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ABSTRACT 

According to The Handbook of Tunnel Fire Safety, over 90% (55 out of 61 cases) of fires 

in road tunnels are caused by vehicle crashes (especially rear-end crashes). It is thus 

important to develop a proper methodology that is able to estimate the rear-end vehicle crash 

frequency in road tunnels. In this paper, we first analyze the time to collision (TTC) data 

collected from two road tunnels of Singapore and conclude that Inverse Gaussian distribution 

is the best-fitted distribution to the TTC data. An Inverse Gaussian regression model is hence 

used to establish the relationship between the TTC and its contributing factors. We then 

proceeds to introduce a new concept of exposure to traffic conflicts as the mean sojourn time 

in a given time period that vehicles are exposed to dangerous scenarios, i.e. the TTC is  lower 

than a predetermined threshold value. A crash frequency estimation method is proposed on 

the basis of exposure to traffic conflicts, and we find that the rear-end vehicle crash frequency 

has a proportional linear relationship with the proposed exposure to traffic conflicts.  

Keywords: Rear-end crash frequency; time to collision; Inverse Gaussian regression model; 

road tunnels 
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1. Introduction    

Road tunnels are increasingly cost-effective infrastructures which provide underground 

vehicular passageways for motorists and commuters, especially in densely populated cities 

like Singapore. With the increasing traffic volume and urban development as well as growing 

needs for land use in urban areas, constructing road tunnels is becoming one alternative to 

enhance the capacity and accessibility for road transport systems. However, fire disasters 

occurred in a road tunnel would result in catastrophic consequences due to the enclosed 

nature of tunnel systems. For example, in 1999, 39 people lost their lives in a fire disaster that 

happened in the Mont Blanc Tunnel from France to Italy; and another disaster in Tauern 

Tunnel of Austria resulted in 12 fatalities (PIARC, 2008).  These accidents have raised the 

awareness among the public as well as the government on both the safety aspect of the 

tunnels and that of the road tunnel users. Thus, quantitative risk assessment (QRA) has been 

one of the requirements under the European Union (EU) Directive (2004/54/EC). In 

Singapore, QRA for all major urban road tunnels longer than 240 meters is compulsory in 

accordance with the Project Safety Review (PSR) procedure manual for roads in the country 

(LTA, 2005).  

Several QRA models for road tunnels have been developed, including TuRisMo model of 

Austria, TUNPRIM model of the Netherlands, Italian risk analysis model, OECD/PIARC 

model (PIARC, 2008), and QRAFT model of Singapore (Meng et al, 2011a; Meng et al., 

2011b; Qu et al., 2011). All these models acknowledge that the frequency of fire occurred in 

road tunnels is the most important contributing factor for the risk assessment of road tunnels. 

The Handbook of Tunnel Fire Safety (Beard and Carvel, 2005) points out that over 90% (55 

out of 61 fire cases) of tunnel fires are caused by vehicle crashes (especially the rear-end 

crashes). In addition, according to crash statistics in Singapore’s road tunnels, over 2/3 of 

crashes are categorized as rear-end crashes2. Accordingly, on one hand, rear-end crashes are 

the major cause for fire in road tunnels; on the other hand, rear-end crashes constitute around 

70% out of all the crashes.  It is, therefore, of great importance to develop a methodology that 

can estimate the rear-end vehicle crash frequency in road tunnels (the “rear-end crash” 

henceforth are referred to as “R-E crash” for short).  

A number of studies have been conducted to predict/estimate frequency of various types 

of crashes in highways using crash-frequency data. However, identification of the cause and 

effect relationship is typical unavailable due to lack of microscopic traffic information (or the 

                                                 
2 746 out of 1106 crashes (70%) are categorized as rear-end crashes in the CTE road tunnel from 2006 to 2008. 
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detailed driving data). Consequently, as pointed out by Lord and Mannering (2010), 

researchers have framed their analytic approaches to study the factors that affect the number 

of crashes occurring in some geographical spaces over some specified time periods by using 

various types of count-data regression models in accordance to some assumptions. These 

models include Poisson regression model (e.g. Miaou and Lum, 1993; Miaou, 1994; Hauer, 

2001), Negative binomial/Poisson-Gamma model (e.g. Maycock and Hall, 1984; Malyshkina 

and Mannering, 2010a; Daniels et al, 2010), Zero-inflated Possion and negative binomial 

models (e.g. Maiou, 1994; Shankar et al., 1997; Malyshkina and Mannering, 2010b; Lord et 

al., 2007), Conway-Maxwell-Poisson model (e.g. Lord et al., 2008; Lord et al., 2010), and 

others (e.g. Zhang and Xie, 2007; Guo et al., 2010; Haque et al., 2009). The lack of the 

detailed driving data on highways makes those statistical analysis models biased to reflect the 

fundamental cause and effect relationship. Lord and Mannering (2010) thus highlighted that 

the entirely new direction of research could potentially open up if the anticipated availability 

of the detailed driving data and crash data are available. 

More detailed traffic data are obtainable in road tunnels compared to highways because 

most of road tunnels are equipped with the closed circuit television (CCTV) cameras and/or 

an operation control centre (OCC). For example, each of Singapore’s road tunnels has been 

installed 2 to 4 CCTV cameras every 200 meters and monitored by a twenty-four-hour 

manned operation control centre (OCC). These CCTV cameras record real time and detailed 

traffic information. In addition to hourly traffic volume and density, we can precisely 

measure/estimate the time to collision (TTC) for two consecutive vehicles moving in the 

same lane of a road tunnel using traffic videos. The TTC is defined as the time that remains 

until a collision between two vehicles would have occurred if the collision course and speed 

difference are maintained (Hayward, 1972). The TTC has been one of the well-recognized 

safety indicators for traffic conflicts on highways (Farah, et al., 2009; Svensson, 1998; Vogel, 

2003). Minderhoud and Bovy (2001) further pointed out that the TTC is inversely related to 

vehicle crash frequencies in road sections. It is widely accepted as a safety indicator in 

highways. A TTC threshold value is usually chosen to distinguish relatively safe situation and 

dangerous scenarios exposed to traffic conflicts (or critical encounters). It is acknowledged 

that the TTC threshold should be 2 seconds to 4 seconds (Miderhoud and Bovy, 2001; Vogel, 

2003).  

The objective of this study is to develop a novel R-E crash frequency estimation method 

on the basis of TTC distributions. The TTC sample data are collected from the traffic videos 

of Singapore’s road tunnels. Based on the statistical analysis, we find that the Inverse 
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Gaussian distribution is the best-fitted distribution model for the collected TTC data. The 

Inverse Gaussian regression model is thus employed to establish the relationship between 

TTC distributions and the corresponding traffic volume. Having had the TTC distributions, a 

R-E crash frequency estimation method is put up to reflect the relationship between the TTC 

distributions and the R-E crash frequencies.  

The remainder of this paper is organized as follows. In Section 2, the TTC is defined and 

the data collected from Singapore’s road tunnels are presented. In Section 3, the Inverse 

Gaussian regression model is built to establish the relationship between TTC distributions 

and corresponding traffic volumes. In Section 4, an R-E crash frequency estimation model is 

developed on the basis of the derived TTC distributions. Several conjectures and 

recommendations for further studies are put forward in Section 5. Section 6 concludes this 

study. 

 

2. TTC Data Collection 

Assume that there are two consecutive vehicles moving in the same direction on the same 

lane of a road tunnel. Let leaderL  and followerL  be the locations of the leading and following 

vehicles at a particular time, respectively. Correspondingly, let leaderL  and followerL  denote the 

speeds of the leading and following vehicles at the particular time. According to the TTC 

definition, namely, the time that remains until a collision between two vehicles would have 

occurred if the collision course and speed difference are maintained, the TTC can be 

mathematically expressed by  

 
leader follower leader

follower leader
follower leader

,  if 

                    ,  otherwise

L L l L L
L LTTC
− − > −= 

 ∞

 

   (1) 

where leaderl  is the length of the leading vehicle.  Eqn. (1) implies that the TTC is measurable 

if we have real time traffic information.  

To collect the TTC data in a road tunnel, the Kallang/Paya Lebar Expressway (KPE) and 

the Central Expressway (CTE) in Singapore shown in Figures 1 and 2 are selected. KPE and 

CTE are two vital infrastructures in Singapore’s road system. The first one has a total length 

of 12 kilometers and 9 kilometers of the expressway (Figure 1) is built underground as a road 

tunnel, serving the growing traffic demand of the north-eastern sector of Singapore.  The 

second one, a 17-kilometer expressway, links the north and south of Singapore through the 

Central Business District (CBD). 2.4 kilometers of the expressway (Figure 2) are laid 
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underground and these portions of the CTE form the first road tunnel in Singapore. Both road 

tunnels are equipped with the 24-hour OOC systems.  

 

 
Figure 1: General arrangement of KPE road tunnel 

 

 
Figure 2: Traffic videos recorded from CTE road tunnel 

  

We request 42-hour tunnel traffic videos recorded by CCTV of these two tunnels from 

Land Transport Authority of Singapore, including 14 locations for 3 typical time periods - 

morning peak hour: 8:00 am to 9:00 am, off-peak hour: 14:00 pm to 15:00 pm, evening peak 

hour: 19:00 pm to 20:00 pm - in Mar 2011. The TTC data are generated from these traffic 
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videos in different time periods with different traffic conditions. The procedure of measuring 

a TTC with respect to a particular car-following scenario is summarized as follows. We first 

measure the length of the leading vehicle ( leaderl ) in a car-following scenario. After that, the 

spot speeds of the vehicles ( follower leader and L L  ) can be estimated by measuring the time taken 

by the vehicle to cover two lane-markers’ distance in the video. Then, the time headway ( h ) 

between the leading and following vehicles is recorded. According to Vogel (2003), the gap 

size ( )leader follower leaderL L l− −  can be estimated by ( )follower leaderL h l× − . Finally, the TTC for the 

car-following scenario could be calculated according to eqn. (1).  

In the measurement, we display 30 frames per second to improve the data quality. 867 car 

following scenarios occurred at various locations are examined, and 421 TTC data (TTC with 

a finite value) with respect to different traffic volumes are obtained. Statistically, the number 

of TTC data with a finite value should be equal to that of samples with infinite values. An 

infinite TTC value indicates that the following vehicle will not be possible catch up with the 

leading one, which is an absolutely safe situation. We would focus on the probability 

distributions of TTC samples with finite values accordingly. 

  

 

3. Inverse Gaussian Distribution for TTC  

 

3.1 Statistical analysis for the TTC samples 

A data analysis procedure is proposed in order to obtain the best-fitted TTC distributions. 

Five commonly used distributions are examined in this study: Inverse Gaussian, Exponential, 

Normal, Triangular, and Lognormal. The maximum likelihood estimation (MLE) technique is 

employed to estimate the parameters involved in a distribution. After obtaining the 

parameters for the five types of distributions, the goodness-of-fit test is conducted to select 

the best-fitted distribution among the given candidate distributions. Kolmogorov-Smirnov 

(K-S) test, a nonparametric test, has been widely applied to compare a sample with a 

reference probability distribution in transportation studies (e.g. Ibeas et al., 2011; Páez et al., 

2011). In this study, the K-S test is also adopted to perform the goodness-of-fit test. The K-S 

statistic quantifies a distance between the empirical distribution function of the sample and 

the cumulative distribution function of the reference distribution. In this study, a distribution 

with the lowest K-S test statistic is regarded as the best-fitted distribution.  



7 

Following the above-mentioned data analysis procedure, we analyze five sets of the TTC 

data collected at different locations with respect to different traffic volumes, as shown in 

Table 1.  Table 2 gives results of the best-fit analysis. 

 

Table 1: TTC data  

 Traffic volume (vehs/hour∙lane) Number of data  

Location 1 894 104 

Location 2 963 65 

Location 3 1127 80 

Location 4 1374 79 

Location 5 1672 93 
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Table 2: Statistical analysis for the TTC samples 

 Inverse Gaussian Lognormal Triangular  Exponential Uniform  

Distributions  K-S Distributions K-S  Distributions K-S  Distributions K-S  Distributions K-S  

Location 

1 

IG 

(9.26, 12.21) 

0.0968* Lognorm 

(9.27, 8.28) 

0.1198 Triang 

(0, 2.30, 31.50) 

0.2385 Expon 

(9.26) 

0.1814 Uniform 

(0, 29.82) 

0.3600 

Location 

2 

IG 

(9.69, 12.88) 

0.1003* Lognorm 

(9.71, 8.62) 

0.1138 Triang 

(0, 2.41, 32.80) 

0.2471 Expon 

(9.69) 

0.1764 Uniform 

(0, 31.39) 

0.3746 

Location 

3 

IG 

(11.20, 14.06) 

0.1017* Lognorm 

(11.53, 9.56) 

0.1024 Triang 

(0, 2.10, 37.40) 

0.1756 Expon 

(11.20) 

0.2091 Uniform 

(0, 36.84) 

0.3807 

Location 

4 

IG 

(12.30, 11.01) 

0.0813* Lognorm 

(12.96, 13.86) 

0.1097 Triang 

(0, 1.41, 40.60) 

0.1768 Expon 

(12.30) 

0.1408 Uniform 

(0, 39.55) 

0.3449 

Location 

5 

IG 

(7.26, 9.24) 

0.0651* Lognorm 

(7.24, 6.45) 

0.0781 Triang 

(0, 1.65, 29.88) 

0.3199 Expon 

(7.26) 

0.1934 Uniform 

(0, 29.57) 

0.4948 

* The K-S statistics of the best fitted distributions. 
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According to Tables 1 and 2, we can find that 

(1) The Inverse Gaussian distribution is the best-fitted distribution for all the five 

locations3. Figures 3(a) and 3(b) depicts the histograms and empirical cumulative 

distribution function (CDF) for data samples with the best-fitted distributions (traffic 

volume = 963 vehs/hour∙lane). 

(2) Lognormal distribution also performs very well for the five locations (relatively small 

K-S values). In reality, other samples may suggest that Lognormal distributions are 

better. The two distributions have similar patterns. Let us take the Location 1 as an 

example: ( )( )9.26,12.21 3 0.138P IG ≤ =  and ( )( )Lognorm 9.27,8.28 3 0.139P ≤ = 4. 

Indeed, the differences between the two distributions are very marginal. In the 

following analysis, without loss of generality, we will assume the samples follow 

Inverse Gaussian distributions as suggested in Table 3.  

                                                 
3 Inverse Gaussian Distribution is a two parameter family of continuous probability distributions with support on (0, ∞ ). Its 
probability density function is given by 

( ) ( )1 22

3 2; , exp ,0 .
2 2

x
f x x

x x
λ µλµ λ

π µ

 − −   = < < ∞      
 

where µ >0 is the mean and λ >0 is the shape parameter. The distribution can be viewed as the distribution of first passage 
time of a Wiener process with an absorbing barrier, i.e., while the Gaussian describes a Brownian Motion's level at a fixed 
time (Wiener process), the inverse Gaussian describes the distribution of the time the Brownian Motion takes to reach a 
fixed positive level.  
 
4 In this example, the TTC threshold is assumed to be as 3 second. Similar results are obtainable if we assume the threshold 
is 2 second or 4 second.  
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Figure 3: The histograms and empirical CDF (traffic volume = 963 vehs/hour∙lane). 

 

(3) The TTC data collected at different locations with respect to similar traffic volume 

generally follows the same Inverse Gaussian distribution (e.g. Location 1 and 

Location 2). In other words, the traffic volume could be considered as the 

contributing factor for TTC distributions. 

(4) The TTC sample mean and its inverse both have a parabola relationship with the 

traffic volume, as shown in Figures 4 and 5. This is because two contributing factors 

to TTC, distance headway and speed dispersion, are both dependent of the traffic 

volume. When traffic volume is low (<1000 vehs/hour∙lane), the great speed 

dispersion could result in low TTC values. However, when traffic volume is high 

(>1600 vehs/hour∙lane), the small distance headway would lead to low TTC values.  



11 

(5) The shape parameters ( λ ) of the best fitted Inverse Gaussian distributions with 

respect to different traffic volumes are within a relatively small range from 9.24 to 

14.06.  

 

TTC Sample Mean - Traffic Volume Relationship

y = -3E-05x2 + 0.0655x - 28.747
R2 = 0.9371
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Figure 4: TTC sample mean – traffic volume relationship 
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Inverse of TTC Mean - Traffic Volume Relationship 

y = 3E-07x2 - 0.0007x + 0.5007
R2 = 0.9532
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Figure 5: Inverse of TTC mean – traffic volume relationship 

 

3.2 Estimation of the parameters defining Inverse Gaussian distribution  

As discussed in Section 3.1, both Inverse Gaussian distribution and Lognormal 

distribution fit the data very well. In the following analysis, without loss of generality, we use 

an Inverse Gaussian regression model to establish the relationship between TTC and traffic 

volume. To formulate the inverse Gaussian regression model, let ,  1, , ,iy i n=   be n 

independent observations (TTC samples) distributed as ( ),iIG µ λ , in which the inverse of 

sample mean has a parabola relationship with traffic volume, namely: 

 2
0 1 2

1 0i i
i

x x= + + >β β β
µ

 (2) 

where ix   is traffic volume of TTC sample i . Whitmore (1983) derived the pseudo maximum 

likelihood estimations of β  and λ  as  

 ( ) 1ˆ ' 'X YX Xβ −= 1  (3) 

( )1ˆˆ 'Tn Y X−λ = − β1 1 1  (4) 

where Y is the diagonal matrix with i-th diagonal elements being yi, 1  is the n-vector of all 

ones and ( )21, ,
T

i iX x x= . They are called the pseudo maximum likelihood estimations 
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because the condition 2
0 1 2

ˆˆˆ 0i ix xβ +β +β >  for all i is not guaranteed to be satisfied 5 . 

According to the collected 421 TTC data with different traffic volumes, the estimated 

coefficients are 

 1
0

ˆ 5.606 10β −= ×  (5) 

 4
1̂ 7.900 10β −= − ×  (6) 

 7
2

ˆ 3.21 10β −= ×  (7) 

 ˆ 12.17λ =  (8) 

After obtaining the estimated coefficients, the TTC distributions could be determined for 

different traffic conditions reflected by their traffic volumes. In order to evaluate how well 

the Inverse Gaussian regression model estimates the TTC distributions, we compare the 

derived TTC distributions with the TTC samples at different traffic volumes - 894 

vehs/hour∙lane, 963 vehs/hour∙lane, 1,127 vehs/hour∙lane, 1,374 vehs/hour∙lane, and 1,672 

vehs/hour∙lane) - by using the hypothesis test. The K-S test is applied to conduct the 

hypothesis test. The null hypothesis is rejected at level α  if   

nnD Kα>                     (9) 

where n is the number of samples, Dn is the K-S statistic, and Kα  is the critical value 

(α =0.05 in this study). The results of K-S tests are reported in Table 3.  

 

Table 3: K-S tests 

Traffic volume 

(vehs/hour∙lane) 

Number of 

samples (n) 

 

Distributions 

 

K-S values 

(Dn) 

Critical 

value 

( 0.05K ) 

 

Test results 

894 104 IG(9.02, 12.17) 0.0977 1.36 1.00<1.36 

963 65 IG(10.26, 12.17) 0.1086 1.36 0.88<1.36 

1,127 80 IG(12.33, 12.17) 0.1496 1.36 1.34<1.36 

1,374 79 IG(12.83, 12.17) 0.0821 1.36 0.73<1.36 

1,672 93 IG(7.30, 12.17) 0.1026 1.36 0.99<1.36 

 

Table 3 shows that the regression model performs well. Figures 6(a) and 6(b) depict the 

CDF of the best fitted Inverse Gaussian distribution and the CDF generated by Inverse 

                                                 
5 The condition is guaranteed in this study since the traffic volume is with the range from 800 to 1700 vehs/hour∙lane. 
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Gaussian regression for a TTC sample (traffic volume = 1,672 vehs/hour∙lane), respectively. 

As can be seen in the figures, the samples could be well represented by either of the two 

Inverse Gaussian distributions with different parameters.  
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(a) Empirical CDF & CDF generated by IG regression model 

(b) Empirical CDF & Best fitted IG CDF  
Figure 6: Empirical CDF with Inverse Gaussian distributions (traffic volume = 1,672 

vehs/hour∙lane) 
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4. Accident frequency estimation  

 

4.1 TTC threshold value and exposure to traffic conflicts  

As mentioned in the introductory section, a TTC threshold value is usually chosen to 

distinguish relatively safe situation and dangerous scenarios exposed to traffic conflicts (or 

critical encounters). Various opinions can be found from the literature as to which value 

should be used as the threshold value. Hirst and Graham (1997) reported that a time-to-

collision measure of 4 seconds could be used to discriminate between cases where drivers 

unintentionally find themselves in a dangerous situation from cases where drivers remain in 

control. Hogema and Janssen (1996) presented a minimum TTC value of 3.5 seconds for non-

supported drivers and 2.6 seconds for supported drivers. It is widely acknowledged that the 

TTC threshold should be 2 seconds to 4 seconds (Minderhoud and Bovy, 2001; Vogel, 2003).  

We define the exposure to traffic conflicts as the mean sojourn time in a given time period 

(e.g. an hour) that vehicles are exposed to dangerous scenarios (or critical encounters), i.e. the 

TTCs are lower than a predetermined threshold valueτ . Having had the TTC distributions for 

road tunnel sections (Section 3), the exposure to traffic conflicts in an hour can be quantified 

by. 

 ( ) ( )( )( 1) Pr 0.5conflictN K L TTC xτ τ= × − × ≤ ×   (10) 

where K denote the traffic density; L is the length of a road tunnel section; ( 1)K L× −  

indicates number of gaps in the section; ( )( ) 0.5P TTC x τ≤ ×  represents the probability of 

TTC less than the threshold value τ 6; x is the traffic volume of the time period in the road 

tunnel section. Note that only half of car following scenarios will result in finite TTCs and 

the other half is considered as absolutely safe situations (infinite TTCs).  

 

4.2 Historical Crash-Damage database  

Historical Crash-Damage (HCD) database of Singapore is used to examine the 

relationship between exposure to traffic conflicts and crash frequencies. According to the 

Motor Claims Framework (MCF) introduced by the General Insurance Association of 

Singapore (GIA), in the event of a crash in expressways, everyone involved must inform the 

insurance company within one day using the GIA Motor Accident Report form. In addition, 

according to Road Traffic Act in Singapore, another report must be made within 24 hours of 
                                                 
6 The infinite TTC samples are considered as absolutely safe situations. The coefficient 0.5 is adequate only in stable traffic 
conditions; the coefficient would be a little greater than 0.5 for unstable traffic flows. For simplicity, the coefficient is 
assumed to be 0.5 in this study.  
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a crash if an injury has occurred. The HCD database (2006-2008) has all the reported crash 

records, by means of either ways, occurred at Singapore expressways from 2006 to 2008, 

which includes the time of crash, location of crash, crash type (e.g. rear-end, skidded, etc.), 

vehicle type (e.g. car-car, car-truck, etc.), number of slight injuries, number of serious injuries, 

and number of fatalities7. To sum up, there are 746 rear-end crashes in the CTE road tunnel 

from 2006 to 2008, causing 0 fatalities, 45 severe injuries, and 458 slight injuries.  

 

4.3 Relationship between exposure to traffic conflict and crash frequency   

2 seconds, 3 seconds, and 4 seconds are considered as the TTC threshold values. From 

the HCD database we get the crash frequencies in a one-km road tunnel section in CTE road 

tunnel are 11, 5, 8, 20, 17, and 4 for he time period 7:00 am to 8:00 am, 1:00 pm to 2:00 pm, 

5:00 pm to 6:00 pm, 8:00 pm to 9:00 pm, 9:00 am to 10:00 am, and 11:00 pm to 12:00 am 

from 2006 to 2008, respectively. In the one-km tunnel section, there is a 2.4 meters wide 

shoulder and three 3.6 meters traffic lanes in each carriageway with a tunnel structural height 

of approximately 6 meters high. Both the curvature and gradient are very gentle in this 

section.  

We assume that the traffic volumes in the road tunnel section in a specific time period 

would not have significant daily variations. In accordance with the LTA policy, only the 

latest two years traffic volume data are obtainable. Therefore, the traffic volumes and 

densities from 2006 to 2008 are not obtainable for this study. The average traffic volumes are 

estimated by LTA tunnel operators on the basis of the 2010-2011 traffic volume and the 

summary traffic data in 2006-2008. Accordingly, due to the data unavailability, we just use 

accurate R-E crash data and estimated average traffic volume to illustrate the methodology in 

the case study. The estimated traffic volumes, densities, lengths, and number of R-E crashes 

are summarized in Table 4.  

 

Table 4: Traffic volumes, density, length, and crash records for different time periods 

Time period R-E Crash 

records 

(2006-2008) 

Estimated 

Traffic volume 

(vehs/hour∙lane) 

Density 

(vehs/km∙lane) 

Average 

Speed 

(km/hour) 

                                                 
7 According to the Cost of Road Traffic Accidents in Singapore, a serious injury is one who has suffer injuries such as 
fractures or a concussion and/or internal lesions, crushed body parts or organs, severe cuts, or severe general shock requiring 
medical treatment or hospitalization that prevents the person from performing ordinary tasks for at least 7 days; a slight 
injury refers to one who is transported to a hospital from the scene in an ambulance or, otherwise, one who requires 
subsequent medical treatment entailing hospitalization and medical leave of no less than 3 days.  
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7:00am - 8:00am 11 1600 25 62 

1:00pm - 2:00pm 5 1200 16 73 

5:00pm - 6:00pm 8 1400 20 70 

8:00pm - 9:00pm 20 1700 45 39 

9:00pm - 10:00pm 17 1600 50 34 

11:00pm - 12:00am 4 900 11 78 

 

According to eqn. (9), the exposure to traffic conflicts could be calculated. We further 

analyze the relationship between exposure to traffic conflicts and the crash frequency by 

using the linear regression methods, which is illustrated in Figure 7. The cumulative residual 

(CURE) method is a well recognized method to examine the goodness of fit of models in 

transportation studies (AASHTO, 2010; Hauer, 2004; Hauer and Banfo, 1997). Figure 8 

depicts the cumulative residuals for the linear regression models. As can be seen from Figure 

8, the linear regression models perform well.  
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Figure 7: R-E crash count – traffic conflicts relationship with linear fit 
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(c) Cumulative Residual (4s)  
Figure 8: Plot of cumulative residuals against the proposed safety indicator 

 

The statistical results for the linear regression models are reported in Table 5. 

Surprisingly, the P-values of the coefficients with respect to constant for the three linear 

regression models are all greater than 0.035. By contrast, the P-values of coefficients with 
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respect to R-E crash frequency are all close to 0. That is to say, the coefficients with respect 

to intercept are very significant. We further conduct another linear regression model with 0 

intercept, which is shown in Figure 9. This indicates that the crash rate may have a 

proportional linear relationship with the proposed exposure to traffic conflicts. The 

corresponding proportional coefficient is defined as causation factor ( ( )P t ), which could be 

considered as the conditional probability that vehicle crashes could not be avoided under 

dangerous encounters for one hour.   

  

Table 5: statistical results of linear regression models  

 Constant Crash frequency  

R-Sq  Coefficient P-value Coefficient P-value 

2s 2.5929 0.035 0.0111 0.000 0.9738 

3s 2.4085 0.044 0.0037 0.000 0.9744 

4s 2.2446 0.058 0.0022 0.000 0.9736 

  

 

Crash count - traffic conflicts relationship
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Figure 9: R-E crash count – traffic conflicts relationship with linear fit (0 intercept) 

 

4.4 Remarks on the crash count – traffic flow relationship  

As for the crash count – traffic flow relationship, a series of studies were carried out by 

several scholars on the basis of the actual data. Chang and Jovanis (1986) proposed a method 

to model the relationship between miles travelled and crash count in a time-space domain. 
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Hauer et al. (1988) developed a model to estimate the safety of a signalized intersection on 

the basis of the traffic flow and crash count. Miaou and Lum (1993) compared four 

regression models – two conventional linear regression models and two Poisson regression 

models – in terms of their ability to model the relationship among traffic flow, geometry 

design, and crash count in highways. All the above mentioned studies acknowledged that it 

was not appropriate to apply the conventional linear regression to model crash count and 

traffic flow. Figure 10 depicts the crash count – traffic volume relationship for the present 

study. As can be seen in the figure, neither of the linear regression (R2 = 0.7323) and 

proportional regressions (R2 = 0.5339) performs well. Since traffic volume equals to the 

product of density and speed (Lieu et al., 1999) the densities and speeds for two road sections 

with the same traffic volume may not be the same (e.g. the two points circled in Figure 9). In 

reality, the crash frequency is also closed related to the speed and density of a road section 

(Aarts and van Schagen, 2006). Hence, it is not appropriate to assume the linear relationship 

between crash count and traffic volume.  

Crash count - traffic volume relationship
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Figure 10: Crash count – traffic volume relationship 

 

Comparatively, as can be seen from Figures 7 and 9, both linear regression and 

proportional regression perform well in this study. This is because not only traffic volume but 

also density is taken into account in the proposed exposure to traffic conflicts. The results 

shows that, in Singapore’s road tunnels, the exposure to traffic conflicts based method 

outperforms the traffic volume based approach.  

 



21 

5. Discussions  

 The proposed causation factor ( )P t  reflects the conditional probability that vehicle 

crashes have occurred when the vehicle are exposed to dangerous scenarios for one hour. The 

probability would be dependent on vehicle conditions, drivers’ abilities, and the road 

geometries. We conjecture that this factor could be a constant for a given road tunnel section 

in the long run with a given TTC threshold value. The TTC values would generally have a 

parabola relationship with traffic volume because they will be affected by not only speed 

dispersion but also distance headways. For non-interrupt traffic flows with traffic volume 

from 900 vehs/hour∙lane to 1,700 vehs/hour∙lane, the TTC distributions may follow the 

Inverse Gaussian distributions (lognormal distributions are also a good approximation) and 

traffic volume could be considered as the contributing factor to the distribution parameters. It 

should be pointed out that these perspectives need to be validated using more actual data 

from other expressways and/or urban road tunnels.  

The crash data from Singapore’s road tunnels shows that linear or proportional 

relationship may not be good enough to reflect the relations between crash count and traffic 

volume. Instead, the linear and proportional relationships perform very well between crash 

count and exposure to traffic conflicts. This may be because not only traffic volume but also 

density is taken into consideration in the proposed exposure to traffic conflicts.  

Other than the TTC, the deceleration rate to avoid the crash (DRAC) and the post 

encroachment time (PET) have also been considered as good safety indicators to measure the 

safety level in roads (Meng and Weng, 2011; Cunto and Saccomanno, 2008). Further study 

may be conducted to establish the relationship between crash frequency and the above-

mentioned two safety indicators. The comparative analysis of these three safety indicators 

could also be studied accordingly. In addition, the model can also be applied to identify the 

hotspots in the urban road tunnels and/or expressways (Cheng and Washington, 2005; 

Montella, 2010).  

 

6. Conclusions   

In this study, a novel approach is proposed to estimate the R-E crash frequency in road 

tunnels. We first conclude that Inverse Gaussian distribution is the best-fitted distribution to 

the TTC data based on the best-fit analysis. Accordingly, an Inverse Gaussian regression 

model is applied to establish the relationship between the TTC and the corresponding traffic 

volume. A new concept of exposure to traffic conflicts is defined as the mean sojourn time in 
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a given time period that vehicles are exposed to dangerous scenarios, i.e. the TTCs are lower 

than a predetermined threshold value. Then, a R-E crash frequency estimation model is 

proposed on the basis of the accident records provided by the HCD database for Singapore’s 

road tunnels. We find that the crash frequency has a proportional linear relationship with the 

proposed exposure to traffic conflicts. Finally, several conjectures and recommendations are 

proposed.  
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