
An Efficient Technique for the Numerical Solution

of the Bidomain Equations

JONATHAN P. WHITELEY

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

(Received 8 January 2008; accepted 1 May 2008; published online 15 May 2008)

Abstract—Computing the numerical solution of the bidomain
equations is widely accepted to be a significant computa-
tional challenge. In this study we extend a previously
published semi-implicit numerical scheme with good stability
properties that has been used to solve the bidomain equa-
tions (Whiteley, J.P. IEEE Trans. Biomed. Eng. 53:2139–
2147, 2006). A new, efficient numerical scheme is developed
which utilizes the observation that the only component of the
ionic current that must be calculated on a fine spatial mesh
and updated frequently is the fast sodium current. Other
components of the ionic current may be calculated on a
coarser mesh and updated less frequently, and then interpo-
lated onto the finer mesh. Use of this technique to calculate
the transmembrane potential and extracellular potential
induces very little error in the solution. For the simulations
presented in this study an increase in computational effi-
ciency of over two orders of magnitude over standard
numerical techniques is obtained.

Keywords—Cardiac electrophysiological modeling, Stability

of numerical schemes, Efficient numerical schemes.

INTRODUCTION

Cardiac electrophysiology in tissue is usually mod-
eled using the bidomain equations: see, for example,
Keener and Sneyd9 for a derivation of these equations.
These equations consist of an elliptic partial differen-
tial equation and a parabolic partial differential
equation, coupled at each point in space with a large
system of stiff, non-linear ordinary differential equa-
tions. The actual size of the system of ordinary dif-
ferential equations depends on the electrophysiological
model used—see Nickerson11 for a collection of these
models. It is widely accepted that the accurate solution
of these equations in a three-dimensional computa-
tional domain that represents a mammalian heart is a

significant computational challenge, both in terms of
computation time and memory required.

One cause of the large computation time required to
solve the bidomain equations numerically is the stiff-
ness of the ordinary differential equations and para-
bolic partial differential equation. Explicit numerical
methods are often inefficient when used to solve stiff
ordinary differential equations, as the maximum time-
step that may be used is usually dictated by stability
considerations, and not by the timescales that the dif-
ferential equations model. These stability issues may be
avoided by the use of an implicit numerical method.7

However, when solving the bidomain equations, the use
of an implicit numerical method for both the ordinary
differential equations and the parabolic partial
differential equation results in a very large coupled
non-linear system that much be solved on each time-
step—solving this system requires that a large Jacobian
matrix must be computed and stored in the computer’s
memory. Furthermore, due to the complex nature of
the terms appearing in the differential equations,
writing software to calculate the Jacobian matrix is an
error-prone activity. To the best of our knowledge, this
approach has only been applied when the very simple
Fitzhugh–Nagumo electrophysiological model10 is
used. In this special case only one ordinary differential
equation is coupled to the parabolic and elliptic partial
differential equations at each point in space. Due to the
small size of the system of ordinary differential equa-
tions, the problems highlighted above when using a
fully implicit numerical solver are not too great.

Under some circumstances the elliptic partial differ-
ential equation may be eliminated from the bidomain
equations—the resulting system of equations is known as
the monodomain equations. Various techniques have
been used to reduce the computational effort required to
solve the bidomain equations or monodomain equations
whenamore complex electrophysiologicalmodel than the
Fitzhugh–Nagumomodel is used. For example: operator
splitting techniques6,17,20–22; semi-implicit numerical

Address correspondence to Jonathan P. Whiteley, Oxford

University Computing Laboratory, Wolfson Building, Parks Road,

Oxford OX1 3QD, UK. Electronic mail: Jonathan.Whiteley@

comlab.ox.ac.uk

Annals of Biomedical Engineering, Vol. 36, No. 8, August 2008 (� 2008) pp. 1398–1408

DOI: 10.1007/s10439-008-9513-0

0090-6964/08/0800-1398/0 � 2008 Biomedical Engineering Society

1398

discretizations4,8,24,28,29; a judicious choice of linear
algebra solver and preconditioner for solving the linear
systems that arise from the discretization of the differen-
tial equations14,15,27; domaindecomposition techniques18;
adaptive numerical techniques3,13,17,29; taking account of
fibre orientation to render the linear system arising more
tractable26; predictor–corrector techniques19; and artifi-
cially slowing down the faster physiological processes that
occur so that they may be computed using a longer
timestep.1 Although these techniques do reduce compu-
tation time, the solution of the system of equations on a
realistic sized computational domain still poses a signifi-
cant challenge.

The processes modeled by the electrophysiological
model occur on a wide variety of time scales, which
has the effect that they are also observed on a wide
range of length scales. This observation has previ-
ously been utilized by other authors3,18,29 when
developing an adaptive algorithm for the solution of
the bidomain equations. The algorithm proposed by
Whiteley29 demonstrated that an increase in compu-
tational efficiency of over two orders of magnitude
can be achieved when the fast processes—i.e., those
processes that cause the action potential upstroke—
are isolated to a small portion of the time simulated.
This assumption is, however, not always true: it is
true for a normal heartbeat, but is not true for a
fibrillating heart. In this study we develop a numerical
technique that is slightly more efficient than the pre-
vious algorithm described by Whiteley,29 and with
applicability to a much wider range of problems.
Although we describe the application of this tech-
nique to the bidomain equations, the technique may
be applied equally effectively to the monodomain
equations.

THE NUMERICAL METHOD

In this section we describe a new, efficient algorithm
that may be used to solve the bidomain equations
numerically. We begin by writing down the bidomain
equations, and the semi-implicit algorithm on which
the new algorithm is based. We then describe the new
algorithm.

The Differential Equations

The bidomain equations are given by:

v Cm
@Vm

@t
þ Iionðu;VmÞ

� �
�r � rirðVm þ /eÞð Þ ¼ Isi ;

ð1Þ

r � ðri þ reÞr/e þ rirVmð Þ ¼ Ise ; ð2Þ

@u

@t
¼ fðu;VmÞ; ð3Þ

where Vm(x, t) is the transmembrane potential, /e(x, t)
is the extracellular potential, v is the surface to volume
ratio, Cm is the membrane capacitance per unit area, ri

is the intracellular conductivity tensor, re is the
extracellular conductivity tensor, Iion is the ionic cur-
rent, Isi is the external stimulus applied to the intra-
cellular space, Ise is the external stimulus applied to the
extracellular space, u(x, t) is a vector containing gating
variables and concentrations, f is a prescribed vector-
valued function, x is position, and t is time. Both Iion
and the function f are determined by the electrophys-
iological model used.

Equations (1) and (2) include spatial derivatives,
and therefore require boundary conditions. We assume
no current crosses the boundary. Noting that the
intracellular potential /i is given by /i = Vm + /e,
the intracellular and extracellular currents, ii and ie, are
given by

ii ¼ �rir Vm þ /eð Þ; ie ¼ �rer/e: ð4Þ

Boundary conditions that enforce no flow of current
across the boundary are therefore given by

n � rir Vm þ /eð Þð Þ ¼ 0; n � rer/eð Þ ¼ 0; ð5Þ

where n is the outward pointing unit normal vector to
the computational domain.

We note that Eqs. (1)–(3) together with boundary
conditions given by Eq. (5) do not have a unique
solution as /e is only defined up to an additive con-
stant. This non-uniqueness does not affect the physi-
ology modeled by the bidomain equations as in Eq. (4)
the extracellular current is determined by derivatives of
/e and is therefore independent of the additive con-
stant. This additive constant may be determined by
posing Eqs. (1) and (2) in terms of /i and /e. These
equations9 contain time derivatives as well as spatial
derivatives of /i and /e, and so the solution does not
contain any arbitrary constant.

The Basis of the Technique

The algorithm developed here is based on the semi-
implicit technique previously used by Whiteley.28,29

The dependent variables Vm, /e, and u are calculated
at each of the discrete times t0, t1, t2, …, tN. We use the
notation

Vn
mðxÞ ¼ Vmðx; tnÞ; /n

eðxÞ ¼ /eðx; tnÞ;
unðxÞ ¼ uðx; tnÞ;

for these quantities. On each timestep we begin by
solving Eqs. (1) and (2), with the conduction terms
being treated implicitly, and the biochemical reaction

Efficient Numerical Solution of the Bidomain Equations 1399

terms being treated explicitly. This leads to the
following system of equations:

vCm

Dtn
Vn

m �r � rir Vn
m þ /n

e

� �� �

¼ vCm

Dtn
Vn�1

m þ Isi � vIionðVn�1
m ; un�1Þ; ð6Þ

r � ri þ reð Þr/n
e þ rirVn

m

� �
¼ Ise ; ð7Þ

where Dtn ¼ tn � tn�1: Equations (6) and (7) are usu-
ally discretized in space using either the finite element
method or the finite difference method, allowing the
calculation of Vm

n and /e
n. For either of these methods,

the discretization results in the matrix equation

A
Vn

m

/n
e

� �
¼ bV

be

� �
; ð8Þ

where A is the matrix arising from the finite element
or finite difference discretization in space of Eqs. (6)
and (7), Vn

m are the unknowns associated with the
discretization of Vn

mðxÞ;/n
e are the unknowns associ-

ated with the discretization of /n
eðxÞ; bV arises from

the right-hand-side of Eq. (6), and be arises from the
right-hand-side of Eq. (7). Having solved this matrix
equation to calculate Vm

n and /e
n, we then solve the

ordinary differential equations given by Eq. (3) at
each point in space to calculate un. In common with
previous work28,29 we use the backward Euler method
to solve these ordinary differential equations.

We noted in section ‘‘The Differential Equations’’
that /e was only determined up to an additive con-
stant, and so we may add any constant value to each of
the entries of /n

e : This has the effect that the matrix A
in Eq. (8) is singular, with a nullspace that is spanned
by the vector

0
..
.

0
1
..
.

1

0
BBBBBBB@

1
CCCCCCCA
;

where the entries corresponding to the vector Vn
m take

the value zero, and the entries corresponding to the
vector /n

e take the value 1. As the linear system given
by Eq. (8) is symmetric, the nullspace of the matrix A
is identical to the nullspace of the transpose of A.
Under these conditions the iterative solver GMRES
converges to the solution of Eq. (8) without requiring
any constraint to make A non-singular.2 This solution
technique only determines values of entries of /n

e up to
an additive constant, as discussed in section ‘‘The
Differential Equations’’. The value of the additive

constant will be different on each timestep, and is
dependent on both the preconditioner used and the
initial solution guess. An alternative strategy would be
to fix one value of /e throughout the simulation.

The Efficient Algorithm

When using the algorithm described in section ‘‘The
Basis of the Technique’’, the matrix A appearing in
Eq. (8) is the same on each timestep and therefore need
only be calculated once. The bulk of the computational
effort required on each timestep therefore consists of:
(i) calculating the right-hand-side of Eq. (8); (ii) solv-
ing the matrix equation given by Eq. (8); and (iii)
solving the ordinary differential equations given by
Eq. (3). The algorithm proposed here substantially
reduces the computational effort associated with the
first and third of these tasks, and is based on the
observation that very few of the processes modeled by
electrophysiological models occur on shorter time
scales and shorter length scales. We now explain how
to exploit this observation.

We begin by solving the bidomain equations, using
the electrophysiological model described by Noble
et al.12 on a square with sides 20 mm using the algo-
rithm described by Whiteley.28 One corner of this do-
main was stimulated to generate an action potential
propagating across the square. The total ionic current
at the point at the center of the square is plotted
against time in Fig. 1a. We see that the total ionic
current takes its largest magnitude at around 0.0521 s,
and that the magnitude of this current is much smaller
elsewhere. The large magnitude of the total ionic cur-
rent seen in Fig. 1a is mainly due to the fast sodium
current: in Fig. 1b we plot the total ionic current with
the fast sodium current removed. We see that the
magnitude of this current is much smaller than the
magnitude of the total ionic current. Similar features of
the total ionic current and the fast sodium current are
seen in space. In Fig. 1c we plot the total ionic current
at the cross-section y = 10 mm across the square at
time 0.0521 s. The total current with the fast sodium
current removed is plotted in Fig. 1d. We see that the
fast sodium current is again responsible for the large
magnitude of the total ionic current.

As the ionic current drives changes in Vm and /e in
Eqs. (1) and (2), any large current must be accurately
calculated. It therefore seems appropriate to calculate
the fast sodium current on a much finer spatial mesh
and to update this current more frequently than the
other components of the ionic current. An example of
a finer spatial mesh that may be used is shown in
Fig. 2. When using the meshes shown in this figure the
fast sodium current is calculated using the mesh con-
sisting of fine lines, with nodal spacing given by hfast.

J. P. WHITELEY1400

The other contributions to the ionic current are cal-
culated on the mesh consisting of thicker lines, with
nodal spacing given by hslow. As well as defining hfast
and hslow, we will also need one timestep on which the
fast currents are updated, Dtfast; and another timestep
on which the slower currents are updated, Dtslow:

We now write Eqs. (6) and (7) as

vCm

Dtn
Vn

m �r � rir Vn
m þ /n

e

� �� �
¼ C1 þ C2; ð9Þ

r � ri þ reð Þr/n
e þ rirVn

m

� �
¼ C3; ð10Þ

where, denoting the fast sodium current by INa,

C1 ¼
vCm

Dtn
Vn�1

m þ Isi � vINa;

C2 ¼ �v Iion � INað Þ;
C3 ¼ Ise :

By writing Eqs. (6) and (7) in this way, we have
combined the fast variables—Vm

n-1, INa, Isi and
Ise—into terms that are separate from the slower
variables. This allows us to write Eq. (8) as

A
Vn

m

/n
e

� �
¼ bfastV

be
fast

� �
þ bslowV

0

� �
; ð11Þ

where bfastV arises from C1; b
slow
V arises from C2; and bfaste

arises from C3:
We are now in a position to write down the new

algorithm. When computing the right-hand-side of
Eq. (11), the vectors bfastV and bfaste are calculated in the
usual way using the fine mesh shown in Fig. 2. The

0.05 0.051 0.052 0.053 0.054 0.055
−400

−350

−300

−250

−200

−150

−100

−50

0

Time (s)

C
ur

re
nt

 (
pA

 p
F

−
1)

0.05 0.051 0.052 0.053 0.054 0.055
−5

0

5

10

15

Time (s)

C
ur

re
nt

 (
pA

 p
F

−
1)

(a) (b)

0 5 10 15 20
−400

−350

−300

−250

−200

−150

−100

−50

0

Distance (mm)

C
ur

re
nt

 (
pA

 p
F

−
1)

0 5 10 15 20
−5

0

5

10

15

Distance (mm)

C
ur

re
nt

 (
pA

 p
F

−
1)

(c) (d)

FIGURE 1. (a) The total ionic current as a function of time; (b) The total ionic current with the fast sodium current removed as a
function of time; (c) The total ionic current as a function of space; (d) The total ionic current with the fast sodium current removed
as a function of space. See text for more details of the simulation.

hfast hslow

FIGURE 2. The fine mesh (thin lines) with nodal spacing
hfast, and the coarse mesh (thick lines) with nodal spacing
hslow.

Efficient Numerical Solution of the Bidomain Equations 1401

vector bslowV is calculated by first calculating the
quantities required at the nodes of the coarse mesh
shown in Fig. 2. Interpolation is then used to calculate
these quantities on the fine mesh, allowing the whole of
the right-hand-side of Eq. (11) to be computed on the
fine mesh. A timestep Dtfast is used when solving
Eq. (11). However, as the quantities contained in bslowV

vary on a slower time scale, this vector is not updated
on each timestep. Instead, it is updated using a longer
timestep Dtslow: Themethod described in this paragraph
allows us to update Vm and /e using a timestep Dtfast:

Having described our technique for solving Eqs. (6)
and (7) numerically to calculate Vn

m and /n
e we now turn

our attention to solving the ordinary differential
equations given by Eq. (3). As the components of bslowV

are calculated using only quantities at the nodes of the
coarse mesh, we only calculate the solution of most
components of the solution of Eq. (3) at these
points—this allows a significant saving in terms of both
computational time and memory required. The only
components of the solution of Eq. (3) that must be
calculated at the nodes of the fine mesh are those that
are needed when calculating the fast sodium current.
When using the electrophysiological model described
by Noble et al.12 the fast sodium current is given by

INa ¼ gNam
3h Vm � ENað Þ;

where ENa ¼
RT

F
log

Nao þ PnakKo

Nai þ PnakKi
:

All terms in this expression—with the exception of the
gating variables m, h, the transmembrane potential Vm,
the intracellular sodium concentration Nai and the
intracellular potassium concentration Ki—are given by
constants.Vm is calculated from the solution of Eq. (11)
at each point of the finemesh. The quantities Nai andKi

only affect INa through the term ENa. In Fig. 3 we plot
ENa at the point (x = 10 mm, y = 10 mm) during the
simulation described earlier in this section. We see that
this quantity does not vary significantly during the
simulation and so it may be calculated by approximat-
ing Nai and Ki on the coarse mesh and interpolating
these quantities onto the fine mesh. The gating variables
m and h do, however, vary rapidly and should be cal-
culated at each node of the finemesh. Fortunately this is
not too computationally expensive as these variables
satisfy differential equations of the form

@m

@t
¼ amðVmÞ þ bmðVmÞm;

@h

@t
¼ ahðVmÞ þ bhðVmÞh;

for suitable functions am, bm, ah, bh. These equations
are linear in m and h, and so a wide variety of tech-
niques may be used to efficiently integrate these
equations numerically.

Solving the ordinary differential equations for most
variables on a coarser mesh allows a significant gain in
computational efficiency. Although the equations that
are solved on the coarse mesh do not result in large,
rapidly varying contributions to the ionic transmem-
brane current, it is still possible that these equations
may model processes that vary rapidly. As such, it is
not possible to claim that these equations should be
solved using a longer timestep and so we use a timestep
Dtfast for the numerical solution of all ordinary dif-
ferential equations.

This completes the description of the algorithm. We
now turn our attention to assessing the accuracy and
efficiency of this algorithm.

NUMERICAL EXPERIMENTS

In this section we investigate the performance of the
algorithm described in section ‘‘The Efficient Algo-
rithm’’. We describe the simulations that are per-
formed before discussing first the accuracy and then
the computational efficiency of the algorithm.

Summary of Computations

All the simulations were carried out on a square
occupying the region 0< x, y<20 mm with fibres
parallel to the x-axis. The electrophysiological model
used is that described by Noble et al.12 Other param-
eter values used are identical to those used previously28

with the exception of the conductivity tensors. The
intracellular conductivities were 0.13 mS mm-1 along
the fibre and 0.026 mS mm-1 perpendicular to the
fibre, while the extracellular conductivities were
0.13 mS mm-1 along the fibre and 0.065 mS mm-1

perpendicular to the fibre. One corner of the square

0 0.1 0.2 0.3 0.4 0.5
47.48

47.49

47.5

47.51

47.52

47.53

47.54

47.55

47.56

Time (s)

E
N

a (
m

V
)

FIGURE 3. The quantity ENa as a function of time at the point
(x = 10 mm, y = 10 mm).

J. P. WHITELEY1402

was stimulated at time 0.001 s, generating an action
potential that propagated across the square.

For each simulation the transmembrane potential
was recorded at the points (x = 10 mm, y = 10 mm),
(x = 20 mm, y = 10 mm) and (x = 10 mm, y = 20
mm). This allowed us to calculate: (i) vF, the average
conduction velocity in the direction of the fibres
between the points (x = 10 mm, y = 10 mm),
(x = 20 mm, y = 10 mm); (ii) vPF, the average con-
duction velocity in the direction perpendicular to the
fibres between the points (x = 10 mm, y = 10 mm),
(x = 10 mm, y = 20 mm); and (iii) the maximum
slope of the action potential upstroke at the point
(x = 10 mm, y = 10 mm). The activation time,
A(x,y), at each node of the fine mesh—defined to be
when Vm first took the value -85 mV was also
recorded. The normal velocity of the action potential
wavefront, vN, is then given by23

vN ¼
1

rAj j :

We record the value of vN at the point (x = 10 mm,
y = 10 mm) by calculating this quantity in the ele-
ment with bottom right hand corner at this point. The
Action Potential Duration (APD)—defined to be the
time for which Vm> -85 mV—was also recorded at
each node of the fine mesh.

To investigate the accuracy of /e calculated using
the proposed algorithm we calculate the magnitude of
the extracellular current, given by |re � /e|, at the
point (x = 10 mm, y = 10 mm).

In previous work29 we have shown that if a uniform
spatial mesh and timestep are used with the electro-
physiological model used in this study,12 then we
should use a spatial nodal spacing of around 0.1 mm,
and a timestep of around 10-4 s. As the parameters
hfast and Dtfast are chosen to capture the fast physio-
logical processes occurring, in all simulations presented

here we use the values hfast = 0.1 mm and
Dtfast ¼ 10�4 s: Suitable values of hslow and Dtslow are to
be determined from our simulations. We investigate
the effect on accuracy and computation time of
choosing hslow = 0.1 mm, 0.5 mm, 1.0 mm, and on
choosing Dtslow ¼ 10�4 s and 10-3 s.

The computation time required for each of the sim-
ulations is recorded. This allows the effect on compu-
tational efficiency of the choice of hslow and Dtslow to be
evaluated. Further simulations are carried out using the
adaptive algorithm described by Whiteley29 to compare
the efficiency of the new algorithm with this previously
published adaptive algorithm. Unless otherwise stated
a time period of 0.35 s was simulated, as this allows the
action potential to be completed at all points of the
square.

In this study, the linear systems were solved using
the ILU preconditioned GMRES routines provided by
the PETSc libraries.16 Lookup tables5,25 were used to
calculate as many of the complex non-linear terms as
possible.

Accuracy of the Algorithm

We begin by investigating the effect of Dtslow on the
action potential at the point (x = 10 mm, y = 10
mm). In Fig. 4a we plot the action potential recorded
at this point using two different values of Dtslow : 10�4 s
(solid line); and 10-3 s (broken line). In both cases
hslow = hfast. We see that both action potentials are
almost visually indistinguishable from each other—
only when the upstroke of these action potentials is
plotted using an expanded time axis in Fig. 4b do we
see a difference between the two action potentials. For
both action potentials plotted in Fig. 4 the action
potential duration was 0.179 s.

We now turn our attention to investigating the effect of
hslow on the action potential at the point (x = 10 mm,

0 0.05 0.1 0.15 0.2 0.25 0.3
−100

−50

0

50

Time (s)

V
m

 (
m

V
)

0.045 0.05 0.055 0.06
−100

−50

0

50

Time (s)

V
m

 (
m

V
)

(a) (b)

FIGURE 4. The action potential at the point (x = 10 mm, y = 10 mm) calculated when hslow = hfast, and Dtslow = 10-4 s (solid line)
and Dtslow = 10-3 s (broken line). (a) shows the whole action potential; (b) shows the upstroke of the action potentials on an
expanded time axis.

Efficient Numerical Solution of the Bidomain Equations 1403

y = 10 mm). In Figs. 5a and 5b we plot the action
potential recorded at this point using hslow = 0.5 mm
and Dtslow ¼ 10�4 s (solid line) and hslow = 0.5 mm
and Dtslow ¼ 10�3 s (broken line). In Figs. 5c and 5d we
plot the action potential calculated using hslow = 1.0
mm and Dtslow ¼ 10�4 s (solid line) and hslow =
1.0 mm and Dtslow ¼ 10�3 s (broken line). In every plot
in Fig. 5 the dotted line represents the action potential
calculated using hslow = hfast and Dtslow ¼ Dtfast: In all
cases, the action potentials are almost visually indis-
tinguishable from each other except in Figs. 5b and 5d
where the upstrokes of these action potentials have
been plotted on an expanded time axis. For all action
potentials plotted in Fig. 5 the action potential dura-
tion was 0.179 s.

In Table 1 we tabulate the quantities vF, vPF, vN,
and the maximum gradient of the upstroke described
in section ‘‘Summary of Computations’’ as a function
of hslow and Dtslow: We note that vN is smaller than the
magnitude of the vector (vF, vPF): this is because vF and
vPF are average velocities while vN is the velocity at a
point of the tissue. For all values of hslow and Dtslow
used here the difference between the simulation with
hslow = hfast and Dtslow ¼ Dtfast is small: the maximum

difference in vF is 3.9%; the maximum difference in vPF
is 2.7%; the maximum difference in vN is 11.5%; and
the maximum difference in the maximum gradient of
the upstroke is 1.0%. For each individual simulation
described in this paper, the average difference across
the whole computational domain between vN and
the value of vN calculated using hslow = hfast and
Dtslow ¼ Dtfast was less than 8%.

The APD calculated using hslow = hfast and
Dtslow ¼ Dtfast varied across the domain from 0.176 s to
0.185 s. The maximum difference between the
simulation with hslow = hfast and Dtslow ¼ Dtfast and

0 0.05 0.1 0.15 0.2 0.25 0.3
−100

−50

0

50

Time (s)

V
m

 (
m

V
)

0.045 0.05 0.055 0.06
−100

−50

0

50

Time (s)

V
m

 (
m

V
)

(a) (b)

0 0.05 0.1 0.15 0.2 0.25 0.3
−100

−50

0

50

Time (s)

V
m

 (
m

V
)

0.045 0.05 0.055 0.06
−100

−50

0

50

Time (s)

V
m

 (
m

V
)

(c) (d)

FIGURE 5. The action potential at the point (x = 10 mm, y = 10 mm). In all plots the dotted line represents the simulation with
hslow = hfast, and Dtslow = Dtfast. In (a) the solid line represents the simulation with hslow = 0.5 mm and Dtslow = 10-4 s, and the
broken line represents the simulation with hslow = 0.5 mm and Dtslow = 10-3; (b) plots the action potentials seen in (a) on an
expanded time axis. In (c) the solid line represents the simulation with hslow = 1.0 mm and Dtslow = 10-4 s, and the broken line
represents the simulation with hslow = 1.0 mm and Dtslow = 10-3; (d) plots the action potentials seen in (c) on an expanded time
axis.

TABLE 1. The quantities vF, vPF, vN and maximum upstroke
derivative calculated at the point (x = 10 mm, y = 10 mm).

hslow

(mm)

Dtslow

(s)

vF

(mm s-1)

vPF

(mm s-1)

vN

(mm s-1)

max dVm

dt

(mV s-1)

0.1 10-4 718.9 243.2 246.7 1.737

0.5 10-4 717.7 245.8 236.6 1.736

1.0 10-4 727.5 244.0 238.7 1.721

0.1 10-3 730.1 248.5 231.9 1.741

0.5 10-3 724.7 249.8 218.3 1.720

1.0 10-3 747.0 246.3 249.0 1.732

J. P. WHITELEY1404

simulations using other values of hslow and Dtslow are
listed in Table 2. We see that the error in calculating
the APD that is induced by using a coarse mesh is also
small, the relative error always being less than 2.1%.

To investigate the effect of Dtslow on /e we plot the
magnitude of the extracellular current at the point
(x = 10 mm, y = 10 mm) in Fig. 6a. In both simula-
tions we use hslow = hfast. The solid line represents a
simulation with Dtslow ¼ 10�4 s while the broken line
represents a simulation with Dtslow ¼ 10�3 s: Figure 6b
shows the same plots, but with the rapidly varying
features shown on an expanded timescale. We see that
difference between the magnitude of the extracellular
current calculated in the two simulations are acceptably
small for almost all purposes. Similar observations are
made when investigating the effect of hslow on the
magnitude of the extracellular current. In Figs. 7a and
7b we plot the magnitude of the extracellular current at
this point using hslow = 0.5 mm and Dtslow ¼ 10�4 s
(solid line) and hslow = 0.5 mm and Dtslow ¼ 10�3 s
(broken line). In Figs. 5c and 5d we plot the magnitude
of the extracellular current calculated using hslow =
1.0 mm and Dtslow ¼ 10�4 s (solid line) and hslow =
1.0 mm and Dtslow ¼ 10�3 s (broken line). In every plot
in Fig. 7 the dotted line represents the magnitude of the
extracellular current calculated using hslow = hfast and
Dtslow = Dtfast. We see that the magnitude of the

extracellular current is captured accurately by all values
of Dtslow and hslow used in this study.

Efficiency of the Algorithm

In Fig. 8 we plot the time required to perform the
simulations described in section ‘‘Summary of Com-
putations’’ as a function of hslow and Dtslow. The value
of hslow is indicated on the figure: the solid bars rep-
resent Dtslow = 10-4 s and the open bars represent
Dtslow = 10-3 s. Also shown is the total time taken to
solve the linear systems in each simulation—this value
varied by less than 10 s for the different choices of hslow
and Dtslow used in these simulations. We see that when
Dtslow = 10-4 s is used, increasing hslow from 0.1 mm
to 0.5 mm reduces computation time by a factor of
over 13. Note that the slowest simulation presented
here uses the semi-implicit algorithm on a uniform
mesh with a uniform timestep described by Whiteley,28

which is around 8 times more efficient than standard
numerical methods for solving the bidomain equa-
tions. The algorithm published here therefore gives an
increase in computational efficiency of over two orders
of magnitude compared to standard numerical meth-
ods. Having made this reduction in computation time,
roughly one-third of the computation time is now
devoted to solving the linear system that arises on each
timestep. This linear system is not affected by the
algorithm proposed here, and so the time taken for
solving these linear systems cannot be reduced. As such
the extra efficiency obtained by increasing hslow to
1.0 mm is swamped by the time spent solving the linear
system, and so there is no great benefit to using
hslow = 1.0 mm rather than hslow = 0.5 mm.

It might be expected that increasing Dtslow from 10-4 s
to 10-3 s would increase computational efficiency by a
factor of around 10. We see in Fig. 8 that this is not the
case. For the simulations described in this study solv-
ing the linear system did not occupy a significant

TABLE 2. Maximum relative difference and absolute differ-
ence in APD calculated using hslow = hfast, and Dtslow = Dtfast.

hslow

(mm)

Dtslow

(s)

Maximum relative

difference in APD (%)

Maximum absolute

difference in APD (s)

0.5 10-4 0.5053 8.998 · 10-4

1.0 10-4 2.0930 3.703 · 10-3

0.1 10-3 0.1396 2.502 · 10-4

0.5 10-3 0.5873 1.047 · 10-3

1.0 10-3 1.8750 3.313 · 10-3

0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

250

Time (s)

|σ
e

∇
 φ

e |
(p

A
 p

F
−

1)

0.045 0.05 0.055 0.06

0

50

100

150

200

250

Time (s)

|σ
e

∇
 φ

e |
(p

A
 p

F
−

1)

(a) (b)

FIGURE 6. The magnitude of the extracellular current at the point (x = 10 mm, y = 10 mm) calculated when hslow = hfast, and
Dtslow = 10-4 s (solid line) and Dtslow = 10-3 s (broken line). (a) shows the first 0.1 s of the simulation; (b) shows the rapid variations
on an expanded time axis.

Efficient Numerical Solution of the Bidomain Equations 1405

fraction of the computational effort required on each
timestep. The main computational effort required on
each timestep is: (i) calculating the right-hand-side of

the linear system, Eq. (11); and (ii) solving the ordin-
ary differential equations. Changing Dtslow reduces the
computational effort required to calculate the right-
hand-side of the linear system, allowing a gain in
computational efficiency for this part of the compu-
tation. We have, however, used a timestep Dtfast to
solve the ordinary differential equations as there is no
guarantee that a timestep Dtslow is appropriate for all
components of this system of ordinary differential
equations. This explains the relatively modest increase
in computational efficiency obtained when Dtslow is
increased from 10-4 s to 10-3 s. Only when we change
hslow—thus requiring the solution of the whole system
of ordinary differential equations at fewer points—do
we gain an increase in computational efficiency when
solving the ordinary differential equations.

We now compare the algorithm presented here with
a previously published adaptive algorithm.29 For the
algorithm used in this study we use hslow = 0.5 mm
and Dtslow = 10-3 s. In Fig. 9 we plot the computation
time required to simulate 0.35 s, and the computation
time required to simulate 1.0 s. Solid bars refer to the
algorithm proposed here, open bars to the previously
published adaptive algorithm. We see that in both

0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

Time (s)

|σ
e

∇
 φ

e |
(p

A
 p

F
−

1)

0.045 0.05 0.055 0.06

0

50

100

150

200

250

Time (s)

|σ
e

∇
 φ

e |
(p

A
 p

F
−

1)

(a) (b)

0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

Time (s)

|σ
e

∇
 φ

e |
(p

A
 p

F
−

1)

0.045 0.05 0.055 0.06

0

50

100

150

200

Time (s)

|σ
e

∇
 φ

e |
(p

A
 p

F
−

1)

(c) (d)

FIGURE 7. The magnitude of the extracellular current at the point (x = 10 mm, y = 10 mm). In all plots the dotted line represents
the simulation with hslow = hfast, and Dtslow = Dtfast. In (a) the solid line represents the simulation with hslow = 0.5 mm and Dtslow =
10-4 s, and the broken line represents the simulation with hslow = 0.5 mm and Dtslow = 10-3; (b) plots the rapid variations seen in (a)
on an expanded time axis. In (c) the solid line represents the simulation with hslow = 1.0 mm and Dtslow = 10-4 s, and the broken
line represents the simulation with hslow = 1.0 mm and Dtslow = 10-3; (d) plots the rapid variations seen in (c) on an expanded time
axis.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

h
slow

 =

0.1 mm

h
slow

 =

0.5 mm

h
slow

 =

1.0 mm
Linear

solver

C
om

pu
ta

tio
n

tim
e

(s
)

FIGURE 8. Computation time required when using different
values of hslow and Dtslow. The value of hslow is indicated on
the plot. For each value of hslow the solid bar represents
Dtslow = 10-4 s, and the open bar represents Dtslow = 10-3 s.
Also shown is the total time taken to solve the linear system
that is solved on each timestep.

J. P. WHITELEY1406

cases the algorithm proposed here is more efficient,
although the difference is more impressive for the
simulation of length 0.35 s where the new algorithm is
around three times as fast. The adaptive algorithm
performs better on the simulation of length 1.0 s—this
is because very little activity happens between 0.35 s
and 1.0 s, and the adaptive algorithm performs par-
ticularly well under these conditions.

DISCUSSION

We have developed an algorithm that permits an
increase in computational efficiency of over two orders
of magnitude for the simulations presented in this
study. Although we have used the electrophysiological
model described by Noble et al.12 in this study, the
algorithm may be applied to any model that may be
written in the form given by Eqs. (1)–(3). The algo-
rithm presented here is slightly more computationally
efficient than a previously published adaptive algo-
rithm for solving the bidomain equations,29 and has
the advantage over this adaptive technique that it does
not require that the action potential upstroke is
restricted to a small region of space at a given time.

One further advantage of the algorithm presented
here is that it is not particularly difficult to imple-
ment—the only additional requirement over most
currently used software is that two spatial meshes must
be generated, together with a method for interpolating
between these two meshes. This may easily be achieved
by generating the coarser mesh first, and then gener-
ating the finer mesh from this coarser mesh. Although
this may be tedious when done for the first time, both
of these meshes may then be used in as many future
simulations as required at no extra cost.

The key to using the algorithm presented here to
gain computational efficiency while sacrificing only
negligible accuracy is to identify an appropriate parti-
tioning of the total ionic transmembrane current into:
(i) those currents that must be calculated on a fine mesh
and updated on a short timestep; and (ii) those currents
that may be calculated on a coarser mesh and updated
on a longer timestep. For the electrophysiological
model used in this study we saw in Fig. 1 that the fast
sodium current was over an order of magnitude bigger
than the sum of the other ionic currents. Specifically,
the ionic current with the next largest absolute value is
the time-independent potassium current: the maximum
magnitude of this current is almost 30 times smaller
than the largest magnitude of the fast sodium current.
We see from Eqs. (1) and (2) that contributions to Iion
with a large magnitude cause rapid changes in Vm. This
observation allows us to guide an appropriate decom-
position of the total ionic transmembrane current:
currents with a large absolute magnitude should be
calculated on the fine mesh and updated frequently;
while those with a small absolute magnitude may be
calculated on a coarser mesh and updated less fre-
quently. In particular, a current that does not have a
large peak absolute value need not be calculated on the
fine mesh and updated frequently even if it does con-
tribute a substantial amount of current over a relatively
long time period: the low absolute value of this current
will not cause rapid changed in Vm in Eqs. (1) and (2).
A sound physiological knowledge of the underlying
model will also aid a suitable decomposition. The
decomposition may be tested using single cell or one-
dimensional simulations in order to verify that calcu-
lating certain currents and variables on a coarse mesh
does indeed maintain a sufficient level of accuracy.

When partitioning the individual ionic currents it
should be noted that some currents included in elec-
trophysiological models do not contribute to the total
ionic transmembrane current. For example for the
electrophysiological model used in this study12 one
current that has a large magnitude and varies rapidly is
calcium release from junctional sarcoplasmic reticulum
into other parts of the intracellular space. As this
current does not contribute to the transmembrane
ionic current it does not appear in Eqs. (1) and (2), and
so does not directly affect the spatial propagation of
Vm and /e. As such, although it has a large magnitude
in places, it does not have to be computed on the fine
mesh. However, as discussed in section ‘‘The Efficient
Algorithm’’, the large magnitude of this current
requires that the ordinary differential equations are
solved using a timestep that is appropriately small: in
this study we solved the ordinary differential equations
with a timestep Dtfast to ensure the timestep was suit-
ably small.

0

500

1000

1500

2000

2500

3000

3500

4000 Simulation Time
0.35 s

Simulation Time
1.0 s

C
om

pu
ta

tio
n

tim
e

(s
)

FIGURE 9. Computation time required by the algorithm pre-
sented in this study (solid bar) and the adaptive algorithm
given by Whiteley29 (open bar). For the algorithm presented in
this study the values hslow = 0.5 mm and Dtslow = 10-3 s are
used.

Efficient Numerical Solution of the Bidomain Equations 1407

The technique described in this study may also be
applied to electrophysiological models that contain
Markov models of ion channels. These models often
have fast transitions between states. Provided the ion
channel modeled does not correspond to an ionic
current that has a large magnitude there is no need to
solve the ordinary differential equations on the fine
mesh: the equations may be solved on a coarse mesh,
although the timestep used when calculating the
numerical solution of these equations should short
enough to accurately capture the processes modeled.
Should, however, the ion channel modeled correspond
to an ionic current that does have a large magnitude,
this ionic current should be calculated on the fine
mesh.

REFERENCES

1Bernus, O., H. Verschelde, and A. V. Panfilov. Modified
ionic models of cardiac tissue for efficient large scale
computations. Phys. Med. Biol. 47:1947–1959, 2002.
2Brown, P. N., and H. F. Walker. GMRES on (nearly)
singular systems. SIAM J. Matrix Anal. Appl. 18:37–51,
1997.
3Cherry, E. M., H. S. Greenside, and C. S. Henriquez.
Efficient simulation of three-dimensional anisotropic car-
diac tissue using an adaptive mesh refinement method.
Chaos 13:853–865, 2003.
4Colli Franzone, P., L. F. Pavarino, and B. Taccardi.
Simulating patterns of excitation, repolarization and action
potential duration with cardiac bidomain and monodo-
main models. Math. Biosci. 197:35–66, 2005.
5Cooper, J., S. W. McKeever, and A. Garny. On the
application of partial evaluation to the optimisation of
cardiac electrophysiological simulatios. In: Proceedings of
ACM SIGPLAN, Charleston, South Carolina, 2006,
pp. 12–20.
6Hanslien, M., J. Sundnes, and A. Tveito. An uncondi-
tionally stable numerical method for the Luo–Rudy I
model used in simulations of defibrillation. Math. Biosci.
208:375–392, 2007.
7Iserles, A. A First Course in the Numerical Analysis of
Differential Equations. Cambridge Texts in Applied
Maths, Chapter 4, 1996.
8Keener, J. P., and K. Bogar. A numerical method for the
solution of the bidomain equations in cardiac tissue. Chaos
8:234–241, 1998.
9Keener, J. P., and J. Sneyd. Mathematical Physiology.
New York: Springer, Chapter 11, 1998.

10Murillo, M., and X.-C. Cai. A fully implicit parallel algo-
rithm for simulating the non-linear electrical activity of the
heart. Numer. Linear Algebr. Appl. 11:261–277, 2004.

11Nickerson, D. P. Modelling Cardiac Electro-mechanics:
From CellML to the Whole Heart. PhD Thesis, University
of Auckland, New Zealand, 2004.

12Noble, D., A. Varghese, P. Kohl, and P. Noble. Improved
guinea-pig ventricular cell model incorporating a diadic

space, iKr and iKs, length- and tension-dependent processes.
Can. J. Cardiol. 14:123–134, 1998.

13Pennacchio, M. The mortar finite element method for the
cardiac bidomain model of extracellular potential. J. Sci.
Comput. 20:191–210, 2004.

14Pennacchio, M., and V. Simoncini. Efficient algebraic solu-
tion of reaction–diffusion systems for the cardiac excitation
process. J. Comput. Appl. Math. 145:49–70, 2002.

15Plank, G., M. Liebmann, R. Weber dos Santos, E. J.
Vigmond, and G. Hasse. Algebraic multigrid precondi-
tioner for the cardiac bidomain model. IEEE Trans. Bio-
med. Eng. 54:585–596, 2007.

16Portable Extensible Toolkit for Scientific Computing
(PETSc): http://www.mcs.anl.gov/petsc.

17Qu, Z., and A. Garfinkel. An advanced algorithm for
solving partial differential equation in cardiac conduction.
IEEE Trans. Biomed. Eng. 46:1166–1168, 1999.

18Quan, W., S. J. Evans, and H. M. Hastings. Efficient
integration of a realistic two-dimensional cardiac tissue
model by domain decomposition. IEEE Trans. Biomed.
Eng. 45:372–385, 1998.

19Skouibine, K., N. Trayanova, and P. Moore. A numerically
efficient model for simulation of defibrilation in an active
bidomain sheet of myocardium. Math. Biosci. 166:85–100,
2000.

20Sundnes, J., G. T. Lines, and A. Tveito. Efficient solution
of ordinary differential equations modeling electrical
activity in cardiac cells. Math. Biosci. 172:55–72, 2001.

21Sundnes, J., G. T. Lines, and A. Tveito. An operator
splitting method for solving the bidomain equations cou-
pled to a volume conductor model for the torso. Math.
Biosci. 194:233–248, 2005.

22Sundnes, J., B. F. Nielsen, K. A. Mardal, X. Cai, G. T.
Lines, and A. Tveito. On the computational complexity of
the bidomain and the monodomain models of electro-
physiology. Ann. Biomed. Eng. 34:1088–1097, 2006.

23Tomlinson, K. A., P. J. Hunter, and A. J. Pullan. A finite
element method for an eikonal equation model of myo-
cardial excitation wavefront propagation. SIAM J. Appl.
Math. 63:324–350, 2002.

24Trew, M. L., B. H. Smaill, D. P. Bullivant, P. J. Hunter,
and A. J. Pullan. A generalized finite difference method for
modeling cardiac electrical activation on arbitrary, irregu-
lar computational meshes. Math. Biosci. 198:169–189,
2005.

25Victorri, B., A. Vinet, F. A. Roberge, and J.-P. Drouhard.
Numerical integration in the reconstruction of cardiac
action potentials using Hodgkin–Huxley-type models.
Comp. Biomed. Res. 18:10–23, 1985.

26Vigmond, E. J., F. Aguel, and N. A. Trayanova. Compu-
tational techniques for solving the bidomain equations in
three dimensions. IEEE Trans. Biomed. Eng. 49:1260–1269,
2002.

27Weber dos Santos, R., G. Plank, S. Bauer, and E. J.
Vigmond. Parallel multigrid preconditioner for the cardiac
bidomain model. IEEE Trans. Biomed. Eng. 51:1960–1968,
2004.

28Whiteley, J. P. An efficient numerical technique for the
solution of the monodomain and bidomain equations.
IEEE Trans. Biomed. Eng. 53:2139–2147, 2006.

29Whiteley, J. P. Physiology driven adaptivity for the
numerical solution of the bidomain equations. Ann.
Biomed. Eng. 35:1510–1520, 2007.

J. P. WHITELEY1408

http://www.mcs.anl.gov/petsc

	Outline placeholder
	Abs1
	Sec1
	Sec2
	Sec3
	Sec4
	Sec5

	Sec6
	Sec7
	Sec8
	Sec9

	Sec10
	Bib1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

