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Abstract—This paper proposes and evaluates the application of
support vector machine (SVM) to classify upper limb motions using
myoelectric signals. It explores the optimum configuration of SVM-
based myoelectric control, by suggesting an advantageous data
segmentation technique, feature set, model selection approach for
SVM, and postprocessing methods. This work presents a method to
adjust SVM parameters before classification, and examines over-
lapped segmentation and majority voting as two techniques to
improve controller performance. A SVM, as the core of classi-
fication in myoelectric control, is compared with two commonly
used classifiers: linear discriminant analysis (LDA) and multilayer
perceptron (MLP) neural networks. It demonstrates exceptional
accuracy, robust performance, and low computational load. The
entropy of the output of the classifier is also examined as an online
index to evaluate the correctness of classification; this can be used
by online training for long-term myoelectric control operations.

Index Terms—Classification, data segmentation, entropy,
feature selection, myoelectric control, support vector machine
(SVM).

I. INTRODUCTION

S INCE most disabled people have problems manipulating
current assistive robots and rehabilitation devices that em-

ploy traditional user interfaces, such as a joystick and/or key-
board, they need more advanced hands-free human–machine
interfaces. Surface myoelectric signals (MESs), which are col-
lected from the skin covering muscles, contain rich information
that can be used to recognize neuromuscular activity in a nonin-
vasive manner. A myoelectric control system (MCS), which uses
MES as a reference input signal to manipulate assistive robots or
rehabilitation devices, has the potential to become a competent
alternative to traditional body-powered user interfaces [28]. A
pattern-recognition-based MCS, functions by recognizing dif-
ferent pretrained signal patterns, and applies corresponding pre-
defined motion commands to electric motors and/or actuators.
It provides hands-free and proximal function control based on
neuromuscular activity. The success of myoelectric control de-
pends greatly on classification accuracy. Effective feature ex-
traction and classification methods are crucial to achieving high
classification performance in pattern recognition.
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The application of pattern recognition to myoelectric con-
trol schemes was first introduced in the 1960s–1970s [1], [2];
however, due to limited acquisition instruments and comput-
ing capacity at that time, real-time control was not feasible.
Hudgins et al. [3] were pioneers in developing a real-time
pattern-recognition-based MCS. Using time-domain (TD) fea-
tures and a multilayer perceptron (MLP) neural network, they
succeeded in classifying four types of upper limb motion, with
an accuracy of approximately 90%. This work was contin-
ued over the last 15 years, by employing various classifiers,
such as linear discriminant analysis (LDA) [4], [5], MLP/radial
basis function (RBF) neural networks [6], time-delayed ar-
tificial neural network (ANN) [7], fuzzy [8], [9], NEURO-
fuzzy [10], fuzzy ARTMAP networks [11], fuzzy-MINMAX
networks [12], Gaussian mixture models (GMMs) [13]–[15],
and hidden Markov models (HMMs) [16].

Vuskovic and Du [11] introduced a modified version of a
fuzzy ARTMAP network to classify prehensile MESs. Engle-
hart et al. [4] showed that LDA, outperforms MLP on time-scale
features that are dimensionally reduced by PCA. In addition,
significant results were achieved using probabilistic approaches.
Chan and Englehart [16] applied an HMM to discriminate six
classes of limb movement based on a four-channel MES. It
resulted in an average accuracy of 94.63%, which exceeded an
MLP-based classifier used in [5] (93.27%). Furthermore, Huang
et al. [13] and Fukuda et al. [14] developed a GMM as a classifier
in their MCS; the former showed an accuracy of approximately
97%. Englehart et al. [5] introduced a continuous classification
scheme that provided more robust results for a shortened
segment length of signal, and high-speed controllers. In this
paper, we apply a support vector machine (SVM) as a classifier
to recognize upper limb motion from surface MES patterns.

The SVM is a kernel-based approach with a strong theo-
retical background, which has become an increasingly pop-
ular tool for machine learning tasks involving classification
and regression. It has recently been successfully applied to
several applications, ranging from face identification [17] and
text categorization [18] to bioinformatics and database min-
ing [19]. An SVM constructs an optimal separating hyper-
plane in a high-dimension feature space of training data that
are mapped using a nonlinear kernel function. Therefore, al-
though it uses a linear learning machine method with respect
to the nonlinear kernel function, it is in effect a nonlinear
classifier. The use of a nonlinear kernel function greatly in-
creases the power of learning and generalization. However, it
can also increase the risk of overfitting, which may lead to bad
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generalization. Therefore, the flexibility of the kernel-induced
feature space is controlled by setting an upper band for general-
ization risk. Having control on the generalization performance
improves the robustness against noisy data such as MES. Train-
ing an SVM involves the optimization of a convex cost function;
there are relatively few free parameters to adjust, and the archi-
tecture does not have to be found via experimentation.

The rest of this paper is organized as follows. In the next sec-
tion, we introduce nonlinear SVM, and then, multiclass classifi-
cation. Section III presents methodologies used for data acquisi-
tion, experiments, analysis, and evaluation. Section IV provides
experimental study and statistical analysis in which the impact
of segmentation methods, features, classifiers, and postprocess-
ing are examined with respect to classification performance. In
addition, the validity of entropy as an index for classification
correctness is investigated. Finally, in Section V, conclusions
are presented.

II. BACKGROUND

A. Binary SVM

In SVM, training is reformulated in such a way as to ob-
tain a quadratic programming (QP) problem. The solution
to this QP problem is global and unique. For the empirical
data (x1 , y1), . . . , (xm , ym ) ∈ RN × {±1} that are mapped by
φ : RN �→ F into a “feature space,” the linear hyperplanes that
divide them into two labeled classes can be shown as

w × φ(x) + b = 0 w ∈ RN , b ∈ R. (1)

To construct an optimal hyperplane with maximum-margin
and bounded error in the training data (soft margin), one solves
the following QP problem

minw,b
1
2
‖w‖2 + C

m∑
i=1

ξi

yi(w × φ(xi) + b) ≥ 1 − ξi, i = 1, . . . ,m.

(2)

The first term in cost function (2) makes maximum margin
of separation between classes, and the second term provides an
upper bound for the error in the training data. Due to the noise,
which regularly accompanies the MES, error in the training
data (i.e., the samples that are placed on the wrong side of the
hyperplane shown by ξi) is practically inevitable. Meanwhile,
the bounded error in the training data can prevent overfitting.
The constant C ∈ [0,∞) creates a tradeoff between the number
of misclassified samples in the training set and separation of the
rest samples with maximum margin. A way to solve (2) is via its
Lagrange function. Given kernel k(xi, xj ) = φ(xi).φ(xj ), the
Lagrange function of (2) is simplified to

max
α

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyj k(xi, xj ) (3)

w =
m∑

i=1

yiαiφ(xi),
m∑

i=1

αiyi = 0, 0 ≤ αi ≤ C ∀i. (4)

The (4) shows that the optimal hyperplane, in feature space,
can be written as the linear combination of training samples with
αi 
= 0. These informative samples, known as support vectors,

construct the decision function of the classifier based on the
kernel function

f(x) = sgn

( m∑
i=1

yiαik(x, xj ) + b

)
. (5)

There are different kernels, which are often selected
based on the data structure and type of the bound-
aries between classes, the most popular ones are: lin-
ear: k(xi, xj ) = xi.xj ; polynomial: k(xi, xj ) = (γxi.xj +
r)d ; RBF: k(xi, xj ) = exp(−γ ‖xi − xj‖2); and sigmoid:
k(xi, xj ) = tanh(γxi.xj + r). Here, r, γ, d > 0 are the kernel
parameters. Generally, RBF is suggested for use in unknown
applications. More details about the SVM are available in [21]
and [27].

B. Multiclass SVM

The SVM, inherently, is a binary classifier, while many prob-
lems we are interested in solving (such as the classification
of limb motions), are multiclass. An SVM performs very well
for binary problems; it is desirable to extend its capabilities to
multiclass problems. There are two approaches to a multiclass
SVM. One involves directly considering all data in a single op-
timization problem, while the other involves constructing and
combining several binary classifiers. The literatures show that
the former approach does not offer any additional advantages
over the combined binary SVMs [22], [23].

Probably the simplest scheme for the k-class classification
problem is to train k independent binary classifiers that are each
trained to distinguish training samples for one class with regard
to remaining classes. This scheme is referred to as the “one-
against-all” or OAA. It is very simple to implement, relatively
fast running, obvious, and produces results that are often as/more
accurate as/than other methods. Another method is the “one-
against-one” or OAO. In this method, k(k–1) binary classifiers
are trained to separate a pair of two classes. To classify a new
sample, a class that gains most votes of the binary classifiers
is chosen as the final output. This method same as OAA has a
simple conceptual justification and can be implemented quickly.
The advantage of OAO is that it conducts binary classifications
on all pairs of classes, and computes the probability for each
class [24]. This supports the analytic concept for generalization
and certainty. Given that rij is an estimate for the probability
of the output of a pair wise classifier between class i and j
(i.e., rij ≈ P (y = i|y = {i, j}, x), rij + rji = 1), and that pi

is the probability of the ith class, the class probability p =
(p1 , . . . , pk ) can be derived via a QP problem (6)

min
p

k∑
i=1

∑
j :j 
=i

(rij pj − rjipi)2 ,

k∑
i=1

pi = 1, pi ≥ 0, ∀i. (6)

This paper employs library for support vector machines (LIB-
SVM) [20] as the core of an SVM classifier, and conducts mul-
ticlass classifications using C-SVM and the OAO method.
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Fig. 1. Disjoint (left) and overlapped (right) segmentation.

III. METHODOLOGY

This section introduces methods applied for data collection,
experiments, and analysis. It is comprised of different sections
for data acquisition, data segmentation, feature selection, clas-
sification, postprocessing, and evaluation.

A. Data Acquisition

A four-channel MES was collected from four locations on a
forearm (i.e., biarticulate wrist flexor and triarticulate and biar-
ticulate wrist extensor muscles), using bipolar active electrodes
(Biometrics, Ltd., SX230). An active electrode has a preampli-
fier with gain 1000, which can differentiate between a small
signal of interest and much larger interference signals that are
present on the skin. It also has a very high input impedance
to cope with mismatches in skin contact resistance. Signals are
passed through a high-pass filter with a cutoff frequency of
20 Hz to remove dc offsets due to membrane potentials, and to
minimize interference due to electrode movement. A low-pass
filter is used to remove unwanted frequencies above 450 Hz,
and a notch filter used to remove unwanted line-frequencies
(50/60 Hz). An electrode was also placed on the wrist, provid-
ing a common ground reference. Signals were sampled at 1000
Hz using a 12-b A/D converter.

Data were collected from 11 healthy subjects. Each subject
performed five limb motions, and rest to provide six distinct
states (i.e., classes). The motions were isotonic and comprised of
flexion, extension, abduction, adduction, and keeping the hand
straight. Two sequences of six motions in which each motion
was held fixed for the five seconds are called a block. Four
blocks of data were gathered from subjects in each session. Two
sessions were conducted for each subject, and in each session,
the accuracy of classification was computed using a fourfold
cross-validation method.

B. Data Segmentation

A segment is a sequence of data limited in a time slot,
which is used to estimate signal features. A short length of
segment leads to bias and variance in feature estimation; while
a long one imposes high computational load and a likely fail-
ure to perform real-time operation. Real-time constraints en-
force a delay time of less than 300 ms between the onset of
muscle contraction made by a subject, and a corresponding
motion in a device [3]. It should be noted that the minimum
interval between two distinct contractions is approximately

200 ms [29], [30]. This means that a segment of MES data
with a length of 200 ms (or more) contains enough information
to estimate a motion state of the hand. A segment length equal
to or less than 200 ms leaves enough time (at least 100 ms)
for the computation of features, classification, and generation
of control commands, plus a device response time to maintain a
real-time smooth motion control scheme.

However, a segment larger than 200 ms necessitates over-
lapped segmentation [1], [2] in order to avoid failure in real-time
operation. The application of overlapped segmentation facili-
tates the employment of large segments (greater than 200 ms)
for real-time control; however, computational load is still a mat-
ter of fact. Two methods of segmentation, namely, disjoint and
overlapped segmentation, are illustrated in Fig. 1. Disjoint seg-
mentation is associated with segment length, while overlapped
segmentation is associated with length and increment. The in-
crement is the time interval between two consecutive segments.
It should be less than the segment length, and more than the
processing time.

The first experiment in which the accuracy of classifications
with a segment length of 50, 100, 150, 200, 300, and 500 ms
were examined, investigates the influence of the segment length
on classification (for different features). For segment lengths of
50, 100, 150, and 200 ms, disjoint segmentation was applied,
while for lengths of 300 and 500 ms, overlapped segmentation
with an increment of 200 ms was applied. Since an MES has an
undetermined state between two levels of contraction, most clas-
sification error belongs to the transition period between classes.
Hence, to avoid contradictory data during transition between
motions, one segment of the transition period was eliminated
from the training data. This means that classification relies on a
steady state of muscle contraction.

C. Feature Selection

Because of the significance of features during classification,
feature selection is an essential stage in myoelectric control de-
sign. A significant amount of literatures investigates or compares
various features of TD, frequency-domain (FD), and time-scale,
for myoelectric control [1], [2], [25]. Features should be capa-
ble of presenting the characteristics or properties of a signal
for different limb motions. Computational load should also be
considered in the real-time applications. In this work, the rel-
ative performance of various single features and feature sets
(multifeatures) is determined in the context of an SVM-based
classifier.
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A surface MES is formed via the superimposition of individ-
ual action potentials (APs), generated by irregular discharges of
active motor units (MUs) in a muscle fiber. Therefore, amplitude
and frequency both represent the level of activity of motor units
in the fiber, and signal features are mostly chosen from both time
and frequency domains. The MES is a nonstationary stochastic
process, with approximately zero mean and varying variance.
Its amplitude, variance, energy, and frequency vary depending
on contraction level. Time-scale features are excluded in this in-
vestigation, since MES can be assumed stationary in short-time
muscle contractions. In addition, time-scale features, which are
powerful in transient states, do not outperform TD features dur-
ing a steady state. However, they impose a huge computational
load [5], [13].

A wide range of features are considered individually and in-
group in this paper. The involved features of the TD are mean ab-
solute value (MAV), root mean square (RMS), waveform length
(WL), variance (VAR), zero crossings (ZCs), slope sign changes
(SSC), William amplitude (WAMP), and two types of modi-
fied mean absolute values (MAV1 and MAV2). A mathematical
definition of features is presented in Table II. Considered FD
features are a power spectrum (PS), autoregressive coefficients
of order 2 and 6 (AR2 and AR6), and the mean and median of
signal frequencies (FMN, FMD). In addition, four sets of fea-
tures are examined in this work. The first set, which is called
the TD feature set, was used by Hudgins et al. [3], and includes
MAV, WL, ZC, and SSC. The second feature set, recommended
by Huang et al. [13], consists of RMS and AR6. The third and
fourth sets are derivations of the first and second sets. The third
set is formed by MAV and WL, while the fourth set was con-
structed from RMS and AR2. Hereafter, these sets are named as
a “multifeature.”

The features of each channel were extracted from segments
with various lengths, and then, concatenated together and fed
into a classifier. The dimension of a feature space depends on
the type and number of features; for example, the single features
MAV and AR6, as well as multifeature RMS + AR6, produce
4, 24, and 28-dimensional feature vectors, respectively.

D. Classification

In pattern-recognition-based myoelectric control, MES pat-
terns corresponding to each motion are recognized and classi-
fied into distinctive classes. Hence, the classifier is an important
module, and, ideally, it should perform correct classification.
The following experiment compares SVM with two well-known
classifiers, including LDA and MLP neural networks. Moreover,
four popular kernels, including RBF, linear, polynomial, and
sigmoid were examined in this investigation. A comparison was
conducted based on selected features, including a single-feature
MAV, multifeatures MAV + WL + ZC + SSC, and RMS +
AR6, with a segment length of 200 ms.

SVM and MLP both require adjustment before application.
Hence, model selection was applied to adjust parameters of the
SVM for each subject/session and feature/segment, individu-
ally. Parameter adjustment was applied before offline training
process. It uses the data collected for training or probably test-

ing the classifier, and does not need extra data. A grid-search
was employed as a method of model selection to adjust SVM
parameters [20]. In this method, the performance of an SVM
was examined based on a wide range of parameters; before those
with the best performance were picked. A fivefold random cross-
validation scheme was used to evaluate the parameters. Since
performing a complete grid-search is time consuming, it was
applied in two stages via coarse grids, and then, fine grids. In
the coarse grids, the range of parameter C was {1, 10, 20, 50, 80,
100, 200, 600, and 1000} and the range of r and γ was {0.16,
0.5, 2, 5, 8, 10, and 50}. In the fine grids, the parameters were
examined in a range of ±5%, ±10%, ±15%, and ±20% of their
selected values.

A fivefold random cross-validation scheme yields the mean
accuracy of five individual classifications when the whole data
(i.e., training and test set) is randomly divided into five subsets
of which part is chosen as a test set, while the rest is used as a
training set. Cross validation as well prevents overfitting during
classification. The layout of the MLP was also adjusted before
utilization. Several layouts were tested and the one that yielded
the best result was selected. The range of nodes in each hid-
den layer of MLP was {4, 5, 6, 8, 10, 12, 15, and 20}. Since
a back propagation algorithm begins randomly initialized, the
performance for each session was averaged over four iterations,
and then, examined. All experiments in this work are based on
using an adjusted classifier for each subject/session and fea-
ture/segment, except where it is mentioned specifically.

E. Postprocessing

Englehart et al. [5] showed that the application of overlapped
segmentation accompanied by majority voting (MV) as a post-
processing mechanism improves accuracy and prevents degra-
dation, by shortening segment size. The following experiment
is used to examine this idea when applied to SVM-based clas-
sifiers. Overlapped segmentation is a technique that generates
a dense stream of output for myoelectric control. The “Incre-
ment,” as shown in Fig. 1, is a time slot, which separates the start
of a new segment from a proceeding segment. Its lower bound
is a time portion during which the processor needs to process
the last segment, while its upper bound is the segment length.
An overlapped segmentation employs an unused time portion
of the processing time between two consecutive segments.

The MV is a postprocessing that eliminates transient jumps,
and produces smooth output. It counts the estimated classes
in the most recent 2 m + 1 estimations about a considered
estimation (m-estimations before and m-estimations after), and
outputs the value that occurs most as a corresponding estimation.
Since MV uses the next m-estimation to produce the current
output to avoid any failure in real-time control, the total delay in
output should be less than 300 ms. Hence, real-time constraints
impose

m × Increment ≤ 300ms.

The idea of shortening the segment length helps the develop-
ment of a fast controller that requires a short response time for
the inputs. In this experiment, the performance of classification
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with and without MV was examined. In addition, it compared
classification performance over disjoint segments with a length
of 50 ms and overlapped segments, with those with a length
of 200 ms and an increment of 50 ms. Different single features
and multifeatures were considered in comparison. As previously
mentioned, considering an “Increment” equal to 50 ms, implies
that the processing time is less than 50 ms. To avoid real-time
failure, MV with m = 4 that imposes a delay of 200 ms was
applied.

F. Evaluation

In all experiments mentioned in this section, accuracy is used
as the main index to illustrate the performance of classification.
Accuracy is defined as the rate of correct classification to all data
in a test set. The accuracy of each session is computed using
fourfold cross validation. In each fold, a block is chosen as the
test set, and the remainder employed as a training set. The accu-
racy of each session was calculated as the average accuracy of
four classifications. In addition, statistical analyses are applied
to interpret the experimental results. As previously mentioned,
the experiments were founded on data collected over 17 ses-
sions from 11 subjects. Sufficient time (i.e., more than 20 days)
was taken between sessions that had common subjects to avoid
dependency between sessions. Therefore, each experiment had
17 independent observations, with an identical distribution. The
purpose of statistical analysis is to find statistically meaningful
differences over observations with certain significance.

Due to a relatively low rate of observations and their un-
known distribution, nonparametric approaches were strongly
suggested. Wilcoxon rank-sum and Kruskal–Wallis are two non-
parametric [26] statistical methods that were adopted in this
work. Wilcoxon rank-sum is a two-sided test for two groups
of data with independent samples and an identical distribution,
and can be used to recognize whether their medians are equal.
Kruskal–Wallis is an extension of the Wilcoxon rank-sum for
the data with more than two groups. The critical p-value, which
determines whether a result is judged “statistically significant,”
was chosen as 0.05.

The applied SVM outputs the probability of the classes for
each classification. It is obvious that the estimated class should
have the highest probability in comparison to other classes.
Given pi(n) as the probability of assigning the nth estimation
in class i of a k-class classification problem, the entropy of the
nth segment of data, is defined as

E(n) = −
k∑

i=1

pi(n) log[pi(n)]. (7)

Recently, the entropy has been noted as an internal measure to
evaluate the correctness of classification for online training [14].
In MCS, it can be used as an unsupervised evaluation index dur-
ing manipulation. A final experiment was used to examine the
correlation of entropy and accuracy. It investigated the validity
of entropy as an internal measure to evaluate the correctness of
classification.

Fig. 2. Classification performance for FD single features decreases by short-
ening the segment length, while it is almost stable for TD single features and all
multifeatures.

IV. RESULTS AND DISCUSSION

This section presents the results of the experiments in five
parts. In the first part, the effect of segment length is examined.
The next part evaluates candidate single and multifeatures. The
third part compares a SVM applied using different kernels with
other classifiers. MV postprocessing is discussed in the fourth
part, while the fifth and final part is used to investigate the
validity of entropy in evaluation.

A. Segment Length

The purpose of this experiment was to investigate the de-
pendence of features individually (single-features) or in-group
(multifeatures), on segment length in MES classification. As dis-
cussed in the previous section, theoretically, a segment length of
200 ms contains enough information to estimate motion states of
hand, while maintaining real-time constraints. Fig. 2 illustrates
the performance of classification in different segment lengths.
Six preselected single features (i.e., MAV, WL, RMS, ZC, AR2,
and AR6) and four multifeatures (i.e., MAV + WL + ZC + SSC,
RMS + AR2, RMS + AR6, and MAV + WL) were classified
using an SVM with the RBF kernel and preadjusted parameters.

As can be seen, for all single features, accuracy decreases
by shortening the segment length; this is because a shorter seg-
ment yields more bias and variance in feature estimation. TD
single features (i.e., MAV, WL, RMS, and ZC) are more sta-
ble than FD single features (i.e., AR2 and AR6) to changes in
segment length. The drop in accuracy of AR features is about
14% when the segment is reduced from 200 to 50 ms, while it
is about 3% for TD single features. This is reasonable since the
methods applied to compute FD features (i.e., AR and PSD) are
highly sensible to the number of samples used in computation.
In addition, ZC is too sensitive to changes in segment length;
it is though named as a TD feature, represents changes in the
frequency of a signal.

The performance of TD single-features had no considerable
improvement with an increase in segment length. This supports
the idea that a desired contraction is held for 200 ms, and longer
segments merely decrease variance without a change in bias in
feature estimation. WL, with almost fixed accuracy in all tested
lengths, yields the most stable performance among the single
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Fig. 3. Classification performance of ZC/AR6 drops significantly by decreas-
ing the segment length from 200 to 50 ms.

features. For AR features, the performance improves by 3%
when segment length is increased from 200 to 500 ms.

Fig. 2 also depicts the performance of four multifeatures in
different segment lengths. It can be seen that the multifeatures,
which include a combination of different single features are
more stable than whole single features to changes in segment
length. Average accuracy reduction emanated from a shortening
of segment length is about 1.9%, while it is more than 10% for
single features. In addition, there is no considerable improve-
ment in accuracy as segment length becomes longer.

Statistical analysis applied to recent results, has shown that
the performance of classification of ZC, AR2, and AR6 drops
significantly by decreasing the segment length to 50 ms, while
for the rest of features, it does not differ significantly by chang-
ing the segment length between 50 and 500 ms. Fig. 3 shows the
estimated median and confidence interval of accuracy for ZC
and AR6 in two box-plots. It shows, for instance, that the confi-
dence interval of the accuracy of AR6 for a segment of 200 ms
is 85%–93%, while for a segment of 50 ms, it is 72%–80%.

This experiment suggests the use of TD single-features (MAV,
WL, and RMS) or any multifeatures for fast control schemes in
which a myoelectric controller should respond over a short time,

Fig. 4. Classification performance and time ratio of computational load of 14
single features and four multifeatures. Performance is for an SVM before and
after parameter adjustment.

Fig. 5. Multifeatures and TD single features outperform significantly FD
single features.

and consequently, in which data segments would be short. With
respect to the computational load required for AR features (more
details in next subsection), a TD multifeature set (i.e., MAV +
WL + ZC + SSC) is recommended for fast control schemes,
without a considerable decline in accuracy. It loses 1.7% and
0.3% accuracy for segments of 50 and 100 ms, respectively. For
single features, WL outperforms others, and accuracy drops by
approximately 2.5% and 0.5% for 50 and 100 ms, respectively.

B. Feature Selection

Evaluation of MES features has formed in two stages. A
preliminary experiment was conducted to preselect effective
features from the list that mentioned in the last section, and
then, an analytical comparison was applied. Fig. 4 shows the
performance of features classified by an SVM before and after
adjusting its parameters as well as a time ratio that indicates
the comparative load of computation for each feature. It demon-
strates the considerable difference between the accuracy of clas-
sification before and after parameter adjustment, and indicates
its necessity for all the features. It also reveals that FD features
(i.e., AR, PS, FMN, and FMD) impose relatively high load of
computation compared to TD features (i.e., MAV, WL, . . .).

Having a perfect explanation and statistical comparison, ne-
cessitates extenuating the range of considered features via pre-
selection. FMN and FMD features were excluded from further
study, because of their weak performance during classification.
This meant that the pattern of the mean and median of signal
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Fig. 6. Comparison of SVM with kernels of RBF, linear, sigmoid, and polynomial, LDA, and MLP with one and two hidden layers (Left) for feature sets: MAV,
MAV + WL + ZC + SSC and RMS+AR6 (Right) box-plot for feature set: RMS + AR6.

frequencies were not sufficiently discriminative for the classifi-
cation of limb motions. The modified MAV features (MAV1 and
MAV2) were also excluded since they work the same as MAV.
This means that the modifications do not provide any more
discriminative information than MAV. VAR is also removed,
due to its similarity to RMS. In comparison, VAR results in
weaker performance in classification than RMS in all segment
lengths. WAMP, SSC, and ZC are close together in the rate of
performance, as well as the method of computation. Although
WAMP yields better performance, ZC was selected for further
comparison because of its popularity in literature.

The result of main experiment, which includes an analytical
comparison of seven single features and four multifeatures, is
illustrated in Fig. 5. It is in the form of box-plot yielded after
statistical analysis. The features were computed from disjoint
segments with length 200 ms (200 samples in a segment), and
classified using an adjusted SVM with a kernel RBF. It can
be seen that the selected TD single features (i.e. WL, RMS,
MAV, and ZC) provide more discriminative information than FD
single features (i.e. AR6, AR2, and PS). As the best instances
of each group, WL and AR6 offer a 95% and 89% rate of
accuracy, respectively. Fig. 5 also shows there is no noticeable
difference in the performance of four tested multifeatures, and
all outperform the single features by accuracy around 95.5%.
Furthermore, the multifeatures provide much lower discrepancy
in accuracy during several independent attempts across different
subjects. For instance, the confidence interval of observations
for the single feature WL is about 7.5%, while it is about 3.5%
for the multifeature RMS + AR2. A confidence interval means a
range that accommodates the rate of accuracy with a probability
of more than 95%. This means that the range of classification
accuracy for multifeatures, in several independent observations,
is notably narrower than the range of classification accuracy
for single features. This can be named as the major advantage
of using multifeatures instead of single features in myoelectric
classification.

In conclusion, the multifeature set RMS + AR2 that present
high median accuracy and low discrepancy, can be named as the
best feature set for a segment length of 200 ms. When consider-
ing the computational load for feature extraction and stability of
performance in various segment sizes, the TD multifeature sets,

(i.e., MAV + WL + ZC + SSC or MAV + WL) are the best
options for MES classification. Among the single features, WL
performs the best in accuracy, stability, and computation load.

C. Classifiers

The following experiment compared the accuracy of the SVM
with LDA and MLP. Experimental results are shown in Fig. 6
(left). The classifiers were examined one-by-one over a single-
feature MAV, multifeature MAV + WL + SSC + ZC, and mul-
tifeature RMS + AR6, individually. The first four items of the
graph are SVM-based classifiers, with RBF, linear, sigmoid, and
polynomial kernels, respectively. As the graph shows, the four
applied kernels perform similarly over considered features. This
can be interpreted that the boundaries between classes are almost
linear. The average accuracy for all kernels is approximately
95.5 ± 3.8%. The LDA is placed after SVM with the average
performance of 94.5 ± 4.9%. It performs the same as the SVM,
probably because of the existence of linear boundaries between
classes. The last two items of the graph (i.e., MLP1 and MLP2)
belong to the result of MLPs with one and two hidden layers,
respectively. As can be seen, the accuracy of the MLP with one
hidden layer drops approximately 6%, while the MLP with two
hidden layers performs with similar accuracy to the SVM and
LDA.

Statistical analysis depicts that there is no meaningful dif-
ference between the performance of the considered classifiers
over an MAV and multifeature MAV + WL + ZC + SSC;
while a MLP performs significantly weaker with the multifea-
ture RMS + AR6 Fig. 6 (right). The training process for a
MLP (i.e., back propagation) takes longer than for an SVM
or LDA. Experimental results show the time needed to train a
MLP with one hidden layer is about ten times that needed to
train an SVM. The training process for the MLP was nonre-
peatable since it was initiated from random initial weights, and
sought local minimum errors rather than global ones. It was
for the SVM repeatable and fast. The training process for the
LDA is fast, and, in contrast with SVM and MLP, it does not
need parameter adjustment before application. The SVM settles
to a global minimum error after training. The SVM is fast, as
well, in classification. Experimental results recorded an average
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Fig. 7. Performance of classification applied on disjoint segments of 50 and
200 ms, and overlapped segments (length 200–50 ms increment) with/without
MV for single features MAV and AR6 and multifeatures MAV + WL + ZC +
SSC and RMS + AR6.

TABLE I
AVERAGE ACCURACY OF TWO SELECTED MULTIFEATURES

process time less than 50 ms including time required to TD mul-
tifeatures extraction and SVM classification. This is crucial in
overlapped segmentation and postprocessing coming in the next
subsection.

D. Postprocessing

As described previously, shortening segment length, which is
occasionally offered as a means to decrease response time and
make a controller faster, leads to degradation in classification
accuracy. The following experiment shows the effect of over-
lapped segmentation and MV on the classification performance.

Fig. 7 illustrates the results of statistical analysis applied to
experimental results. It compares the accuracy of short seg-
ments (50 ms), overlapped segments (200–50 ms), postpro-
cessed overlapped segments (200–50 ms MV), and standard
segments (200 ms), over features of MAV, AR6, MAV + WL
+ ZC + SSC, and RMS + AR6. A comparison of the perfor-
mance for disjoint segments of 200 ms (200), with overlapped
segments 200 ms and increment 50 ms (200–50), reveals the fact
that the overlapped segmentation makes a controller four times
faster, without a noticeable degradation in accuracy. In contrast,
the MV that makes the controller slow has no remarkable im-
provement on the performance of the overlapped segmentation.
In addition, overlapped segmentation and MV decrease notably
the discrepancy of accuracy over different sessions. The range
of accuracy for TD multifeature changes from 86%–99% to
94%–99%, after an application of overlapped segmentation and
MV. This occurs because postprocessing makes the performance
more robust. The experimental results lead us to use overlapped
segmentation to increase the speed of the controller, and to apply
MV to produce more stable output during classification.

Table I indicates the average performance for two multi-
features. The achieved result for RMS+AR6 is the same as the
result achieved by Huang et al. [13] applying GMM on four-
channel MES to recognize six limb motions. This suggests that
TD multifeature set (MAV + WL + ZC + SSC) works same as
RMS + AR6, but with remarkably lower computational load.

E. Entropy

The final experiment examined the validity of entropy as an
evaluation index for correctness of classification. This experi-
ment utilized an adjusted SVM with the kernel RBF on single
feature MAV with segment length 200 ms. More than 14 000
independent observations (approximately 95% correct and 5%
noncorrect classifications) are examined. The results showed a
significant difference between correct and noncorrect classifica-
tions (as shown in Fig. 8). The entropy of correct classifications
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Fig. 8. Entropies of correct and noncorrect classification outputs are signifi-
cantly distinct.

TABLE II
MATHEMATICAL DEFINITION OF FEATURES, GIVEN xi AS THE iTH SIGNAL, AND

N THE NUMBER OF SAMPLES IN A SEGMENT, AND pj AS THE LINE (BAND) jTH

OF SIGNAL POWER SPECTRUM

was approximately 0.13, with a confidence interval between
0.07 and 0.28. If considering identical probability for unse-
lected classes, the entropy 0.13 implies a probability of 99.35%
for the selected class. For noncorrect classifications, the entropy
was approximately 0.74 with a confidence interval between 0.49
and 0.94. This produced a probability of less than 93.8% for the
selected class.

V. CONCLUSION

This paper introduced and evaluated the application of an
SVM to classify upper limb motions using MESs. It suggested
the most advantageous data segmentation technique, feature set,
parameter adjustment approach for an SVM, and postprocess-
ing method. Although experiments were conducted on healthy
subjects with intact limbs, rather than on limb deficient subjects
experience in [3] and [13] shows that this does not invalidate
the achieved conclusions in the design of pattern-recognition-
based myoelectric control. The observations and conclusions
are not definitive solutions; however, they contain some notable
contributions to advance knowledge in the field.

An SVM offers classification performance that matches or
exceeds other classifiers, and does so in a computationally effi-
cient manner. A TD multifeature set (i.e., MAV + WL + ZC +

SSC) outperforms other features, because of its relatively high
rate of accuracy, stability against changes in segment length,
low discrepancy over several sessions, and computational sim-
plicity. WL outperforms single features because of its high rate
of accuracy and stability to changes in segmentation method. A
disjoint segmentation with a length of 200 ms provides high per-
formance during MES classification and a reasonable response
time to allow real-time application. Overlapped segmentation
with a length of 200 ms and an increment of 50 ms shortens
the response time without a noticeable degradation in accuracy.
MV provides no remarkable improvement in accuracy, but more
stable output. The entropies of correct and noncorrect outputs
are significantly distinct.

SVM has a high potential for application as a core for classifi-
cation in myoelectric control systems, and appear to be capable
of recognizing patterns that are more complex. This could lead
to an expansion of the functionality of myoelectric control, as
well as the development of advanced online training schemes to
support long-term operation.
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