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Abstract 

Mobility prediction algorithm is the significant aspect to improve QoS (Quality of Service) 

for heterogeneous wireless networks because it decreases handoff latency and preserves 

resources in arriving cells for users. Since existing mobility prediction algorithms based on 

GPS (Global Positioning System) often suffer from low prediction accuracy for complex and 

irregular trajectory, this paper combines support vector regression with local prediction to 

propose a novel mobility prediction algorithms based on local support vector regression 

(LSVR) to overcome above deficiency. Simulation results show that LSVR algorithm achieves 

high prediction accuracy for a size of historical data in three typical mobile scenes. 

 

Keywords: Mobility prediction algorithm, heterogeneous networks, QoS, local support 

vector regression 

 

1. Introduction 

Driven by technological developments and industrial interests, existing wireless networks 

are featured by different client groups and commercial backgrounds and difficult to replace 

each other. Therefore, the future wireless communication networks will be open and 

distributed heterogeneous networks comprised of different wireless networks. In such an 

environment, communication services are highly developed and the number of mobile users is 

drastically increasing leading to growing shortage of spectrum resources [1]. Meanwhile, 

mobile users are more eager for seamless and continuous services with strictly guaranteed 

QoS [2].  

Mobility management can coordinate interactions across heterogeneous networks and 

guarantee the receipt of consistent services for mobile users even when their location 

continually changes in heterogeneous networks. Mobility prediction is an essentially crucial 

aspect of mobility management because it can predict user’s motion trajectory and preserve 

required resources by user in the arriving cells to avoid degrading QoS due to insufficient 

resources. In addition, mobility prediction can partly complete functions of horizontal or 

vertical handoffs to reduce handoff latency and signaling overhead when user’s location is 

updating. Therefore, well-designed mobility prediction algorithm is highly significant for 

guaranteeing QoS and maximizing spectrum efficiency.  

Analyzing and comparing previous works, this paper proposes a novel mobility algorithm 

based on local support vector regression (LSVR). By introducing   insensitive loss function 

and applying support vector regression to local prediction, LSVR algorithm can precisely 

predict complex and irregular trajectory for a small size of historical data.  



International Journal of Future Generation Communication and Networking 

Vol. 5, No. 3, September, 2012 

  

 

94 

 

2. Related Work 

Depending on whether GPS is used, mobility prediction algorithms in wireless networks 

can be classified into two types [3]. One type is without GPS, which uses historical 

identification (ID) information sequence of cells passed by user as UMH (User Mobile 

History) and utilizes Markov predictor [4-6], data mining [7] or model matching [8-9] to 

predict user’s trajectory. Though this type of algorithms avoids degrading prediction 

performances due to bad estimations to the shape and the size of cell, too much historical 

information should be stored in advance. Further, these algorithms do nothing for new 

registered users or users without historical information.  

The second type of mobility prediction algorithms, which is independent of cell’s ID, is 

different from the first type because it uses GPS to obtain user’s coordinate as UMH 

information, and then uses fitting algorithms to predict user’s coordinate or location in the 

next time. At length, by means of cell boundary estimation algorithm, the cell that user 

will visit can be determined. Since the second type is different from the first type in 

implementation scheme, background and condition of applications, the second type is a 

powerful supplement for the first type.  

In recent years, some mobility prediction algorithms of the second type had appeared. 

Assuming cells are square, [10] proposes that using GPS, the relative distance between a 

mobile user and its neighbor access points (AP) is periodically monitored, when the distance 

is less than a certain threshold, the algorithm seems the user visits the cell. But continuous 

monitoring leads to heavy load and overhead. The mobility prediction algorithm proposed by 

[11] is only effective for users moving along straight line, not suitable for complex and 

unknown type of trajectory. [12] proposes a hybrid prediction model, which uses self-

organizing feature mapping (SOFM) and multi-layer perceptron network (MLPN) to learn 

various motion types, and obtains good prediction results. But its flaw is that it needs so much 

historical information to train off-line that it cannot adapt to dynamic situations. In view of 

this drawback, [13] applies adaptive resonance theory (ART) to mobility prediction 

algorithms. Though it can adapt to trajectory of mobile user, it suffers from slow response to 

fast motion. [14] and [15] utilize auto-regressive model and self-organized characteristic 

mapping neural network (SOCMNN) to fit user’s trajectory, and then predict user’s location 

coordinate.  

The common characteristic of above algorithms is that they only pay more their attention 

to predicting user’s coordinate. From the perspective of access management, however, the 

ultimate task of mobility prediction is to determine which cell will be visited and when. 

Therefore, after predicting location coordinate, it is also should be determined that the user 

belongs to which zone according to the shape and the size of the cell. The flaws of above 

algorithms just lie in assumption about the fixed shape and size of the cell. To cope with 

situations, some scholars present corresponding solutions [16-18] where [17] is most 

representative in estimation to the shape and the size of cell.  

Though some algorithms based on GPS (the second type) had been much improved, 

existing algorithms have always suffered from low prediction accuracy for complex trajectory 

and large amounts of historical motion information. In the light of the defect, this paper 

proposes a mobility prediction algorithm based on LSVR. Using support vector theory, LSVR 

algorithm regards the trajectory of mobile user as a function on rectangular plane coordinate 

system (X-Y plain) and introduces  -insensitive loss function, and then fits unknown 

function by means of local information adjacent to the predicted point with high accuracy to 

achieve precise prediction to user’s motion trajectory.  
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3. Mobility Prediction Algorithm based on LSVR 

Support vector theory, which is able to overcome the limited generalization ability due to 

over-fitting in traditional learning theory, has the unique and globally-optimal solution. Based 

on support vector machine, support vector regression (SVR) can obtain high prediction 

accuracy for a small number of samples without local minima by introducing   insensitive 

loss function. As a result, SVR is widely applied to linear and nonlinear predictions
 
[19].  

Local prediction is presented relative to global prediction that it means only local 

information adjacent to the predicted point is used to predict trajectory. On one hand, local 

prediction can save storage space and improve computational speed. On the other hand, 

compared with only one global function used, to fit trajectory using multiple local functions 

can obtain higher prediction accuracy [20].  

The basic idea of LSVR mobility prediction algorithm proposed in this paper lies in LSVR 

applied to trajectory prediction that LSVR algorithm regards trajectory of mobile user as a 

function on X-Y plain and locally fits the trajectory using SVR. Then, the cell that the user 

will enter can be determined according to the topology of coverage. At present, it draws much 

attention that local prediction combined with SVR achieves high prediction accuracy for non-

linear prediction problems
 
[21].  

 

3.1. Location Description Unit for Heterogeneous Wireless Networks 

Traditionally, user’s trajectory is described using cell ID in homogeneous wireless 

networks because the services and the bandwidth required by the user is i ndependent of 

the exact location of user in the cell. Therefore, the cell residence time (CRT) and the 

IDs of cells are used to describe the user’s mobility. However, the cell coverage of 

different wireless networks is quite different form each other, for instance, the cell 

radium is about 1.5 km for WCDMA networks while the cell radium is roughly 60 m 

for WLAN. As a result, the traditional method based on cell’s ID is not suitable for 

description of user’s location in heterogeneous wireless networks. In view of the 

disadvantage, overlay coverage zone (OCZ) is introduced to depict user’s location in 

this paper that user’s trajectory can be modeled as a series of OCZ’ IDs. The 

classification of OCZ can be according to types of wireless networks which an OCZ 

covers. In this paper, three-layer OCZ system is introduced, including cellular 

networks, WMAN (Wireless Metropolitan Area Networks) and WLAN. In this 

condition, four types of OCZ can be defined and demonstrated as shown in Figure 1.  

Type 1: OCZ only covered by cellular networks;  

Type 2: OCZ covered by both cellular networks and WMAN;  

Type 3: OCZ covered by cellular networks, WMAN and WLAN;  

Type 4: OCZ covered by both cellular WLAN.  
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Figure 1. Overlay Coverage Zone 

It is worthy to note that there is a WLAN cell divided into J and K parts shown in Figure 1 

where part J is together covered by cellular networks, WLAN and WMAN, while part K is 

covered by both cellular networks and WLAN. The user’s trajectory can be represented by a 

series of OCZ’s IDs, for instance, trajectory 1 (TR1) is represented as A-G-H-G-J-K-D, while 

TR2 is denoted as E-M-E-G-F.  

The advantages of using OCZ to describe user’s mobility in heterogeneous wireless 

networks are specially manifested in three aspects. First, OCZ is able to adapt to different 

wireless networks for different people and flexibly describe the mobility of the terminals. 

Second, OCZ can well depict the vertical handoffs among different wireless networks. Third, 

the favorable sensing of multi-mode mobile terminals to electromagnetic environment is the 

solid foundation of deploying OCZ.  

 

3.2. Local Support Vector Regression 

The basic idea of support vector is to find a non-linear mapping in both input and output 

spaces and then input space is mapped to high dimensional feature space for linear regression
 

[22]. It can be expressed as 

( ) , ( )f x w x b                                                         (1) 

where, ( )x  stands for non-linear mapping function; w  represents linear coefficient; b  is a 

real constant; x  is the vector in the input space.  

In order to solve support vector regression, a risk function should be minimized 
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where, 
i ( *

i ) represents the floor (ceiling) of training error, 
21

2
w  stands for normalized 

unit, C  is normalized constant that means the degree of compromise between smoothness and 

accuracy for the function f .  

As shown in Figure 2, formula (3) means training data 
ix are mostly located in the zone of 

 . If 
ix  are out of the zone of  , it will be punished in a linear fashion. SVR minimizes 

21
2

w  and *

1
( )

K

i
C  


  to avoid over-fitting or under-fitting for training data.  
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Figure 2.  -insensitive Tube for SVR 

Introducing Lagrange multipliers   and *  (satisfying * 0i i   and *, 0i i   , for 

1, ,i K ),  (2) can be turned into a convex quadratic optimization problem according to 

Karush-Kuhn-Tucker optimization conditions [23]  
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where ( , )i jQ x x  is kernel function which is the inner product of ( )ix  and ( )jx . 

By means of kernel functions, all of computations can be directly completed in the input 

space without knowing definite ( )x . The selection of kernel function is highly important to 

the performance of SVR algorithm. In this paper, Gaussian kernel is selected mainly because 

compared with other types of kernel functions, Gaussian kernel can increase prediction 

accuracy by 8.91%-10.43%for complex and irregular predictions
 
[22]. The definition of 

Gaussian kernel is given by  
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The regression output is  

*

1

ˆ ( ) ( ) ( , )
K

i i i

i

f x Q x x b 


                                               (5) 

Local prediction means that only a part of training data is used to find locally fitting 

function f̂ . In this paper, K  training data adjacent to the predicted point are used to find f̂  

and then give the predicted trajectory.  

 

3.3. Implementation of LSVR Algorithm 

As user’s location can be represented by two-dimensional coordinate ( , )x y , the user’s 

trajectory can be viewed as the curve of a function f  on the X-Y plain, i.e. ( )y f x  or 

( )x f y . In order to predict user’s location in the next time t , the coordinate value of x  or y  

should be solved according to fitting function f̂ . As there is no time variable in function f , 

(2) and (3) can be used to determine on which axis (X or Y axis) the change of user’s 

trajectory in K  intervals is smaller, and then the coordinate of the determined axis is seemed 

as the variable of the other coordinate. For example, if the change on X axis of the 

trajectory’s curve is smaller, the functional form is ( )y f x . Further, ˆ ( )f x or ˆ ( )f y can be 

derived by means of vector regression and then the next time can be estimated using 

extrapolation. Finally, the estimated time is substituted into the fitting function to calculate 

the other coordinate. The concrete steps of LSVR algorithm are presented below.  

Step 1: To calculate ( )x K  and ( )y K :   

   
2

1 1
( ) ( ) ( 1) ( ) (1)

1 1

K

i

x K x i x i x K x
K K

     
 
                                (6) 
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1 1
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K

i

y K y i y i y K y
K K

     
 
                                (7) 

Step 2: If ( ) ( )x K y K   , it means the change on X-axis is smaller than that on Y-axis, and 

the algorithm goes to Step 3; If ( ) ( )x K y K   , it indicates the change on Y-axis is smaller 

than that on X-axis, and the algorithm directly goes to Step 4. If ( ) ( )x K y K   , two cases 

should be discussed: (1) when ( ) ( ) 0x K y K    , the algorithm randomly selects Step 3 or 

Step4; (2) when ( ) ( ) 0x K y K    , it means the user either does not move or comes back to 

where it departs, so LSVR algorithm reset K  and then rerun Step 2 according to the real 

situation.  

Step 3: Let y  be a function of x . The fitting function ˆ( )y f x  is calculated using K  

historical data ( , )k kx y  for 1, , ,k i K i K i     ; If ˆ( 1)x i   denotes the estimated value of 

ˆ( 1)x i   in next time ( 1)i  , ˆ( 1)x i   can be extrapolated as ˆ( 1) ( ) ( )x i x i x K    and then 

ˆ( 1)x i   is substituted into f̂  to get ˆˆ ˆ( 1) ( ( 1))y i f x i   .  
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Step 4: Let x  be a function of y . The fitting function is ˆ( )x f y . Similar to Step 3, ˆ( 1)y i   

can be extrapolated as ˆ ˆ( 1) ( ) ( )y i y i y K    and ˆˆ ˆ( 1) ( ( 1))x i f y i   .  

Compared with algorithms without GPS, the shape and the size of OCZ for algorithms with 

GPS are indispensable when the prediction algorithm determines where the predicted location 

is located. In general, the shape and the size of OCZ are highly dependent on the minimum 

cell among the cells of different networks. However, the shape and the size of each cell are 

time-varying for different networks leading to OCZ being dynamic. Presently, as some 

prediction algorithms suppose the shape and the size fixed [14,24] more often than not, their 

prediction results are often limited or deteriorated. Fortunately, there have already been 

several methods recently to overcome the drawback. For example, [17] utilizes BAPs 

(Boundary Approximation Points) to estimate the real shape and size of a cell and obtains 

satisfactory effect. Therefore, based on such algorithms, LSVR mobility prediction algorithm 

proposed in this paper is theoretically feasible.  

 

4. Simulation Results and Analyses 

Simulation scenes are the same as Figure 1. CPP (Correct Prediction Probability) serves as 

the metric to evaluate performances of the LSVR algorithm. CPP is defined as  

' ' ' '{( ,y ): ( , ) ( ,y ) }

R

x x y x R
P

N

 
                                              (8) 

where R  is the radium threshold; N  is the times of prediction. The top half of the right side 

in (8) indicates the prediction times that the difference between the predicted location and the 

real location is less than R , while (8) stands for the probability that the difference between 

the predicted location and the real location is less than R .  

In order to investigate the relationship between R  and the CPP, LSVR mobility algorithm 

is applied to three typical mobile scenes, including inter-city zone (OCZ Type 1), sub-ciy 

zone (OCZ Type 2) and hop spot zone (OCZ Type 3 and 4). The size of historical data is set 

to 12 and 6, respectively. The comparison of CPP under different scenes and size of historical 

data is demonstrated in Figure 3. It is very obvious that CPP increases with the increasing 

radium threshold R  for different scenes, especially when R  is more than 18m, all CPPs for 

different scenes and data size are near to 1. Also, it is apparent that for all of simulation 

scenes, CPPs are quite different for the same size of historical data. For example, when 

6mR   and 6K  , CPPs are 0.95, 0.84 and 0.88 for inter-city zone, sub-city zone and intra-

city hot spot, respectively. Only considering the inter-city zone, the CPP (=0.98) with 12K   

is larger than the CPP (=0.95) with 6K  . In this sense, to achieve higher CPP, the size of 

historical data should be set according to different mobile scenes.  
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Figure 3. Correct Prediction Probability vs. Radium Threshold ( R ) 

Two typical prediction algorithms, which are the mobility algorithm based on ARIMA [25] 

and the ART based mobility prediction algorithm [13], are used to compare CPP with LSVR 

mobility prediction algorithm. Three algorithms are simulated for 5mR   in above three 

scenes and the simulation results are shown in Figures 4, 5 and 6, respectively.  
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Figure 4. Correct Prediction Probability of Three Algorithms vs. Data Size K  
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Figure 5. Correct Prediction Probability of Three Algorithms vs. Data Size K  
for Sub-city Zone 
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Figure 6. Correct Prediction Probability of Three Algorithms vs. Data Size K  
for Intra-city Hot Spot 

From Figures 4, 5 and 6, it can be easily seen that the maximum CPP of LSVR algorithm 

for different scenes is sequentially decreasing with the values 0.981, 0.946 and 0.905, 

respectively, mainly because the trajectory’s complexity and irregularity for three scenes is 

gradually increasing. Compared with the prediction algorithm based on ARIMA, LSVR 

algorithm has higher accuracy for all of three scenes due to support vector regression applied 
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to local information prediction. Especially for intra-city hot spot, LSVR algorithm has a 

significant advantage over ARIMA algorithm in prediction of complex and irregular 

trajectory. For ART based algorithm, as it uses resonance theory and matching technology to 

prediction trajectory, the more the mobile historical information for matching is, the more 

accurate the predicted results are. When the information is not enough, however, the predicted 

result of ART based algorithm highly deteriorates. Compared with ART based algorithm, 

LSVR algorithm has higher maximum CPP than the former in both inter-city and sub-city 

zones, but its maximum CPP is close to the former in intra-city hot spot. Since user has highly 

random mobility in intra-city hot spot, ART based algorithm has more trajectory matching 

types relative to LSVR algorithm for the same size of historical GPS information. When it 

comes to inter-city and sub-city cases, as these scenes are so simple that there are either very 

few or no trajectory matching types, ART based algorithm has relatively lower CPP. 

Therefore, LSVR mobility prediction algorithm proposed in this paper has satisfactory 

performance.  

In addition, according to Figures 4, 5 and 6, it is not difficult to observe that the size of 

historical data is different for different scenes when CPP achieves the maximum value. 

Concretely, in the context of this paper, *K  are 12, 9 and 7 for inter-city, sub-city and intra-

city cases, respectively. When user is located in inter-city zone, as its speed is relatively high 

and less changed, more historical data is helpful to improve CPP. For the user in a city, its 

speed and direction are often randomly and frequently changed due to irregular trajectory; 

therefore, the size of historical data is very small and CPP is inferior to inter-city case. Since 

sub-city zone is between the former two cases, its CPP performance is between the former 

two cases. In fact, as user would successively go through multiple mobility scenes in 

heterogeneous wireless networks, the predefined and fixed size of historical data information 

is bound to affect the performance of mobility prediction. Therefore, the future work will 

focus on the adaptive and optimized selection of the data size.  
 

5. Conclusion 

Since existing mobility prediction algorithms based on GPS can not well cope with 

unknown and irregular mobile trajectory resulting in unsatisfactory prediction accuracy, a 

novel mobility prediction algorithm based on local support vector regression (LSVR) is 

proposed. On one hand, unknown trajectory can be effectively predicted by means of fitting 

methodology. On the other hand, the prediction accuracy is further improved using support 

vector regression in local information. Simulation results show that for three typical cases, 

LSVR algorithm achieves higher correct prediction probability than ARIMA and ART based 

algorithms. In the end, some prospects of the future work are given.  
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