file system because Tripwire
expands diredories reaursively. Eadc database entry holds a seledion mask and a set of
signatures.

3 A chedksum is a @unt of the number of bitsin the string (usually used in transmissons  that therecéver can
verify that it recaved the gpropriate number of bits). A hash function computesa string o characters, usually a
shorter and fixed in length, that representsthe original string. A message-digest algorithm is one type of hash
function.
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Periodically thereafter, Tripwire re-computes elements of a aurrent value of database
entries in the same manner. This requires computing each specified signature based on current
file mntents. Using the selection masks from the @nfiguration file to determine what inode
attributesto ignore, Tripwire compares the aurrent database to the baseline database (record by
record) and isaues alerts where unexpeded mis-matches are found.

Tripwire aumes a Unix system; in particular it istailored to chedk attributes of Unix
inodes for files. However, the mnfiguration file is designed to be generic and reusable for many
instances of similar nodes in a networked system. The strategy could be mapped to any operating
system file structure. Tripwire supports distributed systems as conveniently as single momputer
systems. It offers other optimizations and usability feaures to simplify the job of the system
administrator who oversees a network of hundreds of machines. Notethat while many
distributed nodes may share the same generic tw.config configuration file, each will have a
unique baseline database computed from adual node file structure and contents. Other static
anomaly detedion systems exist, such as COPS[Farmer94], TAMU [Safford93, and ATP
[Cotrozzi93]. We chose Tripwire & representative of this class of systems.

3.1.2Viruscheckers

Virus-spedfic chedkers [ Skardhamar96] are another example of static anomaly chedkers.
They maintain a database of strings, each representing atelltale portion of virus code and data
that isinserted as part of the virus infection. Typically, virus cheders record a modicum of
meta-data so that they recognizefiles, or individua memory objeds. The strings are short. The
virus chedker looks for an exad match to the specific string. In this case the presence of the
string indicates virus infedion. Notethat in this case, the virus chedker is saching for a
signature strung that signifies corruption of data, not the presence of correct data & wasthe cae
for Tripwire. Mog virus checkers use the adual bit string inserted by the virus. That gtring is
short enough that there is no efficiency to be gained by compressng the string to make ashorter
length signature.

3.1.3 Salf-Nonself

Self-Nonself, like Tripwire, addresses the problem of assuring that static strings do not
change [Forrest94]. Again, some unchanging portion of code and datais defined to be the static
string to be protected. While Tripwire uses signatures, such as chedksums and hash functions, to
compute avalue direaly based on the content of a string, the Self-Nonself signatures are for
unwanted string values, that is, strings that might result if an unwanted change were to be made
to the static system state.

The Self-Nonself developers describe an analogy between their approacdh and that of the
human immune system to ward off foreign material [Forrest94]. The human body creaes T cdls
in the thymus and then a*censoring” processtakes place if the T cells bind with proteins, or
adually peptides that are sub-units of proteins, then they are disposed of because they bind with
“self”. Those T cdlsthat do not bind are released to monitor the body for foreign material.
Presumably, they will bind with that foreign material, and be avehicle to remove it from the
system.
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Using the Self-Nonself technique, one views the static state asasingle string. It is
divided into substrings of equal length k. These substrings comprise a olledion, Self, that
should contain some, but not all, of the possible 2° strings. Note that Self is a mlledion, not a st,
because it may contain duplicaes. The Self-Nonself approad isto generate (only) a portion of
the set { 2 — Slf } or the cmplement of Seif, called Nonself. The set Nonself contains n
detedor strings, each of length k and not in the mllection Self. Efficiency calls for Nonself to be
aset®. Nonself is the baseline database mntaining “negative signatures’ for the static string
whose integrity isto be protected. Self-Nonself monitoring consists of periodically comparing
substrings of length k of the arrent gatic stateto the detedor strings in Nonself. If amatchis
ever found, then it indicates unexpeded change, and possibly an intrusion.

Nonself could be generated in many ways. The recommended implementation isto
randomly generate strings of length k and then to censor any that are in the wllection Self. A
substring that is not in Self is a detector and is added to Nonself. The size of Nonself determines
atradeoff between the efficiency of the execution with the probability of deteding anomalous
behavior. The larger the size of Nonself, the more likely it isthat an intrusion will be deteded in
an individual node. However, with each addition to Nonself, the cost of monitoring increases.
The ounterpart to the choice of the size of Nonself in Tripwire isthe doice of the number of
signatures for content to use in the monitoring comparisons. Both Tripwire and Self-Nonself are
probabilistic in that any change which does not generate a ¢ange in the signature of the arrent
static state will not be detected by either. One would exped that signatures which can be tailored
to maximally deted changes in the underlying string will be more dficient in detecting change
than randomly selected detector strings that are seleded merely to be outside Self.

The initial generation of the set the Nonself is computationall y expensive, but the
monitoring comparisons are chegper. In Tripwire monitoring requires computing anew
signatures of the arrent gatic state for comparison. Self-Nonself requires that the aurrent gatic
state string be broken up into substrings and compared to detedor strings. In either case, the
entire arrent static state must be visited, so the monitoring costs appea roughy comparable.

The developers of Self-Nonself comment that perfed matching between strings of non-
trivial length israre [Forrest94]. Therefore, apartial matching rule: “for any two stringsx and y,
... match(x)y) istrueif x and y agree(match) in at least r contiguous locaions’. Consider the
following example where

x=ABADCBAB , and

y = CAGDCBBA.
With r>3, match(x,y) is false, but with r<4, match(x,y) istrue. Because perfed matches are too
rare, partial matching is used to increase the probabil ity of deteding anomalous behavior.

The developers of the Self-Nonself approach were motivated by the problem of deteding
virus infedions, that is changes in code that should remain constant. As mentioned ealier, most
virus detedion systems rely on known bit strings inserted by the virusto detect the unwanted
change. They are similar to the Self-Nonself system in that they monitor, seeking to find the

* The reference[Forrest94] uses dightly different terminology in describing the Self-Nonself approach. Because the
objedive of this survey isto illuminate the fundamentd ideas, we introduceterminology that can be reused when
describing dfferent systems.
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unwanted strings. However, they are decidedly lessrobust than the Self-Nonself approach in
that the viral signature must be known a priori bit for bit. The Self-Nonself signatures do not
rely on prior knowledge of the virus!

While the Self-Nonself signature is analogous to the signature portion of Tripwire. Self-
Nonself does not chedk or depend upon properties of the file system, or actual (meta) data stored
inthe file system. Asaresult it will not detect improper deletion of files; it has no notion of a
file. Because adeleted file is no longer present (has no strings at al), it will never contain a
substring that isin Self. However, the Self-Nonself technique does addressboth string
modifications and additions to the static state.

The choice of the value of k is important for implementation. If Nonself wereto be
empty, then all possible strings are alrealy contained in Self. But detectors are needed for
monitoring, so an empty Nonself is not useful. The solution isto increase the substring length k
so that Nonself will not be cmmputed to be empty.

Consider the use of Self-Nonself for a distributed system. Each of the separate
cooperating operating systems (nodes) will be separately monitored. It is attractive to have the
maximum size of Nonself be substantiall y larger than that used by a single cmmputer. The
suggested implementation is not to build the maximum size of Nonself, but to cause eah
different instance of the operating system in a distributed system to randomly generate strings
and thus crede its own (possibly unique) set, Nonself. This provides more @mveragein
monitoring for undesired changes. If the maximum size of Nonself were large enough, the
distributed Self-Nonself system could be cnstructed to ensure aunique Nonself signature for
each node.

Tripwire is implemented so that to have different nodes use different signatures, ead
node must have differences in the tw.config configuration file. The Tripwire developers cited the
use of a @mmon configuration file for multiple nodes as a usabil ity advantage.

3.2 Dynamic anomaly detedion

Dynamic anomaly detedion requires distinguishing between normal and anomalous
adivity. Itisintrinsically harder that distinguishing changes in static strings. Dynamic anomaly
detection systemstypicdly creae abase profileto charaderize normal, accetable behavior. A
profile consists of a set of observed measures of behavior for ead of a set of dimensions.
Frequently used dimensions include

» preferred choices, e.g. log-in time, log-in location, and favorite editor,

* resources consumed cumulatively or per unit time, e.g. length of interadive sesson or
number of messages emitted into a network per unit time, and

* representative sequences of adions.

Dimensions may be specific to the type of the entity with which behavior is associated.

Typical entity types are users, workstations, or remote hosts asin NIDES [Anderson95a,b,
Javitz93, Lunt934] or even applications, as in SRI Safeguard [Anderson93]. An intrusion
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detection system develops a unique base profile (typically based on observed behavior) for eath
individual entity that it recognizes. It assumes that the profile is untainted by intrusive adivity.

After base profile initialization, intrusion detedion can commence. Dynamic detedors
are similar to the static detedorsin that they monitor behavior by comparing current
charaderization of behavior to the initial charaderization of expected behavior (the base profile).
They seek divergence. Asthe intrusion detedion system exeautes, it observes eventsthat are
related to the antity or actions that are attributed to the entity. It incrementally builds a current
(possbly always incomplete) profile. Early generation systems depended upon audit records to
cgpture the events or actions of interest. Some later generation systems record a data base
specific for intrusion detedion. Some operate in real-time, or nea red-time, and more diredly
observe the events of interest during their occurrence, rather than waiting for the operating
system to make areoord describing an event.

Different sub-sequences of eventsrelate to dfferent profile dimensions. So, for example,
if audit records are used to define events of interest, one audit record may reflect initiation of an
interadive session for an entity. Then, for the purposes of the “session duration” dimension of
the entity’ s profile, all audit records until a session termination event may be ignored. One
portion of the detector sequentiall y processes audit records, updeting the profile dimensions that
each one affects.

Because there is typically wide variation in acceptable entity behavior, deviation from the
base profile is often measured in statistical terms. Normal behavior is distinguished from
abnormal behavior based on empirically determined thresholds, or sandard deviation measures.
In some systems the profiles are slowly aged to reflect gradual behavioral changes. Another
portion of the dynamic anomaly detedor periodicdly compares the incrementally built, current
profilesto base profiles. The “difference” will be computed. It will be compared to a
statisticall y defined threshold to determine whether the difference is © gred that it indicaes
anomalous behavior. For example, an inordinately long session will eventually appea to be
anomalous when “sesgon duration” exceeds sme threshold.

The main difficulty with dynamic anomaly detedion systems is that they must build
sufficiently accurate base profiles and then recgnize deviant behavior that is in conflict with the
profile. Base profiles can be built by syntheticaly running the system or by observing normal
user behavior over a sufficiently long time.

Errant behavior of an entity whose behavior typically varies within tight bounds will be
easier to detect when it startsto deviate. On the other hand, an entity that exhibits diverse
adivitieswill be charaderized by a base profile with wider bounds. If genuinely anomalous
behavior falls within observed base profile bounds, it will not be recognized as anomalous. An
intruder masquerading as a diverse user would be much more difficult to detect because that
user’s base profile bounds are larger.

3.2.1NIDES

The Next-generation Intrusion Detedion Expert System (NIDES) [Anderson95a,b,
Javitz93, Lunt934a], developed by SRI, contains a statistical dynamic anomaly detedor. NIDES
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builds gatistica profiles of users, though the entities monitored can also be workstations,
network of workstations, remote hosts, groups of users, or application programs. NIDES uses
statistically unusual behavior to detect an intruder masquerading as a legitimate user.

NIDES reads audit records written by the operating system. NIDES measures fall into
several generic classes:

» Audit record distribution — tradks the types of audit records that have been generated in
some specified period of time.

» Categoricd — transadion-specific information, such as user name, names of files acessd,
and identity of machines onto which user has logged.

» Continuous — any measure for which the outcome is a count of how often some event
occurred, such as elapsed user CPU time, total number of open files, and number of pages
read from secondary storage.

For continuous measures, NIDES defines a sequence of intervals or “bins’; thirty-two is
often cited. The “bins’ contain a aunt of the number of observations with values in the interval
represented by the “bin”. For example, one profile dimension of a user includes a distribution of
the total memory size of the user’s processes during exeaution. At any point the user’s current
profile is the distribution of periodically sampled total memory size The aurrent and base
distributions can be cmpared for similarity.

To maintain each statistical profile dimension, NIDES stores only statistics sich as
frequencies, means, variances, and covariances of the profile since storing the audit dataitself is
too cumbersome. Given a profile with n measures, NIDES charaderizes any point in the n-space
of the measures to be anomalousiif it is sufficiently far from an expected or defined value. In
some cited experiments, this was defined as two standard deviations. In this manner, NIDES
evaluates the total deviation and not just the deviation of each individual measure.

The profile measures of each entity are subjed to an exponential decay factor so that the
older audit records have lessof an impact on the statistical measures while the newer records
have the most weight in the determination of the statistical distributions.

3.2.2 UNM Pattern Matching

Modern programming for decades has used the notion of a function, procedure or method
asaway to padkage units of code for use, by invocaion. That means that a sequence of
invocaions charaderizes the sequential behavior of a program. Invocaion sequences offer an
alternative to audit record events. In the sedion discussng misuse detedion, we will see
repeaed use of invocations to charaderize known intrusions.

Reseachers at the University of New Mexico (UNM) have taken operating system
routine invocations as the definition of system behavior [Hofmeyer97]. They elect to monitor
only those system routines that exeaute with privileges over and above those of an ordinary user.
(Ordinary users can, of course, invoke system routines.) The researchers associate with each
system routine aprofile that consists of fixed length, k, sequences of calls made by the
(privileged) system routine.
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To illustrate the mnstruction of the profile, the UNM researchers creaed traces of system
calls by a seleded system routine, such as Unix sendmail. Parameters were ignored. So for
example, assume that the sequence length is sleded to be three ad given the traceof systems
calls made by sendmail :

open, read, mmap, mmap, open, read, mmap
The resulting sequences are:

open, read, mmap

read, mmap, mmap

mmap, mmap, open

mmap, open, read

Two tedhniques were used to develop traces. The first method involved creding a
variety of synthetic invocations. For example, invoking sendmail for different situations, will
inducedifferent calls by sendmail. Sending messages of different sizes results in different traces
as does forwarding, bounced mail, vacation, and sending messages to multiple recipients. The
resulting size of the profile database for k = 10 for threeUnix programs was

Program® Profile database size
sendmail 1318

lpr 198

ftpd 1017

The second method for building the database is to observe normal usage for a period of
time. In both cases the database is not guaranteed to hold all sequences derivable from legal
functioning of the routine & hand.

In experiments, the UNM reseachers report that the sequence length of ten proved
useful. When k equals one, there were too few mismatches possible. Oncek had the value
between 6 and 10 empirical observation showed that increasing the sequence length was not
particularly useful.

A set of experiments was performed to detect intrusions that exploit flaws in the three
programs based on five known intrusions (threefor sendmail, one for Ipr, and one for ftpd) and
threeintrusions for which the system had been configured, so that the intrusion attempt would be
unsuccessul. Based on the intrusion code, sequences of length k were generated and compared
againgt the profile database. The number of mismatches — sequences not in the database — is an
indicator of anomalous behavior. UNM reseachers report that the majority of intrusions were
detectable due to notable numbers of mismatches between the k-length sequences of the
intrusions and the synthetic database sequences.

Whether the profil e database is built synthetically or is built based on sequences observed during
initialization, there isaquestion of how large the database should be to ensure that anomalies wil | be deteaed, but
false alarmswill not raised. It isamatter for experimentation. Reported experimentsindicated that if the profile
database was built from 700 to 1400 invocations of Ipr and then roughly 1000to 1300 invocations were tested, the
false alarm rate was between one andtwo. However, it isinteresting to note that a number of the false alarms were

® sendmail sends messages to designated redpients, Ipr printsafileto adeviceand ftpd handles connedionsto a
file transfer protocol (FTP) server.
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based on unusual circumstances. They included printing on amachine on which a printer did not exist, printing a
job so large that the print spoder ran out of disk spaceto storethe log fil e, and printing from a separately
adminigtered machine whose wnfiguration differed. Anintrusion detedion system that flagsrare events could be
useful to system administration andto users.

4 Misuse Detedion

Misuse detedion is concerned with caching intruders who are attempting to bre& into a
system using some known technique. ldeally, a system seaurity administrator would be avare of
all the known wulnerabilities and would eliminate them. However, as was mentioned ealier, an
organization may decide that eliminating know vulnerabilities is cost prohibitive or unduly
constrains system functionality. In pradice, many administrators do not remove vulnerabilities
even when they might. Note that users who slowly modify their adivity so that their profiles
contain the éusive adivity are nealy impossible to deted with anomaly detedors. So, misuse
detection systems look for known intrusions irrespedive of the user’ s normal behavior.

We use the term intrusion scenario to mean a description of afairly precisely known kind
of intrusion; it istypicdly defined as a (partial) sequence of adions, that when taken, result in an
intrusion, unless Ksme outside intervention prevents completion of the sequence. A misuse
detection system typically will continually compare aurrent system adivity to a set of intrusion
scenarios in an attempt to deted a scenario in progress The model or description of the intrusion
scenario will substantially determine how efficient monitoring can be. Current system adivity as
seen by the intrusion detedion system may be real time observations dgrictly for the use of the
intrusion detedion system, or it can be the audit records asrecrded by the operating system.
Although the systems described below use audit records, they would be fundamentally the same
if they were ollecting unique, real-time system information.

The main difference between the misuse detedion techniques described below isin how
they describe or model the bad behavior that constitutes an intrusion. First generation misuse
detection systems used rules to describe what seaurity administrators looked for within the
system. Large numbers of rules acaumulated and proved to be difficult to interpret and modify
because they were not necessarily grouped by intrusion scenario.

To overcome these difficulties, seoond generation systems introduced aternative scenario
representations. These include model-based rule organizaions and state transition
representations. These have proved to be more intuitive for the misuse detedion system user
who neels to expressand understand the scenarios. Sincethe system will need to be constantly
maintained and updhted to cope with newly discovered intrusion scenarios, ease of use isamajor
concern.

Sincethe intrusion scenarios can be specified relatively precisely, misuse detedion
systems can tradk the intrusion attempt against the intrusion scenario adion by adion. During
the sequence of adions, the intrusion detedion system can anticipate the next step of the possible
intrusion. Given this information, the detedor can more deeply analyze system information to
check for the next step or can determine that the intrusion attempt has procealed far enough and
intervene to mitigate possible damage. The model-based and state transition charaderizaions
lend themselves to anticipation of intrusion.
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4.1 Rule-Based Systems

Expert systems deted intrusions by encoding intrusion scenarios as a set of rules. These
rules refled the partially ordered sequence of adions that comprise the intrusion scenario. Some
rules may be goplicable to more than one intrusion scenario.

The system state is represented in a knowledge base consisting of afact baseand arule
base. A fact baseisa wlledion of assertions that can be made based on acawmulated data from
the audit records or diredly from system aaivity monitoring. The rule base contains the rules
that describe known intrusion scenario(s) or generic techniques. When a pattern of arule's
antecalent matches the asserted fact, arule-fact bindingis creaed. After thisbinding is made, if
all the patterns of the rule have been matched, then a binding analysis is performed to make sure
that all the associated variables with the rule ae consistent with the binding. The rules with rule-
faa bindings that meé the binding analysis requirements are then gathered into a set from which
the “best” rule is picked, through a processcalled conflict resolution. Therule thenfires. It may
cause an alert to be raised for a system administrator. Alternatively, some aitomated response,
such asterminating that user’s sssion, will be taken. Normally, arule firingwill result in
additional assertions being added to the fad base. They, inturn, may lead to additional rule-fac
bindings. This processcontinues until there ae no more rules to be fired.

Consider the intrusion scenario in which two or more unsuccessul login attempts are
made in a period of time shorter than it would take ahuman to type in the login information at a
conventional keyboard. If the rule or rules of this senario fire, then a specific user’s suspicion
level can beincreased. The system may raise an alarm or freeze the named user’ s acount.
Acoount freezewould be entered into the fad database.

The following sedions demonstrate the progressof the development of rule-based misuse
detection. Thefirst system, MIDAS, uses the basic rule-based system. The second,
IDES/NIDES, was originally designed to be rule-based, but then the design was changed to the
model based organization of the rule base.

4.1.1MIDAS

MIDAS (Multics Intrusion Detedion and Alerting System) [Sebring88 was designed and
written to perform rule-based intrusion detedion. For developing, compiling, and debugging the
rules, MIDAS uses the Production-Based Expert System Toolset (P-BEST) that is a forward-
chaining, LISPbased development environment [Lindqvist99]. The P-BEST compiler produces
primitive LISPfunctions that embody the semantics of the rules. The MIDAS rule base grew to
be very large, so it was subdivided by the type of intrusion for which each rule was designed to
detect. The system was designed to take some predefined adion once it detected an intrusion. A
semndary set of rules determine what action should be taken by the system. These secondary
rules are kept separate from the primary rulesto help keep the rule base size manageable for user
maintainabil ity.

The following figures (2a and 2b) illustrate MIDAS rules. Thefirst rule deals with an

intrusion scenario dealing with attempted privileged acount intrusions. The rule monitorsthe
knowledge base waiting for an assertion of afailed login attempt to an aceunt with an acount
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name that is either privileged on this system or is the common name of privileged acounts on
other systems. When the rule fires, it warnsthe MIDAS operator and adds a “remember” fad to
the fact base stating that there is a high probability that an intrusion attempt occurred. Words
precaded by a question mark denote variables that are during rule antecedent matching.

(defruleillegal _privileged_acmunt states
if there exstsa failed login_item
such that nameis (“roat” or “superuser” or “maintenance” or “system”) and
timeis ?time_stamp and
channel is 7channel
then
(print “WARNING: ATTEMPTED LOGIN TO PRIVILEGED ACCOUNT")
andremember a bre&in_attempt
with certainty * high*
such that attadk_time is 2ime_stamp
andlogin_channel is Zchannel)
Figure 2a. Illegal privileged acoount accessrule

The second example rule defines an intrusion scenario involving unusual login times.
Thisrule is used to determine when alogin to an aceunt was made outside of “normal” hours.
This example illustrates that some implementations use intrusion scenarios described asrulesin
lieu of gatisticad anomaly detedion, but the rule can only look for specifics (a particular value)
and not a parameterized range of values. This example also illustrates that the intrusion scenario
describes unusual behavior that does not necessarily constitute an intrusion.

(defrule unusual_login_time states
if there exstsalogin_entry
such that user is 2userid and
time_stamp is ogin_time and
(unusual_login_time ?2userid Aogin_time)
then
remember a user_login_anomaly
such that user is 2userid and
time_stamp is 2ogin_time)

Figure 2b. Unusual login timerule

4.1.2 IDES/NIDES

Initially, IDES [Lunt89] was designed with a simple rule-based system to detect intrusion
attempts using intrusion scenarios described by rule sets. The rule-based component was based
on the same Production-Based Expert System Toolset (P-BEST) that MIDAS used. Therule
base was divided into two parts for easier maintainability and understanding. The generic rules
arethose that can be goplied to many different types of target systems under a number of
configurations. The second pert of the rules are those that are either operating system or
implementation dependent. IDES was a predecessor of NIDES.
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Although simple rule-based systems can be useful, they are reported to be hindered by a
lack of support for developing the intrusion scenarios. It is difficult to determine the relations
between rules. The shea magnitude of the rule sets make it difficult to isolate asubset in order
to make a tiange. To overcome this difficulty, the concept of model-based intrusion detection
[Garvey91] was developed in conjunction with the IDES projed at Stanford Reseach Institute.
Ead intrusion scenario was sparately modeled so that the number of rulesthat need to be
considered in making a change is a more manageable size

A performanceisaleisinvolved here aswell. Since the model-based approac organizes
the rules by intrusion scenario, only the rules used to chedk for the initial stepsin the intrusion
need to be fired. The other rules remain dormant. Once an intrusion scenario is begun (by the
first rule of that scenario being satisfied), additional rules for detecting the subsequent steps of
the intrusion can be alded to the set of rulesthat must be evaluated. Intheinitial rule-based
approach, none of the rules were dormant, so they were all constantly being evaluated.
Therefore, the model-based approach gains both efficiency and improved maintainabil ity.

4.2 State-based intrusion scenario representations

In state based representations, attribute-value pairs charaderize systems dates of interest.
Actions that contribute to intrusion scenarios are defined as transitions between states. Each
adion changes the value of attribute(s) of interest. Intrusion scenarios are defined in the form of
state transition diagrams. Nodes represent system states and arcs represent relevant actions. The
adion causes atransition between states and determines how the dtribute values of the prior
state change as aresult of atransition.

The state of the system is a function of all the users, processes, and data present in a
system at any given point. A state transition diagram that defines an intrusion scenario consists

Action(s)

Transition
State

Transition
State

Compro-
mised State

Figure 3. Generic State Transtion Diagram

of aninitial state, the state before the intrusion, and a compromised state, the state dter the
intrusion has been completed, asill ustrated in figure 3. In between are some number of
transition states. Actions of interest are those taken by the would-be intruder to atain the
compromised state. Actionsthat do not involve alabeled arc emanating from a arrent state
(initial or transition) are ignored for the purposes of a specific intrusion scenario. If a
compromised (final) state is ever reached, an intrusion is said to have occurred.

4.2.1USTAT

USTAT (UNIX State Transition Analysis Tool) provides an excellent illustration of the
implementation of the state-based approach [Porras92]. USTAT istailored to the UNIX
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environment [I1gun93]. Each known penetration, or intrusion scenario, is represented in the form
of astate transition diagram. Some adion, for example UNIX system routines that change
system state, arethe transitions from one state to the next.

USTAT processes audit records from the particular UNIX system on which it was
implemented. The more-than-200 audit events were mapped onto ten USTAT actions, such as
read(file_var), modify_owner(file var) and hardlink(file var, file var), where eah instance of
“file_var” isthe name of somefile.

States are ead defined by as set of assertions, ead of which evaluates to true or false.
An example assertion is of the form: member(file_set, file var), which evaluatesto true if
file_var isamember of the file_set.

To monitor for intrusions, an inference engine maintains a table that holds a row for each
possible intrusion that may be in progress The inference engine processes audit events
sequentially. It maps each event to a corresponding USTAT adion. It then cheds all rowsinthe
table to determine if that action causes atransition from the aurrent state (of adiagram that is
represented by arow in the table) to its siccessor state. If so, the inference engine alds a wpy of
that row to the table and marks it as being in the successor sate. The original row remains
because another later adion could reped the same adion in another penetration attempt using the
same scenario.

An adion that causes transition to the final state of a diagram indicaes an intrusion. A
separate decision engine determines what adion to take.

5 Extensions — distributed systems and networ ks

Intrusion detection for a distributed system, or for a (more loosely coupled) network of
machines is basically similar to that of intrusion detedion for a single operating system. We
refer to them as networked systems from now on. Intrusion scenarios are still based on adions
taken by entities. However, the multiple users of a network system can work together as part of
acooperative intrusion in which multiple entities coll aborate to implement the intrusion. These
entities may represent different humans or may be the same human using different
identifications, possibly on different machines. Casual experience showsthat cooperative
intrusions in a network are more frequent than single entity intrusions and provide more options
for intrusive adivity. The intruder(s) can use the multiple nodes in an attempt to disguise their
adivities. They take advantage of the fad that different operating systems may be unaware of
each other’s date. To detect network-based intrusion, the detector must be able to correlate
adions, and possibly users, from multiple nodes involved in a coperative intrusion.

The single-system approades discussed ealier, anomaly detedion and misuse
detection, have been scaled upto ded with intrusion in network systems. Audit data, system
routine invocations, and system state information are @lleded and then analyzed in a very
similar way as for single operating systems. As one would exped, the system calls that result in
network adivity figure prominently in the definition of normal/anomalous behavior and intrusion
scenarios. The difference between the singular case and the network caseis that the intrusion
detection system must aggregate and correlate the information from multiple hosts and the
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network. To acammplish thistask, the detedor can either apply a entralized approach in which
all the information is collected in a single locaion and then analyzed, or it may use a
decentralized (hierarchicd) approach where local information is analyzed and only seleded, vital
information is shared between the intrusion detedion components aaossnodes.

By correlating each adion to a particular user, the intrusion detedion system encounters
the problem commonly called the Network-user Identification (NID) problem. It isthe problem
of tradking a user moving around in the network using possibly many different user-ids on each
machine. There is osme disagreement on how much of a problem this presents, but it isa
problem to some degreein all the systems. [Snapp9]] arguesthat the NID problem exists in both
detecting the intrusion and knowing on whom to focus mitigation; [Kemmerer97] claims that the
NID problem is only a problem for the mitigation asped. No matter how many times a human
logs-in on different machines through the network with different ids, there is always only one
human from which all the logins originated. The key to solving this problem is being able to
find theinitial log-in and use that identification as the originating-id for all the other different ids
that have been “derived” from that originating-id. One way to do this it to chedk for sequences
of adionsthat a user takes after logging in. Frequently, a user will run certain scripts or
commands in a distinguishable sequence immediately after login.

Other difficulties in performing network intrusion detedion include the classcal problem
of synchronization of either the clocks for different nodes, or just the audit record time stamps
from different nodes. Since ations may be temporally dependent, keeping clocks in the
distributed system synchronized is essential to being able to match sequences of adionsin the
system with the sequences of adions in a defined intrusion scenario.

5.1 Centralized analysis

Centralized network intrusion detedion systems are tharaderized by distributed audit
colledion and centralized analysis. Mog, if not all, of the audit datais colleded on the
individual systems and then reported to some centralized locaion where the intrusion detedion
analysisis performed. This approach works well for smaller network situation but is inadequate
for larger networks due to the shee volume of audit data that must be analyzed by the central
analysis component.

An example of an intrusion that is operating system dependent is the setuid shell intrusion
that is possible in SUNOS but not in Solaris. The intrusion detedor must be ale to dstinguish
between different audit trail s since some different intrusion scenarios may apply to ead diff erent
operating system being run. This is the problem with performing centralized analysis on
information colleded from a olledion of heterogeneous system components.

5.1.1DIDS

Distributed Intrusion Detedion System (DIDS) illustrates the centralized approac to
network intrusion detedion [Snapp9]]. DIDS s basically a wlledion of multiple intrusion
detection systems running on individual systems that cooperateto detect network-wide
intrusions. The intrusion detedion components on the individual systems are responsible for
colleaing the system information and converting it into a homogeneous form to be passd to the
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central analyzer. By converting the audit datainto a homogeneous format, DIDS is able to
handle heterogeneous individual systems with just one centralized intrusion detedion system.

DIDS does extend the non-distributed intrusion detedors by monitoring network traffic
and aggregating all the information from the individual intrusion detedors. Oncethe
information about the individual systems and the network itself has been colleded in the
centralized locaion, it can be analyzed as if it were asingle system using some combination of
anomaly and misuse detedion approaches. NADIR (Network Anomaly Detedion and Intrusion
Reporter) follows a similar approach to that taken by DIDS [Hochberg93).

5.1.2NSTAT

NSTAT (Network State Transition Analysis Tool) also performs centralized network
intrusion detedion [Kemmerer97]. NSTAT colledsthe audit data from multiple hosts and
combines the datainto asingle, chronological audit trail to be analyzed by a modified version of
USTAT. To chronologicdly maintain the audit trail, each component sends a sync message
periodically to make sure that the docks are synchronized within some threshold. Like DIDS,
NSTAT can handle many heterogeneous audit trail formats sincethe local audit trail is converted
to acommon NSTAT format before it is nt aaossthe network via an encrypted socket
conrection. The intrusion detedion analysis is similar to that described for USTAT, a
predecessor of NSTAT.

5.2 Decentralized (hierarchical) analysis

Decentralized network intrusion detedion systems are charaderized by distributed audit
data colledion followed by distributed intrusion detedion analysis. These systems can be
modeled as hierarchies. Unlike the cantralized network intrusion detection systems, these
systems are better able to scale to larger networks because the analysis component is distributed
and less of the audit information must be shared between the different components.

For the decentrali zed approacd, there must be some way of partitioning the entire system
into different, smaller domains for the purpose of communication. A domain is me subset of
the hierarchy consisting of a node that is responsible for colleding and analyzing all the data
from all the other nodes in the domain; this analyzing node represents the domain to the nodes
higher up in the hierarchy. Domains can be @nstructed by dividing the system based on

* geography,

* administrative cntrol,

* colledionsof similar software platforms, or

» partitions based on anticipated types of intrusions.
For example, audited events from nodes runnng the same operating system can be sent to a
central colledion point so that the homogeneous g/stems can be analyzed in concert.

5.2.1GrIDS

The Graph Based Intrusion Detedion System (GrIDS) uses a decentrali zed approach
[Staniford-Chen96]. GrIDS is concerned with deteding intrusions that involve connedions
between many nodes. It constructs activity graphsto represent host activity in a network. The
system being observed is broken into domains as described above ([ Staniford-Chen96] calls
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these departments). Graphs consist of nodes representing the domains and edges representing
the network traffic between them. If adomain Z is the parent domain of domains A, B, and C,
then Z colleds the information from the three (A,B, and C) and analyzesit. Z then representsthe
domain of A, B, and C to the next level in the hierarchy. Therefore, the parent domain of Z will
only collect information from Z and not the individual domains. For scalabil ity reasons, ead
domain huilds its own graph and then passes the graph and summary information up to its parent
domain. Asthe information passes up the hierarchy, the graphs become @arser and coarser with
each child node representing alower domain that may have numerous nodes and/or sub-domains.

Although it is a decentrali zed intrusion detedion system, GrIDS uses arule set to
determine how the graphs are built from the incoming and previous information. Rules are
applied to determine whether or not a graph is suspicious —i.e. whether it represents a possible
intrusion. The rule set also specifies how graphs can be combined, based on common nodes or
edges. GrIDS allows multiple rule sets. Eadch may operate independently of others. Sincerule
sets can be ommplicaed and difficult to write, GrIDS includes a policy specification tool that
more eaily allows the specification of acceptable and unacceptable behavior. From this policy
specification, GrIDS builds the gopropriate rule sets.

5.2.2EMERALD

EMERALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances)
uses athreelayer hierarchical approach to large-scale system intrusion detedion [Porras97].
Ead of the threelayers consists of monitors. Each monitor may have its own anomaly and
misuse detedors. The layers are named: service (lowest), domain-wide, and enterprise-wide
(highest). The service layer monitors a single domain. The monitors in the domain-wide layer
accet input from the service layer monitors and attempts to deted intrusions aaossmultiple,
service domains. Likewise, the enterprise-wide monitor accepts input from the domain-wide
monitors and attempts to deted intrusionsthat crossthe antire system.

Information exchange can go up and down the hierarchy. Monitors may subscribe to
information from other monitors at the same level and lower. This"push-pull” information
structure allows the system to scde better than the centralized network intrusion detedion
systems.

5.2.3 Common Intrusion Detedion Framework (CIDF)

A natural extension of the hierarchicd approach to intrusion detedion is using multiple
intrusion detedion systems to form a new intrusion detedion system that can utilize the best
portions of each intrusion detedion system. For these individual systemsto cooperate with each
other, there must be some standardization between the heterogeneous intrusion detedion
subsystems on issues sich as deciding on a mmmon vocabulary, information format, and
protocols for sharing information.

One such formalization isthe Common Intrusion Detedion Framework (CIDF) [Kahn98]
sponsored hy the Defense Advanced Reseach Projeds Agency (DARPA). The CIDF working
group is composed of numerous reseachers collaborating in an effort to allow their respedive
intrusion detedion systems to interoperate. The CIDF alrealy includes the Common Intrusion
Specification Language (CISL) for expressing event data, analysis results, and responses to
diredives from other intrusion detedion systems.
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6 Vulnerabilities

Intrusion detection software mechanisms themselves are not inherently survivable; they
too require some protection to prevent an intruder from manipulating the intrusion detedion
system to avoid detedion. Most systems depend upon the assumption that the intrusion detection
system itself, including exeautables and data, cannot be tampered with. Fortunately, many of
these problems are classicd seaurity problemsthat have been studied in depth. Physical searity
of the system itself must be maintained. Also, the datafiles from which the intrusion detection
system operates must be kept seaure. Well-guarded access and physical measures sich as read-
only data storage ae used.

Some intrusion detedion systems initialize by creaing a database intended to define
“normal” behavior. That initialization will be flawed if the intrusion(s) are present.

Since many of the aurrent intrusion detection systems rely on audit trail i nfformation,
audit data must be available to the intrusion detedion system in atimely manner. Long gaps
between receiving audit records can render an intrusion detedor lessuseful because an intrusion
can take placein arelatively short time. The intrusion detedor should have some built-in
survivability to handle the cae of infrequent audit records.

Intrusion detedion system designers have to be conscious about the mexistence of the
intrusion detedor with the rest of the system. The system being guarded and the intrusion
detector should not compete for the same procesor, becaise doing so would make the intrusion
detector vulnerable to denial-of-service dtacks. Exeauting the intrusion detedion system on a
separate computer with its own processor and memory can solve most of these problems.

7 Conclusions

About twenty yeas of research have produced efficient, effedive intrusion detedion
systems. They are based on two fundamental approacdes: the detection of anomalous behavior
as it deviates from normal behavior, and misuse detedion. These two approaces were
originally developed for single operating systems. Inthe second generation, they were extended
and scaed to addressdistributed systems. Inthe third generation, they were extended to address
loosely coupled networks of otherwise unrelated systems. While the goproacdhes for networked
systems are basicall y the same & for single operating systems, there aetwo primary challenges:
tradking users as they move through nodes in the network and managing the data needed by the
intrusion detedors as the size of the network scales up.

We posit that for the next/fourth generation of intrusion detedors, it is urgent to find
some new approaches. We expect that the aurrent approaches will become more accirate
because the semantics of operating systems, and the protocols that knit multiple computers
together into an interdependent network, will be more precisely defined. It will be possibleto
monitor for and deted unusual behavior based on more precise and more formal descriptions of
behavior. The University of New Mexico reseach that devised petternsthat, in effed,
recognized “unusual” behavior provides a particularly creaive gproadc for charaderizing
system behavior.
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Network intrusion attempts will be more eaily deteded if it is possible to actively trace
badk from messages in one computer through intermediaries to the originating computer with
high asaurance. TCP/IP v6 will raise the assciated issues of policy, privacy, and administrative
control.

Intrusion detection in the first threegenerations has almost wholly focused on intruders
who seek to penetrate the operating system, and in the jargon of Unix, attempt to gain “root”
privilege. Operating system based intrusion detedion iswell understood at this point. The
wedkest asped is the problem tadkled in the third generation: networks. If new network
protocols permit adive tradng and identification of (external) intruders through multiple
network nodes, the network problems of today will be dramaticall y reduced.

At that point the main threa will come from internal intruders, those with limited
authority, seeking to extend that authority, particularly in the mntext of their applications. Users
who seek to gain application privileges will likely be invisible & the operating system level, and
thus invisible to the most of the kind of intrusion detedors that this survey addresses. We
envision the need for applicaion intrusion detedion systems that relate to and exploit the
semantics of the goplication, not to those of the operating system. These types of detedors will
be the keystone of the fourth generation intrusion detedorsthat are ill to come. Aninitial
analysis of how to approac application intrusion detedion can be found in [Sielken99a, 99b].
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