
Next Generation Design and Verification
 Methodologies for Distributed Embedded

Control Systems

●S. Ramesh P. Sampath

Next Generation Design
 and Verification
Methodologies for Distributed
Embedded Control Systems

Editors

Bangalore, India, January 2007
Proceedings of the GM R&D Workshop,

Printed on acid-free paper.

springer.com

S. Ramesh
GM R&D, India Science Lab
Bangalore, India

P. Sampath
GM R&D, India Science Lab
Bangalore, India

e-ISBN: 978-1-4020-6254-4ISBN: 978-1-4020-6253-7

No part of this work may be reproduced, stored in retrieval system, or transmitted

or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

© 2007 Springe r

9 8 7 6 5 4 3 2 1

in any form or by any means, electronics, mechanical, photocopying, microfilming, recording

Library of Congress Control Number: 2007934037

Preface

This volume brings out the proceedings of the workshop “Next Generation Design
and Verification Methodologies for Distributed Embedded Control Systems” con-
ducted by General Motors R&D, India Science Lab, Bangalore. This workshop is the
first of its kind to be organised by an automotive Original Equipment Manufacturer
(OEM) to bring together the experts in the field of embedded systems development
to present state-of-the-art work, and to discuss future strategies for addressing the
increasing complexity of embedded control systems. The theme of the workshop is
an important focus area for the current and future automotive systems.

Embedded Control Systems are growing in complexity with the increased use of
electronics and software in high-integrity applications for automotive and aerospace
domains. In these domains, they provide for enhanced safety, automation and com-
fort. Such embedded control systems are distributed, fault-tolerant, real-time systems
with hybrid (discrete and continuous) behaviour. Furthermore, many of the control
functions, such as by-wire controls, have stringent performance and high-integrity
requirements.

The research community has been addressing these challenges, and over the last
few years, several design methodologies and tools for developing distributed embed-
ded control systems have emerged. In spite of these, development of embedded con-
trol applications remains a daunting task, requiring a great degree of human skill,
expertise, time, and effort. It is imperative to invest significant R&D effort in coming
up with methods and tools for future embedded control applications.

We believe that future methodologies will involve three key ingredients: compre-
hensive model-based development, math-based formal frameworks and component-
oriented and product-line based development.

Although model-based development has been adopted in system development, the
extent of its usage is rather limited to less complex systems and/or restricted to the
design phase of the development cycle. We expect model-based methodologies to
permeate every aspect of embedded control systems development from requirements
to verification.

• The verification of current day systems, though consuming significant time and
effort, continues to be manual and mainly focused on run-time checking or testing.
A math-based formal framework will enable powerful static analysis and formal
verification techniques that exhaustively analyze the model space for high integrity
systems.

v

vi Preface

• To reduce the cost of development of embedded systems, and to improve relia-
bility, current industrial practice mandates that systems should be developed from
an assemblage of standard and reusable off-the-shelf components. OEMs need to
conceive suitable component-based architectures that enable precise specification
of components, their usage policies, and frameworks for composing components.

• Apart from small-grained component usage, a large-grained product-line approach
would also prove to be more cost-effective and efficient in the long run. Correct-
by-construction approach to design of integrated systems will help in reducing
verification time and improving product quality.

The workshop was held during January 5–6 2007 at the NIAS auditorium, IISc
campus, Bangalore, India. It consisted of several invited talks given by leading
experts and researchers from academic and industrial organizations. The partici-
pants included advanced graduate students, post-graduate students, faculty members
from universities, and researchers from industry. The participants came from USA,
Europe, Asia, and all parts of India – from Mumbai to Guwahati; Chennai to Delhi.

The workshop covered all areas of embedded systems development and in partic-
ular:

• Formal specification and verification of distributed, heterogeneous, embedded sys-
tems,

• Formal semantics of modeling languages,
• Model-based specification and testing,
• Formal approach to component-based development,
• Software product line engineering, and
• Automatic code generation for distributed, embedded systems.

Bangalore, S. Ramesh
February 2007 P. Sampath

Acknowledgements

The idea for such a workshop was conceived by Dr. B.G. Prakash, the Director, India
Science Lab, GM R&D. This workshop would not have been possible but for his con-
stant support and encouragement throughout. He, along with Mr. N.H. Sathyaraja,
Lab Group Manager, India Science Lab, gave us a free hand in deciding the pro-
gramme of the workshop. Mr. Sathyaraja’s meticulous planning at appropriate stages
resulted in the successful organization of the workshop. We would also like to thank
Dr. Alan Taub, Executive Director, GM R&D, and Dr. Patrick Popp, the former direc-
tor of ECI Lab, GM R&D, Warren, USA, who welcomed the idea of this workshop
and gave us complete support and encouragement.

The high quality of the workshop programme would not have been possible with-
out the speakers and their technical talks. The speakers are successful top-class
researchers in the subject matter of the workshop and came from all parts of the
world making the conference truly international. In spite of their busy schedule, they
attended the workshop and prepared the materials for the proceedings.

We would like to thank Mr. Mark de Jongh, Springer Publication, for his immedi-
ate perception of the value and potential of this workshop and for readily agreeing to
bring out this volume.

Special thanks go to all the members of the Control Software Engineering Methods
and Tools Group at India Science Lab, GM R&D Bangalore who worked hard for
many weeks before the workshop to bring out such a fine workshop. It would not
have been possible to organize such a high quality workshop without their support.

Finally, we would like to thank the members of the operation team of General
Motors Technical Centre India for their support and assistance; and National Insti-
tute of Advanced Studies for providing a wonderful ambience for conducting the
workshop.

Bangalore, S. Ramesh
February 2007 P. Sampath

vii

Advisory Committee

B.G. Prakash (GM R&D, Bangalore)
N.H. Sathyaraja (GM R&D, Bangalore)

Programme Committee

S. Ramesh (GM R&D, Bangalore) (Chairman)
Yaron Wolfsthal (IBM Haifa)
Prahladavaradan Sampath (GM R&D, Bangalore)
Shengbing Jiang (GM R&D, Warren)
Deepak D’Souza (IISc, Bangalore)

Organizing Committee

Rajeev A. C. (GM R&D, Bangalore)
Manoj G. Dixit (GM R&D, Bangalore)
Ambar A. Gadkari (GM R&D, Bangalore)
Prasanna Vignesh V. Ganesan (GM R&D, Bangalore)
Suresh J. (GM R&D, Bangalore)
Swarup K. Mohalik (GM R&D, Bangalore)
Manoranjan M. Satpathy (GM R&D, Bangalore)
K. C. Shashidhar (GM R&D, Bangalore)
Anand V. Yeolekar (GM R&D, Bangalore)

ix

Contents

Preface . v

Acknowledgements . vii

An Abstraction Technique for Real-Time Verification 1
Edmund M. Clarke, Flavio Lerda, and Muralidhar Talupur

1 Overview . 1
2 Preliminaries . 4

2.1 Timed Automata . 4
2.2 Region Graph Construction 5

3 Discretization . 7
4 GoAbstraction . 11
5 Experimental Results . 14
6 Conclusions and Future Work . 16

SCADE: Synchronous Design and Validation of Embedded
Control Software . 19

Gérard Berry
1 Introduction . 19
2 Concurrency and Determinism of Embedded Software 20

2.1 The Need for Concurrency 21
2.2 The Need for Determinism and Predictability 21
2.3 The Cycle-Based Concurrent Computation Model 21
2.4 Synchronous Communication and its Realization

by Cycle Fusion . 22
2.5 Determinism and Predictability of Cycle-based Applications . . 23

3 The Scade Formalisms . 24
3.1 Block Diagrams for Continuous Control 24
3.2 Safe State Machines for Discrete Control 25
3.3 Mixed Continuous/Discrete Control 26
3.4 Scade 6: Full Integration of Block Diagrams and SSMs 27

4 Formal Semantics . 27
4.1 The Formal Synchronous Semantics 27
4.2 Logical vs. Physical Time . 28

xi

xii Contents

5 The SCADE Application Development Flow 29
5.1 The SCADE Y Development Cycle 29
5.2 Model Validation . 29
5.3 Dynamic Checks and Coverage Analysis 30
5.4 Static Checks . 30
5.5 Formal Verification . 30
5.6 The SCADE Automotive Ecosystem 31

6 Comparison with Operating-Systems Based Designs 31
7 Conclusion . 32

Model-Based Development of Embedded Systems:
The SysWeaver Approach . 35

Raj Rajkumar
1 Introduction . 35
2 Related Work . 37
3 The SysWeaver Approach . 38

3.1 Benefits of SysWeaver . 40
3.2 Separation of Concerns using Semantic Dimensions 41
3.3 Summary of Approach . 42
3.4 Supported Configurations . 44
3.5 Summary . 44

Verification and Integration of Real-Time Control Software 47
Rajeev Alur

1 Formal Verification . 47
2 System Integration . 48

Merge Algorithms for Intelligent Vehicles 51
Gurulingesh Raravi, Vipul Shingde, Krithi Ramamritham, and Jatin Bharadia

1 Introduction . 51
2 Automatic Merge Control System 52
3 Specification of the DTTI Optimization Problem 53

3.1 Two-Road Intersection . 53
3.2 n-Road Intersection . 56

4 Head of Lane Approach . 56
4.1 Two-Road Intersection . 57
4.2 Interference in Merge Region 58
4.3 Merge Cost Computation . 58
4.4 Pseudo-code . 59

5 Continuous Stream of Vehicles . 60
6 Simulations and Observations . 61
7 Related Work . 64
8 Conclusions and Further Work . 64

Contents xiii

All Those Duration Calculi:
An Integrated Approach . 67

Paritosh K. Pandya
1 Introduction . 67
2 Generalised Weakly Monotonic Duration Calculus 69
3 A Variety of Duration Calculi . 72

3.1 Special Sub-classes of Logics 74
4 Validity Checking of Duration Calculi 75
5 Discussion . 79

Adding Time to Scenarios . 83
Prakash Chandrasekaran and Madhavan Mukund

1 Introduction . 83
2 Timed MSCs . 85

2.1 Message Sequence Charts . 85
2.2 Timed MSC Templates . 86
2.3 Timed MSCs . 87

3 Timed Message-Passing Automata 88
4 Specifying Timed Scenarios . 90
5 Verification Questions for Timed Scenarios 93

5.1 Scenario Matching . 93
5.2 Universality . 93

6 Using UPPAAL for Scenario Verification 94
6.1 Modelling Channels in UPPAAL 94
6.2 Modelling Channel Delays 95
6.3 Modelling Timed MSC Specifications in UPPAAL 95
6.4 Scenario Matching . 96
6.5 Universality . 96

7 Discussion . 97

Using System-Level Timing Analysis for the Evaluation and Synthesis
of Automotive Architectures . 99

Marco Di Natale, Wei Zheng, and Paolo Giusto
1 Introduction . 99

1.1 Background . 100
2 A Methodology for Architecture Exploration 101

2.1 Functions, Architectures, and Platforms Models 101
2.1.1 Functional Models . 101
2.1.1 Architecture Models 102
2.1.1 Mapping and System Platform Model 103

3 Task and Message Model . 103
3.1 Periodic Activation Model . 105
3.2 Data-Driven Activation Model 106

xiv Contents

3.3 Processor Scheduling . 106
3.4 Bus Scheduling . 107

4 Synthesis of the Activation Model 108
5 The Case Study Vehicle . 110

5.1 Architecture Selection . 110
5.2 Optimization of the Activation Modes 111

6 Conclusions . 112

Verifiable Design of Asynchronous Software 115
Prakash Chandrasekaran, Christopher L. Conway, Joseph M. Joy, and Sriram
K. Rajamani

Approximate Symbolic Reachability of Networks of Transition Systems . 117
Sudeep Juvekar, Ankur Taly, Varun Kanade, and Supratik Chakraborty

1 Introduction . 117
2 Networks of State Transition Systems 119

2.1 Reachability Analysis of Networks of Transition Systems . . . 120
2.2 Exploiting Locality to Optimize Image Computation 124
2.3 Scalability Issues . 128

3 Experimental Results . 129
3.1 Modeling of Circuits . 130
3.2 Comparing Different Techniques 131

4 Discussion and Conclusion . 134

Schedule Verification and Synthesis for Embedded Real-Time
Components . 137

Purandar Bhaduri
1 Introduction . 137
2 The Component Scheduling Problem 139

2.1 Tasks and Task Graphs . 139
2.2 The Problem . 141

3 Modelling Component Scheduling with Timed Interfaces 143
3.1 Timed Interface Automata for Tasks 144
3.2 From Task Graph to Specification Automaton 145

4 Timing Verification and Schedule Synthesis 146
5 Application: Time-Triggered Schedule Synthesis 149
6 Conclusion . 152

An Instrumentation-Based Approach to Controller Validation 155
Rance Cleaveland

A Design Methodology for Distributed Real-Time Automotive
Applications . 157

Werner Damm and Alexander Metzner
1 Introduction . 157

Contents xv

2 Design Optimization . 159
3 Implementables and Real-Time Analysis 162
4 Implementation Verification . 164
5 Requirement Checking . 166
6 Design Tailoring and Pre-Allocation 167

6.1 Design Tailoring . 168
6.2 Generating Real-Time Interfaces 170

7 Conclusion . 172

Role of Formal Methods in the Automobile Industry 175
Thomas E. Fuhrman

Predicting Failures of and Repairing Inductive Proof Attempts 177
Mahadevan Subramaniam, Deepak Kapur, and Stephan Falke

1 Introduction . 177
1.1 Two Illustrative Examples . 179
1.2 Related Work . 180

2 Generating Induction Schemes . 180
3 Flawed Induction Schemes . 182

3.1 Blocking . 182
3.2 Flawed Schemes . 183

4 Predicting Failure of Inductive Proof Attempts 184
4.1 Failure due to Inapplicability of Induction

Hypotheses . 184
4.2 Simplification Failures . 186

5 Possibly Repairing Predicted Failures 186
5.1 Speculating Bridge Lemmas 187

6 Implementation . 189
7 Concluding Remarks and Future Work 190

Can Semi-Formal be Made More Formal? 193
Ansuman Banerjee, Pallab Dasgupta, and Partha P. Chakrabarti

1 Introduction . 193
2 Comparing Specifications for Analyzing Coverage 197

2.1 Where is the Coverage Gap? 200
2.2 How should we Present the Coverage Hole? 202
2.3 SpecMatcher – The Intent Coverage Tool 203

3 Testcase Generation for DPV . 204
3.1 The Concept of Vacuity . 204
3.2 Non-Vacuous Test Generation 205

4 A Platform for DPV for Software Systems 207
4.1 DPV for UML over Rhapsody 208

5 Conclusion . 210

xvi Contents

Beyond Satisfiability:
Extensions and Applications . 213

Natarajan Shankar
1 Propositional Satisfiability . 213

1.1 Extensions and Applications 216
2 Theory Satisfiability . 220
3 Conclusions . 223

Compositional Reactive Semantics of SystemC and Verification
with RuleBase . 227

Rudrapatna K. Shyamasundar, Frederic Doucet, Rajesh K. Gupta,
and Ingolf H. Krüger

1 Introduction . 227
2 Overview of SystemC . 228
3 Semantic Framework . 230

3.1 Reactive Statements . 230
3.2 Statements for Time . 232
3.3 Rules for Parallel Composition 232
3.4 Statements for Transaction-Level Modeling 234
3.5 Computing the Semantics of SystemC Components 235

4 Anomalous Behaviors . 235
4.1 Causality Cycle . 236
4.2 Nondeterminism . 237

5 Verification Framework . 238
6 An Example: Central Locking System 239
7 Related Work . 241
8 Summary and Conclusions . 242

PSL: Beyond Hardware Verification . 245
Ziv Glazberg, Mark Moulin, Avigail Orni, Sitvanit Ruah,
and Emmanuel Zarpas

1 Introduction . 245
2 Property Specification Language (PSL) 245

2.1 Simple PSL Examples . 246
2.2 SEREs – Regular Expressions in PSL 246
2.3 PSL Properties with SEREs 247
2.4 Other Property Styles . 248
2.5 PSL Layers and Flavors . 248
2.6 The Granularity of Time . 249

3 Missile Interception Control System 249
4 SMARRT: Static Model Checking and Analysis for Rose Real-Time 252

4.1 Defining the Model . 253
4.2 Defining the Specification . 254
4.3 Model Checking the PSL Model 254
4.4 Counterexample Generation 255

Contents xvii

5 System Automation . 255
5.1 Modeling TSA Policies with PSL 256
5.2 Verification . 257

6 Conclusion . 258

On the Polychronous Approach to Embedded Software Design 261
Sandeep K. Shukla, Syed M. Suhaib, Deepak A. Mathaikutty,
and Jean-Pierre Talpin

1 Introduction . 262
1.1 Polychrony and Synchronous Programming 263

2 Related Work . 264
3 Background . 265

3.1 A Polychronous Model of Computation 266
3.2 Pomsets . 266

4 Pomset Representation of Polychrony 267
5 Flow and Clock Equivalence . 270

5.1 Understanding Endochrony 272
6 Concluding Remarks . 272

Scaling up Model-checking . 275
Aniket Kulkarni, Ravindra Metta, Ulka Shrotri, and R. Venkatesh

1 Introduction . 275
2 Statecharts . 276
3 SAL . 277

3.1 Analysis . 278
4 Translating Statecharts to SAL . 279

4.1 Key Issues . 280
4.2 Step and Super Step . 281
4.3 Implementation of Hierarchy 281

5 Optimizations . 281
5.1 Slicing . 282
5.2 And State as Child of Root or State 282
5.3 Variable Type Abstraction . 282

6 Experimental Results . 282
7 Problems and Future Work . 283

Performance Debugging of Heterogeneous Real-Time Systems 285
Unmesh D. Bordoloi, Samarjit Chakraborty, and Andrei Hagiescu

1 Introduction . 285
2 The Basic Framework . 286
3 The FlexRay Protocol . 290
4 Formal Timing Analysis of FlexRay 293
5 Adaptive Cruise Control Application: A Case Study 295
6 Concluding Remarks . 299

Contributors

Rajeev Alur
University of Pennsylvania

Ansuman Banerjee
Department of Computer Science & Engineering, Indian Institute of Technology,
Kharagpur, India-721302
ansuman@cse.iitkgp.ernet.in

Gerard Berry
Esterel Technologies
gerard.berry@esterel-technologies.com
www.esterel-technologies.com

Purandar Bhaduri
Department of Computer Science and Engineering,
Indian Institute of Technology, Guwahati 781039, India
pbhaduri@iitg.ernet.in

Jatin Bharadia
Embedded Real-Time Systems Lab, Indian Institute of Technology, Bombay
jatin@it.iitb.ac.in

Unmesh D. Bordoloi
Department of Computer Science, National University of Singapore
unmeshdu@comp.nus.edu.sg

Partha P. Chakrabarti
Department of Computer Science & Engineering, Indian Institute of Technology,
Kharagpur, India-721302
ppchak@cse.iitkgp.ernet.in

Samarjit Chakraborty
Department of Computer Science, National University of Singapore
samarjit@comp.nus.edu.sg

xix

xx Contributors

Supratik Chakraborty
Indian Institute of Technology, Bombay, India
supratik@cse.iitb.ac.in

Prakash Chandrasekaran
Chennai Mathematical Institute

Edmund M. Clarke
Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213
emc@cs.cmu.edu

Christopher L. Conway
New York University

Werner Damm
OFFIS, Oldenburg, Germany

Pallab Dasgupta
Department of Computer Science & Engineering, Indian Institute of Technology,
Kharagpur, India-721302
pallab@cse.iitkgp.ernet.in

F. Doucet
Department of Computer Science and Engineering, University of
California at San Diego, CA 92093-0404, USA
fdoucet@ucsd.edu

Stephan Falke
Computer Science Dept., University of New Mexico, Albuquerque, NM, USA
spf@cs.unm.edu

Paolo Giusto
General Motors Research and Development, 30500 Mound Road,
Warren, MI 48090-9055

Ziv Glazberg
IBM, Haifa Research Lab., Mount Carmel, 31905 Haifa, Israel
glazberg@il.ibm.com

R. Gupta
Department of Computer Science and Engineering,
University of California at San Diego, CA 92093-0404, USA
rgupta@ucsd.edu

Contributors xxi

Andrei Hagiescu
Department of Computer Science, National University of Singapore,
hagiescu@comp.nus.edu.sg

Joseph M. Joy
Microsoft Research India

Sudeep Juvekar
Indian Institute of Technology, Bombay, India
sjuvekar@cse.iitb.ac.in

Varun Kanade
Georgia Institute of Technology, USA
varunk@cc.gatech.edu

Deepak Kapur
Computer Science Dept., University of New Mexico, Albuquerque, NM, USA
kapur@cs.unm.edu

I.H. Krüger
Department of Computer Science and Engineering,
University of California at San Diego, CA 92093-0404, USA
ikrüger@ucsd.edu

Aniket Kulkarni
TRDDC
aniket.kulkarni@tcs.com

Flavio Lerda
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213
flerdda@cs.mu.edu

Deepak A. Mathaikutty
Virginia Polytechnic and State University,
damathai@vt.edu

Ravindra Metta
TRDDC,
ravindra.metta@tcs.com

Alexander Metzner
OFFIS, Oldenburg, Germany

xxii Contributors

Mark Moulin
IBM, Haifa Research Lab., Mount Carmel, 31905 Haifa, Israel
markm@il.ibm.com

Marco Di Natale
General Motors Research and Development, 30500 Mound Road,
Warren, MI 48090-9055

Avigail Orni
IBM, Haifa Research Lab., Mount Carmel, 31905 Haifa, Israel
ornia@il.ibm.com

Paritosh K. Pandya
Tata Institute of Fundamental Research, Colaba, Mumbai, India 400005
pandya@tifr.res.in

Sriram K. Rajamani
Microsoft Research India

Raj Rajkumar
Professor, ECE and CS, Carnegie Mellon University, Pittsburgh, USA
raj@ece.cmu.edu

Krithi Ramamritham
Embedded Real-Time Systems Lab, Indian Institute of Technology, Bombay
krithi@cse.iitb.ac.in

Gurulingesh Raravi
Embedded Real-Time Systems Lab, Indian Institute of Technology, Bombay
guru@it.iitb.ac.in

Sitvanit Ruah
IBM, Haifa Research Lab., Mount Carmel, 31905 Haifa, Israel
sitvanit@il.ibm.com

Natarajan Shankar
Computer Science Laboratory
SRI International, Menlo Park CA 94025 USA
shankar@csl.sri.com

Vipul Shingde
Embedded Real-Time Systems Lab, Indian Institute of Technology, Bombay
vipul@cse.iitb.ac.in

Sandeep K. Shukla
Virginia Polytechnic and State University, shukla@vt.edu

Contributors xxiii

Ulka Shrotri
TRDDC
ulka.s@tcs.com

R.K. Shyamasundar
IBM India Research Lab, Block 1, IIT Delhi, Hauz Khas, New Delhi 110016, India
rshyamas@in.ibm.com

Mahadevan Subramaniam
Computer Science Dept., University of Nebraska at Omaha, Omaha, NE, USA
msubramaniam@mail.unomaha.edu

Syed M. Suhaib
Virginia Polytechnic and State University,
ssuhaib@vt.edu

Jean-Pierre Talpin
IRISA/INRIA
jean-pierre.talpin@irisa.fr

Muralidhar Talupur
Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA 15213
tmurali@cs.cmu.edu

Ankur Taly
Indian Institute of Technology, Bombay, India
ankur123@cse.iitb.ac.in

R. Venkatesh
TRDDC
r.venky@tcs.com

Emmanuel Zarpas
IBM, Haifa Research Lab., Mount Carmel, 31905 Haifa, Israel
zarpas@il.ibm.com

Wei Zheng
University of California at Berkeley,
EECS Department, Berkeley CA 94720

An Abstraction Technique
for Real-Time Verification

Edmund M. Clarke, Flavio Lerda, and Muralidhar Talupur

Abstract In real-time systems, correctness depends on the time at which events
occur. Examples of real-time systems include timed protocols and many embedded
system controllers. Timed automata are an extension of finite-state automata that
include real-valued clock variables used to measure time. Given a timed automa-
ton, an equivalent finite-state region automaton can be constructed, which guaran-
tees decidability. Timed model checking tools like UPPAL, KRONOS, and RED use
specialized data structures to represent the real-valued clock variables. A different
approach, called integer-discretization, is to define clock variables that can assume
only integer values, but, in general, this does not preserve continuous-time semantics.

This paper describes an implicit representation of the region automaton to which
ordinary model checking tools can be applied directly. This approach differs from
integer discretization because it is able to handle real-valued clock variables using a
finite representation and preserves the continuous-time semantics of timed automata.
In this framework, we introduce the GOABSTRACTION, a technique to reduce the
size of the state space. Based on a conservative approximation of the region automa-
ton, GOABSTRACTION makes it possible to verify larger systems. In order to make
the abstraction precise enough to prove meaningful properties, we introduce auxiliary
variables, called Go variables, that limit the drifting of clock variables in the abstract
system. The paper includes preliminary experimental results showing the effective-
ness of our technique using both symbolic and bounded model checking tools.

Keywords: Abstraction, model checking, real-time systems, timed automata.

1 Overview

Real-time systems are a class of systems whose correctness depends on the time at
which events occur. Examples include embedded controllers, time triggered systems,
and timed protocols. In fact, most safety critical systems are real-time systems as
they require guarantees on the timing of events. For instance, in order for the braking
system of a car to be correct, it is not sufficient for the correct output to be produced,
but it has to be produced within a given time bound.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 1
for Distributed Embedded Control Systems, 1–17.
c© Springer 2007

2 Edmund M. Clarke et al.

Model checking is widely used in the semiconductor industry and it has been suc-
cessful for software. For example, the model checker SLAM [3] is the basis for the
Driver Verifier, which is currently being distributed by Microsoft as part of their
Device Driver Software Development Kit. Moreover, all device drivers must be veri-
fied using the Driver Verifier in order to be certified by Microsoft’s Windows Hard-
ware Quality Labs. However, finite-state model checking cannot be applied directly
to real-time systems because time is modeled as a continuous, real-valued quantity.
The success of finite-state model checking has spurred the development of model
checking techniques for infinite-state systems, including real-time systems.

Real-time systems are often modeled using timed automata [2]. Timed automata
are an extension of finite-state automata that include a set of clock variables to keep
track of time. The transitions of a timed automaton are labeled with clock constraints
that must hold when a transition is taken, and sets of clock variables to be reset
after a transition occurs. To specify properties of timed automata, extensions of ordi-
nary temporal logics, e.g., Timed Computation Tree Logic (TCTL) [1], have been
proposed.

In recent years, there has been extensive work on verification of real-time systems.
Alur et al. [1, 2] developed the theoretical foundations for much of the work in this
area. They introduced timed automata, an extension of finite-state automata that can
be used to model real-time systems. They proposed the region graph construction,
which maps questions about an (infinite-state) real-time system into questions about
a corresponding finite-state automaton. Many tools and techniques for real-time ver-
ification are based on this work but employ specialized data structures to represent
clock variables: Difference Bounded Matrices [7], Region Encoding Diagrams [17],
Clock-Restriction Diagrams [20], and Difference Decision Diagrams [13], just to
name a few. Henzinger and Kupferman [9] showed how to reduce the problem of
checking a timed temporal logic property of a timed automaton to checking an
(untimed) temporal logic property of a property of the region automaton. There-
fore, from now on, we will only consider untimed temporal logic properties. Other
approaches have also been proposed. For instance, extensive work has been done
on integer discretization based techniques [4, 5, 10, 11], where real-valued clock
variables are replaced by integer-valued variables. While these techniques in general
do not preserve the continuous-time semantics of timed-automata, they are sound for
a class of real-time systems and properties [10].

In this paper, we explore techniques for the verification of timed automata that
are based on the region graph construction but do not use specialized data structures
to represent clock variables. Preliminary work in this area is due to Gōllü et al. [8],
however, no implementation or experimental results were presented by the origi-
nal authors. These techniques are usually referred to as discretization techniques,
but they are radically different from the integer-discretization techniques mentioned
above. The main difference is that the former provide a finite (discrete) representation
for sets of real-valued clock variables while the latter is able to handle only integer-
valued clock variables. In this paper, we describe a new implicit representation of the
region automaton. The representation is implicit in that we do not enumerate regions

An Abstraction Technique for Real-Time Verification 3

or transitions explicitly. The resulting system can be verified using existing model
checking tools. Our representation of clock regions is similar to the one of Wang [18],
however, their approach is based on a specialized data structure for symbolic model
checking and it cannot be used with other model checking tools.

The region graph construction [1] is a well known technique for model check-
ing timed automata. A state of a timed automaton is defined as a pair made of a
location and a valuation of the clock variables. A clock region is a (possibly infi-
nite) set of clock valuations. The region graph construction defines a bisimulation
between the states of a timed automaton and a finite set of clock regions. The result
of the construction is a region automaton, a finite-state automaton that is bisimilar
to the original timed automaton. The bisimulation defined in [1] preserves temporal
logic properties. Verification of a property of a timed automaton is reduced to the
verification of the same property on the corresponding region automaton. The region
automaton is, by construction, finite, therefore, ordinary model checking techniques
can be applied to it. However, since the region automaton can be exponential in the
size of the original timed automaton, existing tools like UPPAAL [12], KRONOS [21],
and RED [19] treat clock variables differently from discrete state variables and use
specialized data structures to represent clock regions.

Since the region automaton is, in the worst case, exponential in the number of clock
variables [2], we introduce a new abstraction technique called GOABSTRACTION
that addresses this blow up. Approaches that use a representation similar to ours,
e.g., [8, 18], do not have a similar abstraction technique.

Abstractions have been widely used in hardware and software model checking
to improve the performance of verification. Predicate abstraction has been applied
to timed automata by Möller et al. [14] and Sorea [15]. This approach is based
on identifying a set of predicates that is sufficient to discriminate between any two
clock regions and uses abstraction/refinement to find a minimal subset of these pred-
icates that is sufficient to perform the verification. Tripakis and Yovine [16] define an
abstraction that removes the actual value of the delays to obtain a timeless system,
which is finite-state. Our approach, instead, is based on merging clock regions that
differ only in the ordering of fractional parts.

In the region graph construction, a clock region corresponds to a set of clock valu-
ations that are equivalent according to the bisimulation relation presented in [1]. One
of the conditions necessary for two clock valuations v and v ′ to be equivalent is that
the ordering of the fractional parts of each pair of clock variables is the same in both
valuations. For instance, if the fractional part of clock c1 is less than the fractional
part of clock c2 in v , the same must hold for v ′, even if the actual values may differ.
This is necessary to precisely compute the successors of a given clock region. How-
ever, given n clock variables, there are n! possible orders of their fractional parts,
and, in principle, n! different clock regions. This can cause an exponential blow up
in the number of states in the region automaton, which can lead to intractability.

Our approach abstracts the relative ordering between the fractional parts. By doing
so, we obtain an over-approximation of the behavior of the system, where precise
information is lost. Regions that differ only because of the ordering of the fractional

4 Edmund M. Clarke et al.

parts of some clock variables are merged into a single abstract clock region. By
reducing the number of clock regions, we decrease the number of states in the
region automaton and, therefore, we obtain a smaller state space. However, while the
abstraction is safe and it is guaranteed to preserve the validity of properties, it may
introduce spurious counterexamples.

The abstraction scheme as presented so far is too coarse. The problem is that, as
we discard the relative ordering between clock variables, we allow them to drift apart
unboundedly. In order to make the abstraction more precise, we introduce auxiliary
variables, called Go variables, that keep track of the way clock variables evolve and
limit the drifting to at most one time unit.

In our preliminary experiments, we show how GOABSTRACTION is sufficient to
prove properties for a real-time protocol, namely Fischer’s mutual exclusion protocol,
that could not be established with a naive abstraction scheme that did not make use
of the Go variables.

The remainder of the paper is organized as follows. Section 2 recalls some useful
definitions. Our discretization is presented in Section 3, and GOABSTRACTION is
introduced in Section 4. Section 5 contains some preliminary experimental results
and Section 6 gives conclusions and directions for future work.

2 Preliminaries

2.1 Timed Automata

Timed automata are a formalism used to model real-time systems. They are an exten-
sion of finite-state automata that include a set of real-valued clock variables used to
measure time. Transitions of a timed automaton are labeled with a clock constraint
and a set of clock variables known as the reset set. A transition can be taken only if
the clock constraint associated with it is true in the current state. After a transition is
taken, the values of the clock variables in the reset set are set to zero.

Definition 1 (Clock Constraints) A clock constraint is a Boolean combination of
equalities and inequalities involving a single clock variable x and an integer constant
c (i.e., x < c, x ≤ c, x = c, x ≥ c, and x > c).

The set of all possible clock constraints over a set of clock variables X is denoted
by C(X).

Definition 2 (Clock Valuations) A clock valuation over a set of clock variables X
is a function v : X → R

+ that assigns to every clock variable in X a non-negative
real value.

The set of all possible clock valuations over a set of clock variables X is denoted
by V (X). Let v0, called the zero clock valuation, be the clock valuation that assigns

An Abstraction Technique for Real-Time Verification 5

the value zero to all clock variables. Given a clock valuation v ∈ V (X) and a non-
negative real value δ ∈ R

+, we denote by v + δ ∈ V (X) the clock valuation that
maps every clock variable x ∈ X to the value v(x) + δ. Given a clock valuation
v ∈ V (X) and a reset set λ ⊆ X , we denote by v[λ = 0] ∈ V (X) the clock valuation
that maps every clock variable x in λ to zero and every clock variable x not in λ to
the same value v does. Given a clock constraint g ∈ C(X) and a valuation v ∈ V (X),
v satisfies g if and only if the expression obtained by replacing in g every occurrence
of a clock variable x with the value v(x) evaluates to true.

Definition 3 (Timed Automaton) A timed automaton is a 5-tuple A = (Q, X,
q0, I, T) where Q is a finite set of locations; X is a finite set of real-valued
clock variables; q0 ∈ Q is an initial location; I : Q → 2V (X) is a location
invariant, a function that assigns to every location a set of valid valuations; and
T ⊆ Q ×C(X)× 2X × Q is a set of discrete transitions, such that (q, g, λ, q ′) ∈ T
if and only if there is a discrete transition from location q to location q ′ labeled with
the clock constraint g and the reset set λ.

The state of a timed automaton A is a pair (q, v) such that q ∈ Q is a location
and v ∈ V (X) is a clock valuation. Timed automata allow two types of transitions:
(i) time transitions, which correspond to the passing of time; and (ii) discrete transi-
tions, which correspond to the discrete transitions of the automaton. A time transition
is labeled by a positive real value δ and maps state (q, v) into state (q, v+δ) if for all
non-negative real values δ′ ≤ δ, v + δ′ belongs to the invariant I (q). A discrete tran-
sition is labeled by (q, g, λ, q ′) ∈ T and maps state (q, v) into state (q ′, v[λ = 0]) if
v satisfies the clock constraint g and v[λ = 0] belongs to the invariant I (q ′).

2.2 Region Graph Construction

A state of a timed automaton is a pair made of a location and a clock valuation.
Therefore, the set of possible states is infinite, as the clock variables are assigned
values from R

+. Model checking was developed as a technique for automatically
verifying properties of finite-state systems. As such, it is not directly applicable to
timed automata, since they may have an infinite number of states.

Alur et al. [1] proposed the region graph construction as a way to make verification
of real-time systems feasible. Given a timed automaton, the region graph construction
produces a region automaton, a finite-state automaton that is bisimilar to the original
timed automaton. Model checking can then be performed on the region automaton,
which satisfies the same set of properties as the original timed automaton.

Given a timed automaton A, for each clock variable x ∈ X , let Mx be the largest
constant against which x is compared in the clock constraints associated with the
discrete transitions of A. We call Mx the maximum constant value of clock variable
x in the timed automaton A. Let �x	 be the integer part of clock variable x , and
〈x〉 = x − �x	 be its fractional part.

6 Edmund M. Clarke et al.

2

Fig. 1 The shaded area in each diagram represents a set of equivalent clock valuations

Definition 4 (Equivalent Clock Valuations) Given a set of clock variables X and
their maximum constant values Mx , two clock valuations v1, v2 ∈ V (X) are equiva-
lent, v1 ≈ v2, if and only if:

• For all x ∈ X, either �v1(x)	 = �v2(x)	 or both v1(x) and v2(x) are greater than
Mx ;

• For all x ∈ X such that v1(x) ≤ Mx , 〈v1(x)〉 = 0 if and only if 〈v2(x)〉 = 0; and
• For all x, y ∈ X such that v1(x) ≤ Mx and v1(y) ≤ My, 〈v1(x)〉� 〈v1(y)〉 if and

only if 〈v2(x)〉� 〈v2(y)〉, for � ∈ {<,=, >}.
As an example, consider Figure 1. Each point on one of the two diagrams corre-

sponds to a clock valuation, each shaded area to a set of equivalent clock valuations.
The shaded area on the left shows the clock valuations such that �x	 and �y	 are
equal to 1 and 〈y〉 is smaller than 〈x〉. The shaded area on the right represents the
clock valuations such that �x	 = 2, �y	 = 1, 〈x〉 < 〈y〉, and 〈x〉 = 0.

The first two conditions of Def. 4 guarantee that given two equivalent clock valu-
ations, they satisfy the same set of clock constraints. Given a clock constraint x � c,
the validity of the constraint can be decided by knowing the integer part of x and
whether the fractional part of x is equal to zero.

The third condition is needed to guarantee that, given two equivalent clock valu-
ations, as time passes, they will reach clock valuations that are equivalent. Consider
again Figure 1. For all clock valuations represented by the shaded area in the dia-
gram on the left 〈y〉 < 〈x〉. As a consequence, as time passes, since both variables
are incremented at the same rate, clock variable x will reach the value 2 before clock
variable y does. Therefore, the set of clock valuations such that �x	 = 2 ∧ �y	 =
1 ∧ 〈x〉 < 〈y〉 ∧ 〈x〉 = 0 is reachable. The shaded area in the diagram on the right
represents this set of clock valuations. If we did not know the ordering of the frac-
tional parts of x and y, two other sets of equivalent clock valuations would also be
reachable, �x	 = �y	 = 2∧ 〈x〉 = 〈y〉 = 0 and �x	 = 1∧�y	 = 2∧ 0 = 〈y〉 < 〈x〉.
Definition 5 (Clock Region) A clock region µ is an equivalence class of the relation
≈ defined above.

Let the set of clock regions of the automaton A be denoted by �(A). �(A) is
finite by construction. Since all valuations in a clock region satisfy the same set of

An Abstraction Technique for Real-Time Verification 7

clock constraints, a region µ satisfies a clock constraint c if and only if every clock
valuation v ∈ µ satisfies c. Given a clock region µ, we define µ′ = µ[λ = 0] to be
the clock region such that, for all clock valuations v ∈ µ, v[λ = 0] belongs to µ′.

Definition 6 (Time Successor) Given a clock region µ, a clock region µ′ �= µ is a
time successor of µ if and only if there exists a clock valuation v ∈ µ and a positive
real value δ, such that v + δ ∈ µ′ and for all non-negative real values δ′ < δ, v + δ′
belongs either to µ or µ′.

Notice that each clock region µ has at most one time successor because of the way
we defined the equivalence relation ≈ on clock valuations.

Definition 7 (Region Automaton) Given a timed automaton A, the corresponding
region automaton is a finite-state automaton R(A) = (S, s0, R) where S = Q×�(A)
is a finite set of states; s0 = (q0, µ0) is an initial state, where µ0 is the clock region
containing the zero clock valuation v0; and R ⊆ S × S is a finite transition relation
such that ((q1, µ1), (q2, µ2)) belongs to R if and only if either:

• q1 = q2, µ2 is the time successor of µ1, and µ2 satisfies I (q1); or
• there exists a discrete transition (q1, g, λ, q2) such that µ1 satisfies g, µ2 =

µ1[λ = 0], and µ2 satisfies I (q2).

The region automaton captures the behaviors of the original timed automaton
exactly, i.e., they satisfy the same sets of properties.

3 Discretization

In this section, we give a representation of the region automaton. The representation
is implicit as, in the model we construct, time transitions are not enumerated explic-
itly but are represented by two transitions called the from-integer and the to-integer
time transitions.

Given a timed automaton A, let Mx be the maximum constant values in A. For each
clock variable x ∈ X , let us introduce two shared variables: an integer part variable
Ix and a fractional order variable Fx .

The integer part variable represents the integer part of a clock variable. For a clock
variable x , Ix is equal to �x	 if x ≤ Mx and Mx otherwise. Therefore Ix is an integer
ranging between 0 and Mx .

For a given clock valuation, order the clock variables that are smaller or equal
to the corresponding maximum constant value according to the values of their frac-
tional parts. The fractional order variable represents the position of a clock variable
in this order. The fractional order variable of a clock variable x ≤ Mx is equal to
zero if and only if the fractional part of x is equal to zero. For the variables with
the smallest, non-zero fractional part (there may be more than one), the correspond-
ing fractional order variable is set to 1. For the variables with the second smallest,

8 Edmund M. Clarke et al.

Fig. 2 The possible values of integer part and fractional order variables. The example shows the
case of 3 clock variables with the maximum constant value for the variable shown equal to 4. The
fractional order values represent only the relative ordering between fractional parts

non-zero fractional part, the corresponding fractional order variable is set to 2, and
so on. If x > Mx then the corresponding fractional order variable Fx is set to 1,
as the order between fractional parts is not relevant for clock variables larger than
their maximum constant value. If two clock variables x and y such that x ≤ Mx
and y ≤ My have the same fractional part, their fractional order variables are equal.
The fractional order variables are integers ranging between 0 and n, where n is the
number of clock variables. The order between fractional parts is maintained by the
fractional order variables, i.e., given two clock variables x and y such that x ≤ Mx
and y ≤ My , Fx � Fy if and only if 〈x〉 � 〈y〉, for � ∈ {<,=, >}. While clock
variable x ∈ X is a real-valued variable, Ix and Fx are discrete (cf. Figure 2).

Definition 8 (Discrete Clock Valuations) Given a set of clock variables X, a dis-
crete clock valuation is a function vd that, for each clock variable x ∈ X, assigns to
Ix a value from {0, . . . , Mx } and to Fx a value from {0, . . . , n}.

Let V d(X) be the set of discrete clock valuations defined for a set of clock
variables X . Given a clock valuation v ∈ V (X), the corresponding discrete clock
valuation vd assigns values to each integer part and fractional order variables as
described above. Given a clock variable x ∈ X , we will denote by vd(x) the pair
(vd(Ix), vd(Fx)), called the discrete value of x .

Theorem 9 (Equivalence to Regions) Each discrete clock valuation corresponds to
a unique clock region and vice-versa, i.e., given two clock valuation v1 and v2, v1 is
equivalent to v2 (Def. 4) if and only if the corresponding discrete clock valuations vd

1
and vd

2 are equal.

The states of the region automaton can be represented by a pair made of a loca-
tion and a discrete clock valuation. Now that we have defined discrete clock valua-
tions, a representation for clock regions, and discrete states, we define how transitions
between states in the region automaton map to transitions between discrete states in
the discrete timed system. The region automaton defines two types of transitions:
time transitions and discrete transitions.

Time transitions are represented by two transitions: (i) the from-integer time tran-
sition, which is taken when one of the clock variables has an integer value; and (ii) the
to-integer time transition, which leads to a state where one of the clock variables has

An Abstraction Technique for Real-Time Verification 9

Fig. 3 Evolution of a region and the corresponding discrete valuation due to the from-integer time
transition. Each shaded area represents the clock valuations belonging to a region

Fig. 4 Evolution of a region and the corresponding discrete valuation due to the to-integer time
transition. Each shaded area represents the clock valuations belonging to a region

an integer value. Each time transition represents a set of actual transitions. We use
two types of time transitions to capture two possible scenarios: (i) the case where at
least one clock variable has an integer value (cf. Figure 3); and (ii) the case where
none of the clock variables has an integer value (cf. Figure 4). In the figures, the dia-
grams at the top, represent the clock regions as shaded area as before. The bottom
shows a discrete clock valuation by assigning an integer part and a fraction order to
each clock variable.

The from-integer time transition can be taken only if there exists at least one frac-
tional order variable equal to zero. When this transition is taken, all fractional order
variables are incremented by one, while all integer part variables remain unchanged.
The example in Figure 3 contains two clock variables x and y. The maximum con-
stant value of x is 3 and the one of y is 2. A point in one of the diagrams at the top of
the figure represents a clock valuation, which assigns the corresponding values to x
and y. The thin lines split the clock valuations into regions. A shaded area is used to
represent a specific clock region. Initially the discrete value of x is (1, 1) and the one
of y is (1, 0). The shaded area in the diagram at the top-left of the figure shows the

10 Edmund M. Clarke et al.

region corresponding to this discrete state. As time progresses, clock variable y will
become greater than 1 before clock variable x reaches 2, and it will have the smallest,
non-zero fractional part. Therefore, its discrete value will be (1, 1). At the same time,
variable x will still have integer part equal to 1, but its fractional part will become
the second smallest one and, therefore, its discrete value will be (1, 2). The shaded
area in the diagram at the top-right of the figure shows the region corresponding to
the new state.

The to-integer time transition can be taken only if none of the fractional order
variables is equal to zero. The fractional order variables with the largest value (there
might be more than one) are set to zero and the corresponding integer part variables
are incremented by one. All other integer part and fractional order variables remain
unchanged. The example in Figure 4 contains clock variables x and y as before.
Initially the discrete value of x is (1, 2) and the one of y is (1, 1). The shaded area
in the diagram at the top-left of the figure shows the region corresponding to this
discrete state. As time progresses, variable x will be the first one to reach an integer
value, because it has the largest fractional part. Its new value will be (2, 0) and the
next value of y will remain (1, 1), since y still has the smallest, non-zero fractional
part. The shaded area in the diagram at the top-right of the figure shows the region
corresponding to the new state.

The clock variables x ∈ X such that the integer part variable Ix is equal to Mx
and the fractional order variable Fx is greater than zero are treated differently: their
integer part and fractional order variables are not updated by the from-integer or the
to-integer time transitions. This is because, in the region graph construction, the order
between fractional parts is relevant only for those clock variables that are smaller than
the corresponding maximum constant value.

Each discrete transition of the region automaton is mapped into a corresponding
discrete transition between discrete clock valuations. A discrete clock valuation satis-
fies a clock constraint g if the corresponding clock region does. Since clock variables
are only compared against integer constants, it is possible to determine if a discrete
clock valuation satisfies a clock constraint by looking only at the integer part and
fractional order variables. After a transition is taken, the clock variables in the reset
set λ must be set to zero. If clock variable x belongs to λ, both the corresponding
integer part and fractional order variables are set to zero.

Given a timed automaton A, the result of our discretization is the discrete timed
system Ad , a system made of two asynchronous processes and containing, for each
clock variable x , two discrete variables Ix and Fx shared by the two processes. The
first process, called the discrete-transition process has the same locations and tran-
sitions as the original timed automaton, where clock constraints are mapped into
expressions over Ix and Fx and reset sets are mapped into resets of these variables,
as described above. The second process, called the time-transition process, defines
the from-integer and to-integer time transitions. The system is modeled using two
asynchronous processes: one process defines the time transitions, the other defines
the discrete ones. The time transitions can occur at any location of the timed automa-
ton. Having two asynchronous processes allows us to use a smaller representation:

An Abstraction Technique for Real-Time Verification 11

time transitions are defined only once but, by virtue of the asynchronous composition,
they can be taken at any location of the timed automaton. The idea of separating dis-
crete transitions and time transition into two asynchronous processes has been used
by Lamport [11] in his integer discretization based approach for real-time systems.
However, as with other integer discretization techniques, this approach handles only
integer-valued clock variables and, therefore, does not capture the continuous time
semantics of timed automata.

Theorem 10 (Discrete Equivalence) Given a timed automaton A, the discrete
timed system Ad and the region automaton R(A) are equivalent.

The main advantages of this construction are: (i) the construction is implicit, it
does not enumerate the clock regions or the time transitions between them; (ii) the
resulting system can be checked using any of the existing model checking tools and
therefore exploit the recent advances in this domain; (iii) this approach can easily be
extended to the composition of a set of timed automata: since they need to synchro-
nize over the time transitions, we can represent the composition using a discrete-
transition process for each automaton and a single instance of the time-transition
process.

4 GoAbstraction

The discretization given in the previous section makes it possible to verify proper-
ties of timed automata using standard model checking tools. However, in the worst
case, the region automaton can be exponential in the number of clock variables and
the largest constant. Therefore, even if our construction does not explicitly enumer-
ate the clock regions, model checking might not terminate because of the size of the
state space.

In this section, we introduce a new abstraction technique, called GOABSTRAC-
TION, which aims at reducing the size of the state space. This is a conservative
approximation of the behaviors of the system, i.e., each behavior of the original sys-
tem is maintained in the abstraction, but it may introduce spurious counterexamples.

In the construction given in Section 4, for each clock variable x , the fractional
order variable Fx is used to represent the ordering relation between the fractional
parts of the different clock variables. Keeping track of this ordering, however, may
lead to a number of different permutations that is exponential in number of clock
variables. For some applications, this can cause the verification to be intractable.

We propose an abstraction that discards part of the ordering relation between clock
variables. In the previous construction, the fractional order variables ranged between
0 and n, where n is the number of clock variables. In the abstraction, we replace
the fractional order variables Fx with abstract fractional order variables Fα

x . These
variables assume values in the abstract domain Fα = {0, α}, where 0 represents clock
variables whose fractional part is equal to zero, and α represents all other possible
fractional order values (cf. Figure 5).

12 Edmund M. Clarke et al.

Fig. 5 The mapping between concrete and abstract clock valuations

Definition 11 (Abstract Clock Valuations) Given a set of clock variables X, an
abstract clock valuation is a function vα that, for each clock variable in x ∈ X,
assigns to Ix a value from {0, . . . , Mx } and to Fα

x a value from Fα .

Let V α(X) be the set of abstract clock valuations defined for a set of clock
variables X . Given a clock variable x ∈ X , we will denote by vα(x) the pair
(vd(Ix), vd(Fα

x)), called the abstract value of x .

Definition 12 (Abstraction Function) The abstraction function h : V d(X) →
V α(X) maps discrete clock valuations into abstract clock valuations and is
defined as:

h(vd)(Vx) =

⎧
⎪⎨

⎪⎩

vd(Ix) if Vx = Ix

0 if Vx = Fx and vd(Fx) = 0

α if Vx = Fx and vd(Fx) �= 0

Given the abstraction function h, it is possible to construct an abstract timed system
Aα using a technique called existential abstraction [6]. Existential abstraction pro-
duces an over-approximation of the concrete system that is guaranteed to preserve
universal CTL (∀CTL) properties. The abstract timed system Aα is analogous to the
discrete timed system Ad but uses the abstract fractional order variables instead of
the (concrete) fractional order ones. Each transition of Ad is mapped into an abstract
transition of Aα as described below.

The from-integer abstract time transition can be taken only if there exists at least
one abstract fractional order variable equal to 0. When this transition is taken, all
fractional order variables equal to 0 are set to α.

The to-integer abstract time transition can be taken only if all abstract fractional
order variables are equal to α. When this transition is taken, any non-empty subset
of the fractional order variables can be set to 0 and the corresponding integer part
variables are incremented by one. Notice that the transitions represented by the to-
integer abstract time transition can be non-deterministic.

An Abstraction Technique for Real-Time Verification 13

Each discrete transitions is mapped into an abstract discrete transition. The validity
of a constraint can be determined by knowing the value of the integer part variables
and whether the abstract fractional order variables are equal to zero. The reset of a
clock variable can be done by setting both the integer part and the abstract fractional
order variables to zero.

Given a timed automaton A, the result of our abstraction is the abstract timed sys-
tem Aα , a system made of two asynchronous processes and containing, for each clock
variable x , two discrete variables Ix and Fα

x . The first process, called the abstract
discrete-transition process has the same locations and transitions as the original
timed automaton, where clock constraints are mapped into expressions over Ix and
Fα

x and reset sets are mapped into resets of these variables, as described above. The
second process, called the abstract time-transition process, defines the from-integer
and to-integer abstract time transitions.

Theorem 13 (Abstraction Preservation) Given a timed automaton A, the abstract
timed system Aα is an over-approximation of the discrete timed system Ad, i.e., every
trace of Ad corresponds to an equivalent trace of Aα .

The abstraction above, however, is too coarse. Given two clocks that are assigned
the same value, it is possible for them to drift apart arbitrarily, i.e., there exists a
sequence of abstract time transitions such that the difference between the two clocks
grows unboundedly (cf. Figure 6).

This is because, in the abstraction, we discarded the order between the fractional
parts and introduced non-determinism in the to-integer abstract time transition. It is
possible to increment one of the clock variables multiple times before incrementing
the others.

In order to prevent this and obtain a more precise abstraction, for each of the clock
variables x ∈ X , we introduce in our model the Boolean variable Gox . The purpose
of this variable is to keep track whether a clock variable has been already incre-
mented.

Initially, all Gox variables are set to true. This means that all variables can be
incremented. Once a clock variable x has been incremented, the variable Gox is set
to false. This prevents the same clock variable from being incremented again. When
all Gox variables are false, i.e., every variable has been incremented once, they are
set to true simultaneously. Figure 7 illustrates the behavior of the Gox variables.
They guarantee that two clock variables cannot drift apart by more than one time
unit, making the abstraction more precise.

Fig. 6 Given two clock variables initially equal, they can drift apart by means of an appropriate
sequence of from-integer and to-integer abstract time transitions

14 Edmund M. Clarke et al.

Fig. 7 The Gox variables prevent clock variables from drifting apart

We can now construct the GOABSTRACTION timed system Aα
Go, which is obtained

by introducing the Gox variables and updating the abstract transitions.
The from-integer GOABSTRACTION time transition is analogous to the from-

integer abstract time transition, but it also updates the Gox variables. If for all clock
variables x such that Ix < Mx and Fx = α the corresponding variable Gox is false,
then the Gox variables of all clocks are set to true; otherwise the Gox variables
of the clocks whose abstract fractional order variable is equal to 0 are set to false
and all other Gox variables are left unchanged. The to-integer GOABSTRACTION
time transition is analogous to the to-integer abstract time transition, but only clock
variables whose Gox variable is true can be updated by this transition.

Given a timed automaton A, the result of GOABSTRACTION is the GOABSTRAC-
TION timed system Aα

Go, a system made of two asynchronous processes and contain-
ing, for each clock variable x , three discrete variables Ix , Fα

x , and Gox . The first
process, called the GOABSTRACTION discrete-transition process has the same loca-
tions and transitions as the original timed automaton, where clock constraints are
mapped into expressions over Ix and Fα

x and reset sets are mapped into setting Ix
and Fα

x to zero and Gox to true. The second process, called the GOABSTRACTION
time-transition process, defines the from-integer and to-integer GOABSTRACTION
time transitions, and the GOABSTRACTION reset transition.

Theorem 14 (GOABSTRACTION Preservation) Given a timed automaton A, the
GOABSTRACTION timed system Aα

Go is an over-approximation of the discrete timed
system Ad, i.e., every trace of Ad corresponds to an equivalent trace of Aα

Go.

Moreover, the GOABSTRACTION timed system is more precise than the abstract
time system defined above, that is:

Theorem 15 (Refined Abstraction) Given a timed automaton A, the abstract timed
system Aα is an over-approximation of the GOABSTRACTION timed system Aα

Go,
i.e., every trace of Aα

Go corresponds to an equivalent trace of Aα .

5 Experimental Results

In this section, we give some preliminary experimental results that we obtained by
applying GOABSTRACTION to Fischer’s mutual exclusion protocol.

An Abstraction Technique for Real-Time Verification 15

This protocol guarantees mutual exclusion by imposing minimum and maximum
delays for the execution of some statements. We modeled such delays by means of
clock constraints in the timed automaton.

We model checked the protocol using Cadence SMV both as a symbolic model
checker and a bounded model checker. The results for symbolic model checking are
presented in Table 1. The first column shows the value of the timing parameter k,
a parameter of the protocol. The second and third columns report the time required
by SMV to perform the verification. The model used for the second column corre-
sponds to the discrete timed system Ad (cf. Section 3) and the one used for the third
column corresponds to the GOABSTRACTION timed system Aα

Go (cf. Section 4).
In both cases, SMV was able to verify mutual exclusion, which demonstrates that
GOABSTRACTION is precise enough to verify the property. Moreover, by using
GOABSTRACTION, we were able to reduce the running time of the model checker
by an order of magnitude.

Table 2 shows the results obtained by performing bounded model checking on
the same models. Since bounded model checking is mostly aimed at detecting prop-
erty violations, instead of checking for mutual exclusion, we checked if one of the
processes is unable to reach the critical section. Since the protocol is correct, every
process is guaranteed to eventually reach the critical section and the model checker
reports a counterexample. The first column in the table contains the value of the tim-
ing parameter k. The next two columns contain three values: the running time and
the depth l at which a valid counterexample was found, and the running time of the
verification for depth l − 1, at which no error can be found. As it can be seen from
the results, GOABSTRACTION has the side effect of reducing the depth at which an
error can be detected: this is because all the intermediate steps needed to increment
the fractional order variables of the different clocks are removed by the abstraction.
Moreover, the running times are reduced again by one order of magnitude.

Table 1 Fischer’s protocol with symbolic model checking for 4 nodes
k Discrete Go
2 28.1 s 4.8 s
3 82.5 s 22.5 s
4 175.3 s 24.3 s
5 355.6 s 43.6 s
6 728.1 s 48.8 s

Table 2 Bounded model checking applied to Fischer’s protocol with 6 nodes
k Discrete Go
2 100 s l = 25 [326 s] 19 s l = 13 [16 s]
3 450 s l = 32 [617 s] 50 s l = 16 [57 s]
4 969 s l = 38 [2500 s] 61 s l = 19 [71 s]
5 1200 s l = 46 [1605 s] 137 s l = 22 [118 s]
6 1800 s l = 54 [3115 s] 316 s l = 28 [347 s]

16 Edmund M. Clarke et al.

While these are only preliminary results, they show how, in this case, GOAB-
STRACTION is precise enough to prove interesting properties, and it is effective in
reducing verification time.

6 Conclusions and Future Work

We described an implicit representation of the region automaton that can be used to
perform verification of real-time systems using existing state-of-the-art model check-
ing tools. Since the size of the region automaton can be exponential in the number of
clock variables, we introduced GOABSTRACTION, a new abstraction technique that,
by making use of auxiliary variables, is precise enough to preserve interesting prop-
erties of real-time systems. We demonstrated this technique on a typical real-time
example.

In our experiments, we manually checked whether a counterexample was spurious.
However, this process can be automated, and we would like to do so in future work.
While GOABSTRACTION was sufficient for the example we considered, we would
like to develop a counterexample-guided abstraction/refinement framework for timed
automata based on GOABSTRACTION.

Moreover, we would like to develop additional techniques for the verification of
real-time systems based on the representation we presented. Specifically, we would
like to develop additional abstractions that can be used to address the verification of
real-time properties of large systems.

Acknowledgements This research was sponsored by the National Science Foundation under grant nos.
CNS-0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Research Office under
grant no. DAAD19-01-1-0485, the Office of Naval Research under grant no. N00014-01-1-0796, the
Defense Advanced Research Projects Agency under subcontract no. SA423679952, the General Motors
Corporation, and the Semiconductor Research Corporation. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government, or any other entity.

References

1. Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-Checking for Real-Time Systems.
In Proc. of the 5th Annual IEEE Symposium on Logic in Computer Science, 1990.

2. Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, April 1994.

3. Thomas Ball and Sriram K. Rajamani. Automatically Validating Temporal Safety Properties of
Interfaces. In Proc. of the 8th International SPIN Workshop, 2001.

4. Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A Tool for BDD-Based Verifica-
tion of Real-Time Systems. In Proc. of the 15th International Conference on Computer Aided
Verification (CAV), 2003.

An Abstraction Technique for Real-Time Verification 17

5. Marius Bozga, Oded Maler, and Stavros Tripakis. Efficient Verification of Timed Automata
Using Dense and Discrete Time Semantics. In Proc. of 10th Conference on Correct Hardware
Design and Verification Methods (CHARME), 1999.

6. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

7. David Dill. Timing Assumptions and Verification of Finite-Sate Concurrent Systems. In Proc.
of the Workshop on Automatic Verification Methods for Finite State Systems, 1989.

8. Aleks Gōllü, Anuj Puri, and Pravin Varaiya. Discretization of Timed Automata. In Proc. of the
33rd IEEE Conference on Decision and Control, 1994.

9. Thomas A. Henzinger and Orna Kupferman. From Quantity to Quality. In Proc. of International
Workshop on Hybrid and Real-Time Systems (HART), 1997.

10. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What Good Are Digital Clocks? In
Proc. of the 19th International Colloquium on Automata, Languages and Programming, 1992.

11. Leslie Lamport. Real-Time Model Checking is Really Simple. In Proc. of 13th Conference on
Correct Hardware Design and Verification Methods (CHARME), 2005.

12. Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic Model-Checking
of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems Symposium, 1995.

13. Jesper Møller, Henrik Hulgaard, and Henrik Reif Andersen. Symbolic model checking of timed
guarded commands using difference decision diagrams. Journal of Login and Algebraic Pro-
gramming, 52–53:52–57, July–August 2002.

14. M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction for Dense Real-Time
Systems. In Proc. of the Workshop on Theory and Practice of Timed Systems, 2002.

15. Maria Sorea. Verification of Real-Time Systems through Lazy Approximations. PhD thesis,
University of Ulm, Germany, 2004.

16. Stavros Tripakis and Sergio Yovine. Analysis of Timed Systems Using Time-Abstracting
Bisimulations. Formal Methods in System Design, 18(1):25–68, January 2001.

17. Farn Wang. Efficient Data Structure for Fully Symbolic Verification of Real-Time Software
Systems. In Proc. of the 6th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), 2000.

18. Farn Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time Systems.
In Proc. of the 20th Annual International Computer Software and Applications Conference,
2000.

19. Farn Wang. RED: Model-Checker for Timed Automata with Clock-Restriction Diagram. In
Proc. of Workshop on Real-Time Tools, 2001.

20. Farn Wang. Symbolic Verification of Complex Real-Time Systems with Clock-Restriction Dia-
gram. In Proc. of the 21st International Conference on Formal Techniques for Networked and
Distributed Systems, 2001.

21. Sergio Yovine. KRONOS: a verification tool for real-time systems. International Journal on
Software Tools for Technology Transfer, 1(1-2):123–133, December 1997.

SCADE: Synchronous Design and Validation
of Embedded Control Software

Gérard Berry

Abstract We describe the SCADE synchronous approach to model-based embedded
software design, validation, and implementation for avionics, automotive, railway,
and industry applications. SCADE specifications are based on block-diagrams and
hierarchical state-machine graphical models with rigorous formal specifications. The
SCADE KCG compiler is certified at the highest level of avionics certification, which
suppresses the need for generated code unit testing. The SCADE tool has support for
visual animation, test-suite coverage analysis, and formal verification. It has gate-
ways to many other tools ranging from system-level specification to performance
analysis.

Keywords: model-based development, synchronous languages, safety-critical appli-
cations

1 Introduction

We describe the SCADE synchronous methodology and toolset dedicated to model-
based embedded software design, validation, and implementation for avionics,
automotive, railway, and industry applications. The overall idea is to generate
correct-by-construction embeddable implementation from high-level executable
formal specifications, increasing software quality while decreasing design and val-
idation costs. Since the specification is executable, it can be thoroughly simulated
and verified before embedding. Since the implementation is automatically generated,
there are no errors introduced at the implementation phase.

The synchronous methodology is rooted in 25 years of scientific research [3,5,10,11]
and 20 years of successful industrial application. It is based upon a conceptual model
of embedded computation backed by four strong technical cores: specific high-level
rigorous graphical and textual languages, formal semantics, compiling algorithms
for correct-by-construction implementation, and formal testing and verification
techniques.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 19
for Distributed Embedded Control Systems, 19–33.
c© Springer 2007

20 Gérard Berry

SCADE evolved from the SAGA tool that was originally developed in 1986
by Schneider Electric [4] for nuclear plant safety systems, as a graphical version
of the Lustre synchronous language of Caspi and Halbwachs [10]. It was then
developed further to gradually replace the Airbus SAO internal tool for airborne
software. It is now used by a large number of avionics, railway, industry, and auto-
motive companies for fly-by-wire, engine control, brake control, safety control,
power control, alarm handling, etc. SCADE embodies the KCG compiler from
high-level designs to C that is itself certifiable at avionics DO-178B norm highest
level A. TÜV certification is also available for automotive.

Source code development is based upon the Scade1 graphical block-diagram nota-
tion familiar to control engineers, complemented by hierarchical Safe State Machines
to describe state- or mode-oriented computations. These specification-level notations
have precise mathematical semantics. Besides making software development more
rigorous, they ease communication between engineers and between suppliers and
customers. Functional verification is performed in two ways: conventional simula-
tion techniques enhanced by graphical animation of the design and model coverage
analysis, and formal verification of safety properties by model-checking or abstract
interpretation. Functional verification is needed only at block-diagram level, since
the embeddable C code generated by the certified KCG compiler is automatically
correct and qualifiable.

The rest of the paper is organized as follows. Section 2 discusses concurrency
and determinism issues for embedded systems and introduces the cycle-based com-
putation model. Section 3 presents the Scade block-diagram and state-machine for-
malisms; Section 4 discusses the formal synchronous semantics. Section 5 presents
the software design and validation flow associated with SCADE, as well as the asso-
ciated tool ecosystem. We give a brief comparison with conventional OS-based tech-
niques in Section 6. We conclude in Section 7.

2 Concurrency and Determinism of Embedded Software

Embedded software applications are very different from classical IT or networking
applications. Instead of dealing with data files and asynchronous interrupts, they deal
with the control of physical phenomena through specific sensor-actuator feedback
loops and man–machine interfaces. Programs are mostly implementations of control
algorithms. This calls for specific description paradigms close to the ones used in
control engineering and systems engineering to design such algorithm: block dia-
grams for continuous control and state machines for discrete control. SCADE is
directly based on these design paradigms. A comparison with principle with con-
ventional techniques will be given in Section 6.

1 We use SCADE for the development environment and Scade for the base specification formalisms.

SCADE: Synchronous Design and Validation of Embedded Control Software 21

2.1 The Need for Concurrency

Concurrency is essential for all embedded applications. Control algorithms are most
often built by assembling basic elements: samplers, integrators, filters, comparators,
state machines, etc. These concurrent elements communicate by exchanging infor-
mation on a time- or event-trigger basis. Here, concurrency means cooperation. This
contrasts with competition-based concurrency found in operating systems or thread-
based applications where concurrent processes or threads compete to access and uti-
lize resources.

2.2 The Need for Determinism and Predictability

Functional determinism is a key requirement of most embedded applications. A sys-
tem is deterministic if it always reacts in the same way to the same inputs occurring
with the same timing. On the contrary, a non-deterministic system is allowed to react
in different ways to the same inputs, actual reaction depending on internal choices
or computation timings. It is obvious that determinism is a must to control a car or
a plane: the car should not decide by itself to go right or left. The same applies to
man–machine interface or alarm handling.

Of course, determinism may not be a relevant requirement for other application
types. An Internet connection naturally behaves in a non-deterministic way, and
there is nothing wrong about that. In the same way, a car entertainment system may
have some local non-deterministic behavior. But one does not control a car with
an Internet-like infrastructure. This is why Scade specifications are deterministic by
construction, the SCADE tools preserving determinism all along the specification-
to-implementation chain.

On the implementation side, performance predictability is key to ensure functional
determinism. In particular, one must ensure that internal computation timings cannot
interfere with the functional timings of the control algorithm proper. Predictability is
never an easy subject, in particular because of uncertainty due to caching and spec-
ulation optimization in recent microprocessors. But, of course, any form of added
unessential non-determinism makes it even harder. SCADE achieves predictability
by generating simple sequential code from concurrent specification using techniques
described below.

2.3 The Cycle-Based Concurrent Computation Model

Cycle-based computation used by SCADE is a Folk model introduced long ago in
many industrial designs to deal with embedded computation, but largely ignored by
mainstream computer science. It consists of performing a continuous loop of the

22 Gérard Berry

Fig. 1 Cycle-based computation

form pictured in Figure 1. In each cycle of this loop, there is a strict alternation
between environment actions and program actions. Once the input sensors are read,
the program starts computing the cycle outputs and its own memory state change.
During that time, the program is blind to environment changes, ensuring interference-
freedom. When the outputs are ready, or at a given time determined by a clock,
the output values are fed back to the environment, and the program waits for the
start of the next cycle.

Things are very much as in a two-game play: players play in strict alternation
and each player does not interfere with the other player’s thinking. The cycle-based
model can also be viewed as a direct computer implementation of the ubiquitous
sampling–actuating model of control engineering and signal processing.

In the implementation, there are several ways to control the cycle: time-triggered
computation starts the cycle on a regular basis; polling consists of restarting
the cycle as soon as it is over, and event-triggered computation consists of starting the
cycle whenever some event occurs. This is application-dependent and will not be
detailed further here.

2.4 Synchronous Communication and its Realization
by Cycle Fusion

In the cycle-based model, concurrent components communicate by exchanging infor-
mation during the cycle. An output computed by a component is instantly broad-
casted to all concurrent components that want to read it. If one wants to implement
delayed communication, one can insert elementary delay components that output at
each cycle their input at previous cycle.

Consider the concurrent cyclic components 1 an 2 in Figure 2, which specifies a
non-trivial dialogue pattern. The first component reads X and Z and writes Y and T ,
while the second component reads Y and writes Z . Communication is conceptually
instantaneous: within a single cycle, Y is computed by 1 using X and communicated
from 1 to 2, which causes Z to be computed by 2 and communicated back to 1.
Communication is performed by a logically synchronous chain reaction, all enclosed
within a single cycle representing a logical instant.

In a typical implementation, each component generates a straight-line code to
execute the actions of its cycle. Communication between concurrent components

SCADE: Synchronous Design and Validation of Embedded Control Software 23

Fig. 2 Cycle fusion

is realized in a very simple way by cycle fusion, see Figure 2: one merges the
statements generated by the concurrent blocks into a single straight-line code for the
global cycle. Communication between the individual tasks is performed implicitly,
by an adequate interleaving of the statements that respects inter-cycle communication
dependencies. Notice that there is no overhead for communication, which is imple-
mented using well-controlled shared variables without any context switching. For
large hierarchical designs, cycle fusion goes across concurrent blocks and across the
hierarchy, building a single sequential code from a network of components. Large-
scale cycle fusion is unfeasible by hand but it is a relatively easy task for an auto-
matic code generator. The SCADE compiler fully automates it and guarantees correct
access to the shared memory.

Note that cycle fusion can be extended to support full separate compiling of blocks
under some output-delay conditions not detailed here.

2.5 Determinism and Predictability of Cycle-based Applications

Determinism is respected by construction, whatever the number of concurrent
processes may be. Performance predictability is made relatively simple by cycle
fusion, since the generated code is purely sequential and does not imply context
switches. It is limited only by the intrinsic non-determinism of modern microproces-
sors due to cache access and speculative execution.

Notice that the cycle-based computation model carefully distinguishes between
logical concurrency and physical concurrency. The application is described in terms
of locally cyclic and logically concurrent activities. Such logical concurrency makes
the designer’s work much easier by breaking complex tasks into simple ones that
communicate in a simple way. However, the implementation uses a single process at
run-time. The Scade model can be extended to support multi-process execution and
physical distribution of multiple processors, see [9], but the SCADE tool does not
support this yet.

24 Gérard Berry

3 The Scade Formalisms

For cycle-based design, SCADE provides the user with two familiar specification for-
malisms: block diagrams for continuous control and hierarchical Safe State Machines
(SSMs) for discrete control. Both formalisms share the same view of a computation
cycle and communicate in the same way.

3.1 Block Diagrams for Continuous Control

By continuous control, we mean sampling sensors at regular time intervals, perform-
ing signal processing computations on their values, and outputting values, computed
for instance using possibly complex mathematical formulae. Sampled data is contin-
uously subject to the same transformation. In Scade, continuous control is graphically
specified using block diagrams such as the one depicted in Figure 3.

Boxes are called nodes. They are concurrent objects that compute outputs as func-
tions of inputs, with possibly internal memory. Arrow between nodes denote commu-
nication channels also called flows. They can carry data of any type. All nodes share
the same cycle and only communicate through the arrows. In a cycle, communication
is conceptually instantaneous: a data element sent by a node reaches its destination
in the same cycle. Primitive delay nodes such as the F BY nodes in Figure 3 are
available to beak synchrony. At initial cycle, an F BY node ouputs its initial value.
Then, at each cycle, it outputs the value of its input at previous cycles. Any loop in
the block diagram must contain at least one delay element.

To add some flexibility in functioning modes control, Boolean flows can be used
to control the activation of nodes. When a node N is controlled by an activation
condition Boolean flow b, N is activated in a cycle only if b is true in the cycle.

Scade blocks are fully hierarchical: blocks at a description level can themselves
be composed of smaller blocks interconnected by local flows. In Figure 3, the Exter-
nalConditions block is hierarchical, and one can zoom into it with the editor. The
same base cycle is shared by all the hierarchical components. A Boolean activation

Fig. 3 Scade block diagram

SCADE: Synchronous Design and Validation of Embedded Control Software 25

condition for a hierarchical node recursively acts on all its sub-nodes. Scade block
hierarchy is purely architectural. At compile-time a hierarchical block occurring in
a higher-level block is simply replaced by its contents, conceptually removing its
boundaries, and cycle fusion is peformed on the whole flattened result. Therefore,
there is no need for complex and often partial hierarchical evaluation rules often
found in other hierarchical block diagrams formalisms.

Hierarchy makes it possible to break design complexity using a divide-and-
conquer approach and to easily reuse library blocks. There is no need to write
complex blocks directly in C or ADA, since defining them hierarchically from
smaller blocks is semantically better defined, much more readable, and just as
efficient.

3.2 Safe State Machines for Discrete Control

By discrete control, we mean changing behavior according to external events
originating either from discrete environment input events or from internal program
events, e.g., value threshold detection. Discrete control is where the behavior keeps
changing, a characteristics of modal human–machine interface, display control,
alarm handling, complex functioning mode handling, or communication protocols.

Manually adding control Boolean flows and operations to block diagrams becomes
rapidly messy when discrete control is non-trivial. One must resort to another well-
known formalism: state machines. A standard flat state machine is pictured in
Figure 4. As for a block diagram, it is composed of boxes, arrows, and names, but
with a different meaning: boxes mean states, arrows mean transitions between states,
and names denote signals exchanged with the environment. In a transition label
I/O, I denotes a trigger signal and O denotes a result signal. If the start state of the
transition is active and I occurs, the transition is fired and O is emitted.

Flat state machines have been very extensively studied in the last 50 years, and
their theory is well-understood. However, in practice, they are not adequate even
for medium-size applications, since their size and complexity tends to explode very

Fig. 4 Standard flat state machine diagram

26 Gérard Berry

Fig. 5 An SSM hierachical state machine

rapidly. For this reason, richer concept of hierarchical state machines have been intro-
duced, the initial one being Statecharts [12]. The Scade state machines are called Safe
State Machines (SSMs), see Figure 5 for an example. These evolved from the Esterel
programming language [5] and the SyncCharts synchronous statecharts model [2].
SSMs have been proved to be scalable to large control systems.

SSMs are hierarchical and concurrent. States can be either simple states or
macrostates, themselves recursively containing a full SSM or a concurrent product
of SSMs. When a macrostate is active, so is the SSMs it contains. When a macrostate
is exited by taking a transition out of its boundary, the macrostate is exited and all
the active SSMs it contains are preempted whichever state they were in. Concurrent
state machines communicate by exchanging signals, which may be scoped to the
macrostate that contains them.

The definition of SSMs carefully forbids dubious constructs found in other hier-
archical state machine formalisms: transitions crossing macrostate boundaries, tran-
sitions that can be taken halfway and then backtracked, etc. These are non-modular,
semantically hard to define, very hard to figure out, and therefore inappropriate for
safety-critical designs. Their use is usually not recommended by most methodologi-
cal guidelines anyway.

3.3 Mixed Continuous/Discrete Control

Large applications contain cooperating continuous and discrete control parts. Scade
makes it possible to seamlessly couple both data flow and state machine styles. One
can include SSMs into block-diagram designs to compute and propagate functioning
modes. Then, the discrete signals to which an SSM reacts and which it sends back
are simply transformed back-and-forth into Boolean data flows in the block diagram
on a per-cycle basis. The computation models are fully compatible.

SCADE: Synchronous Design and Validation of Embedded Control Software 27

3.4 Scade 6: Full Integration of Block Diagrams and SSMs

The above desciption is that of Scade version 5. The new Scade 6 formalism cur-
rently under development [8] will provide the user with a full interplay between
block diagrams and state machines. In Scade 6, a state in a state machine may con-
tain either another state machine or a block diagram. Two block diagrams enclosed
in two exclusive states may refer to the same flow, making it possible to implement
the mode automata described in [13], where one can switch from a continous control
computation to another one for the same flows according to Boolean conditions.

4 Formal Semantics

4.1 The Formal Synchronous Semantics

The formal theory of synchronous concurrency has been developed in the last 25
years. It extends the cycle-based intuitive model into a fully precise synchronous
computation model, which gives a strong theoretical basis to the compilation and
verification of Scade programs.

We briefly illustrate the synchronous semantics using a very simple example in
continuous control. We refer the reader to [5, 10] for the formal development, more
examples, and the handling of discrete control. Consider the following specification:
given a discrete integer input flow I, output at each step the average A of the values
received so far. In basic mathematics, one would use a discrete time index t and write
the following system of iterative equations:

N0 = 1

Nt+1 = Nt + 1

T0 = I0

Tt+1 = (Tt + It+1)

At = Tt/It

Such an equation system is good enough for mathematical reasoning, but not for
software engineering that requires much more precision. In mathematical notation,
one never cares too much about what is allowed or disallowed for indices, because
the reader is assumed to be a technically skilled human being. Making At+1 depend
on At+2 instead of At is a syntactically legal mistake that any reader readily detects.
But computers are definitely unskilled and they faithfully reproduce any mistake.
Therefore, we need a precise programming formalism in which such mistakes can

28 Gérard Berry

be detected and rejected at compile-time. Lustre, the root textual language of Scade,
was created for this purpose. In Lustre, the program is written below2:

node O (I : int) outputs (A : float);
var N : int, T : int;
let

N = 1->(pre(N)+1);
T = I -> pre(T) + I;
A = T / N;

tel;

The identifiers I , N , T , and A denote data flows, which are infinite sequence of
values. For instance, the single identifier A represents the whole cycle-based infi-
nite sequence of inputs A0, A1, . . . , At , . . . , where t denotes the cycle index in the
computation, i.e., the logical time. Operators such as addition add sequences compo-
nentwise, i.e., in a synchronous way: A+ B is A0+ B0, A1+ B1, . . . The pre delay
operator delays a sequence by one cycle: pre(A) is the sequence −, A0, A1, . . . ,
At , . . . , where the first element is left uninitialized. The ‘->’ initialization operator
returns its left operand at first cycle and its right operand at further cycles. Since
it increments its previous value at each cycle, the N symbol denotes the sequence
1, 2, 3, . . . , T denotes the accumulated sum of the input values, and A denotes
the required sequence of average values. The semantics of Lustre simply defines the
sequences corresponding to the variables as the solutions of the system of equations.
Here, when seen as a complete flow, N is indeed equal to 1− >(pre(N) + 1). The
Lustre and Scade formalisms and semantics extends to node activation conditions
using a notion of derived clock, see [8, 10].

Using the well-defined Lustre operators, the informal system of equation has been
transformed into a fully rigorous program. By construction, there is no way to refer
to Nt+1 instead of Nt−1, since there is no operator returning a future value at any
given instant.

4.2 Logical vs. Physical Time

In the synchronous approach, one counts logical time only in terms of I/O cycles.
Synchrony simply states that events occurring in the program are viewed as logically
simultaneous if and only if they occur in the same cycle. One only distinguishes
between computations occurring in the same cycle and computations occurring in
successive cycles. Therefore, at Scade specification level, the physical time it takes
to perform an addition or a division is ignored. This is a basic separation of concerns
principle: high-level specifications need not care early on about performance-related
issues. However, computing on if physical time is required by the application, one
can deal with it using an extra specific extra input.

2 The equivalent Scade graphical program will not be pictured here. The SCADE compiler would
actually translate it into the above Lustre textual form.

SCADE: Synchronous Design and Validation of Embedded Control Software 29

5 The SCADE Application Development Flow

5.1 The SCADE Y Development Cycle

The classical software development cycle is called the V cycle. Development flows
down from systems requirements to embedded code, the lower tip of the V, while val-
idation flows up from embedded code unitary tests to system-level functional tests.
Three steps are particularly difficult and expensive in this cycle: the precise specifi-
cation of software requirements in a specification language, their precise coding in
an executable language, and the low-level testing phase, which is usually the most
costly. For embedded software development, the SCADE process and tools help in
four ways:

– At the specification level, the transition from mathematical simulation tools
to fully precise programs suited for a qualifiable software flow is much more
direct than with classical executable language hand-coding, thanks to he native
block diagrams and state machine formalisms. This shortens the requirement-to-
specification phase.

– Embeddable C code is automatically generated from Scade descriptions by the
KCG compiler. For avionics, KCG is qualifiable at highest level A w.r.t. DO-178B
guidelines. For automotive, KCG is certified by the TÜV Sud authority at SIL 3
level of the IEC 61508 standard and valid for the development of software up to SIL
4. Because of this, the object code can be considered correct-by-construction w.r.t.
the source specification since the code generator itself is qualified with the very
same process as the full application. The need for C-level unit testing vanishes.

– Since the Scade model is executable, functional verification can be performed
earlier and better. This will be detailed below.

– Because of the intrinsic performance predictability of code generation by cycle-
fusion, performance validation is also made easier. Abstract-interpretation based
performance evaluation tools are very useful there, see [1].

Altogether, the V cycle is transformed into the Y where the junction between spec-
ification and implementation is done at Scade specification level instead of C code
level. The thin bottom of the Y represents certified code generation, now certified to
be correct.

5.2 Model Validation

Functional validation of an embedded system consist in checking that the system
fulfills its requirements. Validation checks can be dynamic or static, as detailed
below.

30 Gérard Berry

5.3 Dynamic Checks and Coverage Analysis

Dynamic checks consist in test-suite based functional verification. A key issues is to
build an appropriate test base, providing a large set of model inputs with minimal
redundancy. This very notion is not easy to define. One usually uses various cov-
erages criteria to measure how much a test base stresses a model and how well it
describes the possible input cases. SCADE uses an elaborate notion of model cov-
erage, which includes exercising conditional nodes, reaching bounds on operators,
etc. (See also the classical MCDC coverage requirements for Boolean expression
covering [7].) Generating the test suites can itself be difficult. It can be done either
manually or by extracting model boundary inputs from system-level simulations.

5.4 Static Checks

Static compile-time checks consist in basic type-checking augmented by dead code
detection and block diagram connections checking: absence of unconnected I/O pins
and absence of cyclic data dependencies.

5.5 Formal Verification

Assertion-based verification performs symbolic model-checking3 to verify the valid-
ity of user-provided temporal assertions about program behavior. Assertions can
either be derived from application requirements or correspond to self-consistency
defensive programming checks developed during the software design phase. They
are expressed in the Scade formalisms, technically as Boolean flows that should never
become false. Thus, the user does not need to learn specific property-definition lan-
guages to use the verifier. Good examples of properties to show by model-checking
are regulation is active if in on state and if speed lies between 30 and 130 km/h or
the elevator never travels with the door open. Counter-examples for false properties
are automatically generated. Notice that assertion-based verification is now routine
in the hardware field. Its extension to cycle-based designs is natural since these are
akin to “software circuits”.

Abstract-interpretation based model-checking checks for the absence of run-time
arithmetic exceptions or array out-of-bounds access, see [6]. It is automatic and does
not require the writing of assertions. It has been used successfully on very large
avionics projects.

Formal verification techniques complement human testing abilities very well. In
particular, they are very useful in finding nasty bugs that escape conventional testing

3 SCADE uses the Prover plug-in verification engine from Prover Technologies.

SCADE: Synchronous Design and Validation of Embedded Control Software 31

but do show up in production systems. We believe that formal verification engines
will continue making constant progress in the future and will become among the
most efficient anti-bug weapons.

5.6 The SCADE Automotive Ecosystem

A tool never solves a problem by itself. Therefore, SCADE is coupled with many
other tools acting in the systems design or software engineering areas. Designs can
be imported from prototypes written in mathematical simulation environments using
a semi-automatic importer. UML specifications can be linked to SCADE designs
using gateways. Systems requirement are traced in the SCADE design using links
with requirement management tools. Documentation is automatically generated from
Scade designs.

The C code generated by SCADE for automotive applications is platform indepen-
dent and MISRA compliant, which is essential for automotive applications. It only
uses a small subset of C, with no dynamic memory allocation, no pointer arithmetic,
and no loop, callable through a very simple API. for specific execution platforms,
SCADE extends the API by providing a customizable wrapping technology that
allows a straightforward integration in any target environment: wrapping to OSEK
tasks or to popular RTOS tasks are available. Currently, within the AUTOSAR con-
sortium, the generation of AUTOSAR compliant Basic Software Modules and Soft-
ware Components with SCADE is studied. This includes the compliance with the
merging automotive standard ISO 26262.

SCADE embodies other software engineering tools that intend to make the
development flow as smooth and safe as possible. The SCADE implementer tool
makes it possible to finely control the fixed-point implementation of numerical
computations for processors that do not support floating-point. Processor-dependent
C compilers are checked to adequately compile the code generated by SCADE
using a compiler verification kit that systematically compiles and checks all possible
generated C patterns.

6 Comparison with Operating-Systems Based Designs

The other prominent model for embedded control is rooted in computer engineering
tradition. It consists of writing sequential tasks for individual computations and using
an operating system (OS) to schedule and run the tasks according to various criteria.
The advantage is to rely on well-tested and robust off-the-shelf operating systems or
language run-times. However, correctness issues become very application-dependent
instead of being solved once for all by the programming formalism. The key issues
are how the tasks are scheduled and how memory accesses are controlled.

32 Gérard Berry

Preemptive dynamic scheduling solves the problem at run-time in a generic way.
However, it is a competitive concurrency model where tasks compete for resources
(processor cycles, I/O, etc.). This interference-based model introduces a high level of
non-determinism and correctness is difficult to ensure. Shared memory accesses have
to be controlled by semaphores or similar devices, known to be deadlock-eager and
hard to check. Another potentially nasty problem is priority inversion, where a low-
priority task permanently takes precedence over high-priority ones. For a specific
system, one can show application-level determinism, predictability, and scheduling
safety using fancy analysis techniques, but this is never simple.

To improve on this and provide a safer view of dynamic tasking, higher-level
rendezvous concurrency primitives have been included conventional languages such
as ADA. However, they still rely on OS-like mechanisms and consistency is equally
challenging.

Another well-known technique is fixed static scheduling, using algorithms based
on task durations, on deadlines, on priorities, etc. Tasks can be either preemptible
by other tasks or non-preemptible. This works well for a relatively small number of
components, with a reasonable preservation of determinism. However, compared to
cycle-based design, static scheduling is more difficult to organize, hard to scale to
large applications, and very sensitive to specification changes.

Altogether, the tasking model does not help the programmer in conceptualizing
the problem. There is no consistent way to go from a V to a Y cycle.

Of course, cycle-based computation does not rule out the need for basic OS func-
tions. An embedded OS is still needed to perform low-level functions such as com-
munication with sensors and actuators through drivers. But this is far less complicated
than full tasking, and the main cycle code remains deterministic and predictable.
Notice that a little amount of non-determinism in reading sensor values or driving
actuators at cycle boundaries may remain without danger: all robust control algo-
rithms do tolerate slight variations in the actual sampling or actuating timing.

7 Conclusion

We have presented the SCADE methodology and toolset, which are based on the
synchronous computation model for embedded control software. SCADE addresses
the design flow from precise specification to embedded code generation. It is used
in major industrial programs to generate qualifiable implementation code from high-
level block diagrams and state machines familiar to control engineers. This implies
a dramatic cost reduction in one of the most difficult and error-prone part of systems
development cycle. The use of SCADE also makes the upper and lower part of
the whole cycle easier: the input formalism is close to classical notations used in
high-level modeling, while simplicity of the generated code makes verification and
implementation performance analysis simpler. SCADE is widely used for avionics,
and is being used for automotive applications such as braking systems, suspension
systems, entertainment systems, alarm systems, etc.

SCADE: Synchronous Design and Validation of Embedded Control Software 33

The mathematical model of synchronous systems on which SCADE is based is
instrumental. It guides the user in the specification process, strongly grounds pro-
gram semantics, drives compiler development and certification, and makes formal
verification of programs possible.

Acknowledgements The author thanks the various people involved in the design, development, and usage
of SCADE: P. Caspi and N. Halbwachs who created Lustre, J.-L. Bergerand and E. Pilaud who created
SAGA, C. André who created SyncCharts, F.-X. Dormoy who developed SCADE, J.-L. Colaço who is the
main Scade semantics and compiler architect, and the whole SCADE team.

References

1. M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by abstract inter-
pretation. In In SAS’96, Static Analysis Symposium, LNCS 1145, pages 52–66. Springer, 1996.

2. C. André. Representation and analysis of reactive behaviors: A synchronous approach. In Proc.
CESA’96, IEEE-SMC, Lille, France, 1996.

3. Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic,
and Robert de Simone. The synchronous languages 12 years later. Proceedings of the IEEE,
91(1):64–83, January 2003.

4. J.L. Bergerand and E. Pilaud. Saga: A software development environment for dependability in
automatic control. In Proc. Safecomp’88. Pergamon Press, 1988.

5. Gérard Berry. The foundations of Esterel. In Proof, Language and Interaction: Essays in
Honour of Robin Milner. MIT Press, 2000.

6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In In PLDI 2003 ACM SIGPLAN SIGSOFT
Conference on Programming Language Design and Implementation, San Diego, California,
USA, pages 196–207, 2003.

7. J.J. Chilenski and S.P. Miller. Applicability of modified condition/decision coverage to software
testing. Software Engineering Journal, 9(5):193–200, September 1994.

8. J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous data-flow
with state machines. In Proc. Emsoft’05, New Jersey, USA, 2005.

9. A. Girault. A survey of automatic distribution method for synchronous programs. In
F. Maraninchi, M. Pouzet, and V. Roy, editors, International Workshop on Synchronous Lan-
guages, Applications and Programs, SLAP’05, ENTCS, Edinburgh, UK, April 2005. Elsevier
Science.

10. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language Lustre. In Proceedings of the IEEE, volume 79(9), pages 1305–1320, 1991.

11. Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Pub-
lishers, 1993.

12. David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 1987.

13. F. Maraninchi and Y. Rémond. Mode automata: A new domain-specific construct for the devel-
opment of safe critical systems. Science of Computer Programming, pages 219–254, 2003.

Model-Based Development of Embedded
Systems: The SysWeaver Approach

Raj Rajkumar

Abstract Model-based development of embedded real-time systems is aimed at ele-
vating the level of abstraction at which these systems are designed, analyzed, validated,
coded, and tested. The use of a coherent multi-dimensional model across all devel-
opment phases can enable model-based design to generate systems that are correct
by construction. However, current code generation capabilities are usually limited to
uni-processor targets and to a limited range of operating environments. SysWeaver
(previously called “Time Weaver”) is a model-based development tool that includes
a flexible “syscode” generation scheme for distributed real-time systems that can be
easily tailored to a wide range of target platforms. We present our work on creating an
interoperable toolchain to automatically generate complete run-time code using mod-
els.The toolchain includesasimulation tool (Matlab)anditscodegenerator (Embedded
Coder) along with SysWeaver. In this chain, the functional aspects of the system are
specified in Simulink, Matlab’s modeling language, and translated into a SysWeaver
model to be enhanced with timing information, the target hardware model and its com-
munication dependencies. The final run-time code is then generated, automatically
integrating the functional code generated with Embedded Coder and SysWeaver’s
syscode. This syscode includes OS interfacing and network communication code
with predictable timing behavior that can be verified at design time. Experiments
with multi-node targets with end-to-end timing constraints in an automotive system
show that many aspects of syscode and functional code generation can be automated.1

Keywords: couplers, embedded, real-time, semantic dimension, semantic
separation, software-through-models

1 Introduction

Automated responses to environmental changes are affected by embedded real-time
systems, with responses ranging from simple data logging to distributed or hierar-
chical control. These systems must not only satisfy “functional” properties to be of

1 This paper is adapted from aspects of work reported in [29–31]. It is supported in part by DARPA,
in part by the US Air Force, and in part by Bosch Corporation.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 35
for Distributed Embedded Control Systems, 35–46.
c© Springer 2007

36 Raj Rajkumar

benefit to its end-users, but are also subject to requirements such as timeliness, Qual-
ity of Service (QoS), and reliability. Examples of these systems span a wide range
and include:

(a) cruise control systems that need to sample the vehicle speed at regular intervals;
(b) antilock Braking Systems (ABS) whose components may be replicated to tolerate

the failure of one or more of the replicas; and
(c) videoconferencing systems that need to maintain a regular framerate at high data

resolution.

Functional requirements are often specified and managed by domain experts. For
example, control theorists and engineers are responsible for ensuring that closed-loop
systems exhibit stable and responsive behavior. Requirements such as timing, repli-
cation, security, and jitter fall into the domain of computer engineers and computer
scientists (“systems” folks). We refer to these requirements as “para-functional”,
since they augment the functional properties expected out of the system. Practical
systems must satisfy both functional and para-functional properties. The critical-
ity and cost constraints imposed on para-functional requirements can vary widely,
as can the details of specific hardware and software platforms. Traditionally, the
design of these systems often make hardwired assumptions about many aspects of the
system including communication links, operating systems, programming languages,
networking protocols, replication techniques, scheduling policies, and timing rela-
tionships. Furthermore, the functional requirements are intertwined into the under-
lying infrastructure that enables the functional code to execute. Any changes in any
elements of the underlying infrastructure can cause major disruption not just to other
aspects of the infrastructure but also to the correctness of the functional properties.

We believe that a model-based approach is required to elevate the design and
development methodology for embedded real-time systems to a much higher level
of abstraction that allows efficient and correct changes to any aspect of the system.
What is the correct level of abstraction? We believe that it must be equivalent to
the levels at which experts in a particular domain (such as signal processing, control
theory, hybrid systems, real-time systems, embedded systems, fault-tolerance, secu-
rity or safety-criticality) will communicate with one another. For example, control
system experts will converse in terms of control laws, order of the system, stability,
linear vs. linearized vs. non-linear control, rise-times, settling times, etc. Similarly,
signal processing experts will discuss using terms like signal transforms, frequencies
used, encoding or modulation schemes, noise levels, and signal strengths. It must
be noted that all of these discussions abstract away from specifics of the underly-
ing computing environment. Those are “implementation details” left for the com-
puter experts. In the computing domain, however, real-time system experts exchange
notions of resource utilization, hard or soft deadlines, scheduling approaches to be
used (e.g. cyclic executives or fixed-priority preemptive scheduling), priority inver-
sion, time resolution, real-time OS to be used, dynamic mode changes, and the
(un)predictability of a communication medium. Reliability experts will discuss trade-
offs between active and passive replication approaches, the cost and practicality
of using hardware vs. software replication, how to deal with error conditions, etc.

Model-Based Development of Embedded Systems: The SysWeaver Approach 37

Security experts will explore operational models, applicable attack modes, authenti-
cation and authorization schemes to be used, encryption schemes to be adopted, and
performance overheads that may be acceptable.

2 Related Work

Several efforts have attempted to address the embedded software development prob-
lem and how to ensure high assurance of these systems typically by the use of
“correct-by-construction” approaches. We now briefly present some of the key ones
and highlight their limitations. Wang and Shin [27] developed an architecture where
components are constructed out of functions coordinated by a control logic driver
and service protocols. Even though this scheme provides an interesting approach to
separate reusable parts, it does not support the need for the independent evolution of
para-functional aspects.

Stewart et al. [23] developed an architecture based on port-based objects where
the integration of modules is done through state variables. Updates to the state
variables are controlled by their plumbing infrastructure. This effort defined an
important milestone in the development of software components for embedded
systems. However, it hardwires the communication semantics narrowing applicabil-
ity significantly. In addition, because it has a fixed mapping between components
and processes, it hinders reusability across different para-functional requirements.
Finally, this framework is tied to a specific inter-module communication mechanism
and run-time infrastructure, diminishing its opportunities for reuse across different
hardware.

Agha et al. developed an architecture based on active objects called actors [2, 18].
Actors interact through events that are buffered at reception and concurrency con-
straints are delegated to a middleware layer. This architecture is limited to a fixed
arrangement of only active components and hence is not appropriate for reuse across
different para-functional requirements. In addition, it requires specific middleware,
hindering potential optimization across different platforms.

MetaH [10, 26] is an architecture and toolset for developing embedded real-time
systems that can generate code for its own specific run-time layer. It also provides
a port-based objects model. Ports are used to communicate data in a state variable
fashion similar to [23]. Events are separate entities that are used to change the control
flow of the execution. The hardware is modeled in a hierarchical fashion and software
entities are assigned to processors. The timing model of the final system is verified
using rate-monotonic scheduling theory. This model has two important contributions.
First, it enables the composition of a software system with an automatic verification
of its timing properties. Secondly, it models the hardware platform. However, its soft-
ware description does not separate functional and para-functional aspects preventing
its reuse when para-functional requirements change. In addition, it provides a single
inter-component communication mechanism that is not sufficient to address different
optimizations. Finally, it relies on a run-time layer that adds complexity to the process
scheduling.

38 Raj Rajkumar

Ptolemy [6,13] proposes a formal tool to synthesize embedded software. Its frame-
work enables a hierarchical mixture of models of computation producing as a result
a semantic description of the system. This research effort recognizes the need to have
different abstractions for the different aspects that embedded system may face. How-
ever, it does not separate functional and para-functional aspects, instead it provides
fixed mixtures of functional constructs with software system abstractions such as
threads. Finally, this effort has not explored code generation techniques as a primary
concern in the embedded system development process.

Our framework builds on concepts from previous work on software architecture
[22] and, in particular, on efforts for real-time systems such as [5] and [14]. These
efforts had studied the software structure and its relationships with para-functional
properties.

Our framework is similar in some regards to the decoupling approach proposed
by Aspect-Oriented Programming (AOP) [9] and the dimensional arrangement of
aspects in Multi-dimensional Separation of Concerns [19, 24]. However, our frame-
work enables hierarchical and reusable compositions along well-defined dimensions
that are semantically orthogonal with one another.

Synchronous languages like Esterel [28] make several restrictive assumptions such
as actions and messages happen instantaneously, do not deal with tasks with different
scheduling policies, and do not help in constructing distributed computing applica-
tions. Their primary advantage, however, is that a single model written in the Esterel
language is used not only to generate the code that runs on the target platform but
also to validate the properties of the system. In SysWeaver, we consciously strive
to maintain a single model for analysis and code generation, while capturing and
analyzing the realities of the deployment platform including execution times, mes-
sage transmission times, real-time operating systems, middleware, and scheduling
policies.

3 The SysWeaver Approach

We have proposed a framework for developing software for embedded realtime
systems through the use of models [30–32]. Our general philosophy is summarized
next.

The SysWeaver approach is illustrated in Figure 1. Para-functional (some-
times called non-functional) and functional aspects of the system are modeled in
SysWeaver and complementary interoperable tools (such as Simulink and Stat-
eCharts) respectively. These models are then exported as necessary to analysis,
validation and verification tools where detailed domain-specific analyses take
place. For example, a schedulability analysis verifies whether the system can meet
its timing and resource constraints. Control system analysis, hybrid system analysis,
model checking of system properties, application of test vectors in the modeling
domain, etc. can be performed here. An iterative process may be carried out to

Model-Based Development of Embedded Systems: The SysWeaver Approach 39

Fig. 1 The Modeling, validation, and code generation methodology using SysWeaver

ensure that the requirements specified by the models are satisfied. This is referred
to as a “Correct by Construction” approach. Once desired properties (such as
rise time, settling time, stability, QoS requirements, schedulability using budgeted
values, property verification using model checkers and/or theorem provers) have
been satisfied, code can be generated to a target platform in the deployment environ-
ment, which is itself defined in terms of hardware elements such as interconnected
processors and network/bus links, the real-time operating systems (RTOSs) running
on those nodes, the communication protocols and middleware services to be used
among those nodes. A desired programming language can also be selected. The
approach taken by Model Weaver in generating the syscode (also sometimes called
“glue code”) is summarized in [32].

A functional behavioral tool (such as Simulink and Stateflow) is used to generate
the functional behaviors (or can be manually coded) and then merged with the para-
functional and deployment-specific code to create the executable images, one for
each node in the target environment. Our practical experience in importing Simulink
models automatically, and merging functional and para-functional code into integral
and fully executable images is summarized in [30, 31].

As shown in Figure 2, a component and model repository is used to store
reusable software components and models for use in subsequent systems. Com-
ponents can be hierarchical in nature, each potentially comprising of a group of
(recursively hierarchical) components. This recursive encapsulation enables us to
think of even “systems as components”, and connections among such system-level
components will facilitate the construction of “systems of systems”. Figure 2 also
illustrates the interoperability among tools in the SysWeaver environment.

40 Raj Rajkumar

Fig. 2 Interoperability among modeling and analysis tools in the SysWeaver environment, shown
with a model and component repository

3.1 Benefits of SysWeaver

Our work is aimed at significantly improving the assurance of embedded software
by explicitly capturing both the functional and para-functional aspects of the system
within a single coherent (multi-faceted) model, and verifying that they are satisfied.
Our goal is not just to detect and correct errors before deploying embedded systems,
but to be able to do so at earlier stages of the design and development phase. This
would lead to high-assurance but still cost-efficient software.

This positive (and fortunate!) confluence arises from three facts:

(a) capturing high-level models of the system allows system properties to be verified
at appropriately higher levels of abstractions;

(b) automated code generators are used to generate the actual code running on the
target from these models, brought to play (much like programming languages are
compiled to the machine language of a target processor); and

(c) modeling different semantic aspects of embedded systems (such as timing, fault
tolerance, concurrency, and modalities) separately both allows easier verification
and reduces complexity.

Model-Based Development of Embedded Systems: The SysWeaver Approach 41

Our framework separates para-functional properties into semantic dimensions (e.g.
timing, event flow, concurrency, fault-tolerance, deployment) that can be modified
independent of one another. The impact of changes in one dimension on the realiza-
tion of other dimensions are automatically projected and managed. Platform depen-
dencies are also captured separately, enabling a code-generation subsystem to reuse
the same components across a wide range of heterogeneous platforms and applica-
tions. System components can be recursively composed or decomposed. An analyz-
able software structure is enforced such that the end-to-end timing behavior of the
resulting system can be verified. It is also possible to study how SysWeaver can work
with model-checking tools such as Prove It, SMV, Charon and SAL.

3.2 Separation of Concerns using Semantic Dimensions

SysWeaver is designed to meet the goals of building robust and analyzable large-scale
real-time systems.

The complexity of large-scale embedded real-time systems is that the system needs
to satisfy requirements along multiple dimensions such as logical functionality, time-
liness, throughput, fault tolerance, security, etc. We strongly believe that these “con-
cerns” must be modeled and analyzed separately at the higher levels of abstraction,
while their interactions are automated and coordinated within a single consistent
model. We call these concerns “Semantic dimensions” and argue that they contribute
to significant reduction in managing system complexity.

Semantic dimensions are a description of an aspect of a system that can be rep-
resented and analyzed independent of another. Examples of these dimensions for
embedded real-time systems are: functionality, timing, and fault-tolerance. Changes
in one dimension, however, may impact the implementation of another dimension.
We project such changes across dimensions as necessary. All such projections will
be automated and happen without user intervention (Figure 3).

In our framework, we will explicitly identify a set of dimensions that separate and
represent distinct aspects of embedded real-time systems software. These dimen-
sions are:

• The functional dimension deals with the typical functional transformations often
described in domain-specific notation (such as Simulink and StateCharts) or coded
in popular languages such as C/C++.

• The deployment dimension deals with:
– the description of the deployment platform (hardware, operating system, mid-

dleware, etc.);
– the definition of the communication mechanisms across deployment entities

(processes, processors, networks, etc.);
– the assignment of components to deployment entities.

• The timing dimension deals with the relationship between the periods and dead-
lines of active components.

42 Raj Rajkumar

Fig. 3 A wide variety of target platforms using different programming languages, operating
systems, middleware and communication protocols will be supported

• The fault-tolerance dimension deals with the construction to provide redundant
computation.

• The modality dimension deals with constructions that enable the system to
change its configuration over time to satisfy changing objectives.

• The concurrency dimension deals with enabling and synchronizing parallel
activities.

3.3 Summary of Approach

Given the large number of potential error sources in embedded real-time systems, a
single solution is unlikely to exist. Each of the failure conditions may require the use
of a different solution. Some of these solutions may be amenable to formal analysis,
others to simulation, and still others only to testing. We therefore recommend a multi-
pronged approach that allows the application of a range of solutions within a coherent
framework. Our approach consists of:

• A design-time framework with a supporting SysWeaver toolset enables func-
tional analysis, timing analysis, fault injection, test vector generation, type match-
ing, formal verification (using model checking) and code generation using a single

Model-Based Development of Embedded Systems: The SysWeaver Approach 43

representation. Our innovative approach allows the system behavior along differ-
ent semantic dimensions such as (logical) functionality, timing, fault-tolerance,
modality, and concurrency to be captured separately but consistently. Once ver-
ified, code to be executed on the target platform can be generated directly from
the same specification used for verification. Software modules will be assigned to
processors and messages to network links taking into account a host of constraints
including execution time and jitter constraints, energy constraints, integrity con-
straints, fault-tolerance constraints, and sensor/actuator constraints.

• SysWeaver also enables the reuse of components, each of which has an exten-
sive list of multi-dimensional attributes along functionality, timeliness properties,
target platform dependencies, and physical platform dependencies. A component
must satisfy functionality, type signatures, timing, run-time needs, environmental
dependencies, and platform assumptions before use. Our component frame-
work will use rich extensions to traditional notions of port-based components.
These extensions will include the explicit representation of concurrency and
synchronization requirements, communication protocol needs, and customiz-
able state management. Groups of components can be encapsulated recursively,
to create sub-systems, systems, and eventually systems of systems. We will
also study the use of pre-conditions and post-conditions to characterize compo-
nents.

• Central to our objective of keeping a faithful model of the run-time image is
the ability to generate executable “syscode”. By syscode, we mean the code
that combines the application code (functional) components together to form
the final running system. Our code generation framework is composed of two
main parts: an inter-component communication library and the generator of code
that performs the inter-component connections and initializes the application.
The code generator will also need to understand system calls to be used (for capa-
bilities like task creation, mutex creation, and usage), language dependencies,
communication protocol requirements along with the ability to integrate with
functional component interfaces, and invoke middleware services. Support for
fault-tolerance, security and modal operations must also be supported by the code
generator.

• It is important to note that the code generator is not a single piece of code, with
all generation capabilities encoded in a single subsystem. Components and cou-
plers have a list of property-value pairs, and code generators will be required for
special values (which choose a different programming language for example).
A high-level code generator framework will traverse the model(s) defined, and
appropriate lower-level code generators will be invoked. It is also useful to note
that when a new target environment (language, OS, communication protocol) is
defined, the code generator for that attribute is written once and can be reused
multiple times.

• SysWeaver supports an assessment framework with capabilities not unlike those
available in requirements tracking. Any mismatches between interfaces, types,
platform dependencies, environmental dependencies that components have will

44 Raj Rajkumar

be tracked explicitly within SysWeaver. Formal (or informal) arguments that
are used to validate the component (or operation such as type conversion) will
be explicitly captured so that they will be forced to be re-considered when any
aspects around the component change.

3.4 Supported Configurations

SysWeaver has been used to model applications in a wide range of environments
including signal processing using software radios, electronic throttle control in auto-
motive systems, distributed fault-tolerant systems, wireless sensor networks, and
dynamic QoS adaptation. A variety of target operating systems including (real-time
versions of) Linux, (Real-Time) Java virtual machines, uCOS-II, and OSEKWorks
is supported. Support for several programming languages including C, C++, Java,
XML, and Matlab are included. Communication links like CANbus and multiple
communication protocols like TCP and UDP are also supported. SysWeaver can also
generate timing models which can be exported to schedulability analysis tools such
as TimeWiz. Simulink models can also be imported into the functional dimension of
SysWeaver, which can then be enriched along the other semantic dimensions. Fur-
thermore, SysWeaver can invoke Real-Time Workshop from MathWorks to generate
code from the Simulink models, and integrate appropriate functional code with the
system code generated by SysWeaver.

For configurations, platforms, and languages that are not currently supported, an
appropriate back-end generator needs to be added. Once written, it can be used for
all future models.

3.5 Summary

In summary, SysWeaver constitutes a comprehensive model-based framework for
obtaining high degrees of robustness in embedded real-time systems. We are cur-
rently creating a new version of SysWeaver that will both be user-friendly and effi-
cient in terms of performance. Applicability to a wide range of domains is also being
studied in concert with multiple targeted users.

References

1. “Adaptive Real-Time Systems for Quality of Service Management”, Technical Report, Euro-
pean Union ARTIST Project, March 2003. http://www.artist-embedded.org/.

2. G.A. Agha and W. Kim. Actors: A unifying model for parallel and distributed computing.
Journal of Systems Architecture, 45:1263–1277, 1999.

3. B. Boehm, “Tutorial: Software Risk Management”, Washington, DC, IEEE Computer Society
Press.

Model-Based Development of Embedded Systems: The SysWeaver Approach 45

4. Greg Bollela, Ben Brosgol, Peter Dibble, Steve Fur, James Gosling, David Hardin, Mark Turn-
bull, Rudy Belliardi, Doug Locke, Scott Robbins, Pratik Solanki, and Dionisio de Niz. The
Real-Time Specification for Java. Addision-Wesley, 2001.

5. Kevin Bradley. A framework for incorporating real-time analysis into system design processes.
Ph.D. Dissertation, Department of Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, 1998.

6. J. Davis II. et al. Overview of the Ptolemy project. Technical Report M99/37, UC Berkeley,
Dept EECS, 1999.

7. Dionisio de Niz and Raj Rajkumar. Chocolate: A reservation-based real-time java environment
on windows/NT. In Proceedings of the Real-Time Technology and Applications Symposium,
Washington D.C., May 2000.

8. P.H. Feiler, Bruce Lewis, Steve Vestal, “Improving Predictability in Embedded Real-Time Sys-
tems”, Technical Report, CMU/SEI-2000-SR-011, Software Engineering Institute, December
2000.

9. C.C. Howell, “Building Dependable Systems: The Power of Negative Thinking”, Tutorial
given at 2002 International Conference on Dependable Systems & Networks, IEEE Computer
Society.

10. J. Krueger, S. Vestal, and B. Lewis. Fitting the pieces together: system/software analysis and
code integration using Meta-H. In IEEE 17th Annual Digital Avionics Systems Conference,
November 1998.

11. K. Lieberherr. Demeter and Aspect-Oriented Programming. In STJA’97 Conference, Septem-
ber 1997.

12. Chris Lanfear and Steve Balaccco. The embedded software strategic market intelligence
program 2001/2002—volume iv: Embedded operating systems, software development tools,
design automation tools, and test automation tools, February 2002.

13. E.A. Lee. What’s Ahead for Embedded Software? Computer, 1, 2000.
14. Jun Li, Dependency tracking in real-time fault-tolerant systems. Ph.D. Dissertation, Depart-

ment of Electrical and Computer Engineering, Carnegie Mellon University, 2000.
15. Klein M.H. et al. A Practitioners’ Handbook for Real-Time Analysis: Guide to Rate Monotonic

Analysis for Real-Time Systems. Kluwer Academic Publishers, 1993.
16. Priya Narasimhan. Transparent Fault-Tolerance for CORBA. Technical report, Department of

Electrical and Computer Engineering, University of California, Santa Barbara, 1999.
17. Network Reliability Interoperability Council V, Data Reporting and Analysis for Packet

Switching, Final Report, Focus Group 2 Subcommittee 2.B2.
18. B. Nielsen and G. Agha. Towards reusable real-time objects. Annals of Software Engineer-

ing1999.
19. H. Ossher and P. Tarr. Multi-dimensional separation of concerns in hyperspace. Technical

Report RC21452, IBM T.J. Watson Research Center, April 1999.
20. S.L. Pfleeger and C.C. Howell “The Case For Constructing an Effective and Efficient Assur-

ance Argument Framework”.
21. Lui Sha, Ragunathan Rajkumar, and John Lehoczky. Mode change protocols for priority-driven

pre-emptive scheduling. In The Real-Time Systems Symposium, 1989.
22. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.
23. D.B. Stewart, R.A.Volpe, and P.K. Khosla. Design of dynamically reconfigurable real-time

software using port-based objects. IEEE Transactions on Software Engineering, 23, 1997.
24. Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees of separation:

multi-dimensional separation of concerns. In International Conference on Software Engineer-
ing, pages 107–119, 1999.

25. Jim Turley. Embedded Processors, January 2002.
26. Steve Vestal. Mode changes in a real-time architecture description language. In International

Workshop on Configurable Distributed Systems, March 1994.

46 Raj Rajkumar

27. S. Wang and K.G. Shin. An architecture for embedded software integration using reusable com-
ponents. In International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, San Jose, CA, 2000.

28. The Esterel Synchronous Language, Esterel Technologies, www.estereltechnologies.com.
29. Dionisio de Niz and Raj Rajkumar, “Partitioning Bin-Packing Algorithms for Distributed Real-

Time Systems”, Invited Paper, International Journal of Embedded Systems, Special Issue on
Design and Verification of Real-Time Embedded Software. 2005.

30. Dionisio de Niz, Modeling functional and para-functional concerns in embedded real-time sys-
tems, Ph.D. Dissertation, Electrical and Computer Engineering. Carnegie Mellon University,
April 2004.

31. Dionisio de Niz and Raj Rajkumar, “Glue Code Generation: Closing the Loophole in Model-
based Development”, 10th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS 2004), Workshop on Model-Driven Embedded Systems (MDES 2004).

32. Dionisio de Niz and Ragunathan Rajkumar, “Time Weaver: A Software-Through-Models
Framework For Embedded Real-Time Systems”, Language Compilers and Tools For Embed-
ded Systems (LCTES 2003).

Verification and Integration of Real-Time
Control Software

Rajeev Alur

Abstract Realizing the potential of networked embedded control systems will be
predicated upon our ability to produce embedded software that can effectively and
safely harness the functionality of sensors and processors. Embedded software is
different, and more demanding, than the typical programming applications in many
ways. Modern programming languages abstract away from real time and resources,
and do not provide adequate support for embedded applications. Consequently,
current development of embedded software requires significant low-level manual
effort for scheduling and component assembly. This is inherently error-prone, time-
consuming, and platform-dependent. Consequently, developing novel programming
and implementation methodology for synthesizing portable, predictable embedded
software is an important challenge for networked control systems. In this abstract,
we briefly discuss some of our efforts towards this goal.

Keywords: embedded, control software, formal verification, system integration

1 Formal Verification

To provide assurance guarantees for control software, a formal approach to design
is appealing. Model-based design and formal verification have been successful in
targeted applications such as microprocessor designs, and we believe that the same
success is feasible in the domain of embedded control systems. There are multiple
research challenges that need to be addressed to develop the model-based approach.
We list some of them along with possible emerging directions:

Modeling The appropriate mathematical model for embedded software systems is
hybrid systems that combines the traditional state-machine-based models for discrete
control with classical differential- and algebraic-equations-based models for con-
tinuously evolving physical activities. Starting with hybrid automata [3], we have

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 47
for Distributed Embedded Control Systems, 47–49.
c© Springer 2007

48 Rajeev Alur

been developing compositional and mathematically rigorous modeling framework
for hybrid systems. In recent years, we have developed a hierarchical modeling
tool CHARON for modular description of concurrent hybrid systems [1], and have
explored applications to automotive controllers, medical devices, and biological
systems.

Model Checking Model checking tools can reveal design bugs at early stages by
subjecting partial models for compatibility checks against specifications. Impres-
sive progress in symbolic state-space exploration techniques has enhanced the
applicability of model checking significantly. This has led to improved reliability for
network protocols and device drivers. Extending model checking to allow exploration
of state-spaces of hybrid systems has proved to be a challenging problem. Our early
work on symbolic analysis of linear hybrid automata led to the tool HYTECH [3].
More recently, we have explored combining state-space exploration using polyhedra
with predicate abstraction and counterexample guided abstraction refinement [2].

Software Generation Generating embedded software directly from high-level mod-
els, such as hybrid systems, is appealing, but challenging due to the wide gap between
the two. In current practice, this gap is bridged with significant manual effort by
exploiting the run-time support offered by operating systems for managing tasks and
interrupts. A key challenge to systematic software synthesis from hybrid models is to
ensure that one can infer properties of the software from the properties of the model,
and this problem is receiving increasing attention from researchers [4].

2 System Integration

Contemporary software development emphasizes components with clearly specified
APIs. A static API for a software component such as a Java library class consists of
all the (public) methods, along with the types of input parameters and returned values,
that the component supports. This promotes a clear separation between the specifica-
tion of the component and its implementation. Such static APIs can be enforced using
type systems. But while they are indispensable, these APIs offer only a partial solu-
tion to design bug-free systems as they do not capture constraints on resources, real-
time guarantees, and other quality-of-service aspects. Consequently, they offer little
assistance in “system” integration. This is an important issue not only for being able
to derive system-level performance and correctness guarantees, but also for being
able to assemble components in a cost effective manner.

Interfaces for Embedded Components The notion of an interface for a control
device interacting with its physical environment and other devices must incorporate
information about timing delays and continuous parameters such as threshold lev-
els. Capturing the notion of quality-of-service abstractly, and having mechanisms
that can enforce the adherence to interfaces as well as check compatibility between

Verification and Integration of Real-Time Control Software 49

components interfaces, is an emerging and challenging trend in embedded systems
research. We believe that using time-triggered allocation can be a basis for analyz-
able, predictable, and analyzable automata-based interfaces between control designs
and software implementations [6].

Quality Metrics for Control Implementations In the context of embedded control
systems that interact with an environment, a variety of errors due to quantization,
delays, and scheduling policies may generate executable code that does not faithfully
implement the model-based design. The performance gap between the model-level
semantics of proportional-integral (PI) controllers and their implementation-level
semantics can be rigorously quantified if the controller implementation is executed
on a predictable time-triggered architecture. Recent work on explicitly computing
the impact of the implementation on overall system performance allows us to com-
pare and partially order different implementations with various scheduling or timing
characteristics [5].

References

1. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pappas, and
O. Sokolsky. Hierarchical modeling and analysis of embedded systems. Proceedings of the
IEEE, 91(1), 2003.

2. R. Alur, T. Dang, and F. Ivancic. Predicate abstraction for reachability analysis of hybrid sys-
tems. ACM Transactions on Embedded Computing Systems, 5(1):152–199, 2006.

3. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering, 22(3):181–201, 1996.

4. R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Generating embedded software from hier-
archical hybrid models. In Proceedings of the ACM Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 171–182, 2003.

5. T. Nghiem, G. Pappas, A. Girard, and R. Alur. Time-triggered implementations of dynamic con-
trollers. In Proceedings of the 6th Annual ACM Conference on Embedded Software (EMSOFT),
pages 2–11, 2006.

6. G. Weiss and R. Alur. Automata based interfaces for control and scheduling. In Proceedings of
the 10th International Workshop on Hybrid Systems: Computation and Control (HSCC 2007).
Springer, 2007.

Merge Algorithms for Intelligent Vehicles

Gurulingesh Raravi, Vipul Shingde, Krithi Ramamritham,
and Jatin Bharadia

Abstract There is an increased concern towards the design and development of
computer-controlled automotive applications to improve safety, reduce accidents,
increase traffic flow, and enhance comfort for drivers. Automakers are trying to
make vehicles more intelligent by embedding processors which can be used to
implement Electronic and Control Software (ECS) for taking smart decisions on
the road or assisting the driver in doing the same. These ECS applications are
high-integrity, distributed and real-time in nature. Inter-Vehicle Communication and
Road-Vehicle Communication (IVC/RVC) mechanisms will only add to this intelli-
gence by enabling distributed implementation of these applications. Our work studies
one such application, namely Automatic Merge Control System, which ensures safe
vehicle maneuver in the region where two roads intersect. We have discussed two
approaches for designing this system both aimed at minimizing the Driving-Time-
To-Intersection (DTTI) of vehicles, subject to certain constraints for ensuring safety.
We have (i) formulated this system as an optimization problem which can be solved
using standard solvers and (ii) proposed an intuitive approach namely, Head of Lane
(HoL) algorithm which incurs less computational overhead compared to optimiza-
tion formulation. Simulations carried out using Matlab and C++ demonstrate that the
proposed approaches ensure safe vehicle maneuvering at intersection regions. In this
ongoing work, we are implementing the system on robotic vehicular platforms built
in our lab.

Keywords: Automatic merge control, driving-time-to-intersection, area-of-interest,
vehicle merge sequence, vehicle interference, continuous vehicle stream.

1 Introduction

It is believed that automation of vehicles will improve safety, reduce accidents,
increase traffic flow, and enhance comfort for drivers. It is also believed that automa-
tion can relieve drivers from carrying out routine tasks during driving Vahidi and
Eskandarian (2003). Automakers are trying to achieve automation by embedding
more processors, known as Electronic Control Units (ECUs) and sensors into vehi-
cles which help to enhance their intelligence. This processing power can be utilized
effectively to make an automobile behave in a smart way, e.g., by sensing the sur-
rounding environment and performing necessary computations on the captured data
S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 51
for Distributed Embedded Control Systems, 51–65.
c© Springer 2007

52 Gurulingesh Raravi et al.

either to decide and give commands to carry out the necessary action or to assist
the driver in taking decisions. In modern day automobiles, several critical vehicle
functions such as vehicle dynamics, stability control and powertrain control, are
handled by ECS applications.

Adaptive Cruise Control (ACC) is one such intelligent feature that automatically
adjusts vehicle speed to maintain the safe distance from the vehicle moving ahead
on the same lane (a.k.a. leading vehicle). When there is no vehicle ahead, it tries to
maintain the safe speed set by the driver. Since ACC is a safety-enhancing feature it
also has stringent requirements on the freshness of data items and completion time of
the tasks. The design and development of centralized control for ACC with efficient
real-time support is discussed in Raravi et al. (2006).

Sophisticated distributed control features having more intelligence and decision
making capability like collision-avoidance, lane keeping, and by-wire systems are on
the verge of becoming a reality. In all such applications, wireless communication pro-
vides the flexibility of having distributed control. A distributed control system brings
in more computational capability and information which helps in making automo-
biles more intelligent. In this paper, we focus on one such distributed control appli-
cation, namely Automatic Merge Control System which tries to ensure safe vehicle
maneuver in a region where n roads intersect. To this end, we have (i) formulated an
optimization problem with the objective to minimize the maximum driving-time-to-
intersection (DTTI) (time taken by vehicles to reach the intersection region) subject
to specific safety-related constraints and (ii) proposed Head of Lane (HoL) algorithm
for achieving the same with less computational overhead compared to optimization
formulation.

In this paper, terms road and lane are used interchangeably. The rest of the paper
is organized as follows. Section 2 introduces Automatic Merge Control System and
describes the problem in detail. The optimization function and constraints are formu-
lated in Section 3. The HoL algorithm is described in Section 4. The results of sim-
ulation and Matlab-based evaluations are discussed in Section 6. Section 7 presents
the related work followed by conclusions and future work.

2 Automatic Merge Control System

The Automatic Merge Control (AMC) System is a distributed intelligent control
system that ensures safe vehicle maneuver at road intersections. The system ensures
that no two vehicles coming from different roads collide or interfere at the inter-
section region. It ensures that the time taken by any two vehicles to reach the
intersection region is separated by at least δ (which depends on the length of the
intersection region and velocity of vehicles), by giving commands to adapt their
velocities appropriately. In other words, it ensures that no two vehicles will be
present in the intersection region at any given instant of time. This system involves:
(i) determining the Merge Sequence (MS), i.e., order in which vehicles cross the
intersection region; (ii) ensuring safety at intersection region; and (iii) achieving an

Merge Algorithms for Intelligent Vehicles 53

optimization goal such as minimizing the maximum DTTI (time taken by a vehicle
to reach the intersection region).

Our goal is to ensure safe vehicle maneuver at intersection regions which involves
the above mentioned three subproblems.

We have made the following assumptions while formulating the optimization
problem:

• An intelligent (communication + computation) infrastructure node is situated
roadside near the intersection region. It performs all computations and determines
the commands (acceleration, deceleration) to be given to each vehicle.

• A suitable communication infrastructure exists for vehicles and roadside infra-
structure node to communicate with each other.

• Initially, all the vehicles are atleast S distance apart (safety distance) from their
respective leading vehicle.

• Each vehicle has an intelligent control application which takes acceleration and
time as input and ensures that the vehicle reaches the merge region in that time
period by following the given acceleration.

• Only those vehicles which are inside the Area of interest (AoI) are part of the
system, i.e., their profiles (velocity, acceleration, and distance) will be tracked
by roadside infrastructure node and commands can be given to those vehicles to
accelerate or decelerate.

3 Specification of the DTTI Optimization Problem

We first take up the simple case of two roads merging and then extend it to more than
2 roads.

3.1 Two-Road Intersection

In this section, we give the formulation of the optimization function subject to con-
straints ensuring their safety. Consider an intersection of two roads, Road1 and
Road2 as shown in Figure 1 where vehicles are represented by points. It is assumed
that Roadi contains mi vehicles where 1 ≤ i ≤ 2.

For the rest of this section the range of i and j are given by, 1 ≤ i ≤ 2 (represents
road index) and 1 ≤ j ≤ mi (represents vehicle index) unless otherwise specified
explicitly. Table 1 describes the notations used in the formulation. These notations
will be used throughout the paper.

• Objective Function: The objective is to minimize the maximum DTTI (i.e., time
taken by the vehicle say ximj to reach the intersection region).

Minimize f = MAX(t1m1, t2m2)

54 Gurulingesh Raravi et al.

S

x11x12x1jx1m

x21

x22

x2j

x2m

Road2

Road1

S1j

S2j

S

S

Vehicle movement direction

Veh
icle

 m
ov

em
en

t d
ire

cti
on

Intersection Region

A
rea of interest

Road–side
Infrastructure

Node

Fig. 1 Automatic Merge Control System

Table 1 Notations used in the formulation
Notation Description
Roadi represents ith road
mi number of vehicles in Roadi

xi j jth vehicle on Roadi

si j (t) distance of the vehicle xi j from the
intersection region at time instant t

ui j initial velocity of the vehicle xi j

vi j velocity of the vehicle xi j when it reaches
the merge region

ti j time at which the vehicle xi j reaches
the intersection region

This is similar to the makespan of a schedule. An alternative is to minimize the
average DTTI: Minimize f = 1

m1+m2
∗
(∑m1

i=1 t1i +∑m2
j=1 t2 j

)
.

• Precedence Constraint: This constraint is to ensure that the vehicles within a
road reach the intersection region according to the ascending order of their dis-
tance from the region, i.e., no vehicle overtakes its leading vehicle:

For Roadi , ti j < ti(j+1) where 1 ≤ j ≤ mi − 1.
• Mutual Exclusion Constraint: This guarantees that no two vehicles are present

in the intersection region at any given instant of time. In other words, this condition
ensures that before (j+1)th vehicle reaches the intersection region, the jth vehicle
would have traveled through the region.

For Roadi , ti(j+1) ≥ ti j + S
vi j

, where 1 ≤ j ≤ mi − 1.
The above condition guarantees that no vehicles from same road will be present

in the intersection region. To ensure vehicles from different roads also adhere to
this safety criterion we have

Merge Algorithms for Intelligent Vehicles 55

∀k, l(|t1k − t2l | ≥ S
v

)

where v will take value v1k or v2l depending on whether t1k < t2l or t2l < t1k
respectively and k and l represent vehicle index numbers.

• Safety Constraint: This constraint ensures that safe distance is always main-
tained between consecutive vehicles on the same road, before they enter the merge
region. Consider two such consecutive vehicles xi j and xi(j+1) on Roadi . For
safety, the following condition needs to be ensured: ∀t ∈ (0, ti j), si(j+1)(t) −
si j (t) > S.

Distance between xi j and xi(j+1) is given by:
si(j+1)(t) − si j (t) = (si(j+1)(0) − (ui(j+1) ∗ t + ∗1/2ai(j+1) ∗ t2)) − (si j (0) −
(ui j ∗ t + ∗1/2ai j ∗ t2)) = f (t)

Ensuring fmin(t) > S will guarantee safety criteria. On simplification, the fol-
lowing constraint is obtained:
For Roadi , ∀ j
if (ai j > ai(j+1) and (ui j − ui(j+1))/(ai(j+1) − ai j) < ti j) then

si(j+1)(0)− si j (0)− L > (ui j − ui(j+1))
2/(2 ∗ (ai j − ai(j+1)))

else
Mutual Exclusion Constraint guarantees that the safety criteria will be satisfied.

• Lower Bound on Time: This imposes lower bound on the time taken by any
vehicle to reach intersection region with the help of VMAX, maximum velocity
any vehicle can attain: For Roadi ,∀ j ti j ≥ si j

VMAX
where si j is the initial distance

from intersection region, i.e., at time instant t = 0. Throughout the paper, si j and
si j (0) are used interchangeably.

• Equality Constraint on Velocity: This constraint relates the velocity of vehicle
at the intersection region to its initial velocity, the distance traveled and the time
taken to do so.

For Roadi ,∀ j vi j = 2si j
ti j

− ui j .
• Other Constraints: These constraints impose limits on the velocity and acceler-

ation range of vehicles.
For Roadi ,∀ j VMIN ≤ vi j ≤ VMAX; AMIN ≤ ai j ≤ AMAX.

After replacing all vi j in the above set of constraints using the equality constraint
on velocity, the system is left with the following design variable(s): ti j .

System Input: ∀i, j si j , ui j , S, and VMAX.
System output: ∀i, j ti j .

The acceleration or deceleration commands to be given to each vehicle can be com-
puted offline from the output of system using:

∀i, j ai j = 2 ∗ (si j − ui j ∗ ti j)

t2
i j

. (1)

56 Gurulingesh Raravi et al.

3.2 n-Road Intersection

In this section, we provide the formulation for a case where n roads are intersecting.
The formulations in Section 3.1 can be easily extended to suit this scenario.

For the rest of this section the range of i and j are given by, 1 ≤ i ≤ n (represents
road index) and 1 ≤ j ≤ mi (represents vehicle index) unless otherwise specified
explicitly. Similarly, range for k and l are given by, 1 ≤ k ≤ n (represents road index)
and 1 ≤ l ≤ mk (represents vehicle index).

• Objective Function:
(1) Minimize f = ∀i MAX(timi) OR
(2) Minimize f = 1∑n

i=1 mi
∗ (
∑n

i=1
∑mi

j=1 ti j)

• Precedence Constraint: ∀i ti j < ti j+1 where 1 ≤ j ≤ mi − 1
• Mutual Exclusion Constraint:
∀i, j, k, l

∣
∣ti j − tkl

∣
∣ ≥ S

v where v will take value vi j or vkl depending on whether
ti j < tkl or tkl < ti j respectively

• Safety Constraint:
∀i, j if (ai j > ai(j+1) and (ui j − ui(j+1))/(ai(j+1) − ai j) < ti j) then

si(j+1)(0)− si j (0)− L > (ui j − ui(j+1))
2/(2 ∗ (ai j − ai(j+1)))

• Lower Bound on Time: ∀i, j ti j ≥ si j
VMAX

• Equality Constraint on Velocity: ∀i, j vi j = 2si j
ti j

− ui j
• Other Constraints:
∀i, j VMIN ≤ vi j ≤ VMAX; AMIN ≤ ai j ≤ AMAX

System Input: ∀i, j si j , ui j , S, and VMAX
System Output: ∀i, j ti j

As can be observed from the above formulation, there is not much difference between
our 2-road and n-road formulations.

4 Head of Lane Approach

In this section, we describe another algorithm for determining the merge sequence.
We discuss the case of two roads merging at an intersection.1 This approach is moti-
vated by the way drivers in manually driven vehicles resolve the conflict at intersec-
tion region in practice. The drivers who are closest to the merge region on each road
decide among themselves the order in which they will pass through the region (based
on some criteria, say First Come, First Serve).

This algorithm achieves the goal of safe maneuvering by considering the foremost
vehicles on each lane for determining the merge sequence. This approach incurs
lesser computational overhead compared to optimization formulation and easily

1 The work of extending this to n-roads merging is currently in progress

Merge Algorithms for Intelligent Vehicles 57

maps to the way merging happens in real-world scenario where vehicles are not
automated.

4.1 Two-Road Intersection

Consider the scenario depicted in Figure 1, where x11 and x21 are head vehicles (vehi-
cles nearest to merge region) on Road1 and Road2 respectively whose DTTI are
conflicting and hence are the competitors for the same place in MS. The algorithm
resolves the conflict among these two vehicles by computing the cost associated with
each vehicle (determining this cost is explained in Section 4.3) and adding the one
with the lower cost, say x21 in the M S. Now, the algorithm considers the head vehi-
cles on each road: x11 from Road1 and x22 from Road2 (since x21 is already included
in the M S, x22 is the current head vehicle on Road2), resolves conflict, adds the vehi-
cle with minimum cost in M S and so on. This is done iteratively till all the vehicles
are merged.

HoL algorithm operates with the same set of constraints formulated in Section 3.
The goal of optimization formulation was to achieve minimum average DTTI or
maximum throughput. HoL too tries to achieve the same goal by employing acceler-
ation whenever possible approach. For example, in the scenario explained above, x21
is assigned maximum possible acceleration before inserting it in the merge sequence.
A single iteration of the HoL algorithm is discussed in detail below:

1. Let x1k and x2l be the two head vehicles in a particular iteration. In the first itera-
tion the foremost vehicles on each lane (x11 and x21), would be the head vehicles.

2. Depending upon the behavior of vehicles in the M S, algorithm determines the
future behavior B1k, B2l of the vehicles x1k , x2l respectively. Here future behav-
ior of a vehicle represents its kinematics from current time instant till the vehi-
cle reaches the merge region. While determining these behaviors, the vehicles
are accelerated whenever possible while ensuring that all the constraints are met.
Note that, B1k and B2l are calculated independent of one another and can conflict
during/after merging.

3. Verify whether the behavior B1k and B2l interfere in the merge region (explained
in detail in Section 4.2), i.e., whether the vehicles violate the safety criteria in the
merge region.

4. If they are not interfering then insert that vehicle in the M S which is reaching
the region M first, say x1k . If they are interfering then compute the cost c1 of the
merge sequence (determining cost will be explained in Section 4.3) in which x1k
is chosen to be inserted in M S. Similarly compute cost c2 in which x2l is chosen
to be inserted. Compare cost c1 and c2 and insert the vehicle with lower cost in
the M S.

5. Depending upon which vehicle has been inserted in the M S, say x1k , consider
x1(k+1) and x2l as head vehicles for the next iteration. Similarly if x2l is inserted,
then consider x1k and x2(l+1) as head vehicles.

58 Gurulingesh Raravi et al.

4.2 Interference in Merge Region

The head vehicles x1k and x2l from Road1 and Road2 still have the possibility of
violating the safety criteria in the merge region even after determining their future
behavior B1k and B2l respectively, as the behaviors are computed independent of
one another. This violation of safety criteria in the merge region is called vehicle
interference. The vehicles might be strongly violating the safety criteria, i.e., both
the head vehicles might be entering the merge region approximately at same time.
In this case, resolving the conflict becomes slightly tricky and the algorithm must
choose the vehicle with lower cost. While in another scenario, the vehicles might be
violating the safety criteria by a very small amount, i.e., when a vehicle is just about
to exit the merge region, another vehicle might enter it. This special case is handled in
a similar way as the non-interference one, where the leading head vehicle is inserted
in the M S. We differentiate these two cases as described below:

• Vehicle Interference (|t1k − t2l | < δ): Determine cost c1, of the merge sequence
in which x1k is chosen to be added first to M S. Similarly determine cost c2 for
adding x2l . Insert that vehicle in the M S which has lower cost associated with it.

• Non-Interference (|t1k − t2l | > δ): If t1k > t2l then insert x2l in M S else insert
x1k in M S.

The value of δ can be determined using safety distance (S) and velocity of the head
vehicles.

4.3 Merge Cost Computation

When two vehicles strongly interfere (in the merge region) and compete for the same
place in M S, the HoL approach described above computes the cost of inserting each
vehicle in the M S at that particular place and resolves the conflict by choosing the one
with lower cost. Here we describe two approaches for determining this cost (associ-
ated with a particular vehicle for inserting it in the M S). The first approach has been
simulated and work is in progress on simulation of the second approach.

• Nearest Head: In case of strong interference, both the head vehicles take almost
same time to reach the merge region. It is more reasonable to allow the vehicle
which is closer to the merge region to go first as it will have lesser time to adapt
to any changes (deceleration). If both the vehicles are equidistant from the merge
region, then algorithm randomly chooses one of them.

• Cascading Effect: This approach considers the effect on previous vehicles on
each road, while computing the cost for resolving the conflict. This effect can be
measured in terms of net deceleration introduced, the number of vehicles that are
being affected as both give a measure of increase in DTTI of vehicles. Optimal
approach would be to consider all possible merge sequences and choose the best

Merge Algorithms for Intelligent Vehicles 59

among them. Though this solution is better in terms of optimality, it will be com-
putation intensive, as in this case the total number of merge orders considered will
be exponential.

4.4 Pseudo-code

Pseudo-code of HoL algorithm is presented in detail below. All the notations conform
to the notation used in Section 3. Functions used in the pseudo-code are explained
below:

1. getBestPossibleBehavior(Profile P , Merge Sequence M S): It takes profile(P)
of a vehicle and Merge Sequence(M S) as input and with the help of behavior of
vehicles that are in the MS, the function determines (and returns) the best possible
future behavior for that vehicle.

2. computeTimeToReach(Behavior B): It takes future behavior(B) of a vehicle as
input and then computes (and returns) DTTI of that vehicle.

3. checkStrongInterference(Behavior B1, Behavior B2, safe distance S, Inter-
ferenceParameter δ): It takes behavior(B1 and B2) of two vehicles and system
parameters: S and δ as input and then determines whether these vehicles interfere
in the merge region. An appropriate Boolean value is then returned (1—if they
interfere, 0—otherwise).

HoL Algorithm Begin
k = l = 1;
while (k <= m1 and l <= m2){

B1 = getBestPossibleBehavior(P1k , M S);
B2 = getBestPossibleBehavior(P2l , M S);
//Where Pi j is the current profile(velocity, acceleration and distance
//from region M) of vehicle xi j .
t1 = computeTimeToReach(B1);
t2 = computeTimeToReach(B2);
StrongInterference = checkStrongInterference(B1, B2, S, δ);
if (StrongInterference) then{

Determine the cost c1 and c2;
if(c1 < c2) then

Insert x1k in M S; k = k + 1;
else

Insert x2l in M S; l = l + 1;
}
else

if(t2 > t1) then
Insert x1k in M S; k = k + 1;

60 Gurulingesh Raravi et al.

else
Insert x2l in M S; l = l + 1;

}
if(k == m1 + 1) then

Append remaining vehicles on Road1 to M S
else

Append remaining vehicles on Road2 to M S

HoL Algorithm End

5 Continuous Stream of Vehicles

The optimization formulation and HoL algorithms described above are applicable
only for a snapshot of real world scenario. In reality, there is continuous inflow of
vehicles in AoI and hence we need to extend these algorithms to deal with it. This
involves following issues:

• identifying the snapshot of vehicles to which algorithms will be applied;
• determining how often these snapshots should be captured, i.e., how often the

algorithm is run.

In this section, we have described two ways in which our algorithms can be tuned
to address these issues.

Sporadic Approach The above algorithms can be run sporadically on vehicle snap-
shots, i.e., all the vehicles present in AoI. This approach makes a realistic assump-
tion that the minimum time that any vehicle takes to enter the AoI is known. The
frequency of execution of this algorithm is driven by following parameters: x , the
distance of the closest vehicle outside the AoI and VMAX, maximum velocity any
vehicle can attain. Hence, the closest vehicle will take at least x/VMAX time to enter
AoI. The sporadicity of this task can be determined by imposing a lower bound on x .

Multi-Zone Approach The drawbacks of sporadic approach is whenever a new
vehicle enters the AoI: (i) computational overhead: it reconsiders all the vehicles
(except those who passed through the merge region) from previous snapshot for
determining the solution and (ii) stability concern: reconsidering the vehicles which
are nearer to merge region might pose a threat to system stability. To overcome these
drawbacks, in this approach the AoI region is divided into three zones as shown in
the Figure 2. In this approach, the snapshot comprises of all the vehicles present
in zone 2. Initially solution is computed for a snapshot. When vehicles from zone
3 enter zone 2 or after time δ, whichever is minimum, the algorithm takes the next
snapshot and computes the solution. Note that the vehicles which enter zone 1 are left
undisturbed, as these vehicles are very close to the merge region and have very little
flexibility to adapt any changes to their profile. The parameter δ can be computed

Merge Algorithms for Intelligent Vehicles 61

Road1

Road2

Zone 3

Merge
Region

Zone 2

Zone 1

Fig. 2 Region partitioning

using the radii of the zones and Vmax. Thus solution can be computed sporadically
to deal with the continuous stream of vehicles. The work is in progress to formally
characterize these zones.

6 Simulations and Observations

This section describes Matlab-based evaluations of optimization formulation and
C++ simulation of HoL approach and observations made from these. For simplicity,
we considered a 2-road intersection problem where each road is having five vehicles.
For modeling optimization formulation in MATLAB, we used Optimization Toolbox
(function fmincon). Various parameters of the system were set to following values
while performing experiments:

Amax = 4 m/s2, Amin = −4 m/s2,

Vmax = 27 m/s, Vmin = 0 m/s, S = 5 m

Input The vehicle profiles at time t = 0 (which system takes as input) is shown in
Table 2. For instance, entries in the first row of the table represent: the initial velocity
of vehicles x11 and x12 are set to 20 m/s and 22 m/s and their distances from the
intersection region are set to 55 m and 40 m respectively. The acceleration of all the
vehicles are assumed to be zero initially, i.e., the vehicles are moving with uniform
velocity ui j .

Output The algorithms came up with the time (i.e., Merge Sequence order) at which
each vehicle is allowed to enter the intersection region which is depicted along with
acceleration of the vehicles in Table 3.

62 Gurulingesh Raravi et al.

Table 2 Initial vehicle profiles (i.e., at time t = 0)
Road1 Road2

Id u (m/s) S (m) Acc (m/s2) Id u (m/s) S (m) Acc (m/s2)
1 20 55 0 1 22 40 0
2 22 62 0 2 20 60 0
3 21 69 0 3 25 73 0
4 25 84 0 4 22 80 0
5 23 91 0 5 21 87 0

Table 3 Simulation results showing the DTTI of all vehicles and the merge sequence
Optimization Formulation Head of Lane

Road Id Veh Id Time (s) Acc (m/s2) Road Id Veh Id Time (s) Acc (m/s2)
2 1 1.63 3.06 2 1 1.63 3.06
1 1 2.34 2.99 1 1 2.34 2.99
1 2 2.53 1.98 1 2 2.53 1.98
2 2 2.72 1.54 2 2 2.71 1.55
2 3 2.92 -0.01 2 3 2.92 0.00
1 3 3.12 0.70 1 3 3.12 0.72
1 4 3.34 0.10 1 4 3.33 0.12
2 4 3.54 0.35 2 4 3.53 0.37
1 5 3.75 0.67 1 5 3.75 0.69
2 5 4.10 0.10 2 5 3.94 0.55

29.99 29.81

As we can see, the average latency obtained using both approaches are quite com-
parable. Also the merge sequence order was observed to be the same in both the
approaches. The results from the optimal approach are slightly inferior than those
from the HoL approach. These inconsistencies can be attributed to the fact that func-
tion f mincon is a derivative-based search algorithm and it does not guarantee a
global optimum (Coleman et al., 1999).

Figures 3 and 4 show the same results when plotted as graphs. The X -axis repre-
sents the time and Y -axis indicates the distance of each vehicle from region of inter-
section (i.e., −x : vehicle needs to travel x distance to reach the intersection region,
0: vehicle has reached the region and +x : distance covered by vehicle after leaving
the region).

It can be observed our model guarantees that when xi j reaches the region of interest
the distance between it and vehicle in front of it, say xkl , is at least S. It can also be
observed that the curves are quadratic in nature falling in-line with the quadratic
equation of motion (see Equation 1). It should be observed that the model shown
does not provide the safe distance guarantee after the region of interest. But we can
incorporate other region of interests in the model by adding few more constraints in
the same model.

Merge Algorithms for Intelligent Vehicles 63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−80

−60

−40

−20

0

20

40

60

80

100

Time(s)

Vehicles from Lane1
Vehicles from Lane2

Fig. 3 Optimization formulation results

0 0.5 1 1.5 2 2.5 3 3.5 4
−80

−60

−40

−20

0

20

40

60

80

100

Time(s)

Vehicles from Lane1
Vehicles from Lane2

Fig. 4 HoL results

While conducting experiments, it was observed that optimization formulation
approach is computationally intensive compared to HoL. This observation can be
attributed to the way optimization formulation functions, i.e., it considers several
possible combinations by considering all vehicles on each road at a time for deter-
mining the merge sequence whereas HoL considers only head of lane vehicles at a
time for determining the same.

64 Gurulingesh Raravi et al.

7 Related Work

The merge control application with inter-vehicle communication is also studied in
Uno et al. (1999). It uses the concept of virtual vehicle that is used to map vehicles
on one lane onto the other lane (assuming a 2-lane merge) for ensuring safe distance
criteria. But the algorithm for determining the merge order of vehicles is not pro-
vided. The intersection region is divided into multiple zones in Bruns and Munch
(2006) where initially computed suboptimal velocity profiles of vehicles gets refined
to optimal profiles as the vehicles approach the zone nearer to intersection region.
The approach requires more processing power in every vehicle compared to ours
since each vehicle computes the merge order. The communication overhead is also
more since every vehicle communicates with all the nearby vehicles about its profile.
Also, we believe our formulation is simple to understand and implement.

In Dresner and Stone (2005), a reservation based multi-agent (reservation manager
and driver agent) approach is proposed for designing the intersection control system.
The driver agents “call ahead” to the intersection manager and request space-time
in the intersection. The intersection manager then determines whether or not these
requests can be met. If the request is met then the driver agent records the parameters
of the request (the reservation) and attempts to meet them, else it sends the request
again by adapting vehicle’s velocity. This work comes close to ours. We believe the
main drawback of this approach is the process of repeated requests by the driver agent
when its initial request is not met. The intersection manager should be more smart
to make use of all the vehicles’ information available with it and suggest or block an
alternate space-time in the intersection instead of rejecting the request and wait for
that driver agent to make another request.

8 Conclusions and Further Work

In this paper, we presented Automatic Merge Control System that ensures safe vehi-
cle maneuver at road intersections. We formulated this as an optimization problem
with constraints to guarantee safety. It is shown with the help of MATLAB Opti-
mization Toolbox that the existing constraint solvers can be used to determine the
solution. We also presented HoL approach which is less computationally intensive
and whose performance (merge sequence, DTTI of vehicles) is comparable to that of
optimization approach. The observations from simulations carried out confirm these
things.

We are working on several possible extensions to the research described here. First,
extending the HoL approach for n-road intersection scenario considering the effect on
previous vehicles while determining the cost associated with each vehicles (cascad-
ing effect described in the paper). Second, decentralizing the proposed approaches
in which vehicles communicate with each other and resolve any conflicts among

Merge Algorithms for Intelligent Vehicles 65

themselves without the help of any centralized controller. The real-time communica-
tion protocols for the decentralized approach are being studied. Third, fine-tune our
approaches to be able to consider several factors driven by real-world constraints such
as giving preference to vehicles on a particular road, particular vehicles (say ambu-
lance), angle of intersection of roads, etc. Fourth, augmenting the existing mecha-
nisms to deal with a mix of automated vehicles and human driven vehicles. Lastly,
provide real-time support for the system and demonstrate the concepts on robotic
vehicular platforms built in our lab.

References

Bruns, Tornsten and Munch, Eckehard (2006). Intersection management as self-organisation of
mechatronic systems. In Proceedings of the 6th International Heinz Nixdorf Symposium on New
Trends in Parallel and Distributed Computing, Paderborn, Germany.

Coleman, Thomas, Branch, Mary Ann, and Grace, Andrew (1999). Optimization toolbox for use
with matlab user’s guide version 2 January 1999, 3rd printing (For Release 11).

Dresner, Kurt and Stone, Peter (2005). Multiagent traffic management: An improved intersection
control mechanism. In Dignum, Frank, Dignum, Virginia, Koenig, Sven, Kraus, Sarit, Singh,
Munindar P., and Wooldridge, Michael, editors, The Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, New York, NY. ACM Press.

Raravi, Gurulingesh, Sharma, Neera, Ramamritham, Krithi, and Malewar, Sachitanand (2006).
Efficient real-time support for automotive applications: A case study. In Proceedings of the
12th IEEE International Conference on RTCSA, pages 335–341, Sydney, Australia.

Uno, A. Sakaguchi, T. and Tsugawa, S. (1999). A merging control algorithm based on inter-vehicle
communication. In IEEE International Conference on Intelligent Transportation Systems, pages
783–787, Tokyo, Japan.

Vahidi, Ardalan and Eskandarian, Azim (2003). Research advances in intelligent collision avoid-
ance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 4:
143–153.

All Those Duration Calculi:
An Integrated Approach

Paritosh K. Pandya∗

Abstract Duration Calculi are a family of real-time logics incorporating the
measurement of duration of a proposition in an observation interval. The original
Duration Calculus (DC) was defined over continuous timed behaviours. But variants
of DC with different notions of time such as sampled time or discrete time have
been investigated and used. Yet another variation is whether the time is taken to be
weakly or strictly monotonic. The applicability, expressiveness and decidability of
these Duration Calculi vary based upon the underlying nature of time.

In this paper, we propose a generic Duration Calculus GWDC[M]which integrates
various Duration Calculi. It has behaviours with continuous, weakly monotonic time
but the logic is parameterised by the set of observable time intervals within each
behaviour. By suitably choosing the parameter M , we show that the different Dura-
tion Calculi can all be obtained as GWDC[M]. Such a common framework allows
investigation of relationships and translations between various Duration Calculi. We
provide an overview of the sampling and digitization techniques for abstracting the
undecidable continuous timed logics into decidable discrete timed logics.

Keywords: real-time logics, duration calculus, continuous time, discrete time

1 Introduction

Timed behaviours capture how the system state evolves with time. Temporal logics
specify properties of such behaviours. Real-time logics specify quantitative timing
properties of timed behaviours. Duration Calculus (DC) is one such logic [22]. It is
an interval temporal logic incorporating the measurement of accumulated duration
for which a proposition holds in a time interval. Duration Calculus constitutes a con-
venient and highly expressive notation for capturing and reasoning about real-time
requirements.

Duration Calculus has found use as a formal notation for expressing requirements
over real-time systems. Many other real-time logics as well as practical notations
such as message sequence charts and timing diagrams can be formalised within it.

∗This work was partially supported by the General Motors sponsored project “Advanced Research
on Formal Analysis of Hybrid Systems”.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 67
for Distributed Embedded Control Systems, 67–81.
c© Springer 2007

68 Paritosh K. Pandya

Duration Calculus has also been used in giving compositional semantics and proof
systems for concurrent and real-time programming notations [16,18,20] and in spec-
ifying scheduling and architectural constraints on such programs [20]. But its high
expressive power has also made the validity of Duration Calculus undecidable in
general and hard to check in practice. Availability of effective automatic validity and
model checking tools for Duration Calculus has been a long-standing quest. Vari-
ous decidable subsets of DC have been considered [3, 5, 15, 24], but these have not
yet found way into credible tools. One practical approach has been to combine a
restricted fragment of DC with CSP and Object-Z [9].

Timed logics can make use of various notions of time: continuous, sampled (with
precise clocks) or discrete (with finite precision clocks). Continuous time, where
observable propositions are Boolean functions of real-valued time (also called sig-
nals), corresponds most naturally to our intuitive notion of timed behaviour. A finite
variability condition postulates that only finitely many state changes can occur in
finite time. Discrete time, where the set of time points is natural numbered can be
appropriate when describing clocked systems such as synchronous circuits or syn-
chronous programs [18]. There are other intermediate notions such as timed words
[1] which take a sampled view of timed behaviour. The behaviour is given as a
sequence of states where each state has a real-valued time stamp. Yet another varia-
tion in the nature of time is whether time is strictly monotonic or weakly monotonic.
Weakly monotonic time allows several state changes to take place at the same time
point. Timed behaviours with weakly monotonic time have found use in modelling
concurrency under interleaving [1, 16] and true synchrony hypothesis [2].

The original Duration Calculus (DC) [22] made use of strictly monotonic, contin-
uous time but variants of this logic with other notions of time have also been defined.
A discrete time version of DC called QDDC was shown to be decidable using a
finite automata theoretic decision procedure [13]. A validity and model checking
tool called DCVALID has been built for this logic [12–14]. Pandya [15] proposed a
sampled time version of DC, called Interval Duration Logic (IDL). It was argued that
this logic, although undecidable in general, is more amenable to partial but automatic
validity checking techniques [4, 19]. Recently, a sampling approach which allows
abstracting continuous time Duration Calculus into the sampled time logic IDL has
been proposed [17]. A Duration Calculus with weakly monotonic time, WDC, has
also been formulated [16] and shown to be useful in giving compositional seman-
tics and proof system for concurrent, real-time programs under interleaving and true
synchrony hypothesis.

All these variations in the nature of time have led to a rather large number of
Duration Calculi which have all been studied separately in an ad hoc fashion. The
applicability, expressive power and decidability of these logics vary greatly depend-
ing upon the notion of time used. Unfortunately, there seems little understanding of
the relationships between these logics.

In this paper we propose a generic duration logic called GWDC[M] which uses
continuous and weakly monotonic time for recording behaviours. But the behaviour
is parameterised by a set of admissible observation intervals. By suitably restricting
the observable intervals in the behaviours of M , we show that the plethora of Dura-
tion Calculi with different notions of time can all be systematically obtained. Such

All Those Duration Calculi: An Integrated Approach 69

a common formulation also allows us to consider the relationships between various
logics. Thus, some logics are shown to be special cases of others as characterised
by suitable axioms. This also allows us to develop generic techniques and theories
applicable to families of Duration Calculi.

Having a common notion of continuous behaviour and allowing variation only in
the admissible set of observable intervals also permits us to cleanly formulate mor-
phisms between behaviours over different time structures and to investigate when
these morphisms preserve the logical formulae. Such an approach enables us to
effectively approximate the properties written in undecidable continuous time log-
ics by formulae of decidable discrete time logics. These approximations are based
on the notions of sampling [17] and digitization [4]. Sampling abstracts the dense
set of observable points on real line by a discrete but representative set of sam-
pling points. Since all measurements have to be approximated to such sampling
points, a sampling error in measurements must be allowed. Digitization replaces
the exact real-valued positioning of sampling points with finite precision approxi-
mate positioning. This introduces quantization errors. Formulae must be relaxed to
allow such errors. These sampling and digitization approximations have been built
into tools and the experimental results show that they constitute a partial but prac-
tically usable method for validity and model checking of many formulae of interest
[17, 19].

The rest of the paper is organised as follows. Section 2 introduces GWDC[M],
the generic Duration Calculus with weakly monotonic time. Various Duration Calculi
are defined as special cases of this in Section 3. The Section 4 gives an overview of
the automatic validity checking of various Duration Calculi, especially focusing on
the abstraction techniques from continuous timed logics to discrete timed logics using
sampling and digitization. The paper ends with a discussion section.

2 Generalised Weakly Monotonic Duration Calculus

Duration Calculus is a real-time logic which was originally defined for continuous
time finitely variable behaviours [22]. The time was strictly monotonic, i.e. the sys-
tem could be only in one state at each real numbered time point. This was extended
to WDC with weakly monotonic time which allowed multiple discrete state changes
at the same time point [16]. Variants of DC and WDC having other forms of time
such as sampled time or discrete time have also been investigated [14, 15]. Recently,
Pandya et al. [17] proposed a generic Duration Calculus, GDC, which integrated
some these variants but the weak monotonicity of time was not handled.

In this section, we present a logic GWDC. It has continuous time behaviours
with weakly monotonic time. Moreover the behaviours are parameterised by a set
of admissible observation intervals I . This allows us to give a uniform treatment of a
variety of Duration Calculi which can all be obtained by suitably choosing I .

Behaviours Let (�0, <) be the set of non-negative real-numbers with usual order.
We will use t, t1, . . . to range over reals. Let Pvar be the set of observable

70 Paritosh K. Pandya

propositions. Consider F ⊆ �0 which has either the form [t] denoting a single-
ton set, or the form [t1, t2) with t1 < t2 denoting a non-singular convex set of reals
which is half open. Here t2 can also be ∞. Let ↖ F and ↗ F denote the left
and right end-points (limits) of F . We call such a subset a phase. Let a frame F

be a finite or infinite sequence of adjacent phases which partition �0. Formally,
F = (F1, F2, . . .) such that ↗ Fi =↖ Fi+1 and (∪i Fi) = �0. Also, if Fk is the last
element of F then ↗ Fk = ∞. Let dom(F) denote the set of indices (positions) of
F. For example F = [0, 1.2)[1.2, 3.4)[3.4][3.4, 6)[6,∞) is a frame which partitions
the reals into five phases. Hence, dom(F) = {1, . . . , 5}. Notice that in F two phase
changes take place at the time point 3.4 which belongs to multiple phases.

The set of points in a frame F is given by Points(F)
def= {(t, i) | t ∈ Fi }. It is easy

to see that under the point-wise ordering (t1, i1) ≤ (t2, i2) ⇐⇒ (t1 ≤ t2)∧(i1 ≤ i2),
this set is linearly ordered. We shall use b, e, z to range over points.

A behaviour θ over a F has the form θ ∈ dom(F) → (Pvar → {0, 1}). Thus, a
behaviour assigns to each phase Fi of F a state giving the truth values of the proposi-
tions. Such a behaviour encodes a finitely variable evolution of system state with
time, where only finitely many state changes take place in a finite time interval.
However, we do allow multiple state changes to take place at the same time. This
is analogous to the timed state sequences model with super-dense time (see [7]). We
shall denote the set of all behaviours over a frame F by B E H(F).

Example 1 A behaviour (F, θ) is given below.

F = [0,1.5) [1.5,2.4) [2.4] [2.4] [2.4,3) [3,4.3) [4.3,∞)
θ = ¬P , P , ¬P , P , ¬P , P , ¬P

Duration Calculi are interval temporal logics with measurements over time inter-
vals. Given C ⊆ Points(F) let I ntv(C) = {[b, e] | b, e ∈ C, b ≤ e}. Note
that these include point intervals of the form [b, b]. The subset of extended intervals
is given by I ntv+(C) = {[b, e] | b, e ∈ C, b < e}. An interval specifies the
amount of time it spans and also the number of phase changes. For example, in the
behaviour of Example 1, the interval [(2.3, 2), (5.3, 7)] denotes an interval spanning
time length 3 and having 5 phase changes. Another interval with zero duration but
one phase change is [(2.4, 3), (2.4, 4)]. Note that I ntv(Points(F)) denotes the set
of all intervals.

The measurement terms mt of logic GW DC have the form
∫

P or �. The mea-
surement term � denotes the time length of an interval [b, e]. The measurement term∫

P denotes the accumulated duration for which P is true in θ in an interval [b, e].
The value of mt is denoted by Eval(mt)(θ, [b, e]). We omit this obvious definition
(see [16]).

Syntax of GWDC Let P range over Prop, c over natural numbers, mt over mea-
surement terms and and D over GWDC formulae. Let op ∈ {<,≤,=,≥, >}. Let �
denote the formula “true”. GW DC is given by the abstract syntax:

� | � � | �P�0 | ��P� | mt op c | D1
� D2 | D1 ∧ D2 | ¬D1

All Those Duration Calculi: An Integrated Approach 71

If the atomic formula �P�0 (called now P) is disallowed as a sub-formula but its
special case � � is allowed, we get the syntactic subset GW DCnl . If both �P�0 and � �
are disallowed, we get the syntactic subset GW DC pl , the so called pointless logic.

Semantics For a given behaviour (F, θ), the semantics of formulae is parameterised
by I ⊆ I ntv(Points(F)), where I is called the set of admissible intervals. In this
paper, we shall make the assumption that I = I ntv(C) or I = I ntv+(C) for some
C ⊆ Points(F).

Let the triple (I, F, θ) be called a segmented behaviour or s-behaviour. Let M be
a specified set of s-behaviours. We parameterise the semantics of logic GW DC by
M and denote this by GW DC[M]. A quadruple I, F, θ, [b, e] where (I, F, θ) ∈ M
and [b, e] ∈ I is called an M-model.

For D ∈ GW DC[M] let I, F, θ, [b, e] |� D denote that formula D evaluates to
true in M-model I, F, θ, [b, e]. Omitting the usual Boolean cases, this is inductively
defined below. For a proposition P and a point b ∈ Points(F), let θ, b |� P denote
that the proposition P has value 1 at point b in behaviour θ . We omit this straightfor-
ward definition.

I, F, θ, [b, e] |� �P�0 iff b = e and θ, b |� P

I, F, θ, [b, e] |� � � iff b = e

I, F, θ, [b, e] |� ��P� iff b < e and for all b′ : b ≤ b′ < e. θ, b |� P

I, F, θ, [b, e] |� mt op c iff Eval(mt)(θ, [b, e]) op c

I, F, θ, [b, e] |� D1
� D2 iff for some z : b ≤ z ≤ e.

[b, z] ∈ I and [z, e] ∈ I and I, F, θ, [b, z] |� D1 and I, F, θ, [z, e] |� D2

Note that in the definition of �, an interval [b, e] ∈ I must be chopped into admissi-
ble sub-intervals [b, z], [z, e] ∈ I.

Derived Operators

– �D def= true � D �true holds provided D holds for some admissible sub-interval.
– �D def= ¬�¬D holds provided D holds for all admissible sub-intervals.
– Let ext def= ¬� �. Define Unit def= ext ∧ ¬(ext �ext). Formula Unit holds

for admissible extended intervals which cannot be chopped further into smaller
admissible intervals.

Prefix Validity Let 0 denote the initial time point 0 in the initial phase 1. A pre-
fix model of D ∈ G DC[M] is an M-model of the form I, F, θ, [0, e] such that
I, F, θ, [0, e] |� D. Thus, in prefix models the interval begins at the initial point.
Formula D is prefix satisfiable if there is a prefix model making it true. Finally,
D ∈ G DC[M] is prefix-valid denoted |� D iff I, F, θ, [0, e] |� D for all prefix
M-models I, F, θ, [0, e].

72 Paritosh K. Pandya

3 A Variety of Duration Calculi

Different Duration Calculi available in the literature can be defined as special cases
of GW DC[M] by appropriately choosing the set of s-behaviours M , and by syntac-
tically restricting the constructs available in the logic. In some cases, we shall also
give axioms characterising a sub-logic L2 of L1.

Definition 1 Let L1 = GW DC[M1] and L2 = GW DC[M2] with M2 ⊆ M1.

– We say that D is an axiom of L2 provided for all ρ ∈ M2 we have ρ |� D.
– We say that formula D axiomatizes L2 within L1 provided for all ρ ∈ M1, we

have ρ |� D iff ρ ∈ M2.

Continuous Time Duration Calculus with Weakly Monotonic Time (WDC) This
logic was investigated by Pandya and Hung [16] as a variant of Duration Calculus
with weakly monotonic time. This variant was found useful and necessary for mod-
elling behaviour of concurrent programs working under synchrony hypothesis [2].
Henzinger [7] argues that weakly monotonic time is necessary when considering
interleaved models of concurrency in real-time setting. In the timing analysis of
circuits with wire and gate delays, the analysis is simplified by lumping delays only
at certain gates/wires and the remaining gates work under the synchrony hypothesis.
Modelling such situations also requires logic with weakly monotonic time such as
W DC . Validity of W DC is is undecidable in general.

Let Mwdc
def= {I ntv(Points(F))} × {F} × B E H(F), i.e. models where the set

of admissible intervals is fixed as I = I ntv(Points(F)), the set of all intervals.
Logic W DC can be defined as GW DC[Mwdc]. Because of this, we shall abbreviate
I ntv(Points(F)), F, θ, [b, e] |� D in logic W DC by F, θ, [b, e] |�wdc D. The
syntax of W DC is identical to the syntax of GW DC in the last section and we do
not repeat it again. The following formula is an axiom of W DC .

�(� ≥ 1 ⇒ � = 1 ��) (1)

Interval Duration Logic with Weakly Monotonic Time (WIDL) This logic was pro-
posed by Pandya [15] as a variant of DC with sampled time. It was argued that
W I DL is more amenable to validity checking. While the validity of W I DL is unde-
cidable in general, several effective techniques and tools have been developed as
partial methods for validity and model checking of W I DL . These include Bounded
Model Checking [19] as well as reduction to the decidable Discrete-time Duration
Calculus using digitization [4, 19]. Logics with sampled time are often called point-
wise logics in literature.

Given a frame F, let Beg(F) ⊆ Points(F) be the set of beginning points of all
phases in F. Let S(F) ⊆ Points(F) be such that Beg(F) ⊆ S(F) and S(F) is count-
ably infinite and time divergent. Thus S(F) represents a countably infinite set of
sampling points which includes all change points between phases. Such an S(F) is
called adequate.

All Those Duration Calculi: An Integrated Approach 73

Example 2 Consider the behaviour (F, θ) in Example 1, an adequate set of sampled
points is as follows:

Beg(F) = {(0, 1), (1.5, 2), (2.4, 3), (2.4, 4), (2.4, 5), (3, 6), (4.3, 7)}
S1(F) = {(0, 1), (1.1, 1), (1.5, 2), (2.2, 2), (2.4, 3), (2.4, 4), (2.4, 5),

(3, 6), (3.3, 6), (4.3, 7)} ∪ {(4.4, 7), (5.5, 7), (6.6, 7), . . .}
Define Mwidl = {(I ntv(S(F)), F, θ) | θ ∈ B E H(F) and S(F) is adequate}.

Then, logic W I DL can be defined as GW DC[Mwidl]. The syntax of W I DL is the
same as the syntax of GWDC and we do not repeat it again. The following formula
is an axiom of WIDL:

�(ext ⇒ (Unit ��) ∧ (��Unit)) (2)

It should be noted that the original WIDL [15] was formulated using timed state
sequences as models. Here, we reformulate this as continuous behaviour with admis-
sible intervals spanning the sampling points. It can be shown that the two formula-
tions are equivalent.

Well Sampled Interval Duration Logic (WSWIDL) This is a special case of WIDL
where the continuous time behaviour is sampled at the beginning of every phase
and at every integer valued point. Moreover the behaviour is also 1-oversampled by
including the midpoint between every consecutive pair of above sampling points.
This provides a faithful method of sampling continuous behaviours.

Formally, given a behaviour (F, θ) let Beg(F) be the set of beginning points of
phases in F as in case of WIDL. Let N be the set of natural numbers. Let I nt (F) =
{ (t, i) ∈ Points(F) | t ∈ N} be the set of integer valued points. Let B I (F) =
Beg(F) ∪ I nt (F). Let Mid(F) = { ((t1 + t2)/2, i) | (t1, i), (t2, j) are consecutive
points in B I (F)}. Define W S(F) = B I (F) ∪ Mid(F). The set W S(F) is called the
set of well-sampling points with 1-oversampling. Here, 1-oversampling refers to the
fact that we add one additional point between every pair of consecutive elements of
B I (F). Note that WS(F) is uniquely determined by F.

Example 3 For the behaviour (F, θ) of Examples 1 and 2, we have

Beg(F) = {(0, 1), (1.5, 2), (2.4, 3), (2.4, 4), (2.4, 5), (3, 6), (4.3, 7)}
I nt (F) = {(1, 1), (2, 2), (3, 6), (4, 6), (5, 7), (6, 7), (8, 7), . . .}
Mid(F) = {(0.5, 1), (1.25, 1), (1.75, 2), (2.2, 2), (2.7, 5), (3.5, 6),

(4.15, 6), (4.65, 7), (5.5, 7), (6.5, 7), (7.5, 7), (8.5, 7), . . .}
W S(F) = Beg(F) ∪ I nt (F) ∪ Mid(F)

Let Mwswidl = {(I ntv(W S(F)), F, θ)} consisting of the set of s-behaviours where
admissible intervals span exactly the set of well sampled points. Such models provide
one way of canonically representing the continuous behaviour by sampling. Then,
logic WSWIDL can be defined as GW DC[Mwswidl]. The syntax of WSWIDL is same
as that of GWDC and we do not repeat it. We will abbreviate the WSWIDL satisfaction
I ntv(W S(F)), F, θ, [b, e] |� D by F, θ, [b, e] |�wswidl D.

74 Paritosh K. Pandya

The formula of Equation 2 is also valid for WSWIDL models. The following for-
mula is an axiom the WSWIDL:

�(Unit �Unit ⇒ � ≤ 1) (3)

Integer time IDL with Weakly Monotonic Time (ZWIDL) This is the discrete time
variant of logic WIDL. In ZWIDL behaviours each phase change happens at an integer
valued time point. Moreover, the set of sampling points is also integer valued. Thus,
Mzwidl = {(I ntv(S(F)), F, θ) ∈ Mwidl | S(F) ⊆ I nt (F)}. Syntax of ZWIDL is
identical to WIDL. It has been shown that validity of ZWIDL is decidable [4].

Discrete Duration Calculus with Weakly Monotonic Time (WDDC) This is a spe-
cial case of ZWIDL where sampling points are exactly the integer valued points. Let
Mwddc = {(I ntv(S(F)), F, θ) ∈ Mzwidl | S(F) = I nt (F)}. Note that I ntv(S(F))
is uniquely determined by F.

Example 4 Let F = [0, 1)[1][1][1,∞). Then, the set of admissible intervals is
precisely the intervals between the points I nt (F) where

I nt (F) = {(0, 1), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (4, 4), . . .}.
The syntax of WDDC is identical with the syntax of GWDC. We shall abbreviate
I ntv(I nt (F)), F, θ, [b, e] |� D in WDDC by F, θ, [b, e] |�wddc D. The following
formula axiomatizes WDDC within logic ZWIDL:

�(Unit ⇒ (� = 0 ∨ � = 1)) (4)

3.1 Special Sub-classes of Logics

We now give standard ways of constructing variants such as logics with strictly
monotonic time, or logics without point intervals.

1. Strictly Monotonic Sub-logic: A strictly monotonic frame F is such that all its
phases are non-singular. Thus, in such frames at most one state change can
happen at a time point. Let SF R AM denote the set of s-behaviours with strictly
monotonic frames. We shall define the strict subset of a class of s-behaviours M
by Mstrict = M ∩ SF R AM . Given a logic L = GW DC[M], we denote by
Lstrict = GW DC[M ∩ SF R AM].
The following formula axiomatises logic Lstrict within logic L:

�(ext ⇒ � > 0) (5)

2. Pointless Sub-logic: Given a set of intervals I let Ipl ⊂ I be the set of all non-
point intervals in I. Given a model ρ = (I, F, θ) let ρpl = (Ipl , F, θ). For a set
of s-behaviours M let Mpl = {ρpl | ρ ∈ M}. Given a logic L = GW DC[M],
we denote by L pl = GW DC pl [Mpl]. Note that the syntax for L pl is restricted to
GW DC pl .

All Those Duration Calculi: An Integrated Approach 75

3. Nowless Sub-logic: The “now P” formula �P�0 was not included in the origi-
nal Duration Calculus. It first appeared within the Mean Value Calculus of Zhou
and Li [23]. We now define the nowless fragment of a duration logic. Given a
logic L = GW DC[M] let Lnl = GW DCnl [M]. Note that Lnl uses the syntax
GW DCnl .

Using above constructions, we can obtain several known logics in the Duration
Calculus family.

DC = W DCstrict
nl

W SI DL = W SW I DLstrict

P L DC = DC pl

DDC = W DDCstrict

4 Validity Checking of Duration Calculi

Zhou et al. [21] showed that the validity of Duration Calculus (DC) is undecidable.
To show this, they encoded runs of 2-counter machine T by a formula D(T) such that
D(T) is satisfiable if and only if T has a halting computation. This encoding requires
that (an arbitrarily complex) configuration of 2-counter machine be represented by
state changes within an interval of length � = 1. This is possible due to the density
of real numbers. The same technique can be used to to show the following.

Proposition 1 Satisfiability (validity) of logics W DC, W I DL, W SW I DL is unde-
cidable. If L is any of the above logics, then the satisfiability of their strict frag-
ments Lstrict (e.g. W DCstrict) is also undecidable. The satisfiability of the pointless
versions L pl as well as nowless versions Lnl is also undecidable. In particular, the
satisfiability of DC, W DC, W I DL and W SI DL are all undecidable.

Using an automata theoretic technique, Pandya [13] showed that the validity of
logic DDC and its extension with state quantification Q DDC is decidable. Q DDC
models can also be encoded as finite sequences of states. Let pvar(D) be the
finite set of propositional variables occurring free within a QDDC formula D. Let
V AL(Pvar) = Pvar → {0, 1} be the set of valuations over Pvar .

Theorem 1 For every QDDC formula D, we can effectively construct a finite
state automaton A(D) over the alphabet V AL(pvar(D)) such that for all σ ∈
V AL(pvar(D))∗, we have σ |� D iff σ ∈ L(A(D)). �

We refer the reader to [13] for a proof of this theorem. The formula automaton
construction has been implemented into a tool called DCVALID [12–14]. The tool
DCVALID is built on top MONA [6] which is a sophisticated BDD-based imple-
mentation of an automata theoretic decision procedure for monadic second order
logic over finite words. Several optimizations to improve the performance of formula
automaton construction are used in DCVALID [11].

76 Paritosh K. Pandya

Example 5 Consider the Q DDC formula �P�0 ���¬Q���Q�0. The automaton
corresponding to this formula is given below. Each edge is labelled with a column
vector giving the truth values of variables P, Q. Also, letter X is used to denote either
0 or 1. Note that the automaton is minimal, deterministic and total. �

4

2
X
X

1

0 1
X,1

3

1
0

X
X

X
1

X
0

Chakravorty and Pandya [4] showed that the validity checking of Z W I DL can be
reduced to the validity checking of logic Q DDC .

Theorem 2 There is a linear time translation αzwidl2qddc : Z W I DL → Q DDC
such that |�zwidl D iff |�qddc αzwidl2qddc(D)). Hence, the validity of ZWIDL is
decidable. �

We refer the reader to the original paper [4] for details. This reduction has been
implemented into a tool ZWIDL2QDDC [19]. Note that the logic W DDC is the sub-
logic of Z W I DL satisfying the axiom (4). Hence, we can also decide the validity of
W DDC formulae.

Digitization Now, we discuss validity checking of some useful but undecidable
logics. While the validity of logics W I DL , W SW I DL and DC is undecidable in
general, there are partial techniques for solving their validity problem.

The following theorem states that using digitization [8] we can approximate the
W I DL formulae by Z W I DL formulae while preserving either their validity or
counter examples. Note that digitization replaces the precise times of phase bound-
aries with approximate (integral valued) times recorded by digital clocks. This intro-
duces quantization errors in measurements. Hence, in the translation, the formulae
have to be “relaxed” to allow for such errors.

Theorem 3 We can define linear time computable functions α+widl2zwidl and
α−widl2zwidl of type W I DL → Z W I DL such that for any D ∈ W I DL,

− |�zwidl α+widl2zwidl(D) ⇒ |�W I DL D

− �|�zwidl α−widl2zwidl(D) ⇒ �|�W I DL D. �

For the details and the proof of this theorem we refer the reader to the original paper
[4]. Note that as WSWIDL is a sub-logic of WIDL. We can use a similar translations
to approximate WSWIDL formulae by ZWIDL formulae (see [17]).

All Those Duration Calculi: An Integrated Approach 77

Bounded Validity Checking Let Unitk abbreviate the formula Unit � . . . �Unit
with Unit occurring k times. A WSWIDL formula D is said to be k-satisfiable pro-
vided there exists a prefix model I, F, θ, [0, e] such that I, F, θ, [0, e] |� D ∧Unitk .
It is easy to see that if ¬D is k-satisfiable, then �|� D. Thus, checking for k-
satisfiability of ¬D gives a partial technique for finding counter examples to the
validity of D. This is called bounded validity checking.

A L I N S AT formula consists of a Boolean combination of linear constraints
over reals. There are several effective SMT solvers which can determine whether a
LINSAT formula φ is satisfiable.

Theorem 4 There exists a polynomial time computable translation β : N →
W I DL → L I N S AT such that D is k-satisfiable if and only if β(k)(D) is satisfi-
able. �

We refer the reader to the original paper [19] for more details and the proof. We can
use similar technique for bounded validity checking of W SW I DL .

Sampling Recall that W SI DL is the strict fragment of W SW I DL . The following
theorem states that we can approximate DC formulae by W SI DL formulae using
sampling while preserving either their validity or counter examples. In sampling,
every real-valued point is approximated by a nearby sampled point. This introduces
sampling errors in measurements. Hence, in the translation the formulae have to be
“relaxed” to allow such errors.

Theorem 5 We can define exponential time computable functions α+dc2wsidl : DC →
W SI DL and α−dc2wsidl : DC → W SI DL such that for any D ∈ DC,

− |�wsidl α+dc2wsidl(D) ⇒ |�dc D

− �|�wsidl α−dc2wsidl(D) ⇒ �|�dc D. �

For the details and the proof of this theorem we refer the reader to the original paper
[17]. The reduction first requires a model preserving transformation of DC formula
into P L DC formula. The P L DC formula can then be approximated by W SI DL
formula which is preserved under sampling abstraction of an interval.

Experimental Results Together, the theorems of this section provide a partial but
practical technique for validity checking of formulae of logics DC , W I DL and
W SW I DL . For example, Theorems 5, 3 and 2 imply that applying the abstrac-
tion ST (D)

def= αzwidl2qddc(α
+
widl2zwidl(α

+
dc2wsidl(D))) provides a strong translation

of a DC formula D into a Q DDC formula such that the validity of the resulting
QDDC formula guarantees the validity of original DC formula D. Similarly, apply-
ing the weak abstraction W T (D)

def= αzwidl2qddc(α
−
widl2zwidl(α

−
dc2wsidl(D))) gen-

erates a QDDC formula whose counter example gives (with suitable translation) a
counter example for the original formula D. These translations ST (D) and W T (D)
have been implemented. The following well known example from Duration Calculus
can be used to illustrate the usage of our tools.

78 Paritosh K. Pandya

Example 6 (Gas burner) Consider the following specification of a gas burner in
Duration Calculus, DC . The requirement Concl states that within any observation
interval of at most winlen seconds the accumulated duration of leakage of gas must
be no more than leakbound seconds. To achieve this, the following design decisions
are made. Let Des1 state that the gas must not leak for more than maxleak seconds
at a stretch. Let Des2 state that between any two leakages there must be at least
minsep seconds.

Des1
def= �(��Leak� ⇒ � ≤ maxleak)

Des2 def= �(��Leak����¬Leak����Leak� ⇒ � > minsep)

Concl def= �(� ≤ winlen ⇒ ∫
Leak ≤ leakbound)

G(maxleak, minsep, winlen, leakbound)
def= Des1 ∧ Des2 ⇒ Concl

The correctness of gas burner is established by showing that for the given values
of the parameters maxleak, minsep, winlen and leakbound, we have that |�
G(maxleak, minsep, winlen, leakbound). �

The following experimental results taken from [17] and [19] give some indication
of the applicability of these techniques.

1. The gas burner problem, formulated in Example 6, requires checking validity
of the DC formula G(maxleak, minsep, winlen, leakbound) for given values
of the parameters. This can be checked by making strong and weak transla-
tions to decidable logic QDDC as stated before. In our experiments, the instance
G(4, 8, 30, 18) was shown to be valid by applying the strong translation ST
into QDDC and checking the validity of resulting QDDC formula using the tool
DCVALID. This verification took 0.3 seconds for translation and 2.91 seconds
for the validity checking. The instance G(20, 40, 120, 50) was also shown valid
with translation time 0.3 seconds and validity checking time 148 seconds. The
instance G(20, 40, 200, 75) was shown to be invalid as follows. Its strong trans-
lation ST into QDDC took time 0.3 seconds and the DCVALID tool required
about 34 minutes to show that the resulting QDDC formula was invalid. This does
not guarantee that the formula G itself is invalid. To confirm this, we carried out
the weak translation W T of the formula G into QDDC in time 0.3 seconds. The
resulting QDDC formula was be shown to be invalid by DCVALID tool in about
7 minutes. The tool also gave a counter example for the original formula. We refer
the reader to the original paper [17] for more exhaustive experimental results.

2. Several examples such as the MINEPUMP control and the LIFT control from
Duration Calculus literature have been re-formulated in Logic W I DL . The valid-
ity/counter examples for various instances of these problems could be found
automatically by reduction to QDDC using digitization as in Theorems 3 and 2.
However, for some choices of the parameters, the method did not succeed in a
reasonable time. See [19] for details.

3. For some of the instances of the MINEPUMP and LIFT problems with large con-
stants, the digitization technique above failed to give results in reasonable time.

All Those Duration Calculi: An Integrated Approach 79

But using bounded validity checking as in Theorem 4, we could find counter
examples to many these formulae with small values of k up to 20. See [19] for
the details and for a comparison between the digitization and the bounded validity
checking approaches.

5 Discussion

There exist a wide variety of Duration Calculi with different notions of time in litera-
ture. These include continuous time logic DC; sampled time logics IDL and WSIDL;
and discrete time logics ZIDL and DDC. Moreover, their variants with weakly
monotonic time such as WDC, WIDL, WSWIDL, ZWIDL and WDDC have also be
defined. In this paper we have integrated all these logics into a common frame-
work. We have presented a generic logic called Generalised Weakly Monotonic
Duration Calculus GW DC[M]. Its behaviours are recorded using continuous and
weakly monotonic time, but each behaviour in M is accompanied by a set of admis-
sible observation intervals. By suitably restricting the observation intervals in the
behaviours of M we can obtain all the different varieties of Duration Calculi listed
above.

Having an integrated formulation is a powerful theoretical tool to investigate the
role of time structures as a parameter in controlling the expressiveness and decid-
ability of Duration Calculi. Moreover, using the common framework, we can better
discover the interrelationships between these logics. For example, we can define an
interesting new sub-logic of WIDL called FWIDL as follows: Given a time frame F

let the set of sampling points S(F) = Beg(F) be exactly the set of beginning points
of phases. Let M f widl be the subset of Mwidl having this set sampling points for
each behaviour. The observation intervals in M f widl span only the complete phases.
One important and unfinished part of the current development is to fully work out the
characterising axioms for various logics.

Using the common framework, we can also study morphisms between behav-
iours with different time structures and whether these morphisms preserve formu-
lae. Abstraction of continuous time DC into sampled time WSIDL (Theorem 5) and
abstraction of sampled time WIDL into discrete time ZWIDL (Theorem 3) are exam-
ples of this. Similar such abstractions need to be worked out for other logics. An
abstraction from W DC to W SW I DL is a subject of our current further study.

Having such a variety of Duration Calculi raises questions about their relevance
and use. For example, we can ask the following interesting question: which Duration
Calculus should be used for specifying properties of standard models such as timed
automata? The natural choices are logics W DC , W SW I DL and W I DL . However,
there are important differences between them. For example, the DC formula � =
3 ∧ ��P� states that P holds invariantly for 3 time units. The DC formula (� =
1 ∧ ��P�) �(� = 2 ∧ ��P�) states that P holds invariantly for 1 time unit and this
followed by P holding invariantly for 2 more time units. Although intuitively, the two

80 Paritosh K. Pandya

properties are the same, unfortunately the two formulae are not equivalent in logics
W I DL or W SI DL as intermediate sampling point at time 1 may not be available.
With this in mind, Hirschfeld and Rabinovich [10] have argued that continuous time
logics should be preferred for real-time requirements. On the other hand, sampled
time logics are closer to automata theoretic models and they have better decidability
properties.

Duration Calculus (DC) has been used for specifying requirements over real-time
systems. The Gas burner problem (Example 6) illustrates this. Notations such as
sequence diagrams and timing diagrams can be easily translated into Duration Cal-
culus.

Compositional semantics of several reactive and real-time languages have been
formulated in various Duration Calculi [16, 18, 20]. Moreover, scheduling and archi-
tectural constraints over such programs have also been specified using DC [20]. The
availability of the Duration construct

∫
P is particularly relevant in this.

Formulation of compositional semantics of concurrent programs in presence of
interleaving and true concurrency seems to require weakly monotonic time [1, 16].
A compositional semantics of Timed CSP under the synchrony hypothesis was given
[16] using the logic µQW DC , which is W DC extended with fixed point operators as
well as state quantification. In an interesting formulation, the compositional seman-
tics of synchronous programming language Esterel has been given using µQ DDC ,
which is DDC extended with fixed point operator and quantification over proposi-
tional variables [18]. This semantics does not deal with the causality issue and it only
specifies the observable external behaviour of Esterel programs. Analysis of causality
would require a more detailed semantics with weakly monotonic time as in [16].

For specifying the behaviour of clocked systems, logics Z W I DL and W DDC
or their strict time versions Z I DL and DDC seem appropriate. In particular, we
are investigating the use of Z W I DL in specification of time triggered architectures.
Some other potential uses of Duration Calculi under study include the specification of
timing behaviour of web services, and specification and synthesis of run-time moni-
tors from logical specification.

Acknowledgements The author thanks Kamal Lodaya and Swarup Mohalik for their helpful comments.

References

1. R. Alur and D.L. Dill, Automata for Modeling Real-time Systems, Proc. of 17th ICALP LNCS
443, (1990) Springer-Verlag, pp 332–335.

2. G. Berry, The Constructive Semantics of Esterel (1999).
3. A. Bouajjani, Y. Lakhnech and R. Robbana, From Duration Calculus to Linear Hybrid

Automata, Proc. of 7th CAV, LNCS 939 (1995), Springer-Verlag, pp 196–210.
4. G. Chakravorty and P.K. Pandya, Digitizing Interval Duration Logic, Proc. of 15th CAV, LNCS

2725 (2003), Springer-Verlag, pp 167–179.
5. M. Fränzle, Model-Checking Dense-Time Duration Calculus, in M.R. Hansen (ed.), Duration

Calculus: A Logical Approach to Real-Time Systems Workshop, Proc. of ESSLLI X (1998).

All Those Duration Calculi: An Integrated Approach 81

6. J.G. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, B. Paige, T. Rauhe and A. Sandholm,
Mona: Monadic Second-Order Logic in Practice, Proc. of TACAS’95, LNCS 1019 (1996),
Springer-Verlag.

7. T.A. Henzinger, Its About Time: Real-time Logics Reviewed, Proc. of 9th CONCUR 1998,
LNCS 1466 (1998), Springer-Verlag.

8. T.A. Henzinger, Z. Manna and A. Pnueli, What Good are Digital Clocks? Proc. of 19th ICALP,
LNCS 623 (1992), Springer-Verlag, pp. 545–558.

9. J. Hoenicke and E.R. Olderog, CSP-OZ-DC: A Combination of Specification Techniques for
Processes, Data and Time, Nordic J. of Computing, 9(4) (2002), pp 301–334.

10. Y. Hirshfeld and A. Rabinovich, Logics for Real-time: Decidability and Complexity, Funda-
menta Informaticae, 62(1) (2004), pp 1–28.

11. S.N. Krishna and P.K. Pandya, Modal Strength Reduction in QDDC, Proc. of 25th FST & TCS,
LNCS 3821 (2005), Springer-Verlag, pp 444–456.

12. P.K. Pandya, DCVALID User Manual, Tata Institute of Fundamental Research, Bombay
(1997). (Available in revised version at http://www.tcs.tifr.res.in/∼pandya/dcvalid.html)

13. P.K. Pandya, Specifying and Deciding Quantified Discrete-time Duration Calculus Formulae
using DCVALID: An Automata Theoretic Approach, in Proc. of RTTOOLS’2001 (2001).

14. P.K. Pandya, Model Checking CTL*[DC], Proc. of 7th TACAS, LNCS 2031 (2001), Springer-
Verlag, pp 559–573.

15. P.K. Pandya, Interval Duration Logic: Expressiveness and Decidability, Proc. of TPTS, ENTCS
65(6) (2002), Elsevier Science B.V.

16. P. Pandya and D.V. Hung, Duration Calculus of Weakly Monotonic Time, Proc. of FTRTFT,
LNCS 1486 (1998), Springer-Verlag.

17. P.K. Pandya, S.N. Krishna and K. Loya, On Sampling Abstraction of Continuous Time Logic
with Durations, Proc. of TACAS 2007, LNCS 4424 (2007), Springer-Verlag, pp 246–260.

18. P.K. Pandya, Y.S. Ramakrishna and R.K. Shyamasundar. A Compositional Semantics of
Esterel in Duration Calculus. In Proc. Second AMAST workshop on Real-time Systems: Models
and Proofs, Bordeux, June (1995).

19. B. Sharma, P.K. Pandya and S. Chakraborty, Bounded Validity Checking of Interval Duration
Logic, Proc. of 11th TACAS, LNCS 3440 (2005), Springer-Verlag, pp 301–316.

20. Zhou Chaochen, M.R. Hansen, A.P. Ravn and H. Rischel, Duration Specification for Shared
Processors, Proc. of FTRTFT’92, LNCS 571 (1992), Springer-Verlag.

21. Zhou Chaochen, M.R. Hansen and P. Sestoft: Decidability and Undecidability Results for
Duration Calculus, Proc. of STACS’93, Würzburg (1993).

22. Zhou Chaochen, C.A.R. Hoare and A.P. Ravn, A Calculus of Durations, Info. Proc. Letters,
40(5) (1991).

23. Zhou Chaochen and Li Xiaoshan, A mean value calculus of durations, in A classical mind:
essays in honour of C.A.R. Hoare, Prentice Hall International (1994), pp 431–451.

24. Zhou Chaochen, Zhang Jingzhong, Yang Lu and Li Xiaoshan, Linear Duration Invariants. In
Proc. of 3rd FTRTFT, LNCS 863 (1994), Springer Verlag, pp 86–109.

Adding Time to Scenarios∗

Prakash Chandrasekaran and Madhavan Mukund

Abstract Message Sequence Charts (MSCs) are used to specify the behaviour of
communicating systems through scenarios. Though timing constraints are natural for
describing the behaviour of real-life protocols, the basic MSC notation has no mech-
anism to specify such constraints. We propose a notation for specifying collections
of timed scenarios and describe a framework for automatic verification of scenario-
based properties for communicating finite-state machines equipped with local clocks.

Keywords: MSC, timed scenarios, verification, communicating finite-state machies

1 Introduction

In a distributed system, several agents interact with each other to generate a global
behaviour. The interaction between these agents is usually described in terms of
scenarios, using message sequence charts (MSCs) [9].

We extend scenarios to incorporate timing constraints, yielding timed MSC tem-
plates. These templates are built from fixed underlying MSCs by associating a lower
and upper bound on the time interval between certain pairs of events. Timed MSC
templates are a natural and useful extension of the untimed notation for scenarios,
because protocol specifications typically include timing requirements for message
exchanges, as well as descriptions of how to recover from timeouts.

We propose a simple specification language based on guarded commands, along
the lines of Promela [8], for generating collections of timed MSC templates. The
semantics of this language is given in terms of a version of HMSCs (high-level
MSCs) [7], with annotations attached to edges rather than nodes.

Our aim is to verify properties of timed systems with respect to timed MSC
template specifications. Our basic system model consists of communicating finite-
state machines equipped with local clocks. Clock constraints are used to guard
transitions and specify location invariants, as in other models of timed automata [3].
Just as the runs of timed automata can be described in terms of timed words, the
interactions exhibited by communicating finite-state machines with clocks can be
described using timed MSCs.

∗Partially supported by Timed-DISCOVERI, a project under the Indo-French Networking
Programme.
S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 83
for Distributed Embedded Control Systems, 83–97.
c© Springer 2007

84 Prakash Chandrasekaran and Madhavan Mukund

Specifications in terms of scenarios give rise to several natural verification prob-
lems. At preliminary stages of system design, scenario specifications are typically
incomplete and can be classified into two categories, positive and negative. Positive
scenarios are those that the system is designed to execute—for instance, these may
describe a handshaking protocol to set up a reliable communication channel between
two hosts on a network. Negative scenarios indicate undesirable behaviours, such as
a situation when both hosts independently initiate a handshake, leading to a colli-
sion. This leads to the following verification problem: given a distributed system and
a positive (or negative) scenario, does the system exhibit (or avoid) the scenario?

In general, a timed MSC template is compatible with infinitely many timed MSCs.
This makes the scenario matching problem more complicated than in the untimed
case, where a single scenario describes exactly one pattern of interaction. In our
setting, the scenario matching problem amounts to checking whether the intersection
of two collections of timed MSCs is nonempty.

As the design of a system evolves, the interpretation of a scenario-based
specification also changes. The specification is now typically seen as an exhaustive
description of how the system should behave. Universality then becomes an impor-
tant condition to check—does the implementation exhibit a representative behaviour
consistent with each of the timed templates in the specification? Once again, the com-
plication is that each timed template in the specification is compatible with an infinite
set of timed behaviours. Moreover, we also have an infinite set of timed templates to
verify.

We propose an approach to tackle these verification problems using the model
checking tool UPPAAL, which is designed to verify properties of timed systems.
This paper extends the work reported in [4], where we only consider finite sets of
timed templates. Since the basic system model of UPPAAL uses synchronous hand-
shakes, rather than message-passing, we need to encode message-passing channels
by creating special processes to model buffers. Exploiting the handshake mechanism
in UPPAAL, we can synchronize the system with the specification. This allows us
to transform our verification questions into properties for UPPAAL to verify on the
composite system.

In the untimed setting, efficient algorithms for the scenario matching problem have
been identified in [11]. An approach to solve this problem using the model checker
SPIN was proposed in [6].

Adding timing constraints to individual scenarios has been proposed in [1], where
an algorithm is given to check whether such a set of timing constraints in consistent.
At the level of sets of scenarios, the live sequence chart (LSC) formalism [5] allows
adding interval constraints similar to those we consider. One important difference
is that the semantics of LSCs assumes synchronous composition of scenarios—all
processes are assumed to move together from one scenario to the next. We retain the
usual asynchronous semantics for MSC composition, which is more natural from the
point of view of implementations.

The paper is organized as follows. In the next two sections, we formally define
timed MSCs and timed message-passing automata. In Section 4, we propose a new
notation for specifying timed scenarios. In the next section, we describe some ver-
ification problems for scenario based specifications. In Section 6, we describe our

Adding Time to Scenarios 85

approach to address verification problems for scenario-based specifications using
UPPAAL. We conclude with a brief discussion.

2 Timed MSCs

2.1 Message Sequence Charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with each
other through messages via reliable FIFO channels using a finite set of message types
M. For p ∈ P , let �p = {p!q(m), p?q(m) | p �= q ∈ P, m ∈ M} be the set of
communication actions in which p participates. The action p!q(m) is read as p sends
the message m to q and the action p?q(m) is read as p receives the message m from q .
The set of actions that p performs is given by p = �p ∪ {i p}, where i p is a local
action of p. We will use local actions to describe timeouts. We set = ⋃

p∈P p.
We also denote the set of channels by Ch = {(p, q) | p �= q}.

Labelled Posets A -labelled poset is a structure M = (E,≤, λ) where (E,≤) is
a poset and λ : E → is a labelling function. For e ∈ E , let ↓e = {e′ | e′ ≤ e}.

For p ∈ P and a ∈ , we set E p = {e | λ(e) ∈ p} and Ea = {e | λ(e) = a},
respectively. For each (p, q) ∈ Ch, we define the relation <pq as follows:

e <pq e′ ⇐⇒ λ(e) = p!q(m), λ(e′) = q?p(m) and

|↓e ∩ E p!q(m)| = |↓e′ ∩ Eq?p(m)|
The relation e <pq e′ says that channels are FIFO with respect to each message—
if e <pq e′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (E p × E p) ∩ ≤, with <pp
standing for the largest irreflexive subset of ≤pp.

Definition 1 An MSC (over P) is a finite -labelled poset M = (E,≤, λ) that
satisfies the following conditions:

(i) Each relation ≤pp is a linear order.
(ii) If p �= q then for each m ∈M, |E p!q(m)| = |Eq?p(m)|.

(iii) If e <pq e′, then |↓e ∩ (⋃m∈M E p!q(m)

) | = |↓e′ ∩ (⋃m∈M Eq?p(m)

) |.
(iv) The partial order≤ is the reflexive, transitive closure of the relation

⋃
p,q∈P<pq .

The second condition ensures that every message sent along a channel is received.
The third condition says that every channel is FIFO.

In diagrams, the events of an MSC are presented in visual order. The events of
each process are arranged in a vertical line and messages are displayed as hori-
zontal or downward-sloping directed edges. Figure 1 shows an example with three
processes {p, q, r} and seven events {e1, e′1, e′′1 , e2, e′2, e3, e′3} corresponding to three
messages—m1 from p to q, m2 from q to r and m3 from p to r—and one local event
on p, e′1.

86 Prakash Chandrasekaran and Madhavan Mukund

p q r

e1 e2

e′′

e3

m1

m2

m3
1

e′
1 e′

2

e′
3

Fig. 1 An MSC over {p, q, r}

User ATM Server

u1

u2
u3

u4

(0; 3)

a1
a2

a3
a4
a5

a6
a7

a8

s1
s2

s3
s4

(0; 2)

card

card-data

card-OK
pin-request

pin

verify-pin

pin-OK

menuFig. 2 A timed MSC template describing
interaction with an ATM

For an MSC M = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization of
(E,≤)}. For instance, p!q(m1) q?p(m1) q!r(m2) i p p!r(m3) r?q(m2) r?p(m3) is
one linearization of the MSC in Figure 1.

2.2 Timed MSC Templates

A timed MSC template is an MSC annotated with time intervals between pairs of
events along a process line. For instance, consider the interaction between a user, an
ATM and a server depicted in Figure 2. This MSC has sixteen events generated by
eight messages. The events u2 and u3 are linked by a time interval (0, 2), as are the
events s2 and s3. These time intervals represent constraints on the delay between the
occurrences of the events. Thus, this template specifies that the server is expected to
respond to a request to authenticate an ATM card within 2 units of time. Similarly,
a user has to type in his PIN within 3 units of time of the ATM requesting the PIN.

Figure 3 shows an alternative scenario in which the user does not supply the PIN
within the specified time limit, leading to the ATM rejecting the card. Notice that the
timeout event is modelled as a local event on the ATM process.

Adding Time to Scenarios 87

User ATM Server

u1

u2

u3

(0; 3)

a1
a2
a3

a4

a5
a6

s1
s2

(0; 2)

card

card-data

card-OK
pin-request

reject-card

Fig. 3 The user’s PIN message times out

We assume that time intervals are bounded by natural numbers. A pair of time
points (m, n), m, n ∈ N, m ≤ n, denotes the time interval {x ∈ R | m ≤ x ≤ n}.1
Definition 2 Let M = (E,≤, λ) be an MSC. An interval constraint is a tuple
〈(e1, e2), (t1, t2)〉, where:

• e1, e2 ∈ E with e1 ≤pp e2 or e1 <pq e2 for some p, q ∈ P .
• t1, t2 ∈ N with t1 ≤ t2.

The restriction on the relationship between e1 and e2 ensures that an interval con-
straint is either local to a process or describes the delay in transmitting a single
message.

Definition 3 A timed MSC template is pair T = (M, I) where M = (E,≤, λ) is an
MSC and I ⊆ (E × E)× (N× N) is a set of interval constraints.

2.3 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the ordering on the time-
stamps respects the partial order on the events.

Definition 4 A timed MSC is pair (M, τ) where M = (E,≤, λ) is an MSC
and τ : E → R≥0 assigns a nonnegative time-stamp to each event, such that
for all e1, e2 ∈ E, if e1 ≤ e2 then τ(e1) ≤ τ(e2).

A timed MSC satisfies a timed MSC template if the time-stamps assigned to events
respect the interval constraints specified in the template.

Definition 5 Let M = (E,≤, λ) be an MSC, T = (M, I) a timed template and
Mτ = (M, τ) a timed MSC. Mτ is said to satisfy T if the following holds:

For each 〈(e1, e2), (t1, t2)〉 ∈ I, t1 ≤ τ(e2)− τ(e1) ≤ t2.

1 For simplicity, we restrict ourselves to closed timed intervals in this paper. We can easily generalize
our approach to include open and half-open time intervals.

88 Prakash Chandrasekaran and Madhavan Mukund

User ATM Server

(u1; 0)

(u2; 4:1)

(u3; 6:1)

(u4; 12:1)

(a1; 0)

(a2; 1)

(a3; 4)

(a4; 4)

(a5; 6:2)

(a6; 7)

(a7; 11:5)

(a8; 12)

(s1; 1)

(s2; 2:3)

(s3; 8:3)

(s4; 10)

card

card-data

card-OK

pin-request

pin

 verify-pin

pin-OK

menu

Fig. 4 A timed MSC instance describing interaction with an ATM.

Definition 6 Let T be a timed MSC template. We denote by L(T) the set of timed
MSCs that satisfy T .

Figure 4 shows a timed MSC that satisfies the template in Figure 2.
Let Mτ = (M, τ) be a timed MSC, where M = (E,≤, λ), and let π = e0e1 . . . em

be a linearization of (E,≤). By labelling each event with its time-stamp, this lin-
earization gives rise to a timed linearization (e0, τ (e0))(e1, τ (e1)) · · · (en, τ (en)).
As is the case with untimed MSCs, under the FIFO assumption for channels, a timed
MSC can be faithfully reconstructed from any one of its timed linearizations.

3 Timed Message-Passing Automata

Message-passing automata are a natural machine model for generating MSCs. We
extend the definition used in [7] to include local clocks on each process and time-
bounds on the channels.

Definition 7 Let C denote a finite-set of real-valued variables called clocks.
A clock constraint is a conjunctive formula of the form x ∼ n or x − y ∼ n
for x, y ∈ C, n ∈ N and ∼ ∈ {≤, <,=, >,≥}. Let �(C) denote the set of clock
constraints over the set of clocks C.

Clock constraints will be used as guards and location invariants in timed message-
passing automata.

Definition 8 A clock assignment for a set of clocks C is a function v : C → R≥0 that
assigns a nonnegative real value to each clock in C.

A clock assignment v is said to satisfy a clock constraint ϕ if ϕ evaluates to true
when we substitute for each clock c mentioned in ϕ the corresponding value v(c).

Adding Time to Scenarios 89

Definition 9 A timed message-passing automaton (timed MPA) over is a
structure A= ({Ap}p∈P , ,B). Each component Ap is of the form (Sp, S p

in,
Cp →p, Ip), where:

• Sp is a finite set of p-local states.
• S p

in ⊆ Sp, is a set of initial states for p.
• Cp is a set of local clocks for p.
• →p ⊆ Sp ×�(Cp)×p × 2Cp × Sp is the p-local transition relation.
• Ip : S → �(Cp) assigns an invariant to each state.

The function B : (P × P) → (N × N) associates with each channel a lower and
an upper bound on the transmission time of messages on that channel.

The local transition relation →p specifies how the process p changes state when
it performs internal events or sends and receives messages.

A transition of the form (s, ϕ, a, X, s′) says that in state s, p can perform the
action a and move to state s′. This transition is guarded by the clock constraint ϕ—
the transition is enabled only when the current values of all the clocks satisfy ϕ.
The set X specifies the clocks whose values are reset to 0 when this transition is
taken. If a is of the form i p, this transition corresponds to performing a local event
on p. If a = p!q(m), then this transition involves sending a message m from p to q.
Symmetrically, if a = p?q(m), then this transition involves p receiving a message
m from q.

A process can remain in a state s only if the current values of all the clocks
satisfy the invariant I (s). To make our model amenable for automated verification,
we restrict location invariants to constraints that are downward closed—that is,
constraints of the form x ≤ n or x < n, where x is a clock and n ∈ N.

As is customary with timed automata, we allow timed MPA to perform two types
of moves: moves where the automaton does not change state and time elapses, and
moves where some local component p changes state instantaneously as permitted
by →p.

A global state of A is an element of
∏

p∈P Sp. For a global state s, s p denotes
the pth component of s. A configuration is a triple (s, χ, v) where s is a global
state, χ : Ch → M∗ is the channel state describing the message queue in each
channel c and v : C → R≥0 is a clock assignment, where C = ⋃

p∈P Cp. An initial
configuration of A is of the form (sin, χε, v0) where sin ∈ ∏

p∈P S p
in , χε(c) is the

empty string ε for every channel c and v0(x) = 0 for every x ∈ C.
The set of reachable configurations of A, ConfA, is defined inductively in the usual

way, together with a transition relation �⇒ ⊆ ConfA× (∪R≥0)×ConfA. A move
labelled by d ∈ R≥0 is a time elapsing move. All clocks advance by d, but the local
states of processes and the channel contents remain unchanged. A move labelled by
a ∈ is a local transition taken by one of processes. For each process p, the local
state of p determines the set of moves available for p in the current configuration. If
a = i p, only the state of p changes and the rest of the configuration is unchanged.
If a = p!q(m), the message m is appended to the channel (p, q). An action of the

90 Prakash Chandrasekaran and Madhavan Mukund

Producer
c ≤ 2

c ≥ 1 ⇒ p!q(m); {c}

Consumer

q?p(m)

Fig. 5 A timed MPA: producer–
consumer

Producer Consumer

(p1; 0)

(p2; 1:5)

(p3; 3:4)

(p4; 4:4)

(c1; 0:7)

(c2; 1:5)

(c3; 3:6)

(c4; 5:0)

m

m

m

m
Fig. 6 A timed MSC generated by the
producer–consumer system

form p?q(m) is enabled only if m is currently at the head of the channel (q, p). For
a more formal definition of the global transition relation, see [4].

Let prf(σ) denote the set of prefixes of a timed word σ = (a1, t1)(a2, t2) . . .
(ak, tk) ∈ (×R≥0)

∗. A run of A over σ is a map ρ : prf(σ) → ConfA where ρ(ε)
is assigned an initial configuration (sin, χε, v0) and for each σ ′ · (ai , ti) ∈ prf(σ),
ρ(σ ′) di�⇒ ai�⇒ ρ(σ ′ · (ai , ti)) with ti = ti−1 + di and t0 = 0.

The run ρ is complete if ρ(σ) = (s, χε, v) is a configuration in which all channels
are empty. When a run on σ is complete, σ is a timed linearization of a timed MSC.
We define L(A) = {σ | A has a complete run over σ }. L(A) corresponds to the set
of timed linearizations of a collection of timed MSCs.

Figure 5 is a simple example of a timed MPA. Here, the traditional producer–
consumer system is augmented with a clock c in the producer process. The constraint
c ≥ 1 on the transition ensures that each new message is generated by the producer at
least one unit of time after the previous one. The location invariant c ≤ 2 forces the
producer to generate a new message no later than two units of time after the previous
one. The consumer has no timing constraints. Figure 6 shows a typical timed MSC
generated by this timed MPA.

4 Specifying Timed Scenarios

The standard method to describe multiple communication scenarios is to use High-
Level Message Sequence Charts (HMSCs). An HMSC is a finite directed graph with
designated initial and terminal vertices. Each vertex in an HMSC is labelled by an

Adding Time to Scenarios 91

MSC. The edges represent the natural operation of MSC concatenation. The col-
lection of MSCs represented by an HMSC consists of all those MSCs obtained by
tracing a path in the HMSC from an initial vertex to a terminal vertex, concatenating
the MSCs that are encountered along the path.

In an HMSC, MSCs are concatenated asynchronously. This corresponds to gluing
together the process lines of consecutive MSCs. The implication is that the bound-
aries between the individual MSCs along a path disappear, as a result of which
some processes could move ahead of others. If the asynchrony between processes
is bounded, all channels remain universally bounded and the specification is globally
finite-state. Unfortunately, it is undecidable in general whether an HMSC specifica-
tion satisfies this property, though sufficient structural conditions are known [7].

We propose a guarded command language inspired by Promela [8] to describe
families of timed scenarios generated from basic timed templates. The basic build-
ing blocks of the language are finite timed MSC templates, as defined in Sec-
tion 2.2. Statements are combined using sequential composition (;), nondeterminis-
tic guarded choice (if...fi) and nondeterministic guarded looping (do...od).
We allow statements to be labelled, and permit labelled breaks from within loops as
well as explicit gotos.

Rather than providing a precise grammar describing the syntax, we explain the
notation through an example. Continuing with our ATM example, suppose the ATM
is programmed to ask for the user’s PIN after he has inserted the card. If the user does
not enter his PIN within a specified time limit, the ATM repeats the request. At some
point, nondeterministically, the ATM can also decide to reject the card. Once the user
does respond, there is a possibility that the PIN is wrong. If so, the ATM swallows
the card. If the PIN is correct, the user may ask for his balance or may try to make a
withdrawal. These scenarios can be combined in our notation as follows, where some
of the basic timed templates used in the specification are shown in Figure 7.

L0:: Initiate;
L1:: do

[] NoPin
[] NoPin; RejectCard; goto L0
[] SwallowCard; goto L0
[] OKPin ; break L1
od;
if
[] BalanceEnquiry; goto L0
[] WithdrawCash; if

[] InsufficientFunds; goto L0
[] DispenseCash; goto L0
fi

fi

92 Prakash Chandrasekaran and Madhavan Mukund

User ATM Server

u1 a1
a2
a3

s1
s2

Initiate

(0; 2)

card
card-data
card-OK

User ATM

u2 (0; 3)
a4
a5

NoPin

pin-request
User ATM

u3 a6

RejectCard

reject-card

User ATM Server

u2
u3

u4

(0; 3)
a4
a5

a6
a7

a8

s3
s4

Swallow Card

pin-request
pin

verify-pin
pin-wrong

swallow-card

User ATM Server

u2
u3

u4

(0; 3)
a4
a5

a6
a7

a8

s3
s4

OKPin

pin-request
pin

verify-pin
pin-OK

menu

Fig. 7 Some basic timed MSC templates used in the sample specification

It is not difficult to see that our textual notation can be translated into a graphical
HMSC-like notation, provided we annotate edges in the HMSC, rather than nodes, by
basic timed MSC templates. Figure 8 shows the HMSC corresponding to the current
example.

Adding Time to Scenarios 93

L0 L1
Initiate OKPin

BalanceEnquiry

WithdrawCash

NoPin

SwallowCard

NoPinRejectCard

InsufficientFunds

DispenseCash

Fig. 8 HMSC corresponding to the sample specification

5 Verification Questions for Timed Scenarios

In the setting of timed MSC templates and timed MPAs, there are multiple verifica-
tion questions that one can address. We focus on two of them here.

5.1 Scenario Matching

Given a timed MSC template T and a timed MPA A, we ask whether A exhibits
any timed scenario that is consistent with T . In other words, we would like to check
that L(T) ∩ L(A) is nonempty. This question is natural in the early stages of a
specification, when scenarios are not expected to exhaustively describe the system’s
behaviour.

Sometimes, it is fruitful to describe forbidden scenarios as timed templates. Let T
be such a negative template. We then want to check that a timed MPA A does not
exhibit a timed scenario consistent with T . In other words, we would like L(T) ∩
L(A) to be empty.

The scenario matching problem for timed MSCs is more complicated than the
same problem for untimed MSCs in one obvious way. Even though a timed template
is defined with respect to a single underlying MSC, the set of timed MSCs that satisfy
a given template is in general infinite. Thus, even with a single template, the matching
problem comes down to one of comparing infinite collections of (timed) MSCs.

5.2 Universality

As the specification evolves, it is expected that it more exactly describes the desired
behaviour. In an untimed setting, it would be natural at this stage to demand that the

94 Prakash Chandrasekaran and Madhavan Mukund

behaviour of the implementation match the specification upto, say, language equiva-
lence. However, in a timed setting, we may have a specification with generous time
constraints to be compared with an implementation that is more restrictive. Hence,
the natural analogue of language equivalence is to ask whether for every timed MSC
template in the specification, there is at least one timed behaviour in the implemen-
tation that is consistent with the template. We refer to this problem as universality.

6 Using UPPAAL for Scenario Verification

In [4], we present a framework for verifying properties of timed scenarios using
UPPAAL, a model checker for timed systems [2]. The framework in [4] is designed to
deal with finite sets of timed MSC templates, which can essentially be handled one at
a time. Here, we extend this framework to tackle with specifications that encompass
a possibly infinite set of scenarios.

UPPAAL supports the analysis of networks of timed automata for timing proper-
ties. Unfortunately, UPPAAL does not have a direct way of modelling asynchronous
communication. We can simulate asynchronous communication by creating explicit
buffer processes. Moreover, we can exploit the synchronous communication para-
digm built-in to UPPAAL to synchronize the system with the specification at each
communication action. This allows the system to evolve only along trajectories that
are consistent with the specification, thus automatically restricting the behaviours of
the composite system to those that are of interest.

6.1 Modelling Channels in UPPAAL

Since UPPAAL has no notion of buffered communication, we construct an explicit
buffer process for each channel between processes. Message passing is simulated
by a combination of shared memory and binary synchronization. Let p and q be
processes and let c be the channel between p and q. We create a separate process
c which maintains, internally, an array of messages Mpq whose size corresponds to
the capacity of c. This array is used by c as a circular buffer to store the state of the
channel. The process c maintains two pointers into the array: the next free slot into
which p can write and the slot at the head of the queue from which q will next read
a message.

The channel c shares two variables spc and rcq with p and q, respectively. These
are used to transfer information about the actual message between the processes and
the channel. The channel c also uses two special actions apc and acq to synchronize
with p and q, respectively. These synchronizations represent the actual insertions and
deletions of messages into and from the channel.

When p sends a message m to q, it sets the shared variable spc to m and synchro-
nizes with c on apc. When c synchronizes with p, it copies the message from spc into

Adding Time to Scenarios 95

the array slot that currently corresponds to the end of the queue and then moves the
free slot pointer to the next position in the array.

Symmetrically, when q wants to read a message m from p, it sets the shared vari-
able rcq to m and then synchronizes with c on action acq . In c, this synchronization
is guarded by conditions that check that there is at least one message in the queue
and that the message at the head of the queue matches the one q is looking for, as
recorded in the shared variable rcq .

6.2 Modelling Channel Delays

In an MPA, clocks are local and must be associated with a fixed process. However,
UPPAAL permits global clocks. To faithfully model channel delays, we associate an
array of clocks with each channel, one for each position in the queue. With univer-
sally bounded channels, we can always assign a fresh clock from this array to each
new message sent on a channel that is initialized when the message is sent. The
receive action for this message is guarded by clock constraints corresponding to the
time bounds associated with the channel.

6.3 Modelling Timed MSC Specifications in UPPAAL

To verify a timed MSC specification, the first step is to convert the specification into
a timed MPA, preserving the language of timed MSCs of the specification.

For a single timed MSC template, the communication structure of the MPA is
fixed and can be computed easily, using the FIFO property of channels. We introduce
a new local clock for each local timing constraint and add clock constraints using
these clocks to guard the actions of the MPA so that it respects the timed template.

Since we can interpret a general timed MSC specification as an HMSC in which
edges are labelled by basic timed MSC templates, we construct an MPA for each
basic timed MSC template and connect these up using internal actions and dummy
states to reflect the overall structure of the corresponding HMSC.

The usual difficulty with this construction is to ensure that all processes follow
consistent paths in the HMSC. For this, we add a monitor process that tracks the
path followed by each process in the system. We have to ensure that the informa-
tion maintained by the monitor process is bounded. As we have observed earlier,
with asynchronous concatenation, some processes may be arbitrarily far ahead of
others and the overall behaviour may be non-regular. We can ensure regularity by
imposing structural restrictions on the HMSC [7]. Instead, we impose a bound on
the number of live instances of each basic timed MSC template in the system. This
allows us to perform a form of bounded model checking for arbitrary timed template
specifications.

96 Prakash Chandrasekaran and Madhavan Mukund

6.4 Scenario Matching

We can now augment the system description in UPPAAL so that the evolution of the
system to be verified is controlled by the external template specification. Recall that
each action corresponding to sending or receiving a message by a local process is
broken up into two steps in the UPPAAL implementation, one which sets the value
of a shared variable spc and another which communicates with the buffer process
via a shared action apc. We extend this sequence to a third action, bpc, by which the

system synchronizes with the specification. A move of the form s
p!q(m)�⇒ s′ in the

original timed MPA now breaks up, in the UPPAAL implementation, into a sequence

of three moves s
spc=m�⇒ s1

apc�⇒ s2
bpc�⇒ s′. The third action, bpc synchronizes with

the corresponding process p in the timed MPA derived from the timed template that
is being verified. Thus, the system can progress via this action only if it is consistent
with the constraints specified by the template.

Symmetrically, for a receive action of the form s
p?q(m)�⇒ s′, the UPPAAL imple-

mentation executes a sequence of the form s
rpc=m�⇒ s1

ācp�⇒ s2
b̄cp�⇒ s′, where, by

convention, an action a synchronizes with a matching action ā.
By construction, it now follows that the timed MSCs executed by the compos-

ite system are those which are consistent with both the timed template and with
the underlying timed MPA being modelled in UPPAAL. Thus, we have restricted
the behaviour of the system to L(T) ∩ L(A), for a given timed template T and a
given timed MPA A. From this, it is a simple matter of invoking the UPPAAL model
checker to verify whether this set of behaviours is empty and whether all behaviours
in this set satisfy a given property. This answers the scenario verification problems
posed in the previous section.

6.5 Universality

Recall that universality is the property that the implementation exhibits at least one
timed behaviour consistent with each timed template generated by the specification.
In general, we do not know how to solve this problem. Instead, we address a weaker
version that we call coverage.

We assume that the user provides a (finite) set of paths through the specification
that he would like to see exhibited in the implementation. In particular, we can always
ensure that we cover all the edges in the HMSC through such a collection of paths.
In UPPAAL, we can verify reachability properties written in CTL. This includes for-
mulas that assert that there exists a path along which a sequence of state properties
holds. By adding state labels to the UPPAAL implementation, we can mark when a
basic timed MSC template is executed by the composite system obtained by synchro-
nizing the specification with the implementation. Each path to be covered can then be

Adding Time to Scenarios 97

described using an appropriate CTL formula of the form permitted by UPPAAL. The
overall problem then reduces to verifying a finite conjunction of such CTL formulas.

7 Discussion

Adding time to specifications of distributed systems appears to be a problem of both
practical and theoretical interest.

Augmenting scenarios with timing constraints allows us to specify and verify,
more accurately, the interactions associated with typical protocol specifications. Tim-
ing constraints give rise to new variants of verification questions, some of which we
do not know how to tackle, such as universality.

Global time indirectly synchronizes processes, leading to undecidability—for
instance, boundedness of channels is undecidable even if we have only local
clocks [10]. It would be interesting to explore whether it is possible to relax the
correlation the time across components without completely decoupling all clocks
and yet obtain some positive results.

Another interesting theoretical question is to explore the relationship between
automata, logic and languages in a setting that incorporates both distribution and
time. A first step in this direction is the work reported in [12].

References

1. R. Alur, G. Holzmann and D. Peled: An analyzer for message sequence charts. Software Con-
cepts and Tools, 17(2) (1996) 70–77.

2. G. Behrmann, A. Davida and K.G. Larsen: A Tutorial on Uppaal, Proc. SFM 2004, LNCS 3185,
Springer-Verlag (2004) 200–236.

3. J. Bengtsson and Wang Yi: Timed Automata: Semantics, Algorithms and Tools, Lectures on
Concurrency and Petri Nets 2003, LNCS 3098, Springer-Verlag (2003) 87–124.

4. P. Chandrasekaran and M. Mukund: Matching Scenarios with Timing Constraints, Proc. FOR-
MATS 2006, Springer LNCS 4202 (2006) 98–112.

5. W. Damm and D. Harel: LSCs: Breathing life into message sequence charts. Formal Methods
in System Design 19(1) (2001) 45–80.

6. D. de Souza and M. Mukund: Checking Consistency of SDL+MSC Specifications, Proc. SPIN
Workshop 2003, LNCS 2648, Springer-Verlag (2003) 151–165.

7. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan: A theory of
regular MSC languages. Inf. Comp., 202(1) (2005) 1–38.

8. G.J. Holzmann: The model checker SPIN, IEEE Trans. on Software Engineering, 23, 5 (1997)
279–295.

9. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva (1999).
10. P. Krcal and Wang Yi: Communicating Timed Automata: The More Synchronous, the More

Difficult to Verify, CAV 2006, LNCS, Springer-Verlag (2006), 249–262.
11. A. Muscholl, D. Peled, and Z. Su: Deciding Properties for Message Sequence Charts. Proc.

FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.
12. Akshay Sunderaraman, Formal Specification and Verification of Timed Com-

municating Systems, Master’s thesis, LSV, ENS Cachan (2006). Available at
http://www.lsv. ens-cachan.fr/Publis/PAPERS/PDF/Akshay-M2.pdf

Using System-Level Timing Analysis
for the Evaluation and Synthesis
of Automotive Architectures

Marco Di Natale, Wei Zheng, and Paolo Giusto

Abstract Emerging technologies allow the implementation of advanced car features
enhancing the safety and the comfort of the driver. These complex functions are
distributed among several ECUs, implemented by multiple tasks executed on each
processor, and are characterized by non-functional requirements, including timing
constraints. The design of the physical architecture and the placement of tasks and
messages must be performed in accordance with the constraints and optimizing the
performance of the functions. We show how schedulability analysis can be used in
the development of complex automotive systems to find the architectures that can
best support the target application in a what-if iterative process, and we address
the opportunities for the synthesis of architecture configurations. A case study of
an experimental vehicle shows the applicability of the approach.

Keywords: Automotive systems, real-time computing, timing analysis, schedul-
ability.

1 Introduction

Past work in electronics/controls/software-based (ECS) vehicle architectures and
function development has been fundamentally component or sub-system focused.
Recently, however, there has been a clear shift towards the networking of control
modules within application domains (e.g. Power train) as well as across domains.
This shift has been driven by a large increase in the number of horizontally integrated
safety–critical functions (e.g. adaptive cruise control, brake or steer-by-wire), with
increasing vehicle control authority, requiring a large number of smart sensors and
actuators and often characterized by real-time requirements.

A novel system design methodology and tool support is needed to assist in the
design, evaluation, and development of architectures, with quantitative metrics and
with early error detection and assessment of the trade-offs. Such a methodology is
based on the concept of virtual platforms and enables late-binding design decisions

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 99
for Distributed Embedded Control Systems, 99–113.
c© Springer 2007

100 Marco Di Natale et al.

and early verification of them as opposed to early-binding decisions with late verifica-
tion. This paper focuses on a system-level methodology for quantitative architecture
evaluation based on timing constraints and metrics. A case study vehicle is used to
illustrate the use of timing analysis for the evaluation and the synthesis of solutions.

1.1 Background

Our approach follows the Platform Based Design methodology [1], where the
orthogonalization of concerns between levels of abstractions enables re-use and
re-deployment of higher level artifacts onto lower ones.

Because of space constraints, it is impossible to summarize all the research works
on models and methods for system level design and analysis. Among them, the
Ptolemy [2] and Metropolis [3] frameworks from the University of California, and the
GME [4] from Vanderbilt provide support for the integration of heterogeneous mod-
els of computations or the creation of domain-specific metamodels. A description of
a system-level design flow based on synchronous languages can be found in [5] and
SysML [6] from the OMG is a representative of a standardization effort. Other exam-
ples specific to the automotive domain are the SymTAS framework for system-level
timing analysis [7] and many other commercial tools, including Simulink [8] from
Mathworks and ASCET-SD [9] from ETAS.

The focus of this research work is the use of the schedulability analysis theory to
evaluate latencies in distributed architectures supporting (hard) real-time applications
and the possibility of using optimization techniques for synthesizing at least part of
the task and message configuration. Because of resource efficiency, many automotive
controls are designed based on run-time priority-based scheduling of tasks and mes-
sages [10]. Examples of standards supporting this scheduling model are the OSEK
operating system standard [11] and the CAN [12] bus arbitration model.

At the interface between any two resource domains, and very often also at the
interface between two abstraction layers (such as, for example, the application and
the middleware layers), different interaction models may be implemented. The sim-
plest is the purely periodic activation model, where all interacting tasks and mes-
sages are activated periodically and communicate by means of asynchronous buffers
implementing a freshest value semantics. Another possible activation model is the
data-driven activation [13], where task executions and message transmissions are
triggered, respectively, by the arrival of the input data and by the availability of the
signal data.

The two models of periodic activation with asynchronous communication and
data-driven activation are reconciled by a conceptual framework for the analysis of
distributed chains of computations, based on network calculus [14] and its appli-
cation for evaluating the propagation of event models [7]. In [15] this model is
used for distributed schedulability analysis, where the system can be described as
an arbitrary mix of data-driven and periodic models. Other works, including [16]

Evaluation and Synthesis of Automotive Architectures 101

and [17], focused on providing optimal-size lock-free and wait-free communica-
tion mechanisms that ensure deterministic delays in the implementation of models
integrating both event and time triggered subsystems. However, even if these works
provide analysis procedures with increasing quality, the synthesis problem is scantly
analyzed: one approach is provided by [18], where genetic algorithms are used for
optimizing priority and period assignments with respect to end-to-end deadlines and
jitter.

2 A Methodology for Architecture Exploration

We propose a new methodology for architecture exploration based upon an Iterative
Process in which alternatives are produced, evaluated, and scored according to a set
of Constraints and Metrics.

Complex embedded systems are characterized by safety and timing requirements
and metrics, including the verification of deadlines and the evaluation of latencies
and jitter. Other non-functional metrics include power and especially cost, with its
related secondary metrics including reusability, flexibility, and extensibility. Collec-
tively, these properties cannot be assessed based on an abstract model of the system
functions alone, but they depend upon the execution architecture and on the allocation
of the functions on the underlying physical architecture. In this work, we focus on the
formal evaluation of the timing behavior at the earliest possible stages in the design
flow, estimating latencies and extensibility by providing a measure of the available
processor and communication time for new functions and messages in product deriv-
atives.

2.1 Functions, Architectures, and Platforms Models

This section briefly introduces the meta-modeling entities and rules that are used to
define the models at the three levels of the Platform based design methodology [1]
(see Figure 1).

2.1.1 Functional Models

The starting point for the definition of a car electronic/software system is the speci-
fication of the set of features, that is, high level system capabilities (e.g. Cruise Con-
trol), that the system is expected to provide. Functional models are created from the
decomposition of the feature in a hierarchical network of component blocks encapsu-
lating a behavior within a provided and required interface, expressed by a set of ports.
The system view abstracts from the details of the functional behavior and models
only the interface and the communication and synchronization semantics.

102 Marco Di Natale et al.

Functional Model
interface

Application Space

Architecture Space

Platform
instance

Architecture
Platform

Application
instance

System
Platform
Stack

Functional
Platform
specification

Architecture
Platform space
exploration

Fig. 1 Platform-based design in architecture exploration

A function label Fi is associated to each block, which computes a set of output
values oi based on a set of inputs ii and its internal state Si at the time the block is acti-
vated oi = Fi (ii , Si). The nature of the function Fi and its internal state are not rele-
vant for the purpose of our analysis. Functional blocks are either triggered by a clock
event or by the arrival of all or some combination of its input signals. If periodic,
the function is activated at time instants ai,k with k = 0 · · ·∞ and ai,k+1−ai,k = Tk .
Each activation instant triggers a function instance fi,k . Functional blocks concep-
tually execute in zero time. The model also allows the definition of precedence con-
straints and of a set of triggering events or signals activating the model functions.
Finally, timing requirements are specified, including end-to-end deadlines on the
computation paths, maximum jitter on activation/output signals, and input coherency
bounds. The dataflow model is further characterized by the communication seman-
tics. Signal links variables can be sticky variables with overwriting (1-place buffer),
meaning that the variable preserves the last value written into it and the value can be
overwritten by a new output, or they can represent a queue of tokens produced by the
sender block and consumed by the receiver.

2.1.1 Architecture Models

The architecture model is hierarchical and captures the topology of the car network,
including the communication busses (CAN), the ECU architecture, and the man-
agement policies (e.g. priority-driven scheduling) that control the shared resources.

Evaluation and Synthesis of Automotive Architectures 103

The latter are usually provided by an RTOS, with its scheduling policy, and by the
MAC layer and the scheduling policy of the physical communication links.

2.1.1 Mapping and System Platform Model

The system platform model is where the resource requirements for the execution
of the functional blocks are expressed. At this level, the units of computation are
the tasks or threads executing concurrently in response to environment stimuli, or
prompted by an internal clock. Tasks cooperate by exchanging messages and syn-
chronization or activation signals. Tasks and messages contend for use of the execu-
tion and communication resources.

The mapping phase consists of allocating each functional block to a task and each
communication signal variable to a virtual communication object. If more than one
functional block is mapped to a task, the order of the execution must be provided
during the mapping phase. As a result of the mapping of the platform model into the
execution architecture, the entities in the functional models are characterized with
timing execution information derived by worst (best) case execution time analysis.
Given a deployment, it is possible to determine which signals are local and which
are received/sent over the bus and packed into messages. Each communication signal
variable is mapped to a communication resource of the implementation, that is, a
message, or a task private variable or a protected shared variable. Each message, in
turn, is mapped to a serial data link.

The mapping of the task and message model into the corresponding architecture
model and the selection of resource management policies allows the subsequent vali-
dation of the system against non-functional constraints. When considering the def-
inition of the functional model and the mapping stage, the opportunities for design
synthesis by means of optimization techniques include: the definition of the activa-
tion periods of the functions, hence, of the tasks and messages implementing their
computation and communication. The synthesis of the communication and activa-
tion models, the definition of the placement of the tasks and finally, the definition of
the priorities of tasks and messages (encoded into the CAN identifiers for the latter).
In this work, we summarize the results of our study on the synthesis of the activation
models. The interested reader may refer to [19] for further details.

3 Task and Message Model

Our model for the distributed end-to-end real-time computations is a dataflow of
tasks, represented with a Directed Acyclic Graph. The model is a tuple {V , E, R },
where V is the set of vertices, E the set of edges, and R is the set of shared resources
supporting the execution of the tasks (ECU) and the transmission of messages (bus).

V = {o1, . . . , on} is the set of objects (tasks and messages) implementing the
computation and communication of the system. Each object oi has maximum time

104 Marco Di Natale et al.

requirement Ci and a resource Roi that it needs to execute or for its transmission. All
objects are scheduled according to their priority. πi is the priority of oi and object
indexes are assigned by decreasing priority levels. ri is the worst case response time
of oi , representing the largest time interval from its activation to its completion in
case it is a task or its arrival at the destination in case it is a message. wi is defined as
the worst case time spent from the instant the job is released with maximum jitter Ji
to its completion or arrival. An object oi has one input port and one or more output
ports. Input and output ports are used to exchange data and optionally activation
signals or events. At the end of its execution or transmission, an object delivers its
results (task) or its data content (message) on all output ports. Each object runs at a
base period Ti . It reads its inputs at the time it starts executing, if it is a task, or it
samples the incoming signal values and it is enqueued at the activation time in case
it is a message.

E = {l1, . . . , lm} is the set of links. A link li = (oh, ok) connects the output port
of object oh (the source) to the input port of object ok (the sink). Alternatively, a
link may be labeled with the indexes of the source and destination task as in lh,k =
(oh, ok). One object can be the source or sink of many links. A link li may carry
the activation signal produced when the source object completes its execution or
transmission and instantaneously received on the input port of the sink. However, a
different communication and synchronization model is possible, where the sink is
activated by a periodic timer and, when it executes, reads the latest value that was
transmitted over the link. In the following, the source and the sink of link li will also
be denoted by src(li) and snk(li), respectively.

When an object is activated by the completion of a predecessor we define an event-
driven activation model. If an object is activated by a single completion event, then
the only condition is that its period must be an integer multiple of the predecessor
object period. In this case, the activation semantics is of one every k signals. We
define a less restrictive activation semantics by allowing an object to be activated by
multiple completion events. In this case, the activation is of type AND, meaning that
all the predecessor objects on the selected links must be completed in order for the
object to be activated. The only allowed case for multiple activation events from mul-
tiple incoming links is when the links are connected to predecessor objects having
periods that are integer dividers of the target object period, have a unique common
predecessor, and are scheduled on the same resource. In this case, we define a set of
link groups G = {lg1, . . . , lgk} where each link group lgi = {li0, . . . , liki } has the fol-
lowing properties, snk(li j) = snk(lil) and R(src(li j)) = R(src(lil)) for any link pair
li j , lil ∈ lgi . If τ j1 = src(li j) and τ j2 = snk(li j) then kTj1 = Tj2 for some integer k.
Finally, ∀ lgi , ∃! op such that ∀ l j,k ∈ lgi there exists a link l p, j ∈ E and there is no
other incoming link to o j . If all the links in a group carry an activation signal, then
the source objects must be activated at the same time or they must all be activated by
a completion event. These last conditions do not apply to singleton groups.

G(ok) is the set of link groups that are incoming to ok . An object can be activated
by a periodic trigger, by a signal coming from a single predecessor object or by the
AND composition of signals coming from a single link group. In this last case, the

Evaluation and Synthesis of Automotive Architectures 105

object is actually activated by the completion of the lowest priority object or in the
group lgi , which is called group representative or = rep(lgi).

R = {R1, . . . , Rz} is the set of logical resources that can be used by the objects to
perform their computations. Resources are either ECUs or buses and are scheduled
with a priority-based scheduler.

An external event ei results from the execution of an external virtual object with
no input links, representing one entity in the environment. External events can be
periodic with period Ti and jitter Ji , or sporadic with a minimum interarrival time,
equally denoted by Ti . An output object o j is a special functional block with no
output link. It represents a consumption by the environment of the data produced by
the system and sent to some actuator. For our purposes, an output is merely a stub
where execution ends.

A path P(oi , o j) or P(i, j) is a functional chain from oi to o j, that is, an ordered
sequence P = [l1, . . . , ln] of links that, starting from oi = src(l1), reaches o j =
snk(ln) crossing n + 1 objects such that snk(lk) = src(lk+1). A path represents one
end-to-end execution of the system, from the triggering of the external event to the
generation of the output. The path deadline for Pi, j , denoted by di, j , is the end-to-end
constraint for the computation performed in the path.

When task and messages are activated periodically and communicate on a freshest
value semantics, the end-to-end latency Li, j associated to a path Pi, j is defined as the
largest possible time interval that is required for the change of the input at one end
of the chain to be propagated to the last task at the other end of the chain, whatever
is the state of the tasks in the path and regardless of the fact that some intermediate
result may be overwritten.

We assume in this paper that the application can tolerate the semantic variation
when changing from one synchronization model to the other. In many control applica-
tions, the nondeterminism in time introduced by the periodic activation model and the
jitter introduced by the event-driven activation can both be tolerated within accept-
able ranges.

3.1 Periodic Activation Model

In the periodic activation model (top of Figure 2), the release jitter is zero and the
worst case end-to-end latency is computed by adding the worst case response times
and the periods of all the objects in the path (rk = wk).

Li, j =
∑

k:ok∈P(i, j)

Tk + rk

Given that it is always rk = wk + Jk , the formula also applies in the case the
destination offset is activated with jitter Jk .

Due to unsynchronized timers, in the worst case, the external event arrives right
after the completion of the first instance of task o2 with minimum (negligible)

106 Marco Di Natale et al.

Fig. 2 Periodic and data-driven activation models

response time. The event data will be read by the task on its next instance and the
result will be produced after its worst case response time, that is, T2 + r2 time units
after the arrival of the external event. The same reasoning applies to the execution of
the following objects.

When communicating tasks run on the same ECU, the relative phase/offsets
between periodic tasks can be controlled and sampling delays can be minimized.
When the tasks have the same period, the reader task can be activated with a constant
relative offset equal to the worst case response time rw of the writer task and zero
sampling delays. Similarly, there is no sampling delay when the tasks have harmonic
periods and the reader has the shorter period, i.e. Tw = nTr .

3.2 Data-Driven Activation Model

In the data driven activation model (bottom part of Figure 2), if we assume the same
activation period for all the nodes that are activated in a computation chain, then for
all the intermediate neighboring nodes oi → o j it is clearly ri = J j . The worst case
end-to-end latency can be computed for each path by adding the worst case queuing
and execution/transmission times of all the objects in the path.

Li, j =
∑

k:ok∈P(i, j)

wk

3.3 Processor Scheduling

The scheduling paradigms for the tasks is the preemptive fixed-priority based
scheduling, implemented by most commercial operating systems, including the

Evaluation and Synthesis of Automotive Architectures 107

OSEK RTOS standard for automotive. The worst case response time for a periodic
task ti, activated with maximum jitter Ji is:

wi (q) = (q + 1) Ci + ∑

j∈hp(i)

⌈
wi (q)+J j

Tj

⌉
C j

ri = maxq {Ji + wi (q)− qTi }
(4)

For all q = 0, · · · , q∗, until ri (q) ≤ Ti .
Where j ∈ hp(i) refers to the set of tasks such that π j ≥ πi and Roi = Roj .

A lower bound on the worst case response time can be obtained by restricting the
computation to the first task instance in the busy period (q = 0). This bound is tight
in case ri ≤ Ti .

wi = Ci +
∑

j∈hp(i)

⌈
wi + J j

Tj

⌉

C j ri = Ji + wi

Linear upper and lower bounds for the solution to the previous fixed point equation
can be obtained and, if ui = Ci /Ti , a linear combination of the upper and lower
bounds, with coefficient α, yields the following:

r̃i (α) = αr↑i + (1 − α)r↓i

r̃i (α) = Ji +
Ci + α

∑

j∈hp(i)
C j + ∑

j∈hp(i)
J j u j

1 − ∑

j∈hp(i)
u j

(5)

3.4 Bus Scheduling

In this paper, we assume that message objects are transmitted over CAN buses. The
evaluation of the worst-case latencies for the messages follows the same rules for the
worst-case response time of the tasks, with the exception that an additional blocking
term Bi must be included in the formula in order to account for the non preemptabi-
lity of CAN frames, and that the transmission time of the message cannot be pre-
empted [20].

The blocking term Bi for a generic message oi can be computed as the largest
worst-case transmission time of any frame having a priority lower than πi and shar-
ing the same bus resource (wqi > 0 is the queuing delay part of wi , without the
transmission time).

wqi (q) = Bi + qCi + ∑

j∈hp(i)

⌈
wi (q)+J j

Tj

⌉
C j (wi (q) > 0)

wi = maxq {Ci + wqi (q)− qTi }
ri = wi + Ji

(6)

for all q = 0, · · · , q∗, until ri (q) ≤ Ti .

108 Marco Di Natale et al.

A lower bound on wi and ri can be computed by only considering the first instance
(q = 0) and, similar to processor scheduling, the response times of messages can be
approximated by linear functions of the jitter variables.

r̃i (α) = Ji + Ci

Bi + α
∑

j∈hp(i)
C j + ∑

j∈hp(i)
J j u j

1 − ∑

j∈hp(i)
u j

(7)

The activation on event model brings the potential for a substantial reduction of the
end-to-end latencies. However, it must be carefully used, since the increased jitter in
the activation of high priority tasks and messages causes bursts of load requests on
the ECUs and the buses, possibly resulting in large worst case response times for low
priority tasks and messages.

4 Synthesis of the Activation Model

A mixed integer linear programming formulation can be used to find a solution with
respect to the deadline constraints on the paths. In addition to ri , Ji , wi , Ls,t we
define yh,k as

yh,k =
{

1 if the activation of ok is event-driven by oh

0 otherwise

The feasibility constraints are defined according to the rules for computing the
jitter, the response times and the latencies at all nodes in the graph. Consider a sched-
uled object ok with multiple incoming link groups. We are only interested in those
groups (links) that can possibly carry an activation signal (for all the other links l j,k
it is clearly y j,k = 0). All the links in one group must assume the same activation
model.

yr,k = ys,k (8)

for all the pairs lr,k , ls,k belonging to the same group lgh .
If ok has more than one incoming link group, only one of the group representatives

can provide its activation signal. For each object ok it must be
∑

lgh∈G(ok)

yr,k ≤ 1 where or = rep(lgh)

If all group links have a periodic activation (all yr,k = 0) then ok is activated
periodically and Jk = 0. Otherwise, Jk will be equal to the response time of the
representative object in the group from which the activation signal is received. The
two alternative ways of computing Jk can be encoded in a pair of constraint sets
leveraging the big M formulation in use in integer linear programming (depending
on the value of yr,k).

Evaluation and Synthesis of Automotive Architectures 109

Jk ≤ ∑

lgh∈G(ok)

yr,k × M where or = rep(lgh)

0 ≤ Jk

(9)

If all yr,k = 0, then Jk = 0. If yr,k = 1 for one of the incoming link groups, then
Jk is equal to the worst-case response time rr of the predecessor object or that is the
representative of the activating group.

Jk ≤ rr + (1 − yr,k)× M where or = rep(lgh)

rr − (1 − yr,k)× M ≤ Jk where or = rep(lgh)
(10)

The worst-case response time rh for object oh can be computed as

rh = wh + Jh (12)

Because of the non-linearity and even non-convexity of the fixed point formula
that provides the exact value of wh , a linear combination with coefficient α ∈ [0,1]
of the linear upper and lower bounds (5,7) is used.

wh = Ch +
∑

ok∈hp(h)

(
wh + Jk

Tk
+ α

)

Ck (13)

If oh is a task and a similar formulation from (7) is used in case oh is a message,
where α is chosen as to minimize the following mean square fit function, computed
for all y = 0 and assuming α goes not depend significantly on the value of the y
variables. ∑

Pr∈P

(αL↑Pr
+ (1 − α)L↓Pr

− L Pr)
2 (15)

where L↑Pr and L↓Pr are the latencies computed on the path Pr using the upper and the
lower linear bound, respectively. Finally, a variable zi, j is defined for each link li, j to
express the link contribution to the end-to-end latencies of the paths containing it. zi, j
is equal to w j if the link li, j carries an activation event, otherwise, zi, j = w j+J j+Tj .

w j ≤ zi, j
zi, j ≤ w j + (1 − yi, j)× M

zi, j ≤ w j + J j + Tj
w j + J j + Tj − yi, j × M ≤ zi, j

(16)

The end-to-end latency Ls,t associated with path Ps,t is computed as

Ls,t =
∑

lu,v∈Ps,t

zu,v (17)

and should not exceed its deadline.

Ls,t ≤ ds,t . (18)

110 Marco Di Natale et al.

In addition to get a feasible solution, which satisfies the deadline constraints,
we can get the optimal solution with respect to different objective functions. For
example, the minimization of the number of event buffers

maximize
∑

lgh∈G

y j,k whereo j = rep(lgh)

Other possible cost functions are the sum of the end-to-end latencies, or the weighted
sum of the positive differences between the end-to-end latencies and the correspond-
ing deadline over all the paths in the system.

∑

pr∈P
L pr

∑

pr∈P
γpr max(L pr − dpr , 0)

(19)

5 The Case Study Vehicle

In this section we illustrate the methodology and the synthesis procedure on a case
study of an experimental vehicle.

The vehicle supports advanced distributed functions with end-to-end computations
collecting data from 360◦ sensors to the actuators, consisting of the throttle, brake and
steering subsystems and of advanced HMI (Human–Machine Interface) devices. To
give an idea of the complexity, the functional model resulting from the decomposition
of the vehicle features results in a quite complex network of functional subsystems,
with more than 1000 signals exchanged among functional blocks.

Ten pairs of endpoints have been identified in the graph as sources and destinations
of computation paths with deadlines. Among them, one of the main concerns is the
timing performance of features using the vision system to control/augment the steer-
ing command. An analysis of the graph found more than 200 paths between these 10
pairs of nodes and deadlines ranging from 100 to 300 ms have been defined for them.

However, it is worth saying that in the case study, the deadlines should not be con-
sidered as safety–critical hard constraints, but rather as very desirable performance
targets.

5.1 Architecture Selection

Using the iterative analysis methodology and the associated tools, we analyzed seve-
ral architectures for the support of the case study features. The outcome of the analy-
sis guided the selection of the options.

The candidate architectures have been defined by trying different bus and ECU
topologies and by changing the task placement and the definition of the messages,
the message and task activation models and, to a limited extent, the task and message
periods. For each architecture option, the end-to-end latencies have been computed

Evaluation and Synthesis of Automotive Architectures 111

Table 1 Latency results for the case study
Feature Opt1 Opt2 Opt3 Opt4 Opt5 Opt6 Opt7
feature1 2,43 0,89 1,74 1,74 1,74 1,30 0,73
feature2 3,94 1,09 1,82 1,82 1,82 1,82 0,80
feature3 2,26 2,38 2,38 2,40 1,77 1,77 1,12
feature4 1,72 1,60 1,60 1,63 1,63 1,63 1,02
feature5 2,31 2,38 2,38 2,43 1,80 1,80 1,07

according to the communication and activation models of the system, using the pre-
viously described worst case response time analysis techniques.

Table 1 summarizes the latencies computed for five features with end-to-end tim-
ing requirements when considering seven possible architecture alternatives. For IP
protection, feature names have been omitted and all latencies are normalized with
respect to the deadlines, assumed equal to 1.00. For each architecture option, the
table shows the worst case latencies. The analysis helped in assessing the trade-offs
of the possible options, by looking at the latency of the end-to-end computation paths
associated to the features and the ECU and bus utilizations, which give a measure of
the expected extensibility with respect to future functions.

In the first option, for one of the features, labeled as feature1 in the table, the end-
to-end path spans five ECUs and four buses with the associated delays caused by
the middleware level polling tasks and by the message latencies. The corresponding
worst case latency is evaluated at about 2.5 times the requirement. The result is quite
far from the deadline constraint, but sampling is found to be a large part of the latency.
To mitigate the effects of sampling, mappings yielding a lower number of bus hops
have been explored, and several messages have been defined to be sent on event. The
last option shows the possible trade-offs in the architecture selection. The end-to-end
path now only spans three busses and allows for a much shorter latency (see table
above). On the other hand, more features have been mapped into the ECU at the
steering actuator, increasing its utilization with concerns for future extensibility.

5.2 Optimization of the Activation Modes

The ILP optimization approach has been applied to one of the architecture config-
urations considered for the vehicle. The optimization method was applied after the
actual architecture selection stage and did not affect its design, but the architecture
configuration was nevertheless used to validate the assumptions made in the devel-
opment of the MILP formulation and to prove its effectiveness.

The architecture considered for the optimization consists of 38 nodes connected by
6 CAN buses, with speeds from 25 to 500 kb/s. A total number of 100 tasks are exe-
cuted on the ECU nodes, supporting from 1 to 22 tasks each, and 322 messages are
exchanged over the six buses, with a minimum and maximum number of messages

112 Marco Di Natale et al.

of, respectively, 32 and 145 for each group. The number of links in the dataflow graph
is 507. Bus utilizations are between 30% and 50% and CPU utilizations are estimated
between 5% and 60%.

If all tasks and messages are activated periodically, the end-to-end latencies largely
exceed (in the worst case) the desired deadlines. For example, a worst-case latency of
577 ms was found for paths with deadline 300, 255.5 for paths with deadline 200, and
145.38 for paths with deadline 100. Of the 507 links, 313 are subject to optimization,
including link groups. The sum of the end-to-end latencies was used as the metric
function. The problem encodes results in 1673 variables, 313 of which are binary,
and 3989 linear constraints. The time required to solve the problem was always close
to 0.25 seconds (1.4 GHz PC).

In its original formulation, the problem does not have a solution, because of a path
in which most of the links are constrained to be periodic. After reducing the period
of one of the messages in the path from 100 to 50 ms, the problem admits a solution.
After the first optimization round, the end-to-end latencies were much closer to the
desired deadlines, but still not feasible for 12 of the 148 paths. It was necessary to
change the period of one more task (from 12.5 to 10) and one more message (from
100 to 80), making it shorter so that an event driven activation could be defined on
the corresponding incoming and outgoing links.

After another optimization round, all the latencies became lower than the dead-
lines, with the largest value of 242 for paths with deadline 300, 145.5 for paths with
deadline 200, and 95.4 for paths with deadline 100.

The final result of the optimization was the definition of 116 links and 3 groups
(141 total links) to carry an event-driven activation signal.

The value of α changed from 0.465, at the start, when all y = 0, to 0.459 for
the final solution. When repeating the optimization procedure with the new value
of α, the same result was obtained, therefore supporting the validity of our linear
approximation assumption.

6 Conclusions

We present a design methodology based on the use of timing analysis for the evalu-
ation of architecture configurations and an optimization algorithm that leverages the
trade-offs between the purely periodic and the data-driven activation models to meet
the latency requirements of distributed vehicle functions. We demonstrate its appli-
cation to the analysis and optimization on a complex automotive architecture. In the
future, besides the assignment of priorities to tasks and messages, we plan to explore
the problem of finding the optimal placement of the tasks on the ECUs.

One of the biggest problems in the application of the methodology is the lack of
detailed data in the early phases of design – for example, the need for an estimate
of the worst case execution of tasks, often unknown until late in the design process.

Evaluation and Synthesis of Automotive Architectures 113

Sensitivity analysis can help in this case, by assessing the effect of uncertainty in the
input data with respect to the latency results.

The authors would like to thank Jeff Hoorn from GM Engineering and Sri Kanajan
from GM Research.

References

1. Sangiovanni Vincentelli A. Defining Platform-based Design. EEDesign of EETimes, February
2002.

2. Lee E.A., Overview of the Ptolemy Project, Technical Memorandum UCB/ERL M03/25, July 2,
2003, University of California, Berkeley, CA, 94720, USA.

3. Balarin F., Hsieh H., Lavagno L., Passerone C., Sangiovanni-Vincentelli A., and Watanabe Y.,
Metropolis: An Integrated Environment for Electronic System Design, IEEE Computer, April
2003.

4. Akos Ledeczi et al. The Generic Modeling Environment, Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

5. G. Berry, M. Kishinevsky, S. Singh, System Level Design and Verification Using a Synchronous
Language, Tutorial ICCAD’03, San Jose.

6. The OMG Systems Modeling Language web page, http://www.omgsysml.org/
7. A. Hamann, R. Henia, M. Jerzak, R. Racu, K. Richter, and R. Ernst, SymTA/S symbolic timing

analysis for systems, available at http://www.symta.org, 2004.
8. The Mathworks Simulink and StateFlow. web page: http://www.mathworks.com.
9. ASCET-SD web page, available at http://en.etasgroup.com/products/ascet/

10. M. G. Harbour, M. Klein, and J. Lehoczky. Timing analysis for fixed-priority scheduling of
hard real-time systems. IEEE Transactions on Software Engineering, 20(1), January 1994.

11. OSEK. Osek os version 2.2.3 specification. http://www.osek-vdx.org, 2006.
12. R. Bosch. Can specification, version 2.0. Stuttgart, 1991.
13. K. W. Tindell. Holistic schedulability analysis for distributed hard real-time systems. Tech.

Report YCS197, Computer Science Dept., University of York, 1993.
14. J. Y. L. Boudec and P. Thiran, Network calculus – a theory of deterministic queuing systems

for the internet, in LNCS 2050, Springer, 2001.
15. S. Chakraborty and L. Thiele, A new task model for streaming applications and its schedulabi-

lity analysis, in IEEE DATE Conference, Munich, March 2005.
16. S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi, Semantics-preserving and memory-efficient

implementation of inter-task communication on static-priority or edf schedulers, 5th ACM
EMSOFT Conference, 2005.

17. M. Baleani, A. Ferrari, L. Mangeruca, and A.S. Vincentelli, Efficient embedded software design
with synchronous models, 5th ACM EMSOFT Conference, 2005.

18. R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in real-time distributed systems.
In Proceedings of the 11th RTAS Conference, pages 160–169, San Francisco (CA), U.S.A.,
March 2005.

19. Wei Zheng, Marco Di Natale, Claudio Pinello, Paolo Giusto, Alberto L. Sangiovanni-
Vincentelli: Synthesis of task and message activation models in real-time distributed automotive
systems. DATE 2007, Paris, April 2007, pages 93–98.

20. K. Tindell, A. Burns, and A.J. Wellings. Calculating controller area network (can) message
response times. Control Eng. Practice, 3(8):1163–1169, 1995.

Verifiable Design of Asynchronous Software

Prakash Chandrasekaran, Christopher L. Conway, Joseph M. Joy,
and Sriram K. Rajamani

Abstract Existing tools for static analysis of programs are able to analyze sequential
programs, for properties that do not involve reasoning about the heap. Asynchronous
software does not obey either of these requirements: (1) control flow is not sequential,
(2) operations need to store state in the heap. We propose a programming language,
CLARITY, which enables verifiable design of asynchronous software.

Keywords: asynchronous software, static analysis, programming languages

Over the past decade, we have witnessed increasing interest in static analysis
tools that “inspect” programs at compile time [1–5]. These tools are able to both
find errors, and prove that certain kinds of errors cannot occur at runtime. With the
exception of a few efforts, most of these tools deal with existing programs written in
existing programming languages. These tools can perform scalable whole-program
inter-procedural analysis for sequential programs on properties that do not involve
reasoning about the heap, such as locking discipline errors and use-after-free errors
involving pointers from the stack. Once an object is put in a heap data structure, such
as a linked list or queue, these techniques lose precision and become ineffective.

Event-driven programs are non-sequential, asynchronous, and maintain state in
the heap for most operations. Thus, most current static analysis tools can check only
limited properties of such programs. An enormous amount of research effort has
gone into improving the precision and scalability of static analysis for concurrent
programs and heap data, but the performance of these analyses continues to be a
significant problem. We propose changing the statement of the problem: Can we
write event-driven programs differently, so that they become more analyzable?

We introduce a programming language, CLARITY, which enables analyzable
design of asynchronous components. The essence of the CLARITY programming
style is the separation of computation and coordination: we define a set of high-level
coordination primitives, or coords, which encapsulate common interactions between
asynchronous components; logical operations are defined sequentially, using coords
and event-based communication to indicate synchronization requirements. Each
coord has a protocol declaration defining the correct usage of its coordination inter-
face. A CLARITY thread using the coord must follow the protocol along all code
paths.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 115
for Distributed Embedded Control Systems, 115–116.
c© Springer 2007

116 Prakash Chandrasekaran et al.

Several design decisions make CLARITY programs easier to analyze: code annota-
tions delegate protocol obligations to exactly one thread at each asynchronous func-
tion call, making the behavior of a thread with respect to each coord effectively
sequential. Using the coord protocol, a CLARITY program can be analyzed using
simple compositional reasoning: first, we can check that the program follows the
protocol, using a purely sequential analysis; then, assuming the program follows the
protocol, we can verify that the implementation of the coord does not have deadlocks
or assertion violations.

References

1. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In SPIN 01: SPIN Workshop, volume 2057 of LNCS. Springer-Verlag, 2001.

2. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-
ponents in C. IEEE Transactions on Software Engineering, 30(6):388–402, 2004.

3. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial time.
In PLDI, pages 57–69. ACM, 2002.

4. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI. Usenix Association, 2000.

5. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL, pages 58–70.
ACM, 2002.

Approximate Symbolic Reachability of Networks
of Transition Systems

Sudeep Juvekar, Ankur Taly, Varun Kanade, and Supratik Chakraborty

Abstract Symbolic reachability analysis of networks of state transition systems
present special optimization opportunities that are not always available in mono-
lithic state transition systems. These optimizations can potentially allow scaling of
reachability analysis to much larger networks than can be handled using existing
techniques. In this paper, we discuss a set of techniques for efficient approximate
reachability analysis of large networks of small state transition systems with local
interactions, and analyse their relative precision and performance in a BDD-based
tool. We use overlapping projections to represent the state space, and discuss opti-
mizations that significantly limit the set of variables in the support set of BDDs that
must be manipulated to compute the image of each projection due to a transition
of the system. The ideas presented in this paper have been implemented in a BDD-
based symbolic reachability analyser built using the public-domain symbolic model
checking framework of NuSMV. We report experimental results on a set of bench-
marks that demonstrate the effectiveness of our approach over existing techniques
using overlapping projections.

Keywords: state transition systems, symbolic reachability, approximation

1 Introduction

Large and complex systems are often built by interconnecting small and simple com-
ponents. A large class of such systems can be behaviorally modeled as networks of
interacting state transition systems, where each individual state transition system, or
component, has a simple transition structure and involves only a few state variables.
Examples of such systems abound in practice, e.g. circuits obtained by interconnect-
ing logic gates and flip-flops, distributed control systems with interacting sensors,
controllers and actuators, a collection of devices communicating through a shared
bus and arbiter, etc. The reachable state space of such a system can be computed by
starting from a specified initial state of all components and by non-deterministically
choosing and atomically executing an enabled state transition from the individual
components. This produces a change of state of one or more components, and hence

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 117
for Distributed Embedded Control Systems, 117–136.
c© Springer 2007

118 Sudeep Juvekar et al.

of the overall system. Interactions between components can be modeled by shar-
ing state variables and by executing synchronized transitions between components.
The above process can then be repeated until all reachable states of the system are
explored. If there are k components in the system, and if Σi denotes the set of state
variables of the i th component, the state variables of the overall system is given by
Σ = ∪k

i=1Σi . Even when |Σi | is small for each i , |Σ | can be large for large values of
k. Since the complexity of reachability analysis grows exponentially with the number
of state variables, reachability analysis of a large network of components is compu-
tationally far more difficult than searching the state spaces of individual components
separately.

The additional computational effort needed to search the state space of a large
network of components is primarily for reasoning about interactions between com-
ponents. Interestingly, however, in a large class of practical systems, components pri-
marily interact locally with a few other components in their “neighbourhood”. More
formally, state transitions of one component affect the state variables of only a few
other components. This is not surprising since systems are often designed in a modu-
lar and compositional way, where individual components are required to interface and
interact locally with a few other components in their spatial neighbourhood. While
a few components may interact globally with other components, even these global
interactions can often be modeled by synchronized local interactions, as we will see
later in Section 2. Thus, interactions between components in a large class of prac-
tical systems are largely local in nature. This presents significant opportunities for
optimization when performing reachability analysis. In this paper, we exploit these
opportunities to design highly scalable Binary Decision Diagrams (BDD)-based [1]
techniques for efficiently searching state spaces of large networks of state transition
systems with local interactions.

If the behaviour of each component in a network is independent of that of others,
the reachable state space of the overall system can be obtained by computing the
Cartesian product of the reachable state spaces of individual components. Inter-
actions between components however render such an analysis highly conservative
in practice. Traditional symbolic reachability analysers [4] therefore require the
transition relations of individual components to be combined into a single system-
wide transition relation involving all state variables in Σ . Since representing and
manipulating BDDs with thousands of variables in the support set is computationally
prohibitive even with state-of-the-art public-domain BDD packages like CUDD [8],
BDD-based tools that work with system-wide transition relations do not scale well
to large networks. To address this problem, earlier researchers have considered
using partitions [3] and overlapping projections [6] of state variables. Govindaraju’s
approach [6] based on the multiple constrain operator is currently among the best
BDD-based approaches for computing over-approximations of the reachable state
space using overlapping projections. Yet other approaches [2, 7] have attempted
to characterize BDDs on-the-fly during reachability analysis, and use appropriate
approximations to achieve a trade-off between efficiency and accuracy. While these
techniques have been used to efficiently compute good over-approximations of reach-
able state spaces of some large systems, they still require operations (e.g. the multiple

Approximate Symbolic Reachability of Networks of Transition Systems 119

constrain operation in [6]) on BDDs that have almost all variables in Σ in the sup-
port set. This makes it impractical to use these techniques for networks of transition
systems with thousands of state variables. This difficulty was also observed during
our experiments, where the technique of Govindaraju [6] could not compute an over-
approximation of the reachable discrete-timed state space of an interconnection of
timed logic gates having 6242 state variables in 60 minutes on a moderately power-
ful computing platform. In this work, we wish to address such scalability issues
by designing approximate BDD-based reachability analysis techniques that scale to
very large networks without compromising much on accuracy.

Existing techniques, including that of Govindaraju [6], use information about
locality of interactions between different components to choose a good set of over-
lapping projections, but not to optimize the reachability analysis per se. In this
paper, we wish to go a step further and exploit locality of interactions to optimize
BDD-based reachability analysis using overlapping projections. While the method of
Govindaraju provably gives the best over-approximation of the reachable state space
using overlapping projections, we show that by exploiting locality of interactions
during image computation, we can gain significantly in efficiency without suffering
much precision-wise. Significantly, our technique permits scaling the analysis to
networks of transition systems with variable counts at least an order of magnitude
higher than those analysable using Govindaraju’s technique.

The remainder of the paper is organized as follows. Section 2 describes networks
of state transition systems and presents a set of techniques to optimize reachabil-
ity analysis of large networks using locality of interactions. Section 3 discusses
experiments for evaluating the optimized analysis techniques, and compares the
performance and accuracy of these techniques with each other as well as with
Govindaraju’s technique. Finally, Section 4 concludes the paper.

2 Networks of State Transition Systems

We represent a state transition system B as a 4-tuple (Σ, Q, I, T), where Σ is a finite
set of state variables, Q is the set of all states, I : Q → {True, False} is an initial
state predicate, and T : Q × Q → {True, False} is a transition relation predicate.
Each state variable s ∈ Σ has an associated finite domain Ds , and Q is the Cartesian
product of the finite domains corresponding to all variables in Σ . When describing a
state transition, we use unprimed letters to refer to values of variables in the present
state, and the corresponding primed letters to refer to their values in the next state.
Let Σ ′ denote the set {s′ | s ∈ Σ}. Thus, I is a predicate with free variables Σ ,
while T is a predicate with free variables Σ ∪ Σ ′. We will henceforth refer to these
predicates as I (Σ) and T (Σ, Σ ′), respectively.

A network of state transition systems is a collection of state transition systems
(with possibly overlapping sets of state variables), and a specification of synchro-
nized transitions between them. Let B = {B1, . . . Bm} be a set of state transition
systems that interact to form a network N . Each Bi is a 4-tuple (Σi , Qi , Ii , Ti)

120 Sudeep Juvekar et al.

and is called a component of N . Components Bi and B j are said to execute state
transitions synchronously iff every state transition of Bi occurs simultaneously with
a state transition of B j . Thus, state transitions of Bi and B j cannot be interleaved. We
specify synchronization between components by an undirected graph H = (B, EH),
where B is the set of components and (Bi , B j) ∈ EH iff components Bi and B j
execute state transitions synchronously. It is easy to see that the binary relation on
components defined by synchronous execution of transitions is an equivalence rela-
tion. Hence, the graph H consists of a set of disconnected cliques. If a clique consists
of only a single component, we say that the corresponding component executes state
transitions asynchronously with other components. Indeed, its state transitions can be
interleaved arbitrarily with those of other components. The network N is formally
defined by the tuple (B,H).

Given a network N = (B,H), the overall state transition system corresponding
to the network is given by BN = (ΣN , QN , IN , TN), where ΣN = ∪m

i=1Σi , QN
is the Cartesian product of the finite domains corresponding to variables in ΣN , and
IN (ΣN) = ∧m

i=1 Ii (Σi). In order to determine TN (ΣN , Σ ′
N), we need to model

the effect of synchronous transitions of each clique in H. Let C = {Bi , . . . , Bk}
be a clique in H. Let ΣC = Σi ∪ · · ·Σk and ΣC = ΣN \ ΣC . We will hence-
forth use this notation to denote the set of variables corresponding to a collection
of components, and the complement of a set of variables, respectively. We say that
the network changes state from q to q ′ due to a synchronous transition of compo-
nents in C iff (q, q ′) satisfies the predicate

∧
Bi∈C Ti (Σi , Σi

′) ∧ ∧
s∈ΣC

(s ↔ s′).
Let this predicate be called ΥC (ΣN , Σ ′

N). If Cliques(H) denotes the set of cliques
of H, the transition predicate of the overall state transition system BN is given by
TN (ΣN , Σ ′

N) = ∨
C ∈Cliques(H) ΥC (ΣN , Σ ′

N). For clarity of notation, we will
henceforth omit the subscript N from Σ , Q, I and T whenever the network N is
clear from the context.

2.1 Reachability Analysis of Networks of Transition Systems

Let N2P1 be a predicate transformer that transforms a predicate R(Σ, Σ ′) by replac-
ing every occurrence of s′ in R with the corresponding s ∈ Σ , for every s′ ∈ Σ ′.
Formally,

N2P
(
R(Σ, Σ ′)

) = ∃Σ ′
(

R(Σ, Σ ′) ∧
∧

s∈Σ

(s ↔ s′)
)

(1)

Now consider a predicate R(Σ, Σ ′) that has at most one of s and s′ (but not both) as
free variable, for every s ∈ Σ . Such a predicate can be written as R(Σ∗, Σ∗

′
), where

Σ∗ is the set of all variables s ∈ Σ that appear as free variables of R, and Σ∗ =
Σ \ Σ∗. The effect of transforming R by N2P is given by N2P(R(Σ∗, Σ∗

′
)) =

1 N2P stands for “next-to-present”.

Approximate Symbolic Reachability of Networks of Transition Systems 121

∃Σ ′ (R(Σ∗, Σ∗
′
) ∧ ∧

s∈Σ(s ↔ s′)) = R(Σ∗, Σ∗). Effectively, N2P renames a
subset of free variables of R(Σ∗, Σ∗

′
). For predicates on Boolean variables, such

renaming can be efficiently performed in BDD packages like CUDD. For example, if
the BDD for R(Σ∗, Σ∗

′
) is given, the bdd permute operation in CUDD achieves

the effect of renaming variables. In the following discussion, whenever we apply
N2P to a predicate, the property that at most one of s and s′ occurs as free vari-
able, holds for the predicate. Therefore, assuming that we are using a BDD package
like CUDD that allows efficient renaming of variables, N2P can be considered an
efficiently computable operation.

Let R(Σ) be the characteristic predicate of a set of states. Henceforth, we will
refer to sets of states and their characteristic predicates interchangeably. The image
of the set R(Σ) under T (Σ, Σ ′), denoted I m(R(Σ), T (Σ, Σ ′)), can be obtained
as N2P(∃Σ (R(Σ) ∧ T (Σ, Σ ′))). Given a network N = (B,H) of state transi-
tion systems, the set of reachable states of BN can be obtained by initializing the
reachable set with the initial set of states, and by repeatedly computing the image
of the current reachable set under T (Σ, Σ ′) until no further new states are obtained.
Since T (Σ, Σ ′) is a disjunction of ΥC (Σ, Σ ′) for C ∈ Cliques(H), computing
the image of a set of states R(Σ) under T (Σ, Σ ′) is equivalent to computing the
image of R(Σ) under each ΥC (Σ, Σ ′) individually and then taking the union of
the resulting sets of states. Note that in general, each ΥC (Σ, Σ ′) has all variables
in Σ ∪ Σ ′ as free variables. Since |Σ | can indeed be large (several thousand vari-
ables) for a large network, computing the image of a set R(Σ) under ΥC (Σ, Σ ′)
as N2P(∃Σ (R(Σ) ∧ ΥC (Σ, Σ ′))) does not scale well in BDD-based tools. How-
ever, there is an obvious optimization that can be done. On closer examination of
the structure of ΥC (Σ, Σ ′), i.e.

∧
Bi∈C Ti (Σi , Σi

′) ∧ ∧
s∈ΣC

(s ↔ s′), we find
that the values of all state variables in ΣC are preserved in the next state. Since
Σ = ΣC ∪ ΣC , we can write R(Σ) as R(ΣC , ΣC). Therefore, the image expres-
sion N2P(∃Σ (

∧
Bi∈C Ti (Σi , Σ ′

i) ∧
∧

s∈ΣC
(s ↔ s′) ∧R(ΣC , ΣC))) can be simpli-

fied to N2P(∃ΣC (
∧

Bi∈C Ti (Σi , Σ ′
i)∧ R(ΣC , ΣC

′
))). Using the definition of N2P

from equation (1), and noting that the quantification inside N2P eliminates only vari-
ables in ΣC , which is mutually disjoint with ΣC , we obtain the following equivalent
expression for the image:

I m
(
R(Σ), ΥC (Σ, Σ ′)

) = N2P

⎛

⎝∃ΣC

⎛

⎝
∧

Bi∈C

Ti (Σi , Σ ′
i) ∧ R(ΣC , ΣC)

⎞

⎠

⎞

⎠ (2)

Notice that the quantification in the final expression is over ΣC which is potentially
much smaller than Σ . Similarly, we have eliminated the potentially large conjunction∧

s∈ΣC
(s ↔ s′) from the image computation step. In the following discussion, we

will refer to this optimization as “reducing non-transition variables”. Unfortunately,
even with this optimization, R(ΣC , ΣC) involves all variables in Σ , and hence the
scalability problem continues to exist.

To address this problem, we propose to exploit the fact that in a large class of
practical systems, interactions between components are local in nature. Thus, state

122 Sudeep Juvekar et al.

transitions of a component Bi change the state variables of only a small number of
other components. Given a network N = (B,H), we can capture this locality of
interactions by an undirected graph G = (B, EG), where B is the set of compo-
nents and (Bi , B j) ∈ EG iff components Bi and B j share some state variables, i.e.
Σi ∩Σ j �= ∅. For every component Bi , we can then define its k-neighbourhood to be
the set of all components that have a path of length at most k from Bi in G. We denote
this set as B(k)

i . Formally, B(0)
i = {Bi } and B(k)

i = Bi ∪ {B(k−1)
j | (Bi , B j) ∈ EG}

for all i ≥ 1. A state transition of component Bi potentially changes some state vari-
ables of all components in B(1)

i , but does not affect any state variable of any other
component. Consequently, if C is a clique in the graph H representing synchroniza-
tion between components, when computing the image of a set of states under the
synchronized transition ΥC (Σ, Σ ′), it is meaningful to update state variables of only
components in B(1)

i , where Bi ∈ C . This suggests that instead of considering state
predicates on the entire set Σ of variables, it would be beneficial to consider state
predicates on appropriately chosen subsets of Σ . In other words, reachability analysis
using overlapping projections of states makes sense when analysing large networks
with local interactions. While the idea of using overlapping projections for approx-
imate reachability was explored in detail by Govindaraju [6], his work considered
reachability analysis of large sequential circuits instead of networks of small state
transition systems. Consequently, they were unable to exploit locality of interactions
to optimize the updation of various projections when a state transition happens. The
primary contribution of this paper is to show that locality of interactions can indeed
be exploited to significantly optimize updation of projections, enabling the design of
BDD-based reachability analysers that scale to much larger networks than those that
can be handled by earlier techniques.

Let Π1, . . . , Πp be subsets of state variables on which we choose to project the
states of the overall system. Since we do not wish to ignore any state variable, we
require that

⋃p
i=1 Πp = Σ . As in Govindaraju’s approach, this gives rise to p pro-

jections, say R1(Π1), . . . , Rp(Πp), of the set of reachable states. The collection of
projections can be viewed as an abstraction of the actual reachable state set. The
conjunction

∧p
i=1 Ri (Πi) is the corresponding concretization that gives the best over-

approximation of the reachable set from a given set of projections. However, com-
puting the conjunction is computationally expensive in BDD-based tools since this
involves all variables in Σ . Therefore, following Govindaraju’s approach, we initial-
ize the projections R1, . . . , Rp with projections of the initial set of states on the sets
of variables Π1, . . . , Πp, and update these projections each time the system executes
a state transition. As discussed earlier, every transition of the network N = (B,H) is
a state transition of some clique C ∈ H. Since a transition of C potentially changes all
variables in ΣC , every projection Ri such that Πi ∩ΣC �= ∅ must be updated when-
ever a transition of C is taken. Conversely, all projections R j such that Π j ∩ΣC = ∅
need not be updated when C transitions, since there is no component in C whose
transitions change the values of variables in Π j . Thus, by appropriately choosing
Π1, . . . , Πp, it is possible to optimize the updation of projections every time a tran-
sition corresponding to a clique C is taken.

Approximate Symbolic Reachability of Networks of Transition Systems 123

A transition of a clique C is basically a set of simultaneous transitions of all
its components. Since the transition of an individual component Bi depends solely
on the values of variables in Σi and potentially changes the values of only these
variables, a good choice of Π1, . . . , Πp is one where for each component Bi , there
is at least one Π j such that Σi ⊆ Π j . Intuitively, such a choice would allow us
to compute the effect of a transition of component Bi on the projection R j with a
high degree of accuracy. If R1(Π1), . . . , Rp(Πp) represent projections of the set of
reachable states seen thus far, the image of R j (Π j) under a synchronous transition of
components in C can be computed as ∃Π j (N2P(∃Σ ΥC (Σ, Σ ′)∧∧p

i=1 Ri (Πi))).
Expanding ΥC (Σ, Σ ′), we get

∃Π j

⎛

⎝N2P

⎛

⎝∃Σ
∧

Bi∈C

Ti (Σi , Σ ′
i) ∧

∧

s∈ΣC

(s ↔ s′) ∧
p∧

i=1

Ri (Πi)

⎞

⎠

⎞

⎠ (3)

Coudert and Madre [5] have shown that the basic image computation in the above
expression can be also be done using the constrain operator as follows:

∃Π j

⎛

⎝N2P

⎛

⎝∃Σ
⎛

⎝
∧

Bi∈C

Ti (Σi , Σ ′
i) ∧

∧

s∈ΣC

(s ↔ s′)

⎞

⎠ ↓
p∧

i=1

Ri (Πi)

⎞

⎠

⎞

⎠ (4)

Since computing
∧p

i=1 Ri (Πi) potentially involves all variables in Σ and is com-
putationally expensive in BDD-based tools, Govindaraju proposed using a multiple
constrain operator. This operator takes a Boolean predicate F and constrains it with
a vector of predicates 〈C1, . . . , Cm〉 iteratively, instead of conjoining C1 through Cm
first and then constraining F with the conjunction. Using this operator, the expression
for the image can be written as

∃Π j

⎛

⎝N2P

⎛

⎝∃Σ
⎛

⎝
∧

Bi∈C

Ti (Σi , Σ ′
i) ∧

∧

s∈ΣC

(s ↔ s′)

⎞

⎠ ↓m 〈Ri (Πi)〉
⎞

⎠

⎞

⎠ (5)

In the above expression, ↓m denotes the multiple constrain operator and 〈Ri (Πi)〉
denotes the vector 〈R1(Π1), . . . , Rp(Πp)〉 of all projections. Govindaraju showed
experimentally that for a large class of sequential circuits, this significantly enhanced
the efficiency of image computation compared to applying the single constrain oper-
ator as in expression (3). In the following discussion, we will refer to the technique of
computing the image using the multiple constrain operator as the “complete multiple
constrain” method.

Although updation using multiple constrain is more efficient that updation using
single constrain, the computation of

∧
Bi∈C Ti (Σi , Σ ′

i) ∧
∧

s∈ΣC
(s ↔ s′) still

involves all variables of Σ and can be computationally expensive. One might
wonder if we can reduce non-transition variables, as discussed earlier, to sim-
plify

∧
Bi∈C Ti (Σi , Σ ′

i) ∧
∧

s∈ΣC
(s ↔ s′) to

∧
Bi∈C Ti (Σi , Σ ′

i), and then apply
the multiple constrain (or even Coudert and Madre’s constrain) operator to the

124 Sudeep Juvekar et al.

simplified predicate. Unfortunately, this is not possible in general. Indeed, reducing
non-transition variables simplifies expression (3) to

∃Π j

⎛

⎝N2P

⎛

⎝∃ΣC
∧

Bi∈C

Ti (Σi , Σ ′
i) ∧

p∧

i=1

Ri (Πi)

⎞

⎠

⎞

⎠ (6)

While this expression is simpler than expression (3), we cannot directly apply
Coudert and Madre’s constrain operator and equate (∃ΣC

∧
Bi∈C Ti (Σi , Σ ′

i) ∧∧p
i=1 Ri (Πi)) to (∃ΣC (

∧
Bi∈C Ti (Σi , Σ ′

i)) ↓ ∧p
i=1 Ri (Πi)). This is because the

quantification in expression (6) is done over a subset of the variables in
∧p

i=1 Ri (Πi).
We will henceforth refer to the method of computing image using expression (6) as
the “reduced conjunction” method. Note, however, that in expression (6), we must
still compute

∧p
i=1 Ri (Πi), which involves all variables in Σ . Hence the reduced

conjunction method can be computationally expensive in BDD-based tools.
Fortunately, the reduced conjunction method can be improved further using local-

ity of interactions. To exploit locality, we consider as many subsets of state variables
as there are components in the network. For each component Bi , we choose a subset
Πi that includes state variables of all components in its k− neighbourhood. Recall
that when a component transitions, it affects the variables of only those components
that are in its 1− neighbourhood. Thus k = 1 is a good initial choice of neighbour-
hood for choosing subsets of state variables. As k increases, the subsets increase in
size, and so does their overlap. Of course, if one subset is completely contained in
another subset (as can happen for large values of k), only the larger subset is retained.
As an extreme case, if d is the diameter of the graph G = (B, EG), and if we choose
a neighbourhood of d, we obtain a single subset of state variables, Π1 = Σ .

As the number of variables in each subset increases and as their overlap increases,
the accuracy of computing projections of reachable states using expressions (3), (4),
(5) or (6) is expected to increase. This is because large subsets with large overlaps
can track correlations between state variables better than small subsets with small
overlaps. However, having large subsets also entails increased computational effort
in manipulating BDDs with large support sets when computing images of projec-
tions. By choosing an intermediate value of k, it is possible to ensure that the number
of variables in each subset remains small, while there is adequate overlap between
the subsets as well. While the best value of k might be domain dependent, in gen-
eral, our experiments with discrete-timed circuits indicate that using small values
like 1 or 2 often strikes a good balance between accuracy of image computations and
computational efficiency.

2.2 Exploiting Locality to Optimize Image Computation

Let us now examine if computing the image of projection R j (Π j) under a syn-
chronous transition of components in a clique C can be simplified using locality
of interactions. Expression (6) tells us how to compute the image. To simplify this

Approximate Symbolic Reachability of Networks of Transition Systems 125

expression, we first identify the set of transitioning components in C and the set of
projections in {R1, . . . , Rp} that are intuitively “important” for computing the image
of projection R j . Expression (6) is then simplified by replacing transition relations of
all other components and characteristic predicates of all other projections by True.
This leads to an over-approximation of the image of projection R j (Π j) due to a
synchronous transition of components in C . We argue below that that this strategy
allows us to scale reachability analysis to very large networks with local interactions,
while remaining fairly accurate.

When a synchronous transition of components in clique C occurs, only those
components that share state variable(s) with Π j determine the image of projection
R j (Π j). Let the subset of components in C that share state variable(s) with Π j be
called D, and let ΣD be the union of state variables of all components in D. Tran-
sitions of components in C \ D neither read nor modify variables of Π j , and hence
do not affect the image of projection R j (Π j) directly. Intuitively, the set of tran-
sitioning components D are “important” for determining the image of projection
R j (Π j) under a synchronous transition of components in C . Similarly, when a com-
ponent Bi ∈ D transitions, only those projections that share state variable(s) with Bi
potentially constrain the transitions of Bi . Let the set of projections that share state
variable(s) with at least one Bi ∈ D be called P1, and let ΣP1 denote the union
of all Πk’s, where projection Rk is in P1. Projections not in P1 cannot directly
constrain transitions of Bi , since transitions of Bi are not guarded by conditions on
state variables of these projections. Intuitively, projections in P1 are “important” for
determining the synchronous transitions of components in D. If |ΣP1| is large, the
set P1 can be further pruned by considering only those projections that share state
variable(s) with Π j and also with some Bi ∈ D. Let this set of projections be called
P2 and let ΣP2 denote the corresponding set of state variables. Intuitively, projec-
tions in P2 not only directly constrain the transitions of components in D, but also
allow projection R j (Π j) to constrain transitions of components in D indirectly. Such
an indirect constraining happens when the conjunction of R j (Π j) and projections in
P2 constrains transitions of components in D that would not have been constrained
by R j (Π j) alone. Hence, projections in P2 are very “important” for computing the
image of R j (Π j) under a synchronous transition of components in D. In the follow-
ing discussion, we will use P to denote the set of “important” projections chosen for
simplifying expression (6). While either P1 or P2 could be chosen for P , we have
chosen P2 for our experiments since |ΣP2| ≤ |ΣP1|.

We can now simplify expression (6) by over-approximating the transition relations
of all components in C \ D by True, and by over-approximating the conjunction of
projections not in P by True. The simplified expression for the image of projection
R j (Π j) under a synchronous transition of components in C is then given by

∃Π j

⎛

⎝N2P

⎛

⎝∃ΣD
∧

Bi∈D

Ti (Σi , Σ ′
i) ∧

∧

Πi∈P

Ri (Πi)

⎞

⎠

⎞

⎠ (7)

126 Sudeep Juvekar et al.

Due to locality of interactions, the set P is much smaller than the entire set of
projections, and similarly, D is a small subset of C , in general. This leads to signi-
ficant gains in efficiency compared to computing the image of projection R j (Π j)
according to expression (6). One might suspect that this gain in efficiency is achieved
at the cost of a significant loss of accuracy. However, as demonstrated by our
experiments, the loss in accuracy due to these simplifications is not large, and the
accuracy-efficiency trade-off is on the favourable side. We will call this technique
that exploits locality of interactions and computes the image of projection R j (Π j)
according to expression (7) as “partial reduced conjunction”.

It is important to note that the proposed simplifications lead to over-approximations
in the image of projection R j (Π j) in the worst case. This happens when the complete
conjunction

∧
Bi∈C Ti (Σi , Σ ′

i)∧
∧p

i=1 Ri (Πi) forbids a state transition by evaluating
to False for a specific pair of present and next states, whereas the partial conjunction∧

Bi∈D Ti (Σi , Σ ′
i)∧

∧
Πi∈P Ri (Πi) evaluates to True for the same choice of present

and next states.
Similar to the approach of Govindaraju, one might also consider optimizing the

evaluation of expression (7) by using the multiple constrain operator. Let ΣP D denote
ΣP ∪ΣD and ΣP\D denote ΣP \ΣD . The expression for the image of R j (Π j) using
the multiple constrain operator is then given by

∃Π j

⎛

⎝N2P

⎛

⎝∃ΣP D

⎛

⎝
∧

Bi∈D

Ti (Σi , Σ ′
i) ∧

∧

s∈ΣP\D

(s ↔ s′)

⎞

⎠ ↓m 〈Ri (Πi)〉P

⎞

⎠

⎞

⎠

(8)

In the above expression, ↓m denotes the multiple constrain operator and 〈Ri (Πi)〉P
is a vector of projections belonging to the set P . Note that in order to apply the mul-
tiple constrain operator, we had to introduce the subexpression

∧
s∈ΣP\ΣD

(s ↔ s′),
which translates to increased computational cost in evaluating expression (8). As we
will see in Section 3, experiments on a set of benchmarks indicate that this technique
performs marginally worse than the partial reduced conjunction method. This shows
that the benefits of the multiple constrain operator are more than offset by the addi-
tional computational cost of evaluating the subexpression

∧
s∈ΣP\ΣD

(s ↔ s′). This
technique of computing the image of projection R j (Π j) using expression (8) will be
called “partial multiple constrain” in our future discussion.

The set Π j of variables that is finally quantified (corresponding to the leftmost
existential quantifier) in expression (7) can be written as the union of Π j ∩ ΣD
and Π j ∩ ΣD . Since the quantifier inside the N2P operator eliminates only vari-
ables in ΣD , all free variables of

∧
Bi∈D Ti (Σi , Σ ′

i) ∧
∧

Πi∈P Ri (Πi) that are in
Π j ∩ ΣD are unaffected by this quantification. These variables, being present state
variables, are not renamed by N2P as well. Therefore, it is possible to push ∃Π j∩ΣD
inside the N2P and ∃ΣD operators in expression (7) to obtain the semantically
equivalent expression

Approximate Symbolic Reachability of Networks of Transition Systems 127

∃(Π j ∩ΣD)

⎛

⎝N2P

⎛

⎝∃ΣD

⎛

⎝
∧

Bi∈D

Ti (Σi , Σ ′
i) ∧

⎛

⎝∃(Π j∩ΣD)
∧

Πi∈P

Ri (Πi)

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

(9)

In the above expression, the argument of N2P is an expression whose free vari-
ables can be partitioned into the sets (Π j ∩ ΣD)′, (Π j ∩ ΣD)′ and (Π j ∩ ΣD).
Let these three mutually disjoint sets of variables be called Γ ′

1, Γ ′
2 and Γ3, respec-

tively, and let ξ(Γ ′
1, Γ ′

2, Γ3) denote the argument of N2P in expression (9). Using the
definition of N2P from equation (1) and the notation introduced above, expression
(9) can now be written as ∃Γ2 ξ(Γ1, Γ2, Γ3). Unfortunately, it is not straightforward
to obtain ξ(Γ1, Γ2, Γ3). Specifically, we note from expression (9) that ξ(Γ ′

1, Γ ′
2, Γ3)

is obtained by existentially quantifying variables in Γ1 ∪ Γ2 from an expression, say
ζ , with free variables Γ1∪Γ2∪Γ3∪Γ ′

1∪Γ ′
2. Therefore, simply substituting Γ1 for Γ ′

1
and Γ2 for Γ ′

2 in ζ and quantifying out Γ1 ∪ Γ2 will not give ξ(Γ1, Γ2, Γ3). To over-
come this problem, we use the fact that renaming bound variables does not change
a quantified expression. Hence, the image expression ∃Γ2 ξ(Γ1, Γ2, Γ3) is equiva-
lent to ∃Γ ′

2 ξ(Γ1, Γ ′
2, Γ3), which in turn, is equivalent to N2P(∃Γ ′

2 ξ(Γ ′
1, Γ ′

2, Γ3)).
Recalling that ξ(Γ ′

1, Γ ′
2, Γ3) is the argument of N2P in expression (9), the follow-

ing image expression, semantically equivalent to expression (9) but with different
quantifier ordering, is obtained:

N2P

⎛

⎝∃ΣD

⎛

⎝

⎛

⎝∃(Π j ∩ΣD)′
∧

Bi∈D

Ti (Σi , Σ ′
i)

⎞

⎠∧
⎛

⎝∃(Π j ∩ΣD)
∧

Πi∈P

Ri (Πi)

⎞

⎠

⎞

⎠

⎞

⎠

(10)

The evaluation of expression (10) can be further simplified, albeit with further loss
of accuracy, by pushing the quantification of variables in Π j∩ΣD inside the conjunc-
tion

∧
Πi∈P Ri (Πi). Effectively, this amounts to over-approximating the existential

projection of a conjunction by the conjunction of existential projections. As a first
approximation, we observe that expression (10) computes the (approximate) image
of projection R j (Π j) due to a transition of components in clique C . Consequently,
the most important variables in this expression are those in ΣD ∪ Π j . Hence, the
quantification of all other variables, i.e. variables in Π j ∩ΣD , may be pushed inside
the conjunction to optimize the computation of expression (10). This gives rise to the
optimized image expression

N2P

⎛

⎝∃ΣD

⎛

⎝

⎛

⎝∃(Π j ∩ΣD)′
∧

Bi∈D

Ti (Σi , Σ ′
i)

⎞

⎠ ∧
∧

Πi∈P

∃(Π j ∩ΣD)Ri (Πi)

⎞

⎠

⎞

⎠

(11)

We will call image computation using expression (11) as “partial approximate quan-
tification”. Note that in computing the image according to expression (11), the maxi-
mum number of variables involved in a BDD operation is maxΠi∈P (|Πi |)+ 2.|ΣD|.

128 Sudeep Juvekar et al.

This is far smaller than the number of variables involved in operations required for
computing images by the earlier expressions. This contributes to the efficiency of
using expression (11), which is also corroborated by our experiments. The loss of
accuracy when computing the image according to expression (11) vis-à-vis when
computing using expressions (4) or (5) or (6) stems from two sources: (i) approxi-
mating conjunctions by partial conjunctions, as in expression (7), and (ii) pushing
quantifications inside conjunctions, as in expression (11). However, in both cases, the
approximation is done with projections, components or variables that are intuitively
less “important” in determining the image of projection R j (Π j) under a transition of
clique C . The variables, projections and transitions that are more “important” are not
approximated as far as possible. Locality of interactions allows us to restrict this set
of “important” variables, projections and transitions to a small set even in very large
networks. This explains why our experiments indicate a high degree of efficiency,
and a fair degree of accuracy when using expression (11).

It is easy to see from the nature of our approximations that in terms of accuracy
of results, the ordering of the different methods is “complete multiple constrain” ≥
“partial reduced conjunction” = “partial multiple constrain” ≥ “partial approximate
quantification”. The degradation in accuracy from “complete multiple constrain” to
“partial reduced conjunction” is due to the over-approximation of several “unim-
portant” transition relations and projections. The further degradation in accuracy in
“partial approximate quantification” is attributable to the over-approximation of a
projection of conjunctions by the conjunction of projections. Experimental results
however show that the degradation in accuracy is not large for a range of timed cir-
cuit benchmarks. In terms of the number of variables involved in BDD operations
when computing the images of a projection under a synchronized transition of com-
ponents, it is clear from expressions (5), (8), (7) and (11) that the ordering of the
different methods is “complete multiple constrain” ≥ “partial multiple constrain” ≥
“partial reduced conjunction” ≥ “partial approximate quantification”. The variable
count involved in BDD operations gives a rough indication of the relative computa-
tional time and memory requirements of BDD-based tools implementing these tech-
niques. Our experimental results corroborate that this order is by and large correct.

2.3 Scalability Issues

The technique of “partial approximate quantification” described above offers unique
advantages in scaling our BDD-based approach to very large networks. We argue
below that the maximum number of variables involved in any BDD operation during
image computation using this technique is independent of the size of the transition
system. Instead, it depends only on (i) the number of variables in each component,
(ii) the degree of the graph G = (B, EG) that represents sharing of variables between
components of the network, and (iii) the neighbourhood k used to determine projec-
tions. Thus, by carefully dumping BDDs to and from disk, it is never necessary to

Approximate Symbolic Reachability of Networks of Transition Systems 129

represent or manipulate BDDs with very large support sets in main memory. This can
enable our BDD-based reachability analysis to scale up to very large networks with
local interactions.

As has been described in Section 2.2, the number of variables involved in any
image computation step of “partial approximate quantification” is bounded above by
maxΠi∈P (|Πi |) + 2.|ΣD|. Here, maxΠi∈P (|Πi |) denotes the maximum number of
variables in any projection, and depends on (i) the maximum degree of a node in the
graph G = (B, EG), (ii) the neighbourhood k used to compute the projections, and
(iii) the number of state variables in each component. The quantity |ΣD| depends on
(i) the maximum number of components in a clique C that share variable(s) with the
projection R j being updated, and (ii) the number of state variables in a component.
Given a network of transition systems, the maximum degree of a node in the graph
G and the neighbourhood k used to compute projections uniquely define an upper
bound on the maximum number of components in a clique C that potentially share
variables with R j . Interestingly, neither the degree of G, nor the neighbourhood k,
nor the maximum number of variables in a component depend on the total number
of components in the network. Thus, if the maximum degree of G and the number
of variables in each component is bounded by a small number, and if we choose
a neighbourhood k for defining projections such that maxΠi∈P (|Πi |) + 2.|ΣD| is
within the maximum variable count that a BDD-package can efficiently handle, it
is possible to scale the analysis to very large networks. Of course, the number of
projections and transition relations of components will increase with the size of the
network. Hence the total number of BDDs that need to be stored will be large for large
networks. However, as argued above, only a few of these, with a bounded number of
variables in their support set, are required for image computation at any point of
time. Hence by effectively dumping BDDs not currently needed to the disk and by
re-loading them when needed, we envisage the possibility of BDD-based reachability
analysis tools for arbitrarily large networks with local interactions. Such tools may
require significant computational time for exploring the reachable state space of large
networks, but will never run out of main memory due to BDD size explosion.

3 Experimental Results

In order to evaluate the effectiveness of our approach, we have implemented the
strategies described in the previous section in the public domain reachability analysis
engine NuSMV [4]. We have modified the reachability routine of NuSMV to perform
reachability analysis on overlapping projections using asynchronous and synchro-
nous transitions. We have used the resulting tool to explore the entire reachable space
of a set of benchmarks, and report the reachable projections using our approach as
well as using the multiple constrain approach of Govindaraju [6]. Our experimen-
tal results support our hypothesis that reachability analysis of large networks can be
significantly optimized by exploiting locality of interactions.

130 Sudeep Juvekar et al.

Our benchmark suite consists of gate-level circuits with discrete-time delays.
The motivation behind choosing these examples comes from their popularity in
the domain of timed systems analysis and also their ease of scalability. Some of
our examples consist of small combinational circuits, consisting of tens of gates,
used in [9]. We also perform experiments on standard benchmark circuits from the
ISCAS-85 suite, which consists of larger combinational circuits.

3.1 Modeling of Circuits

Every gate used in our experiments implements a combinational logic function and
has an inertial delay and bi-bounded pure delay. The behaviour of a gate is modeled
by having the following three parts: (i) a Boolean logic block that sets the Boolean
value of the output to a function of the Boolean values of the inputs, (ii) the output
of the logic block is fed to an inertial delay element, and (iii) the output of inertial
delay element is fed to a bi-bounded pure delay element. We model an inertial delay
element having delay D by a timed automaton as shown in Figure 1(a). Similarly, a
bi-bounded pure delay element with lower and upper bounds l and u is modeled by
a timed automaton as shown in Figure 1(b). In these figures, Zero and One refer to
stable states, where the Boolean values of in and out are the same.

Given the interconnection of gates representing a circuit, we compose the state
transition behaviour of the logic block, inertial delay element and bi-bounded delay
element of each gate to form a network of timed automata. To simplify the model,
we assume that D, l and u are identical for all gates. To ensure that every pure delay
element causes its output to change once between two consecutive changes at its
input, we also assume that u < D. In fact, for all our experiments, the inertial delay
(D) is set to 3, and the lower (l) and upper (u) bounds of bi-bounded pure delay
elements are set to 1 and 2, respectively. When the output of a gate feeds the input

clk < D in=1

in=0, out=0

in=1, out=0, clk’=0

clk=D
out’=1

in=1
out=1

out=0

in=0
out=0

in=0
out=1

clk < D
in=1, out=1

in=0, out=1, clk’=0

clk=D
out’ = 0

Zero

One

Zero

One

in=1
out=0

in=1, out=0, clk’=0

out’=1

in=1
out=1

in=0
out=0

in=0
out=1

in=0, out=1, clk’=0

clk < U

clk < U

clk >= L
out’ = 0

clk >= L

Logic
Bounded DelayInertial Delay

(a) (b)

Fig. 1 (a) Inertial delay model; (b) bi-bounded pure delay model

Approximate Symbolic Reachability of Networks of Transition Systems 131

of another gate, we ensure during composition that the corresponding output and
input transitions occur simultaneously. Time is assumed to flow synchronously for
all gates. For our experiments, the circuit inputs are modeled as signals that non-
deterministically change their Boolean values after a predefined delay ∆in = 4. We
assume that time is discrete for all our experiments.

For an n-gate circuit modeled as above, the network of timed automata has two
types of transitions: discrete (non-time-elapse) transitions for each logic function,
inertial and bi-bounded delay element which execute asynchronously, and a global
transition for synchronous advancement of time of all clocks. The global timed transi-
tion is modeled as the synchronous transition of a group of transition systems, where
each transition system models advancement of time for one gate. It is easy to see
that both the discrete and timed transitions corresponding to each gate affect the state
variables of only those gates that are in its immediate fanout or fanin. By restricting
the fanin and fanout of each gate in the circuit to a small number, we can therefore
ensure that the locality of interactions is small and independent of the circuit size.

3.2 Comparing Different Techniques

We now present and compare experimental results obtained by application of
the techniques referred to as “partial reduced conjunction”, “partial approximate
quantification”, “partial multiple constrain” and “complete multiple constrain” in
Section 2.1. We will call these techniques S0, S1, S2 and S3, respectively in the
subsequent discussion. We compare the relative performance of these techniques in
terms of BDD sizes, time taken and accuracy. All our experiments were performed
on a 3 GHz Intel Pentium 686 processor with 1 GB of main memory, and running
Fedora Core Linux 3.4.3-6.fc3.

In order to see how the various techniques scale up, we converted all large circuits
(>70 gates) to functionally equivalent circuits in which the fanout and fanin of each
gate is bounded above by 3. As discussed in Section 2.3, this bounds the maximum
degree of any node in the graph G and allows the “partial approximate quantification”
technique to scale to large circuits. To reduce the fanout of a gate to 3, we used a
linear chain of buffers at the output of the gate. To reduce the fanin of a gate, we used
a tree of 2 input gates which combine to give the same Boolean function.

The specification for each circuit used in our experiments is given in Table 1. In this
table, column Ckt gives the name of the circuit, and column Gates gives the number
of gates, which is also the total number of discrete transitions for the circuit. Col-
umn Additional gates gives the number of additional gates that were added to obtain
a functionally equivalent circuit with all gates having bounded fanin and bounded
fanout, as discussed above. Columns 0-nbd, 1-nbd, 2-nbd give the statistics for pro-
jections using neighbourhoods of 0, 1, and 2, respectively. Sub-column Proj gives the
number of distinct projections obtained for each value of neighbourhood. A projec-
tion whose support set is a subset of the support set of another projection is discarded.

132 Sudeep Juvekar et al.

Table 1 Circuit characteristics
Ckt Gates Additional 0-nbd 1-nbd 2-nbd Variables

Gates
Proj Max Proj Max Proj Max

2 10 0 17 38 13 78 9 123 274
3 11 0 19 59 17 115 13 143 306
6 21 0 29 59 23 115 18 157 626
7 31 0 39 59 33 115 29 151 946

17 11 0 17 54 11 131 8 138 274
74181 202 130 390 109 378 813 363 1782 6242

432 564 368 1092 108 1055 748 1013 1960 17574
499 724 481 1407 108 1345 711 1284 1864 22514
880 1182 739 2304 109 2191 811 2045 1883 36866

Table 2 Time plots for reachability analysis

Sub-column Max gives the maximum number of variables involved during any image
computation. Finally, column Variables gives the total number of state variables of
the network of transition systems. Note that this number is much larger than the total
number of gates in the circuit, since encoding the behaviour of each gate requires
several state variables. The plots in Table 2 show the time taken for searching the
discrete-timed reachable state space of each circuit using the techniques S0, S1, S2
and S3 referred to above. The results for small circuits and large circuits are given in
two separate plots. The results presented in Table 2 were obtained with projections
computed using a neighbourhood of 1. The maximum number of state variables of
an individual component (discrete or timed transition system of a gate) is 28 in our
experiments. In the plots of Table 2, the absence of a bar for a particular technique
and circuit implies that for that circuit, reachability analysis using the specific tech-
nique did not terminate within 1 hour. We note that bars corresponding to “complete
multiple constrain” are completely absent in the plots for all large circuits.

The plots in Table 3 show on a log2 scale the peak live BDD node counts attained
during reachability analysis using various techniques on the same circuits and using
the same projections as in Table 2.

Approximate Symbolic Reachability of Networks of Transition Systems 133

Table 3 Peak live BDD nodes for reachability analysis

Table 4 Accuracy comparison for reachability analysis
Ckt S1/S0 S2/S0 S3/S0

Avg Max Min Avg Max Min Avg Max Min
ckt2 1 1 1 1 1 1 0.940254 1 0.72333
ckt3 1.00273 1.04646 1 1 1 1 0.721266 1 0.265875
ckt6 1 1 1 1 1 1 0.956729 1 0.834483
ckt7 1 1 1 1 1 1 0.969841 1 0.834483
ckt74181 1 1 1 1 1 1
ckt432 1.00072 1.4 1 1 1 1
ckt499 1 1 1 1 1 1
ckt880 1 1 1 1 1 1

In order to compare the accuracy of the different techniques, we consider each cir-
cuit, and compute the ratio of the sizes of the projections of the reachable states using
the different techniques. Ideally, we would have liked to compare the total count
of reachable states for each circuit using various techniques. However, this requires
conjoining the reachable state predicates for all the projections, and then counting
the number of satisfying assignments for the resulting conjunction. Unfortunately,
for large circuits, computing the conjunction of all projections involves constructing
a BDD with almost all state variables of the entire network in its support set. This
leads to a BDD size blowup and prevents us from computing the overall reachable
state set. For each circuit, we therefore compute the ratios of sizes of projections
of reachable sets using various techniques, and report the minimum, maximum and
average values of these ratios considered over all projections. These ratios are sum-
marized in Table 4. As discussed in Section 2.1, S3 corresponding to “complete mul-
tiple constrain” gives the smallest sets of states for the projections, while “partial
multiple constrain” (S2) and “partial approximate quantification” (S1) are compa-
rable in accuracy to “partial reduced conjunction” (S0). For the larger circuits, the
“complete multiple constrain” technique does not terminate in 1 hour and hence the
corresponding accuracy figures are not available. Note that the worst-case accuracy
of technique S0 (relative to technique S3) is on ckt3, where it computes nearly 4 times

134 Sudeep Juvekar et al.

40

45

50

55

60

nbd5nbd4nbd3nbd2nbd1nbd0

R
ea

ch
ab

le
 s

ta
te

s
(2

y)

ckt2

ckt3

ckt17

ckt2
ckt3

ckt17

Fig. 2 Variation in over-approximation of reachable states with neighbourhood

the reachable states of a projection compared to what is computed by technique S0.
However, on an average, S3 computes projections of reachable state sets that are 1.4
times larger than the projections computed by technique S0 on ckt3.

In order to study the effect of increasing neighbourhoods when determining projec-
tions on the accuracy of reachability analysis, we carried out a set of experiments with
small circuits in which we increased the neighbourhood from 0 to 5. The experiments
were performed only on small circuits, since as explained above, it is difficult to con-
join the BDDs of all projections to obtain the complete set of reachable states for
large circuits. Figure 2 shows a plot of the number of states in the over-approximation
of the reachable set against the neighbourhood. The over-approximated reachable
states in these plots were obtained using the technique S0. The name of the circuit
corresponding to each curve is written on top of the curve.

Increasing the neighbourhood when choosing projections results in larger pro-
jections with larger overlaps between them. The increased overlaps better facilitate
tracking correlations between state variables, and leads to increased accuracy. This
manifests itself as a monotone decrease in the size of the over-approximated reach-
able state set with increasing neighbourhood, as seen in Figure 2.

4 Discussion and Conclusion

From the bar charts in the previous section, we find that for small circuits, tech-
nique S3 takes much more CPU time as compared to other techniques, and for larger
circuits it does not terminate within 1 hour. This behaviour is expected as technique

Approximate Symbolic Reachability of Networks of Transition Systems 135

S3 requires operating with BDDs that have the complete set of state variables in
the support set for every image computation step. Indeed, the total count of such
variables (ranging from 6000 to 30000 for our experimental circuits) is far beyond
the reach of standard BDD packages like CUDD. In contrast, the other techniques
require operating with BDDs that have much smaller support sets. This translates to
reduced computation times and lower peak BDD sizes, when using these techniques.
In addition, the accuracy of S0 and S1 do not suffer much compared to S3, as mea-
sured in those cases where S3 terminated. This gives concrete evidence in support of
our claim that locality of interactions can be exploited to build efficient and scalable
reachability analysers, without compromising much on accuracy.

We also observe that for all circuits, technique S1 gives the best results in terms
of CPU time and peak BDD sizes. This can be qualitatively explained by the fact
that the image computation step with this technique involves conjunction of BDDs
with small support sets (10’s of variables), followed by quantification of small sets
of variables. In addition, technique S1 retains the projections and transitions that are
most “important” for computing the image of a projection under a transition, while
ignoring the effects of other projections and transitions that do not directly affect
the image of the projection under consideration. Since the accuracy obtained with
this technique is fairly good, we conclude that exploiting locality of interactions in
networks of transition systems has the potential to buy us a lot of efficiency without
compromising much on accuracy.

Although in Section 2.1 we theoretically argued about the scalability of technique
S1 (“partial approximate quantification”), we were unable to analyse circuits with
more than 1200 gates in the current set of experiments. With a fanin and fanout of
2 for each gate, even such large circuits are amenable to analysis using technique
S1, if BDDs can be dynamically swapped to and from disk during reachability analy-
sis. The current implementation of our reachability analyser does not implement such
swapping of BDDs to and from disk, and consequently stores all BDDs in main mem-
ory. For large circuits, the total number of projections (and hence BDDs) becomes
very large. While only a few of these are needed at any time for image computa-
tion, our current implementation suffers from memory bottlenecks since it stores all
BDDs in main memory. We intend to implement swapping of BDDs to and from disk
to allow scaling of our analysis to even larger circuits in the future.

The techniques presented in this paper effectively exploit locality of interactions
in large networks of transition systems to scale reachability analysis to networks that
are at least an order of magnitude larger than those amenable to existing tools. While
other optimization techniques are being actively investigated for scaling reachability
analysis, we believe locality of interactions is an important factor that, if properly
exploited, can allow us to analyse very large networks of transition systems effi-
ciently and fairly accurately. Our current work is a first step in this direction. We are
also investigating ways to encode different search strategies in a meta-programming
framework for reachability analysis that would allow one to mix and match different
techniques for achieving a good balance of accuracy and efficiency.

136 Sudeep Juvekar et al.

References

1. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691, 1986.

2. G. Cabodi, P. Camurati, and S. Quer. Improving symbolic reachability analysis by means of
activity profiles. IEEE Transactions on Computers, 19(9):1065–1075, 2000.

3. H. Cho, G.D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for approximate FSM
traversal based on state space decomposition. IEEE Transactions on CAD of Integrated Circuits
and Systems, 15(12):1465–1478, 1996.

4. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV version 2: An opensource tool for symbolic model checking. In
Proceedings of CAV, LNCS 2404, pages 359–364, 2002.

5. O. Coudert and J.C. Madre. A unified framework for the formal verification of sequential cir-
cuits. In Proceedings of ICCAD, pages 126–129, 1990.

6. Gaurishankar Govindaraju. Approximate Symbolic Model Checking Using Overlapping Projec-
tions. PhD thesis, Stanford University, August 2000.

7. I.-H. Moon, J.H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The question in image
computation. In Proceedings of DAC, pages 23–28, 2000.

8. F. Somenzi. CUDD: Colorado University Decision Diagram Package Release 2.3.0., University
of Colorado at Boulder, 1998.

9. D. Thomas, S. Chakraborty, and P.K. Pandya. Efficient guided symbolic reachability using
reachability expressions. In Proceedings of TACAS, pages 120–134, 2006.

Schedule Verification and Synthesis
for Embedded Real-Time Components∗

Purandar Bhaduri

Abstract In this paper we address the problems of schedule synthesis and timing
verification for component-based architectures in embedded systems. We consider a
component to be a set of tasks with response times that lie within specified inter-
vals. When a set of components is deployed to implement a desired functionality,
we want to guarantee that the components can achieve the timing constraints of the
application. We solve the associated synthesis and verification problems using the
framework of timed interface automata and timed games.

Keywords: Component-based embedded real-time systems, real-time scheduling,
timed interfaces, timed games, schedule synthesis.

1 Introduction

Component-based development has been proposed as a framework for dealing
with the complexity of embedded control systems. It is based on the premise that
generic components can be developed so as to be reused in different contexts. While
the encapsulation of behaviour in component interfaces does lead to modularity
and enhanced reuse, the verification of non-functional aspects (such as timing and
resource constraints) of an assembly of components remains a major challenge.

In this paper we analyse whether a given set of components satisfies the timing
constraints of an embedded control application. We consider a component to be a
collection of tasks, which are functionally and logically related. In turn, each task
has a response time (i.e., the time between task release and completion) that is gua-
ranteed to lie within a specified interval by the component implementation. When
a set of components is deployed to implement a desired functionality, we want to
guarantee that the components can achieve the timing constraints of the application.
The application-level timing properties we consider here are the end-to-end timing
constraints of transactions. Each transaction is typically a loop consisting of reading
sensors, computing control inputs and writing to actuators. The constituent tasks of
a transaction may be part of different components. The specific problems we are

∗ This work was supported by a grant from GM R&D.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 137
for Distributed Embedded Control Systems, 137–153.
c© Springer 2007

138 Purandar Bhaduri

interested in are (a) timing verification: to ascertain whether the given components
can satisfy the end-to-end timing constraints of the application, and (b) schedule
synthesis: if the answer to (a) is yes, to determine a sequence of task release actions
that will lead to satisfaction of the constraints.

We refer to the above problem as component scheduling, to distinguish it from
task scheduling, the staple of real-time scheduling theory. In task scheduling, we
already know the deadlines, periods and execution times of tasks, and want to know
whether the tasks can be scheduled to meet their deadlines. In component scheduling
we know that the tasks can be scheduled to meet certain deadlines (which may not
be related or derived from the application at hand), but want to know whether these
tasks can be released in such a way that the end-to-end constraint of a transaction can
be met. Task scheduling is a top-down analysis – from the real-time requirements we
identify tasks and their characteristics, identify the platform and check whether the
tasks can be scheduled. Component scheduling is bottom-up – given the components
and the constituent tasks, along with their pattern of release and completion times, we
want to verify whether they can satisfy the end-to-end constraints. The component
scheduling problem becomes relevant when the tasks are not identified based on the
real-time requirements of the particular application, but the application itself is built
by composing pre-existing components.

Our approach to solving the timing verification and schedule synthesis prob-
lems for components is based on the formalism of timed interface automata (TIA)
(de Alfaro et al., 2002). We view the problems as a timed game between two players –
one representing the environment (the scheduler or Input) and an adversary repre-
senting the system (the component or Output). The environment can decide on when
to release tasks for execution, but not their completion times, which can be decided
only by the component. Both players make certain assumptions about the other
player, and deliver certain guarantees. The overall goal is to check that there is a
sequence of allowed moves by the environment (release of tasks) which leads to
satisfaction of the high-level timing requirements; in other words, there is a winning
strategy for the environment in the corresponding timed game. The existence of such
a winning strategy guarantees that the components can be used together to satisfy the
end-to-end timing constraints.

Timed games have been used to solve several scheduling problems (see Altisen
et al., 1999, 2002 for example). Unlike these works, we solve a new scheduling prob-
lem that is unrelated to traditional task or job-shop scheduling. A key feature of our
work is that all the timing requirements (both task characteristics and external timing
constraints) are captured using the TIA formalism, a formalism for compositional
reasoning about timed systems. Our techniques are therefore modular, and can be
applied in a compositional and incremental manner.

The main novelty of this work is that we define a notion of component scheduling
and propose methods for solving the associated verification and synthesis problems.
Contrary to the classical notion of task scheduling, component scheduling deals with
transactions involving a set of tasks rather than separate task instances. In our set-
ting, checking for deadline violation corresponds to checking that the end-to-end

Schedule Verification and Synthesis for Embedded Real-Time Components 139

constraints of a transaction are satisfied. Component scheduling is motivated by the
fact that modern embedded control systems are typically built out of existing com-
ponents. Components consist of tasks representing component services; transactions
are application specific jobs that span across a set of components. The main tech-
nical contribution of this work is twofold: encoding the specification of component
scheduling problem as timed interface automata and reduction of the verification
and synthesis problem for component scheduling to finding a winning strategy in
the game structure for the associated timed interface automata. Our use of TIA for
modelling both tasks and transactions is novel. So is our use of the formalism for
solving scheduling problems, since we go beyond checking compatibility of timed
components.

As an application, we apply our component scheduling framework to the problem
of deriving a static time-triggered schedule for a set of periodic tasks. We are given a
set of processors and a number of tasks with known frequencies, and execution times
lying in fixed intervals. Each task is statically allocated to a processor, called a TTA
node, and must communicate with other tasks through a shared bus. The problem is
to find a static schedule on each processor along with a bus schedule, such that all
task and communication deadlines are met without any task being preempted when
executing. The solution using our approach is worked out on an automotive Adaptive
Cruise Control (ACC) application.

2 The Component Scheduling Problem

The typical design flow in component-based development of embedded systems is as
follows. To implement a given feature of the system to be built, such as the adaptive
cruise control feature in an automobile, a number of transactions, each consisting
of a related set of tasks, is identified. A transaction is actually a partial order on
the tasks reflecting their interdependence. The tasks comprising a transaction usually
span multiple components. The end-to-end timing constraints for each transaction are
derived from the feature requirements, and must be met by the tasks from different
components that constitute the transaction. This is the essence of the component
scheduling problem.

2.1 Tasks and Task Graphs

According to our view, a component is a set of tasks, with each task satisfying cer-
tain timing constraints. A component is a black-box which hides the internal details
of how tasks are actually scheduled. The interface only exposes the timing constraints
in the form of assumptions about task release times and guarantees about task com-
pletion times. In our setting the release and execution times of a task may not be
strictly periodic, but can lie within a specified interval. This facilitates modelling of

140 Purandar Bhaduri

≤ 6

C1

C2

T1

T2

T3

(a) (b)

≥ 6

T2
T2

≥ 9

T3T3

≥ 2

≥ 2

≥ 3

≥ 10

T1
T1

≤ 8

≤ 4

Fig. 1 Components, tasks and timing constraints

jitter and communication delays and leads to more flexibility in scheduling, as tasks
with fixed periods are too simplistic and lead to pessimistic analysis.

Example 1 (Components and Tasks) Figure 1(a) shows two components C1 and
C2. Tasks T1 belongs to component C1, while tasks T2 and T3 belong to C2.

Figure 1(b) shows various timing constraints for the tasks T1, T2 and T3. For
instance, task T1 cannot be released within the first 2 time units, which is an assump-
tion on the environment; we call such a constraint an offset constraint. Once the
task T1 is released, it must complete within 8 time units, a guarantee provided by
the component; we call such a constraint an execution time constraint. Further, the
delay between two successive task-releases has to be at least 10 time units, again an
assumption on the environment; we call such a constraint a period constraint.

Task Graphs We model transactions as task graphs, i.e., partial orders (or DAG’s)
on tasks. The partial ordering reflects the data dependencies between tasks in a par-
ticular transaction: an edge from task Ti to Tj indicates that task Ti must complete
before task Tj begins. We associate an end-to-end deadline with each transaction, as
well as constraints on inter-task separation to guarantee freshness of data. The con-
straints on deadline and the inter-task separation are collectively referred to as end-
to-end constraints. Note that a transaction represented by a task graph is periodic, the
period being determined by the sampling frequency of the associated control loop.
We assume that the period of the transaction is given by the end-to-end deadline of
the task graph.

Example 2 (Task Graph) Figure 2 shows a task graph for a transaction involving
components C1 and C2 in Example 1. It says task T2 must be released after tasks T1

Schedule Verification and Synthesis for Embedded Real-Time Components 141

T3

T1

T2

≤ 6

≤ 14Fig. 2 Task graph and transaction con-
straints

and T3 have completed. The transaction has an end-to-end deadline of 14 time units,
and a constraint that says T2 must be released within 6 time units from the completion
of T3 (to ensure freshness of data, for instance).

Another constraint that is implicit in the task-graph is that the transaction it rep-
resents is required to execute an infinite number of time, a liveness constraint.

Definition 3 A task graph with end-to-end constraints is a triple G = (T , <T , d)
where T = {T1, . . . , Tm} is a set of m tasks, <T is a strict partial order (i.e., an
irreflexive transitive relation) on T and d is a set of constraints of the form d(T) ≤ C
or d(a, b) ≤ C for a, b ∈ ⋃

1≤i≤m{ri , ci }, where C is an integer. The constraint
d(T) ≤ C represents an end-to-end deadline of C time units for the task graph,
while the constraint d(a, b) ≤ C represents a maximum separation of C time units
between the two actions a and b, which are either the release ri of a task Ti or the
completion c j of a task Tj . We denote by Π(T) the set of immediate predecessors of
task T in the partial order (T , <T).

2.2 The Problem

The scheduling problem we are trying to solve is: given a set of tasks with tim-
ing constraints on their release and completion, and a task graph with end-to-end
constraints, to find a schedule, i.e., a timed sequence of release actions (which may
depend on the timed sequence of preceding completion actions), which satisfies the
constraints imposed by the task graph. The latter constraints are: (1) a task can be
released only if all its predecessors have completed; (2) the time duration between
the earliest release and the latest completion action is bounded by the end-to-end
deadline of the task graph; and (3) the time duration between each pair of actions in
a specified list is bounded by the corresponding separation limit.

142 Purandar Bhaduri

Definition 4 A timed trace on an alphabet A of actions is a sequence
σ = (a0, t0), (a1, t1), . . ., where each a j ∈ A and each t j ∈ R

≥0, with t0 <=
t1 <= t2 We call t j the time-stamp of the j th action occurrence in the sequence.

Definition 5 Given a set of tasks T with associated timing constraints on their
release and completion actions, a release-schedule σ is a function, that given a time
instant for the completion of the task instances released earlier, assigns a time instant
σ(ri j) ∈ R

≥0 to the release of the j th instance of task Ti for each i ∈ {1, . . . , m} and
each j ≥ 0. Such an assignment must satisfy the offset and period constraints of each
task. Likewise, a completion-schedule τ is a function, that given the release times of
the j th instance of task Ti and other tasks started earlier, assigns a time instant
τ(ci j) ∈ R

≥0 to the completion of the j th instance of task Ti for each i ∈ {1, . . . , m}
and each j ≥ 0. Such an assignment must satisfy the execution time constraint of
each task.

Given a release-schedule σ and a completion-schedule τ , we can define the out-
come Outcome(σ, τ) of the two schedules in the usual inductive way. This is a set of
timed traces over

⋃
1≤i≤m{ri , ci }.

Definition 6 Given a set of tasks T with associated timing constraints on their
release and completion actions, and a task graph G expressing end-to-end con-
straints of a transaction, a schedule σ is a release-schedule, such that for all
completion-schedules τ , every timed trace π ∈ Outcome(σ, τ) satisfies the following
conditions:

1. Precedence: For every pair Ti <T Tj in G, the nth occurrence of r j is preceded
by the nth occurrence of ci in π , for every n.

2. End-to-end deadline: For an end-to-end deadline constraint of the form d(T)≤C,
max({ts(α′) − ts(α)})≤C, where α, α′ range over all the nth occurrences of
actions c j ,rk respectively in π , for all j, k ∈ {1 . . . m} and for all n. Here ts(α)
denotes the time-stamp of action α.

3. Separation constraints: For every constraint of the form d(a, b) ≤ C, ts(α′) −
ts(α) ≤ C, where α, α′ are the nth occurrences of a, b respectively in π , for all n.

4. Liveness: There is an nth occurrence of ri ? for every i ∈ {1 . . . m}, for every n.

Intuitively, the above definition captures the fact that a schedule must specify a
correct timed sequence of releasing tasks, no matter how much time the tasks take
for completion, as long as they are within specified bounds. We now formally define
the verification and synthesis problem we are interested in.

Definition 7 The timing verification and schedule synthesis problems for end-to-end
constraints are defined as follows. Given a set of tasks T and a task graph G, verify
that there exists a schedule (i.e., a way of generating release actions for tasks) that
satisfies the end-to-end constraints in G, no matter when the tasks complete, as long
as they satisfy the given constraints, and synthesise such a schedule if it exists.

Schedule Verification and Synthesis for Embedded Real-Time Components 143

Example 8 Consider the set of tasks specified in Figure 1 and the task graph in
Figure 2. In this example, the components C1 and C2 do meet the end-to-end con-
straints of the transaction. A possible schedule for meeting the requirements would
be to release each task according to the timed trace (r1?, 2), (r3?, 4), (r2?, t) where
t is the maximum of the completion times of T1 and T3, which is guaranteed to be
within 10 time units. Note that releasing the task T3 earlier than 4 time units (say
at 3 time units) can lead to a violation of the freshness constraint (depending on
when T1 completes its execution, which the environment cannot control), although
the interface for T3 does not itself rule out the possibility.

From the above example it is clear that the two timing analyses mentioned above
can be carried out at the level of tasks rather than components, since they involve the
timing assumptions and guarantees of only individual tasks. However, the component
view would be essential when we consider the following situations:

• Tasks in a component have resource conflicts due to shared resources such as
buffers.

• Components may not be “reentrant”, in which case, the execution of two tasks of
the component cannot be overlapped.

• Two different transactions can share the computations of certain tasks; for exam-
ple, a sensor component will typically not perform the sensing task for different
transactions separately – the sensor data will be broadcast to all the components
with tasks that depend on the data.

All these situations can be modelled using the TIA framework, though the result-
ing TIA models will be more complex in general. For instance, resource conflicts
can be modelled by using an additional TIA for for modelling the resource access,
and guaranteeing mutual exclusion by allowing synchronisation with the resource
TIA. An example of this kind is treated in Section 5, where we apply our component
scheduling framework to derive a static time-triggered schedule for a set of distrib-
uted tasks.

3 Modelling Component Scheduling with Timed Interfaces

In this section, we model the tasks, and task-graphs of the previous section using
timed interface automata. Interface automata were presented in de Alfaro and
Henzinger (2001) as a formalism for studying compatibility of components in an
open system. Timed interface automata (TIA) (de Alfaro et al., 2002) were proposed
as an extension to model real-time constraints on interacting components. Due to
lack of space we cannot present all the relevant details of the TIA model here. The
reader is referred to de Alfaro et al., (2002) for the formal definitions and the impor-
tant properties of the TIA model. Our use of the TIA framework is novel, and is
different from the one in de Alfaro et al., (2002): our goal is to synthesise schedules
rather than to check compatibility of components.

144 Purandar Bhaduri

3.1 Timed Interface Automata for Tasks

Timed interface automata are syntactically similar to traditional timed automata as
in Alur and Dill (1994), with the exception that location invariants are classified as
either input or output invariants. The crucial difference lies in the semantics – timed
interface automata correspond to games between players Input and Output, rather
than just labelled transition systems. It is the responsibility of player Input to ensure
that all the input invariants are met; similarly for the output invariants with respect to
player Output.

Example 9 (TIA) Figure 3 shows timed interface automata corresponding to the
tasks in Example 1.

• The release and completion events of tasks are described using actions ri ? and ci !
of the task Ti .

• The clock variable xi in the timed interface automaton for task Ti keeps track of
the time elapsed since the last release of the task.

• The guards on the transitions describe when the actions ri ? and ci !may take place.
• The location invariants describe when certain actions must take place; for exam-

ple the location invariant O : x1 < 8 is an output-invariant (indicated by the label
O), indicating that the output c1! must be produced while x1 < 8 holds, otherwise
player Output loses the game.

• The guards on the transitions with input action ri ? specify that a minimum inter-
arrival time should be maintained, otherwise player Input loses the game.

Definition 10 Let T = {T1, . . . , Tm} be a set of m tasks. The TIA for a task Ti ∈ T
(also denoted by Ti) is given by a TIA with a single clock xi , input action ri ? and
output action ci !. The clock constraints appearing as invariants and guards express
the pattern of release and completion times of the task. We assume that each TIA Ti
is well-formed, i.e., both players have a strategy to let time diverge, unless the other
player is to be blamed for monopolising the game from some point on (see de Alfaro
et al. 2002).

r3?

x1 ≥

≤

2
x1 := 0 c1!

r1?

x1 8

x2 ≥ 2
x2 := 0 c2!

r2?

x2 ≤ 4

x3 ≥ 3
x3 := 0 c3!

r3?

x3 ≤ 6

T1 T2 T3
x1 ≥ 10
x1 := 0

x2 ≥ 6
x2 := 0

x3 ≥ 9
x3 := 0

O : x1 <= 8 O : x2 <= 4 O : x3 <= 6
r1? r2?

Fig. 3 TIA for tasks T1, T2 and T3

Schedule Verification and Synthesis for Embedded Real-Time Components 145

3.2 From Task Graph to Specification Automaton

To solve the component scheduling problem, we use TIA in two distinct ways – first,
to model the timing properties of tasks as presented above, and second to model a task
graph for a transaction. We call the TIA for a task graph a specification automaton.
Before describing the procedure for obtaining a specification automaton from a task
graph, we give an example.

Example 11 (Specification Automaton) The specification automaton correspond-
ing to the task graph in Figure 2 is shown in Figure 4. It uses a clock x to record
the time since the transaction was started, and a clock y to record the time since T3
completed. The specification automaton has each ri and ci as input actions – it is
an observer which detects violations of timing constraints by flagging an error state,
and does not generate any output action (except the special action end!). It specifies
all the legal runs of the environment (the scheduler) and the components that do not
violate the end-to-end timing constraints.

There is an input invariant I1 : x < 14 associated with every location in the
specification automaton, except the one on the extreme right (which is the final
location). This represents the fact that meeting the end-to-end timing deadline is
the responsibility of player Input. For brevity, we use a statechart-like notation:
an invariant associated with a super-location (the dotted oval in Figure 4) represents
an invariant on all the locations contained in the super-location. Violation of the
input invariant I1 leads to a timed error state, where the progress of time is blocked.
Similarly, the violation of the input invariant I2 : y ≤ 6 in the oval shaped location
signifies violation of the freshness constraint and leads to a timed error state. The
output action end! is a new action not shared by any other automaton which signifies
the end of the transaction.

I2 : y < 6

c1?

c1?

c2?

I1 : x < 14

end !
x := 0

c3?
y := 0

y := 0
c3?

r2?

Fig. 4 Specification automaton for task graph in Figure 2

146 Purandar Bhaduri

We follow the ideas in Abdeddaı̈m et al., (2003) to obtain the specification automa-
ton from a task graph. First, we build a specification TIA Pi for each task Ti , con-
sisting of three locations, corresponding to the task states waiting, executing and
completed. The transition from the waiting to the executing state is taken when the
specification TIA for the tasks in Π(Ti) are all in their final locations.

Definition 12 Let G = (T , <T , d) be a task graph. For every task Ti ∈ T its asso-
ciated specification TIA is Pi = (Qi , qinit

i , qfinal
i , Ci ,AI

i ,AO
i , InvI

i , InvO
i , τi) with

the set of locations Qi = {p0
i , p1

i , p2
i }, the initial location qinit

i = p0
i , the final loca-

tion qfinal
i = p2

i , the set of input actions AI
P = {ri ?, ci ?}, the set of output actions

AO
i = ∅, and the set of transitions τi include the tuples

(p0
i ,

∧

Tj∈Π(Ti)

p2
j , ri ?,∅, p1

i)

and
(p1

i , true, ci ?,∅, p2
i).

The global specification automaton is obtained as a composition of the indivi-
dual specification automata. The composition can be treated as composition of ordi-
nary timed automata since the components have no shared actions. The composition
ensures that the release actions of tasks do not violate the precedence constraints in
the task graph. Next, we add some clocks and clock constraints, both as guards on
transitions as well as location invariants, to take care of the end-to-end constraints
in the task graph G = (T , <T , d). For the end-to-end deadline constraint dT ≤ C ,
there is a clock te and an input invariant Ie : te < C on all the locations of the
composed automaton except its final location. For a separation constraint of the form
d(a, b) ≤ C , there is a clock tab which is reset on every transition with the action
label a, and an input invariant Iab : tab < C on all locations that are sources of tran-
sitions labelled with action b. Finally, there is a transition labelled with the output
action end! from the final location of the composed automaton to the initial location
which resets the clock te.

The specification automaton in Figure 4 is actually obtained by applying some
optimisations on the result of the above transformation on the task graph in Figure 2:
the release actions r1? and r2? do not appear in Figure 4. A general optimisation
scheme based on chain coverings of a partial order is presented in Abdeddaı̈m et al.,
(2003).

4 Timing Verification and Schedule Synthesis

In this section, we explain how the timing verification and schedule synthesis prob-
lems can be viewed as an instance of a timed game (see Maler et al., 1995; de Alfaro
et al., 2002). between players Input (the environment) and Output (the system). Fur-
ther, synthesising a schedule, i.e., a timed sequence of task release actions that obeys

Schedule Verification and Synthesis for Embedded Real-Time Components 147

the precedence constraints in the task graph and leads to all the end-to-end constraints
being satisfied, corresponds to finding a winning strategy for Input in such a game.

As in all timed games, there are two kinds of moves available to each player: a
player can either let time progress, as long as this does not violate an invariant for
the player, or make a discrete transition to a new state when the associated guard
becomes enabled. Thus a move of player Input (a controllable action) either triggers
a task Ti via action ri ? or allows time to elapse in a location. Similarly a move of
Output (an uncontrollable action) either completes execution of a task Ti via action
ci ! or allows time to elapse in a location.

The game structure for the schedule synthesis and verification problem i.e., the
graph on which the game is played (called a timed interface in de Alfaro et al.,
2002), is obtained from the product of the timed interface automaton for each task and
the specification automaton obtained from the task graph. The specification automa-
ton has an input invariant on several locations capturing the end-to-end constraints.
Violation of this invariant leads to a timed error state. The winning plays are those
sequences of states in the game graph that avoid the error state, and in addition com-
plete the transaction infinitely often, i.e., the goal involves both a safety and liveness
condition. Finding a schedule for a given set of components that meets the end-to-
end constraints of a task graph then amounts to finding a winning strategy for Input
in the corresponding timed game.

Example 12 (Timed Game Structure) For our running example, the product of the
timed interface automata for the tasks T1, T2 and T3 in Figure 3 with the specification
automaton in Figure 4 represents the game structure on which the timed game is
played. The fact that there exists a schedule satisfying the end-to-end constraints
means that player Input has a winning strategy in the game.

In the rest of this section we elaborate on the solution to the timing verification
problem in terms of winning strategies for a timed game. In the following discussion,
we assume we are given a set of tasks T = {T1, . . . , Tm} and a task graph G =
(T , <T , d) on the set T . The global specification automaton for the task graph G,
defined in Section 3.2, is denoted TG .

Consider the product TIA T = T1 ⊗ T2 . . . ⊗ Tm ⊗ TG , i.e., the joint behaviour
of all the TIA’s corresponding to the tasks together with the specification automaton.
Intuitively, the game structure �T � corresponding to the TIA T has the set of states
(s1, s2, . . . , sm, s) where each component si is a pair (qi , vi) of a location in Ti and
a clock valuation over the single clock xi , and likewise s is a pair (q, v) of a location
in TG and clock valuation over the clocks te and tab, where a, b range over the the
actions ri , c j (see the paragraph in Section 3 following Definition 12). The input and
output transition relations of �T � encode the possible moves of the corresponding
player at a given state, and the new state that results, in the combined system of
the m tasks and the specification automaton. Each transition is caused either by an
immediate action (release or completion of a task Ti) or a timed action, where the
player chooses to let time elapse. The available moves of a player in a state must
conform to the location invariants for the player in the source and target location and

148 Purandar Bhaduri

the enabled transition in the source location for each component TIA Ti . An input
strategy is a partial function from sequences of states to the set of the enabled moves
for Input in the final state of the sequence. So an input strategy is a way to specify
the times at which the release actions for tasks occur, given the completion times for
instances of tasks released earlier, while conforming to all the constraints imposed
by the TIA for each task Ti . Likewise, one can define an output strategy.

Given an input and an output strategy, one can define the resulting set of outcomes
starting from the initial state s0 of �T � (see de Alfaro et al., 2002). These are finite
and infinite sequences of the form σ = s0, α1, γ1, s1, α2, γ2, . . . where αi is the move
made by player γi ∈ {I, O} in state si . A winning input strategy in �T � is one for
which all possible output strategies lead to outcomes which avoid reaching all timed
error states. Clearly, a winning input strategy corresponds to what we call a schedule
(see Definition 8), except the liveness property may not be satisfied. In particular, an
outcome can be empty – if no tasks are released there are no constraints to violate
(assuming there are no input invariants in the TIA for the tasks, as is the case in
Figure 3).

The following procedure takes care of the liveness problem. We take the composi-
tion (see de Alfaro et al., 2002) of the TIA corresponding to each task and the TIA for
the task graph, and then find a winning input strategy for the goal �� tfinal (which
says that the final location of the task graph component in the product is reachable)
in the result. Intuitively, the composition T1 ‖ T2 . . . ‖ Tm ‖ TG represents all sched-
ules that satisfy the end-to-end constraints of the task graph G, without necessarily
satisfying the liveness constraint; the latter is taken care of by the goal �� tfinal.
Details of how such games can be solved using symbolic fixed point computations
can be found in Maler et al. (1995) and de Alfaro et al. (2002). The correctness of the
procedure is captured by the following theorem.

Theorem 14 A schedule satisfying the end-to-end constraints in G is a winning
strategy for Input in the game structure �T� for the TIA given by the product T =
T1 ⊗ T2 . . .⊗ Tm ⊗ TG, with the goal

[�Good(�T1�, . . . , �Tm�, �TG�)] ∩ (t div ∪ blameO) ∩�� tfinal

where Good(�T1�, . . . , �Tm�, �TG�) is the set of all states in the game structure for
the product T that are not immediate error states, t div is the set of outcomes along
which time diverges, blameO is the set of all outcomes where player Output monop-
olises the game, and tfinal is the set of all states whose TG-component has the final
location of the specification automaton TG.

Implementation Currently, there is no implementation of timed interface automata.
In order to experiment with our component scheduling framework, we hand-coded
our TIA using the timed game automata (TGA) in the UPPAAL TIGA tool (Cassez
et al., 2005; UPPAAL TIGA, 2006). Unfortunately, the synchronisation behaviour of
TGA in UPPAAL TIGA is quite different from that of TIA. As a result, the task graphs
cannot be represented as specification automata any more. Instead the precedence
constraints have to be encoded using shared Boolean variables, and the end-to-end

Schedule Verification and Synthesis for Embedded Real-Time Components 149

deadline has to be specified as part of the winning condition (i.e., goal) for the con-
troller. Note that this encoding in UPPAAL TIGA breaks the nice compositionality
properties of the TIA framework. Also, the specification language used in UPPAAL
TIGA for expressing goals is not very expressive, especially with respect to liveness
constraints. The results of our experiments using the UPPAAL TIGA tool are described
in the next section.

5 Application: Time-Triggered Schedule Synthesis

The time-triggered architecture (or TTA, see Kopetz and Bauer 2003) is a platform
for distributed implementations of hard real-time systems used in automotive and
avionics applications. It consists of a number of processors, called TTA nodes, that
communicate by passing messages over a shared bus. The computation tasks running
on the TTA nodes use the shared bus using a time-division multiple-access (TDMA)
discipline based on a static schedule which recurs periodically. The problem of deriv-
ing a time-triggered schedule for a set of tasks is as follows (see Caspi 2003). We are
given a set of m periodic tasks {T1, . . . , Tm} and n processors. Every task is statically
allocated to a processor. The task Ti has period Pi and is allocated to processor hosti .
Its execution time lies in the interval [li , ui]. Tasks can model computations as well
as messages. There is a special processor modelling the bus – all tasks corresponding
to messages are allocated to that processor. There is a precedence relation among
tasks defined by data-flow constraints. This relation includes a computation task and
a message task when the former is the sender of the message. Likewise, a message
task precedes the computation task that is the receiver of the message. Tasks can-
not be preempted once they start running. Tasks also have relative deadlines among
them to model end-to-end constraints. These are of the form θi − θ j ≤ C , where
θi ∈ {si , ei }, where si is the start time and ei is the completion time of task Pi . The
problem is to find a static schedule for the bus for transmission of messages, and a
schedule for each TTA node for the tasks that are allocated to that node, so that all
timing constraints are satisfied.

In order to apply our framework to this problem, we start with a TIA for each
processor (TTA node or bus). Since each task is periodic, and has a best-case com-
putation time li and a worst case execution time ui , we can model it using TIA, as in
Section 3. However, now we have the complication that several tasks can be allocated
to a single processor, and tasks cannot be preempted. This constraint can be captured
using a simple device: just take the composition of the tasks allocated to a single
process with a synchronising automaton which enforces the execution of only one
task at a time. For every two tasks Ti and Tj allocated to the same processor, such a
synchronising automaton is shown in Figure 5. Intuitively, the automaton serialises
the execution of Ti and Tj . This example illustrates the case where a component (see
the description in Section 2) corresponds to a set of tasks with resource constraints

150 Purandar Bhaduri

sj?

si? ei?

ej?

Fig. 5 Synchronisation automaton for
enforcing non-preemptive serial execu-
tion of tasks Ti and Tj

among them. The resource constraint here is the non-preemptive nature of task exe-
cution, and a component describes the set of tasks allocated to a processor.

Note that the constraint that each task can run only in its allocated slot is taken care
of by the strict periodicity constraint. If the tasks do not have the same period, we can
take the lcm of the periods to be the working period, and create multiple instances of
each task to fit the period. New precedence constraints must be added between these
new instances to indicate their order.

The end-to-end constraints can be modelled as TIA as in Section 3. The composi-
tion of all the TIA involved, if defined, gives us a feasible schedule for the execution
of the tasks. However, the schedule is not static, since it is an Input strategy in which
input moves can depend on previous output moves. To extract a static schedule, we
can take the specification of execution times as worst case execution times of tasks
(worst case communication times for messages) instead of intervals. This restricts
the choices for player Output – tasks can complete only after a fixed known duration
after they start.

Discussion Various approaches to the problem of synthesising a static time-
triggered schedule based on constraint solving, branch-and-bound techniques and
mixed integer linear programming (MILP) have been proposed in the literature (see
Schild and Würtz, 2000; Caspi et al., 2003; Zheg et al., 2005 for example). Because
of disjunctions in mutual exclusion constraints, when posed as an optimisation prob-
lem, the feasible region is not convex (see Caspi et al., 2003). The typical workaround
is either to use backtracking techniques based on branch-and-bound search (as in
Caspi et al., 2003), or code the problem using binary decision variables and use a
MILP solver (as in Zheng et al., 2005). The latter technique involves guessing a large
constant M , which should be as small as possible for feasibility reasons.

It is not clear whether our approach is more scalable than the above approaches.
For a definitive answer, we need an implementation of TIA that we can use to carry
out experiments on real-life time-triggered systems. Our expectation is that using on-
the-fly techniques of Cassez et al., (2005) we can effectively conquer the inherent

Schedule Verification and Synthesis for Embedded Real-Time Components 151

EXPTIME-complexity of the timed control synthesis problem for reachability and
safety objectives.

Example 15 (Adaptive Cruise Control) This example is adapted from Kandasamy
et al., (2003) and Zheng et al., (2005) except we require task scheduling on an ECU
to be non-preemptive. The adaptive cruise-control (ACC) feature in an automobile
automatically adapts the speed of the vehicle to the speed and distance of the vehicle
in front. The ACC application involves the timely interaction among a number of
tasks that are distributed, and must interact by sending messages. These tasks can be
grouped as follows:

• Sensors:

T1: Object distance and speed
T2: Vehicle speed
T3: Throttle position

• Controllers:

T4: Desired speed
T5: Desired throttle position
T6: Desired brake position

• Actuators:

T7: Throttle actuator
T8: Brake actuator

Figure 6(a) shows the physical architecture of the system – all sensors and actu-
ators are directly connected to the bus, and one ECU (electronic control unit) hosts
all the controller tasks. Figure 6(b) shows the task graph, with the WCET (worst case

BUS

ECU
T4,T5,T6

Actuator
T7

Sensor
T1

Sensor
T2

Sensor
T3

Actuator
T8

(a) Architecture

T1
300

T2
150

pe
ri

od
 =

 4
72

5
ms

T4
300

T3
175

T5
250

T6
200

T8
200

T7
150

(b) Task graph

Fig. 6 Adaptive cruise control

152 Purandar Bhaduri

Source Target Delay
(µs)

T1 T4 350
T2 T4 650
T3 T5 1425
T4 T5 500
T4 T6 500
T5 T7 500
T6 T8 500

Fig. 7 WCCT for messages in ACC

Bus send24 send35 send46 send45 send68 send57

0 2575300 1150 3075 3575 4525

T5

T7T8

T3

T6

4575

T1
T2

T4

send14

Sensor

Actuator

ECU

4725

Time (ms)

Fig. 8 Time-triggered schedule for ACC example

execution time) of each task appearing below the task name. The end-to-end deadline
of the entire transaction is the same as the period, i.e., 4725 µs.

Figure 7 shows the WCCT (worst case communication time) of the messages. The
time-triggered schedule synthesised by our method is shown in Figure 8.

6 Conclusion

Component-based development poses new problems for embedded control systems
software. Traditional real-time scheduling theory has been successful in investigating
whether a set of tasks can be scheduled on a given platform using the characteristics
of the tasks and the platform. The underlying assumption is that the task character-
istics have been derived from the application requirements. Since today’s embedded
systems are not monolithic, but are built using pre-designed components which are
composed to realise a given functionality, what is needed is a new approach that com-
bines task scheduling within a component with what we call component scheduling.
This paper is an attempt to define and solve the component scheduling problem.

Schedule Verification and Synthesis for Embedded Real-Time Components 153

As future work, we would like to have an implementation of timed interface
automata in order to carry out experiments to demonstrate the scalability of our
approach. Experiments on small examples based on hand-coding of TIA using
UPPAAL TIGA have been encouraging.

Acknowledgements The author wishes to thank Prahlad Sampath and S. Ramesh for their detailed dis-
cussions and feedback on this work. Thanks are due to Sri Satya Aravind Akella for carrying out some of
the experiments using UPPAAL TIGA described in Section 5.

References

Abdeddaı̈m, Yasmina, Kerbaa, Abdelkarim, and Maler, Oded (2003). Task graph scheduling using
timed automata. In Parallel and Distributed Processing Symposium 2003. IEEE Computer
Society.

Altisen, Karine, Gößler, Gregor, Pnueli, Amir, Sifakis, Joseph, Tripakis, Stavros, and Yovine, Sergio
(1999). A framework for scheduler synthesis. In IEEE Real-Time Systems Symposium, pages
154–163.

Altisen, Karine, Gößler, Gregor, and Sifakis, Joseph (2002). Scheduler modeling based on the
controller synthesis paradigm. Real-Time Systems, 23(1-2):55–84.

Alur, Rajeev and Dill, David L. (1994). A theory of timed automata. Theoretical Computer
Science, 126(2):183–235.

Caspi, Paul, Curic, Adrian, Maignan, Aude, Sofronis, Christos, Tripakis, Stavros, and Niebert, Peter
(2003). From simulink to SCADE/Lustre to TTA: a layered approach for distributed embedded
applications. ACM SIGPLAN Notices, 38(7):153–162.

Cassez, Franck, David, Alexandre, Fleury, Emmanuel, Larsen, Kim Guldstrand, and Lime, Didier
(2005). Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR 2005 –
Concurrency Theory, 16th International Conference, volume 3653 of Lecture Notes in Computer
Science, pages 66–80. Springer.

de Alfaro, L. and Henzinger, T.A. (2001). Interface automata. In Foundations of Software Engi-
neering, pages 109–120. ACM Press.

de Alfaro, Luca, Henzinger, Thomas A., and Stoelinga, Mariëlle (2002). Timed interfaces. In
Embedded Software, Second International Conference, EMSOFT 2002, volume 2491 of Lecture
Notes in Computer Science, pages 108–122. Springer.

Kandasamy, Nagarajan, Hayes, John P., and Murray, Brian T. (2003). Dependable communication
synthesis for distributed embedded systems. In SAFECOMP 2003 Proceedings, volume 2788
of Lecture Notes in Computer Science, pages 275–288. Springer.

Kopetz, Hermann and Bauer, Günther (2003). The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126.

Maler, Oded, Pnueli, Amir, and Sifakis, Joseph (1995). On the synthesis of discrete controllers for
timed systems. In Theoretical Aspects of Computer Science, volume 900 of LNCS, pages
229–242. Springer-Verlag.

Schild, Klaus and Würtz, Jörg (2000). Scheduling of time-triggered real-time systems. Con-
straints, 5(4):335–357.

UPPAAL TIGA (2006). UPPAAL TIGA home page. http://www.cs.auc.dk/∼adavid/
tiga/.

Zheng, Wei, Chong, Jike, Pinello, Claudio, Kanajan, Sri, and Sangiovanni-Vincentelli, Alberto L.
(2005). Extensible and scalable time triggered scheduling. In Application of Concurrency to Sys-
tem Design (ACSD 2005), pages 132–141. IEEE Computer Society.

An Instrumentation-Based Approach
to Controller Validation

Rance Cleaveland

Abstract This talk presents instrumentation-based validation (IBV) as a means
to check whether models of controllers given in Simulink R©/Stateflow R© satisfy
functional requirements. IBV relies on the formalization of requirements as small
“observer models” whose purpose is to monitor, and detect violations of, single
requirements. These models may then be used as instrumentation for larger con-
troller models, and testing and other V&V activities performed in order to check for
the presence of errors. This presentation discusses IBV in general and illustrates its
implementation in the Reactis R© model-based testing environment.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 155
for Distributed Embedded Control Systems, 155.
c© Springer 2007

A Design Methodology for Distributed
Real-Time Automotive Applications∗

Werner Damm and Alexander Metzner

Abstract This paper presents a survey on techniques for supporting a seamless
development process of embedded automotive real-time systems. Starting from a set
of requirements we show how to integrate early design space exploration, real-time
requirements and the definition of component interfaces in a distributed organi-
zation of suppliers and OEMs. The main focus is to provide building blocks for
a design methodology enabling an AUTOSAR driven process. We also present a
method to formally specify requirements in terms of sequence diagrams and how
these requirements can be formally checked against implementations by using a rich
set of time analysis techniques. Finally, we present our approach of optimizing the
implementation in order to reduce the number of ECUs or to increase robustness.

1 Introduction

Electronic system development for automotive applications is currently undergoing
major changes to cope with the exponential growth of functionality offered by cars.

The old paradigm of equating one function to one electronic control unit (ECU)
delivered by one supplier is broken: new functions “tap” information on the car status
from multiple sources, and rely on the proper interplay of, e.g. power-train and brake
systems in advanced stability protection applications. The implementation of such
automotive functions involves distributed task sets running on multiple ECUs, with
bus-based inter-task communication. The development of such intermeshed, complex
systems which are built for product lines that deal with numerous different variants
and demand lifetime maintainability is only feasible if a component based design
methodology is applied. Moreover, the increasing architectural complexity of elec-
tronic systems consisting of eighty and more ECUs is no longer manageable neither
for system integration nor for cost reasons. The AUTOSAR (Heinecke et al., 2004)
initiative was founded exactly for this reason and aims at reducing the number of
ECUs by making SW functions relocatable. This induces several challenges: Firstly,
the verification of real-time requirements demands for a seamless design process,

∗This work was partly supported by the German Research Foundation (DFG) as part of the Trans-
regional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS).

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 157
for Distributed Embedded Control Systems, 157–174.
c© Springer 2007

158 Werner Damm and Alexander Metzner

where formally defined requirements can be checked against the implementation of
the system. Secondly, application-derived end-to-end latencies must now be estab-
lished across shared bus systems, entailing the need to perform cross ECU network
schedulability analysis incorporating models of the underlying communication archi-
tecture. Thirdly, such analysis must meet the requirements of a multi-organizational
design process, in which multiple suppliers develop subsets of such a system, with
system and integration responsibility resting with the OEM. This entails, that OEMs
must be able to assess the overall design space for possible target architectures as
well as the feasibility for cost efficient realizations of new functions prior to subcon-
tracting suppliers for pieces of the design.

We address these challenges by a set of building blocks to support a distributed
design methodology providing complete traceability from top-level requirements to
real-time characteristics of implementations. These building blocks help to give par-
tial solutions to the issues arising from applying an AUTOSAR driven development
process by the use of incremental integration, formal requirement checking and opti-
mization of embedded real-time applications. The solutions are partial in the sense
of defining them under some assumptions: We assume a Flexray/TDMA based bus
system used as backbone, an OSEK Time operating system running on all ECUs,
a resource separation between suppliers based on slot allocation, and, finally, the
usage of a fixed-priority scheduling of resources by suppliers. However, some of
the building blocks are only partially dependent on these assumptions. These build-
ing blocks will be embedded in a development methodology driven by the appli-
cation of so-called rich components (Damm et al., 2005), which aims at defining a
seamless component based design process (cf. the SPEEDS project, http://speeds.
eu.com).

In the following we start the presentation bottom up by describing use cases
for optimization and analysis of deployment architectures with respect to real-time
objectives. We shortly introduce our proposed technique on this topic and elabo-
rate on constraints to higher layers of abstraction within the development process.
Successively we describe techniques to solve the issues related to those constraints,
elaborate new constraints, and go another step further climbing the hierarchy of the
development process until we have defined a design methodology that is capable
of enabling embedded real-time systems design in an AUTOSAR era of devel-
opment. After starting with deployment optimization we present our approach to
close the gap between an implementation and formal requirements by combining
formal verification techniques with real-time analysis. Afterwards, the use of timed
sequence diagrams for real-time specifications and their capabilities for formal veri-
fication is shown. Issues arising from that design stage deal mainly with integration
related constraints, like design partitioning and putting together components com-
ing from different suppliers. From a real-time perspective we present techniques
and a methodology for system tailoring and incremental integration and imple-
mentation.

Design Methodology for Real-Time Automotive Applications 159

2 Design Optimization

As starting point we assume an executable networks of tasks that realize the func-
tional behavior and a given architectural topology of the system. Hence we have to
integrate and deploy software entities onto hardware entities while preserving valid-
ity of the complete design and while achieving optimality with respect to some objec-
tives. How we can reach the assumption of having implementations while coming
from requirements by applying a development methodology will be presented in the
following sections. However, deployment synthesis is one key technique for future
system design targeting at the reduction of architectural complexity by migrating to
more software based systems. That is why we start our presentation with this topic
which enables us to achieve the aims given by AUTOSAR.

Deployment synthesis assigns executable tasks to ECU nodes and messages to
sequences of buses in a given system architecture while preserving their temporal
requirements – given in terms of deadlines – by using middleware components, like
a real-time operating system. These middleware components control the execution of
tasks on a node, hence those behaviors are essential and we assume that they are given
with the system architecture. A system architecture consists of a number of ECUs
and a number of communication media the ECUs are connected to. In order to show
the applicability of our approach we additionally introduce memory consumption
as representative for other resources. Thus the architecture is described by a tuple
A = (P, µA, K), where P is the set of ECUs, µA : P → IN is the amount of
memory attached to each ECU and K ⊆ 2P is the set of communication media.
A task may send messages at the end of each computation to one or more other tasks.
The arrival of a message on an ECU may activate the receiving task. The timing
constraints exist for each task and each message. The task model is defined by a set
T of tuples (ti , ci , µT

i , γi , πi , δi , di) describing the individual tasks. The elements are
the activation period or minimal inter-arrival time ti ∈ IN, the worst case execution
times (WCET) ci : P → IN, memory consumption of the task on each ECU µT

i :
P → IN, the messages (including their target, size and their deadline) the task is
sending γi ⊆ T×IN×IN, and the ECUs the task is allowed to be allocated on πi ⊆ P .
Tasks from δi are not allowed to be allocated together with τi (set of redundant tasks),
and di ∈ IN is the deadline of τi . Task allocation is now defined by the following
mappings: Π : T → P that assigns each task in T to an ECU in P , � : T × T →
{0, 1} defines a priority ordering of tasks, and Γ : (P × IN × IN → 2K) assigns
each message to a set of communication media. The task of generating a deployment
of software tasks is now to find these mappings Π, Γ, � for a given system while
guaranteeing all requirements.

Beside the technical question of how to find these mapping functions there occur
several use cases for optimization during the integration/optimization phase of a
given development process, which have to be covered by an automatic deployment
approach:

160 Werner Damm and Alexander Metzner

1. Aiming at reducing costs leads to a demand for using less ECUs, hence there
is a need for architectural exploration. It is obvious, that during integration of
already implemented components changing the basic architectural topology and
implementation is impossible. This main topology has to be defined in advance
(see Section 6). However, what can be achieved is the reduction of used ECUs in
order to remove unused ECUs from the network.

2. Incremental integration – during development as well as after delivering systems
in terms of applying upgrades – demands for preserving slackness and major parts
of the already existent deployment in order to minimize changes on ECUs imple-
mentation while merging new functions and the initial system’s implementation.

3. The consideration of uncertain parameter valuation, e.g. execution times, in
system analysis is a key challenge for achieving robust systems. Therefore,
deployment techniques should provide capabilities to cope with such variations.

In the following we present our approach for automatic deployment synthesis and
afterwards we discuss how this approach can be used to cover these use cases.

Once we have given an architectural specification and more concrete component
specifications we optimize the deployment of software tasks. This is done by gener-
ating a refinement of an initial calculated pre-allocation (see Section 6) by applying
fine-grained analysis methods for extra-functional properties, like real-time proper-
ties, while minimizing or maximizing different objective functions according to the
different use cases. We use a SAT checking based approach for optimization, that we
will sketch in the following (for more details refer to Metzner et al., 2005, 2006a, b).

According to our system model we specify the allocation problem in terms of arith-
metic inequalities over integers. Assume a set of ECUs P and a set of tasks τi ∈ T .
We introduce a variable ai of type integer in the range of 1 to |P|, where a valuation
of such a variable ai = x means that task τi is allocated on ECU px ∈ P , thus we
implement Π in terms of finding valuations for these variables ai . Similar encodings
are used to define the functions Γ and φ (Metzher et al., 2006b). The optimization
procedure now has to find values for all these variables such that the requirements
are fulfilled. Furthermore, if we add an objective function, e.g. minimize the utiliza-
tion UB on a bus B, the optimization approach has to return a solution where the
upper bound of the utilization is minimal. As driver for the optimization we apply
a SAT checker modulo real-time theory, where the SAT checker is used to assign
values to the placement variables. Whenever the SAT checking algorithm reaches a
partial deployment configuration, it calls the real-time theory in order to check this
partial solution for feasibility. If the partial solution turns out to be infeasible, the
real-time theory returns an explanation of infeasibility in terms of the actual configu-
ration which in the SAT part of the combined procedure is used to build contradictory
clauses in order to avoid re-visiting this partial configuration. In order to find an opti-
mal solution we apply this procedure in a binary search, driven by the bounds of the
current optimization clause.

The advantage of this approach is that it returns the optimal solution while cop-
ing with discontinuous solution spaces, like, e.g. given in Davis and Burns (2005).

Design Methodology for Real-Time Automotive Applications 161

Furthermore, applying this technique to optimization problems with multiple, some-
times contradictory, objective functions, we are able to achieve optimal witnesses of
a pareto frontier. The main drawback of this approach is that the complexity with
respect to run-time is in principle exponential in the number of variables. However,
our evaluations have shown that it nevertheless scales very well even for big problem
instances (some ten ECUs and up to 100 tasks were solved in less than one hour).
See Metzner et al. (2006a) for a detailed summary of our experiments.

Using this approach we can now apply different encodings of the optimization
objective to cover the three use cases described above:

1. For minimizing the number of used ECUs we simply can introduce variables
encoding the number of tasks allocated on each ECU. The applied optimization
objective for this use case is defined by yielding as much ECUs with no tasks
allocated on it as possible (Metzner et al., 2006a).

2. Preserving maximal slackness can be achieved by defining optimization objectives
which minimize the loads of networks and ECUs (Metzner et al., 2005, 2006b).
Changes with respect to a given initial deployment during incremental integration
simply can be captured by encoding the initial deployment as a reference mapping
Π ′ and use this for counting the differences. Minimization of changes in compar-
ison to the initial deployment can then be achieved by an optimization objective
that aims at minimizing the number of changes (Metzner et al., 2006a).

3. Aiming at robustness caused by uncertainties of parameter valuations can be
achieved by exploiting the combination of a SAT encoding of the allocation func-
tion and the real-time theory that is in charge of validating the deployment: In
addition to the encoding of Π, Γ and φ as part of the SAT inequalities we intro-
duce variables for those parameters which possess uncertainties in order to let the
SAT solver determine their valuation with respect to an optimization objective
(e.g. for yielding high slackness). Since the real-time theory already has to be
capable of validating partial deployments, we extend the underlying scheduling
theory to be able to deal with partial assigned parameters (Metzner et al., 2006a).

Note that during final design optimization supplier’s tasks can be moved from one to
another ECU. As long as the execution time is not increased by using another type
of ECU, the system remains sustainable. This holds even for jitter and offset values,
which in general are known to be not sustainable (Baruah and Burns, 2006), because
in a setting according to our system assumptions (using TDMA-based slot allocations
for supplier separation), these values are not affected by reducing execution times.

A key enabler for performing automatic optimization is the possibility of assessing
real-time behavior in an efficient but accurate way within the real-time theory which
is coupled to the SAT solver. For our system setting of TDMA-based scheduling on
ECUs encapsulating fixed-priority scheduling in a hierarchical way, we propose to
use a schedulability analysis method which is tailored to such types of systems, and,
therefore, provides accurate analysis results while yielding an efficiency that enables
us to use it during system optimization, as described above. We present this method
in the following section.

162 Werner Damm and Alexander Metzner

3 Implementables and Real-Time Analysis

Implementing functions means structuring the behavior into executable tasks, writing
code for them and selecting a scheduling paradigm, hence defining the used real-time
operating system. Since we are dealing with automotive applications, we restrict our-
selves to the usage of OSEK and OSEKTime. We propose to use OSEKTime and a
standard OSEK on top of the time triggered part. The OSEKTime part owns the con-
trol of the processor and triggers separated execution windows by timer interrupts.
As described in Section 6, a TDMA schedule is constructed by a set of slots. Disjoint
subsets of slots build execution windows, in each of them a set of tasks (assigned to
one supplier) is locally scheduled. To simplify the analysis we assume that task sets
assigned to an execution window are scheduled under a fixed priority preemptive
scheduling. We call slots assigned to an execution window ET slots (slot si is in the
set of ET slots SET). All other slots are called TT slots (si ∈ ST T). In this way we
are able to implement a hierarchical scheduling which will be a requirement coming
from the way we implement the supplier-OEM relationship (see Section 6). Now that
we have an implemented and integrated system, the issue is to analyze the temporal
behavior of the integrated parts and look for optimization options. Therefore, we will
derive a response time analysis based on traditional analysis approaches (cf. Audsley
et al., 1995; Hamann et al., 2004) for tasks that are assigned to a set of ET slot.

The main idea of this analysis is to extend above cited scheduling analysis for
fixed priority preemptive scheduling by adding blocks induced by interference of the
tasks execution with TT slots of the TDMA round. Firstly we collect all successive
slots s j ∈ ST T that are not ET slots and construct new, bigger slots between two ET
slots which we call blocking slots. Figure 1(a) shows the new blocking slots and their
length which is constructed by the sum of the length λ(s j) of all merged slots.

For each of these slots Bi we can construct a fixed offset Oi . The value of Oi is
constructed by considering the length of the merged slots and the offset of the first
slot si1 within each Bi , as shown in Figure 1(b).

Because of the cyclic nature of the TDMA round, we can use the extended version
of the response time analysis with offset presented in Palencia and Harbour (1998).
If we use this extension, then we have to find out what is the critical instant. It is obvi-
ous that starting within an ET slot is not the worst case. Thus we observe – in analogy

ETETET

Λ
Λ

B1 B2 B3

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

(a) Slots that are not used for ET tasks
can be treated as blocking slots

ETETET
B1 B2 B3

O2
O3

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

(b) Blocking slots between ET slots
have fixed offsets

Fig. 1 Building blocking slots and offsets

Design Methodology for Real-Time Automotive Applications 163

to the critical instant from Liu and Layland (1973) – the set of worst case starting
points for the analysis of ET tasks to be the beginning of each blocking slot Bi .

An important observation from this set of worst case scenarios is that it is not
sufficient to consider a single critical instant but we have to regard all instants that
are possible. Different starting points in time will shift the offsets of the blocking
slots within the response time calculation. Furthermore, blocking slots without ET
slots between can be merged. In order to calculate critical instant specific offsets and
to consider all possible starting points, we define a rotation operation rot (T DM A),
that produces a new view of the TDMA round in which the TDMA round is rotated
to the left until the nearest ET slot of the original TDMA round just has passed,
i.e. the new view of the TDMA round starts with the first slot si ∈ ST T after the
nearest (from the left) ET slot. After performing the rot (T DM Ak−1) =: T DM Ak
we construct the blocking slots Bk

j and use this view (T DM Ak) of the TDMA round
as starting point of our response time analysis. Let Ok

j the offset of blocking slot
Bk

j in the TDMA view T DM Ak , that can be calculated by summing up all blocking
slots and all ET slots before Bk

j in T DM Ak . Let λ(Bk
j) the length of a blocking slot

Bk
j and n the number of blocking slots (and thus the number of ET slots). Then it

holds:

I T T
i (ri , k) =

n∑

j=1

⌈
ri − Ok

j

�

⌉

0

· λ(Bk
j) (1)

where ri is an arbitrary time interval and I T T
i (ri , k) represents the time amount that is

consumed by blockings from TT slots. With the usually used equation for calculating
the interference costs I ET

i (rk
i) for a task τi in a fixed priority preemptive scheduling

(cf. Tindell 1994) we can now calculate the response time rk
i of ET tasks for a given

TDMA view:
rk

i = ci + I ET
i (rk

i)+ I T T
i (rk

i , k) (2)

In order to determine the worst case response time for an ET task we have to apply
the rotation and response time analysis for each possible instance iteratively. Hence,
we perform the rotation operator:

T DM Ak := rot (rot (. . . rot (T DM A) . . .))
︸ ︷︷ ︸

k times

(3)

Finally, the worst case response time is determined by the maximal response time
w.r.t. a certain view T DM Ak of the TDMA round, i.e.

ri = max
k∈{1,...,n}

{
rk

i

}
(4)

Note, that n is the number of blocking slots after the first rotation and thus the num-
ber of ET slots. Therefore, only very few instants have to be considered. In Metzner
(2005) we have proven that considering all rotations is sufficient for finding all pos-
sible critical instants.

Given this base of analysis methods for hierarchical OSEKTime applications, we
implemented a tool set for validating real-time properties in many more facets than

164 Werner Damm and Alexander Metzner

explained in this paper. Finally, with these methods on-hand, the integrator of com-
plex embedded systems has the capability of performing virtual integration and of
searching for optimization possibilities as well as looking for robustness issues by
varying the component’s parameters. However, there is one main issue still open,
which we will address in the next section: the capability of propagating the results of
the real-time analysis into the abstraction level of real-time requirements, including
their proofs.

4 Implementation Verification

Real-time scheduling analysis methods are applied to implementations and therefore
are capable of predicting the temporal behavior of the system under design. While
this is a very useful technique, there is still a gap between properties derived by those
analytical approaches and the requirements specified in terms of formal models, like
LSCs (see next section). In this section we briefly sketch how we close this gap by
translating both sides in the same semantic domain, namely timed automata, and pave
the way towards a seamless design process by allowing to backannotate results from
scheduling analysis into pre-defined classes of timed automata which then can be
used for the formal verification of temporal properties.

In order to combine real-time scheduling and formal methods, recent approaches
model the underlying scheduling algorithms using the same or a similar formalism
as the model itself. Beside others timed automata based approaches are widely used
in this area (Fersman and Yi, 2004; Hendriks and Verhoef, 2006; Madl et al., 2006).
Although those verification techniques provide exact results a problem here is the
limited system size due to the computing power needed for verification. Moreover,
compositional methods are usually of limited use because scheduling analysis is
holistic, i.e. the temporal behavior of tasks cannot be considered in isolation.

We propose an approach, which is also based on timed automata, but utilizes
dedicated verification techniques and tools used in the area of scheduling analysis,
that can deal with heterogeneous, distributed system architectures, complex task
networks, and mixes of different scheduling algorithms (Richtes et al., 2003). Our
approach defines only the components needed to model task networks as timed
automata, while the system architecture and scheduling algorithms are modeled
using the underlying scheduling analysis framework. We provide a mapping from
the respective task networks including their response times to our models, and we are
able to show that by means of this mapping both models are semantically equivalent.
With this our models subsume all possible temporal behavior due to task interfer-
ences, and in advance we assure that given schedulability of a task network model
implies that the timing behavior of the respective timed automata model is valid.

Real-time analysis, as it was presented in the last chapter, can also be interpreted
in another way, by so-called event streams (Hamann et al., 2004). The idea is to
transform critical instant theorems used in scheduling analysis into the world of timed

Design Methodology for Real-Time Automotive Applications 165

e e

a) Trigger/Sink b) Execute Component

f

Sink
[P −

e ce P
+
e]

[Oe ≤ ≤

≤ ≤

≤ ≤ ≤≤
ce Oe + P

+
e]

{ce}
{ce}

[0 ce Je]

e

[R−
ef

cef R
+
ef

]

f

{cef }
e

Fig. 2 CTA component definitions

traces in order to characterize task activation properties. Furthermore, the delay a
task causes can be interpreted as a transformation function on such a triggering event
stream leading to output event streams which then can be used to build a composition
theory. Interestingly, these event streams and their transformers have been shown to
be equivalent to scheduling analysis (Hamann et al., 2004), and, furthermore, have a
timed language semantics.

The formalism we use for modeling temporal behavior of task networks is called
Cyclic Timed Automata (CTA) and consists of a set of pre-defined parameterizable
timed automata. Figure 2 gives an example, where each CTA contains a parallel com-
position of a trigger automaton (so-called sink) and an execution automaton. Sinks
characterize the temporal activation of task according to the input event streams.
Execution automata characterize the event stream transformer function. Each CTA
is parameterizable with those parameters that define the shapes of event streams,
i.e. period, jitter and response times. We have shown, that the timed language that
sinks accept is equivalent to the language created by input event streams (Dierks et
al., 2006). Simultaneously we have shown that the parallel composition of execu-
tion automaton and sinks is equivalent to the output event stream created by an event
stream transformer on an input event stream. Obviously, this implies the equivalence
between execution automaton and event stream transformer.

This result is very important because it closes the gap between scheduling analysis
(now expressible in terms of timed automata) and high level specifications, which
have also a timed automata based semantics. Hence we are now able to formally
check requirements against implementations, which is key for providing a seamless
development process. Our experiments show, that we can deal with large distrib-
uted systems while outperforming other timed automata based approaches by far
(see Dierks et al., (2006) for detailed summary of these experiments).

To summarize, up to now we are able to deploy and integrate implementables on
a given hardware architecture, we are able to analyze the temporal behavior, and we
are able to automatically check the temporal behavior of an implementation against
higher level specifications. Typically, the latter ones are derived from requirements
given in a higher layer of abstraction. In the next section we propose to use a graphical
specification language in which specifications can be modeled in a protocol-like style
and which has a timed automaton based semantics, meaning that we may apply the
techniques presented in this section in order to reach a seamless design process while
crossing different layers of abstraction.

166 Werner Damm and Alexander Metzner

5 Requirement Checking

Increasing the quality of real-time systems is a main issue of the definition of devel-
opment processes, often supported by automatic analysis tools, as described in the
last section. Furthermore, the specification of formal requirements allows to reach
the overall goal of a seamless process by allowing for formal verification. We pro-
pose to use a visual specification language that has a sound semantical base and is
easy to use by engineers.

The Live Sequence Charts (LSC) (Damm and Harl, 2001) language is a formally
rigorous variant of the well-known scenario language Message Sequence Charts
(MSC). LSCs yield expressive power by means to distinguish mandatory and sce-
nario behavior, means to characterize by another scenario the context in which a
specification applies, and means to distinguish required from possible progress, i.e.
to require liveness. In the context of this work we use LSCs as specification language
for sequences of task and message activation and time relations over parts of these
sequences. Since LSCs are an established visual formalism for requirements in for-
mal, model-based development equipped with a formal semantics in terms of Timed
Büchi Automata, they are aiming at formal verification as well. The subclass of the
LSC language that is needed for real-time requirements we aim at falls into the class
of time-bounded LSCs. For this class the complexity of formal verification by using
model checking techniques is known to be practically efficient (Klose et al., 2006).
Within our real-time framework we exploit this advantage and are able to provide an
efficient formal verification for component specifications, taking into account their
actual real-time behavior in a deployment architecture.

A special use case of these specifications is the characterization of temporal behav-
ior of interfaces and compositions of components. Three different kind of specifi-
cations are used under the framework of a component-based development process
(Damm et al., 2005): so-called black box specifications characterize the temporal
behavior of executable components, e.g. the time delay between the triggering of an
component by their inputs and the time instant a computational results at correspond-
ing outputs becomes visible. Secondly, input and output ports can be characterized by
assume/guarantee pairs of specifications, where the assume part defines the allowed
environment applied to the component such that the guarantee at outputs are achiev-
able. Such specifications are used for compatibility checks in compositions of com-
ponents, e.g. an input assumes a fixed time period between successive activations on
dedicated signals. Formal verification can then be used to check whether the send-
ing components provides a guarantee that fits this assumption. Lastly, LSCs can be
used for the specification of complex protocol behavior in the composition of compo-
nents, here called gray box specification. Examples for this kinds of specifications are
inter task communication protocols while guaranteeing end-to-end delays on paths
within the composition. In this use case formal verification is used to establish the
gray box specification from the characterization of the black box specifications of the
connected subcomponents.

Design Methodology for Real-Time Automotive Applications 167

While such an approach is very useful in a design phase dealing with networks
of functions, we now have to create a link to the earliest design phase in order to
provide a seamless development process, where the OEM captures requirements and
tailors the design to portions to be implemented by different suppliers. Such a tai-
loring is used to determine properties of sub-systems which can be checked by the
approach described before. Crossing the borderline of responsibilities demands for
solutions for two main issues: The partitioning of a systems into modules assigned
to suppliers, including smooth integration capabilities at OEM site, and, dependent
on that tailoring, refining the requirements to partial requirements for each supplier.
Both issues will be addressed in the next section.

6 Design Tailoring and Pre-Allocation

Due to the different roles of OEM and supplier, the way forward to hardware indepen-
dent feature implementations in an AUTOSAR driven development process demands
for spending more effort in the specifications that will be delivered to the suppliers.
Typically, these specifications have to be worked out for each supplier in an early
phase of the development process, even if there is not yet any implementation of
other parts available. Hence, there is a need for having virtual integration of the sys-
tem, based on uncertain knowledge of extra-functional parameters. Therefore, we
conclude to have the following approach for achieving a high quality specification:

1. A component based interface for real-time requirements and resource sharing
which aims at an independent development of software functions by suppliers
without the need of taking other system parts into account.

2. A design tailoring at system integrator’s site that enables the integrator to derive
resource constraints assigned to functions under uncertain knowledge of imple-
mentation parameters.

Item 2 is a prerequisite to item 1, because in a complete requirement specification
for relocatable software the amount of available resources is needed. Consequently,
the supplier of components will not need any system knowledge during development
but may design his component according to their own rules (scheduling, etc.) on the
hardware platform his components are assigned to. Therefore, the real-time interfaces
must be generated in a way that the overall feasibility is not affected by integrating
components at OEM site.

We propose a methodology containing 4 phases to achieve the goal of design
tailoring and interface generation. Starting with a network of functions, we propose
to perform the following steps:

1. Architectural design space exploration will assess the various solutions for ECU
network topologies and ECU architectures, potentially based on a library of
already existing parts of ECUs and network topologies (e.g. a given Flexray

168 Werner Damm and Alexander Metzner

system as backbone). The result is an architectural topology on which executable
functions can be deployed.

2. Task synthesis will create executable fragments, called tasks, from the logical
description in terms of networks of functions (e.g. a function that describes the
behavior of a controller reading sensors and driving actuators, but sensors and
actuators are located on different ECUs in a distributed architecture). The results
are sets of deployable tasks, which are the elementary design entities that are
scheduled on ECUs and buses.

3. Early deployment analysis will deploy the elements of task networks to elements
of the architectural view while considering uncertainties and abstractions of dif-
ferent viewpoints (e.g. real-time). The result is a pre-allocation of functional frag-
ments on a distributed architecture that is handed over to the supplier.

4. Time schedule definition will allocate time slots on each architectural element for
the set of functional fragments to be executed on it. Based on the estimated loads
of fragments within the preliminary deployment and the real-time requirements
given in terms of end-to-end deadlines, the time amount each supplier is allowed
to consume on each architectural element will be calculated.

In this paper, we assume that the first two items are given. We will address the last
two topics in more detail in the next two subsections, assuming as result of step 1
a given architectural topology, and as a result of step 2 a set of possibly dependent
tasks.

6.1 Design Tailoring

The aspect of generating resource shares in advance can be reduced to the task of gen-
erating deadlines and periodicities. This is in contrast to previous work (cf. Easwaran
et al., 2006; Henzinger and Matic, 2006), where the resource assigned to components
is formalized as a function of computation capacity over the time domain. Those
approaches have a main drawback: During implementation of components it is not
possible to use traditional validation techniques, like measuring. This is, because it is
not feasible to slow down the hardware in a way that measurements are sufficiently
performable regarding a capacity function. However, our approach aims at leaving
the traditional implementation process untouched on the one hand and enabling the
smooth composition of components developed outside on the other hand. Such an
approach is achievable if we are able to translate the resource consumption of other
components into real-time requirements for the component under design. Section 6.2
gives a detailed introduction to this topic and its integration in the whole system.
Prerequisite for such a technique is the specification of time budgets each component
is allowed to consume, i.e. deadlines, which strongly depend on the implementation.
Hence, given the component structure there is a need for an estimated design space
exploration for assessing the set of feasible solutions, and for predicting the software
and hardware structure of the whole system in advance. Obviously, in an early phase

Design Methodology for Real-Time Automotive Applications 169

of the development process this will be driven by abstractions of hardware resources
and software implementations. Once we have found such an estimated implementa-
tion, we can use the result and calculate the approximative load of each component
which then is used as driver for budgeting the time intervals of end-to-end deadlines
coming from system requirements.

We use the approach presented in Section 2, but instead of calculating accurate
results for real-time parameters in pre-allocation only very rough estimations of the
load are used (see Metzner, 2005) for a more comprehensive presentation). The opti-
mization function is selected in a way that the slackness of the system is maximized.
The outcome of this optimization step is a deployment for which we now are able
to calculate the load of each task by using standard schedulability methods (see
Section 3). This load is used to derive the needed parameters for resource sharing:
deadlines and periods. For periods we assume that they are given by the high-level
design (e.g. derived from the closed loop controller analysis for a plant model). Dead-
lines are given as requirements that are talking about end-to-end delays over chains
of tasks, hence, we have to tailor these time intervals into smaller fragments for soft-
ware parts of the chain that need not be allocated on the same ECU.

The approach of synthesizing deadlines is based on previous work (cf. Di Natale
and Stankovic, 1994; Johnson and Shin, 1997), that is enhanced by a load driven
metric. The task network we deal with is assumed to be a tree of tasks, which
are deployed on a distributed architecture according to the pre-allocation described
above. For each path π ∈ Π from root tasks to leaf tasks, that is an ordered set of
tasks Tπ , we assume a given end-to-end deadline dπ . For simplicity, we assume that
each task is triggered by an incoming message if it is within a path, or by an external
event with some periodicity if it is a root task. In order to generate deadlines for these
tasks we perform a load-based sharing of the path’s deadline dπ , i.e. the generated
deadline dτi of a task τi ∈ π is given by dτi = Sπ

τi
· dπ , where Sπ

τi
is the load of

task τi in path π . Sπ
τi

is derived by real-time analysis of the complete system using
techniques presented in Section 3, i.e. a calculation of the response time of the paths
rπ and the response time of each task rτi (and each message) in the path. The share of
each task on a path π can now be calculated by Sπ

τi
= rτi /rπ . Since task networks are

trees, it is possible for one task to occur in more than one path, each with a different
end-to-end deadline dπ . In order to not violate shorter end-to-end deadlines by gen-
erated task deadlines coming from paths with longer deadlines, we first minimize the
deadlines for all tasks that are part of more than one path. The collection of shared
task T share is defined by

T share =
⋃

πi ,π j∈Π,i �= j

πi ∩ π j (5)

For these tasks we assign the minimal share-driven deadline on all paths:

∀τi ∈ T share : dτi = min
{

Sπ
τi
· dπ | π ∈ Π ∧ τi ∈ π

}
(6)

170 Werner Damm and Alexander Metzner

Now we have generated the deadlines of tasks shared across multiple paths, we can
generate the deadline of all other tasks:

∀π ∈ Π : ∀τi �∈ T share τi ∈ π → dτi = Sπ
τi
·
⎛

⎝dπ −
∑

τ j∈π∩T share

dτ j

⎞

⎠ (7)

In general, this approach may lead to non-optimal results due to the fixed pre-
allocation. However, it turns out that for substantial benchmarks load-driven dead-
line generation in all cases is superior to the methods described in Di Natale and
Stankovic (1994) and Johnson and Shin (1997) (cf. Metzner, 2005) for a more
detailed description).

6.2 Generating Real-Time Interfaces

We now want to adjust the synthetic deadlines for tasks achieved by the pre-allocation
towards localized deadlines which can be used by the supplier who is responsible for
implementing the task. Localized deadlines means that the supplier may implement
the task that guarantees these deadlines without the need of knowing more system
related details. We assume – for simplicity reasons – that the OEM has tailored the
system design to slots of computations in a TDMA round based scheduling, like
provided by OSEKTime. Multiple slots can be assigned to a supplier during one
TDMA round, where there is no need for suppliers to know about that fact. Hence,
we have to adjust the deadlines in such a way that if all tasks of suppliers hold the
deadlines of their tasks, then the whole system is feasible. In this first version of our
synthesis approach we restrict the tasks to be implemented by suppliers in a way that
they have to be fully preemptive.

Let s0 < . . . < sn−1 be all slots allocated to supplier S in a TDMA round by the
OEM. The TDMA round is a sorted set of n slots si , where each slot has a length
λ(si) and a fixed offset Oi . The offset determines the starting point in time of this
slot. Without loss of generalization we only talk about slots destined to the task under
design. The length of the whole TDMA round is given by �. Let the (synthesized)
deadline of a task be given by d. We further assume, that the triggering event of the
task arrives without any relation to the TDMA round. In order to calculate localized
deadlines we now have to consider only those slots the deadline covers during poten-
tially multiple TDMA rounds. We then will shorten d in a way, that the task remains
safe with respect to d if it is implemented by fully exploiting the computation power
of the foreseen architecture. However, we additionally have to consider the possible
worst case scenarios of the arrival time during a TDMA round and take the minimal
deadline. Worst case scenarios are those time instants that are coming directly after
passing a slot si . For time instants between slots we have proved that these instants
are not critical (Metzner, 2005). We now analyze for each slots si how d can be safely
shortened assuming the triggering event of τ occurs directly at the end of si .

Design Methodology for Real-Time Automotive Applications 171

d

λ

Λ Λ Λ

(si)Oi

Fig. 3 Worst case example for TDMA based schedule of a set of task

As depicted in Figure 3, we can split the time interval covered by d into three parts.
The first part collects all time intervals the TDMA round provides for the task set of
the supplier after the beginning of d right after the end of slot si .

ci
f =

n−1∑

y=i+1

λ(sy) (8)

In the middle part we have to consider all slots destined to the set of tasks for each
covered instance of the TDMA round after the first and without the last one, if the
last one is partially covered by d:

ci
m = Xi ·

n−1∑

y=0

λ(sy) (9)

where Xi is the number of covered TDMA rounds without the first and the last one.
It can easily be calculated by

Xi = max
((⌊

Oi + λ(si)+ d
�

⌋

− 1
)

, 0
)

(10)

In the last covered TDMA round we have to consider all slots that are destined to
the set of tasks until we reach the end of the deadline interval. Furthermore, if the
deadline ends within a slot si we only are allowed to assign those part of the slots
that are covered by the deadline interval. Therefore, the computation time for the set
of tasks in the last covered TDMA slot is defined by

ci
l =

n−1∑

y=0

⌈
li − Oy

�

⌉

0
· (λ(sy)− max

((
λ(sy)−

(
li − Oy

))
, 0
))

(11)

where li is the part of the deadline interval that covers the last partially covered
TDMA round:

li = Oi + λ(si)+ d − (Xi + 1) ·� (12)

In order to get the portion of computation in the last TDMA round which is only
partially covered, we have to look at 3 cases: If li ends before slot sy , then

⌈
li−Oy

�

⌉

0
becomes 0 and sy is not added. If li ends somewhere in sy , then z = li−Oy calculates

172 Werner Damm and Alexander Metzner

the covered interval of sy , hence the correction factor to be subtracted from λ(sy) is
λ(sy) − z. If li ends after sy , then z = li − Oy > λ(sy), hence the max-operation
forces to subtract 0 from λ(sy) and the computation time of sy is added completely.
Now we are able to calculate the localized deadline for the worst case scenario of an
arriving trigger event just behind slot si , i.e. the maximal computation time for the
set of tasks that is covered by d:

di = ci
f + ci

m + ci
l (13)

Since we have to analyze this considering all possible worst case scenarios, which
are all time instants right after each slot that is assigned to serve the supplier’s set of
task, we finally end up in

dloc = min
{

di | i ∈ {0, . . . , n − 1}
}

(14)

The implementation of the set of tasks can now be developed by the supplier on the
foreseen hardware platform with the ability of using tools and methods (e.g. mea-
suring execution times etc.) used in a stand-alone project. On the other hand the
capability of seamless composition enables the OEM to integrate the delivered imple-
mentation within the intended time slots without any need for additional analysis.

7 Conclusion

In this paper we gave a survey on the techniques for the design of automotive
real-time systems. Starting from requirements we have shown a set of methods
and techniques that are dedicated to support a seamless development process while
considering supplier-oriented industrial processes. Automatic and approximative
design space exploration leads to an assessment of feasible solutions. These solution
in advance are used by the OEM as key driver for budgeting the time domain for
different supplier’s components, which enables a component based integration at
OEM’s site, and an isolated development at supplier’s site. Formal specifications
in terms of LSCs are used to capture all requirements and provide the capability
of proving correctness of the system in a strong mathematical sense. Together with
accurate real-time analysis methods of implementations, the technique of cyclic
timed automata is used to close the gap between formal requirements implemen-
tations. Finally, the application of design space exploration with exact analysis
methods enables fine-grained optimizations of the system.
In the end, mastering a seamless, component based development processes, while
simultaneously increasing the quality of designs, will be one key technology in
upcoming embedded systems development processes, in the AUTOSAR era more
than ever. Therefore, our approach can be seen as a first and important step into that
direction.

Design Methodology for Real-Time Automotive Applications 173

References

N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed priority pre-emptive schedul-
ing: An historical perspective. Real-Time Systems, 8(2), 1995.

S. Baruah and A. Burns. Sustainable Scheduling Analysis. In Proceedings of the IEEE Real-Time
Systems Symposium. IEEE Computer Society, 2006.

W. Damm and D. Harl. LSCs: Breathing Life into Message Sequence Charts. Formal Methods in
System Design, 19, 2001.

W. Damm, E. Böde, A. Metzner, T. Peikenkamp, and A. Votintseva. Boosting Re-use of Embed-
ded Automotive Applications Through Rich Components. Proceedings Foundations of Inter-
face Technologies, 2005.

R. Davis and A. Burns. Hierarchical Fixed Priority Pre-emptive Scheduling. In Proceedings of the
IEEE Real-Time Systems Symposium, 2005.

M. Di Natale and J. Stankovic. Dynamic End-To-End Guarantees in Distributed Real-Time Sys-
tems. In Proceedings of the IEEE Real-Time Systems Symposium, 1994.

H. Dierks, , A. Metzner, and I. Stierand. Combining Timed Automata based Formal Specifica-
tions and Real-Time Scheduling. Technical report, Department of Computer Science, Carl-
von-Ossietzky Universität Oldenburg, 2006.

A. Easwaran, I. Lee, O. Sokolsky, and I. Shin. Incremental Schedulability Analysis of Hierarchical
Real-Time Components. In Proceedings of the 6th ACM Conference on Embedded Software,
2006.

E. Fersman and W. Yi. A generic approach to schedulability analysis of real time tasks. Nordic
Journal of Computing, 11, 2004.

A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design Space Exploration and System Optimiza-
tion with SymTA/S. In Proc. RTSS, 2004.

H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L. Maté,
K. Nishikawa, and T. Scharnhorst. AUTomotive Open System ARchitecture – an industry-wide
initiative to manage the complexity of emerging automotive E/E-architectures. In Proceedings
of Convergence 2004, International Congress on Transportation Electronics, 2004.

M. Hendriks and M. Verhoef. Timed Automata Based Analysis of Embedded System Architec-
tures. In Proc. IPDPS, 2006.

T.A. Henzinger and S. Matic. “An Interface Algebra for Real-Time Components”. In Proc. RTAS,
2006.

J. Jonsson and K. Shin. Deadline Assignment in Distributed Hard Real-Time Systems with
Relaxed Locality Constraints. In Proceedings of the International Conference on Distributed
Computing Systems, 1997.

J. Klose, T. Toben, B. Westphal, and H. Wittke. Check It Out: On the Efficient Formal Verification
of Life Sequence Charts. In Proceedings of the 21st Conference on Computer Aided Verifica-
tion, 2006.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environ-
ment. Journal of the ACM, 20(1):46–61, 1973.

G. Madl, S. Abdelwahed, and D.C. Schmidt. Verifying distributed real-time properties of embed-
ded systems via graph transformations and model checking. Real Time Systems, 33, 2006.

A. Metzner. Effizienter Entwurf verteilter eingebetteter Echtzeitsysteme. PhD thesis, Carl-
von-Ossietzky Universität Oldenburg, 2005.

A. Metzner and C. Herde. RTSAT – An Optimal and Efficient Approach to the Task Allocation
Problem in Distributed Architectures. In Proceedings of the IEEE Real-Time Systems Sympo-
sium. IEEE Computer Society, 2006.

A. Metzner, M. Fränzle, C. Herde, and I. Stierand. Scheduling Distributed Real-Time Systems by
Satisfiability Checking. In Proceedings of the Conference on Embedded and Real-Time
Computing Systems and Applications, 2005.

174 Werner Damm and Alexander Metzner

A. Metzner, M. Fränzle, C. Herde, and I. Stierand. An Optimal Approach to the Task Allocation
Problem on Hierarchical Architectures. In Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium, 2006.

J. Palencia and M. Harbour. Schedulability Analysis for Tasks with Static and Dynamic Offsets.
In Proceeding of the 9th IEEE Real-Time Systems Symposium, 1998.

K. Richter, R. Racu, and R. Ernst. Scheduling Analysis Integration for Heterogeneous Multi-
processor SoC. In Proc. RTSS, 2003.

K. Tindell. Fixed Priority Scheduling of Hard Real-Time Systems. PhD thesis, University of York,
1994.

Role of Formal Methods
in the Automobile Industry

Thomas E. Fuhrman

Abstract The automobile industry presents some unique challenges for the applica-
tion of formal methods. The automobile industry is rapidly changing from a mechan-
ical industry to one driven by innovation in electronics and embedded software.
Many new safety and convenience features are being designed that will have higher
degrees of control authority over the motion of the vehicle, leading to increasingly
autonomous operation of the vehicle. To achieve robust operation of these new fea-
tures in the presence of variability in traffic and weather conditions, road conditions,
driver skill level, and vehicle state of health, formal methods research is needed in
the areas of requirements engineering, model-driven design and model translation,
hybrid system modeling and verification, distributed electrical architecture, software
architecture, communication protocols (such as LIN, CAN, and FlexRay), fault tole-
rance, and testing. Several preliminary case studies have been conducted in some of
the above areas.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 175
for Distributed Embedded Control Systems, 175.
c© Springer 2007

Predicting Failures of and Repairing Inductive
Proof Attempts∗

Mahadevan Subramaniam, Deepak Kapur, and Stephan Falke

Abstract Inductive reasoning is critical for ensuring reliability of computational
descriptions, especially of algorithms defined on recursive data structures. Despite
advances made in automating inductive reasoning, proof attempts by theorem provers
frequently fail while performing inductive reasoning. A user of such a system must
scrutinize a failed proof attempt and do intensive debugging to understand the cause
of failure, and then provide additional information to make a failed proof attempt
succeed.

A method for predicting a priori failure of proof attempts by induction is pro-
posed. It is based on analyzing the definitions of function symbols appearing in
a conjecture. Further, failure analysis is shown to provide information that can be
used to make those proof attempts succeed for valid conjectures. The failure of proof
attempts could be because of a number of reasons even when a conjecture is believed
to be valid. It might be that an induction scheme used in a proof attempt is not
powerful enough to yield useful induction hypotheses which can be applied effec-
tively. Or, even when induction hypotheses are applicable, the proof attempt might
not succeed because of missing lemmas. A method for speculating intermediate lem-
mas which can make induction hypotheses applicable and/or lead to simplification
obtaining validity is proposed. The analysis can be automated and is illustrated on
several examples. A preliminary implementation demonstrates the effectiveness of
the proposed approach.

1 Introduction

Induction plays an important role in reasoning about many applications that involve
computation with recursive data structures and/or recursive algorithms. Among other
things, this includes software, parameterized hardware and protocols, and, more
recently, static program analysis. Theorem provers to mechanize induction have
been investigated and successfully used in verifying properties of several appli-
cations. However, inductive proof attempts in theorem provers fail more often than
succeed, thus requiring user intensive debugging of failed proof attempts. Automated

∗Partially supported by the NSF award CCF-0541315.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 177
for Distributed Embedded Control Systems, 177–191.
c© Springer 2007

178 Mahadevan Subramaniam et al.

methods that aid users in handling failures of inductive proof attempts are of crucial
importance.

In this paper, we describe a novel approach for dealing with failed proof attempts:

– it a priori determines the failure of a theorem prover to establish a given conjecture
using induction, and

– under the assumption that the conjecture is valid, it can suggest intermediate lem-
mas which may be proved to complete a proof of the conjecture.

It is shown how a theorem prover can provably predict its own failure even before
attempting an inductive proof of the conjecture. Syntactic conditions on the conjec-
ture and on the definitions of the functions appearing in the conjecture are identified
to achieve this goal. Based on such an analysis, a prover can provide useful feed-
back without the users having to resort to the tedious task of analyzing failed proof
transcripts.

In this paper, we concentrate on predicting inapplicability failures, meaning that
the induction hypotheses generated from an induction scheme are inapplicable in a
subgoal generated from an induction scheme.

The proposed approach analyzes the definitions of function symbols appearing
in a conjecture to check whether one function definition is blocking another func-
tion definition, causing the inapplicability of an induction hypothesis. In Section 3,
this concept is used to define flawed induction schemes for the conjecture, using the
terminology of Boyer and Moore [2]. It is shown in Section 4 that if a proof of a con-
jecture is attempted using a flawed induction scheme, then under certain conditions,
such a proof attempt is guaranteed to fail.

The framework used for performing inductive reasoning is that of explicit induc-
tion using the cover set method as implemented in our theorem prover RRL (Rewrite
Rule Laboratory) [9, 12].

Assuming that the conjecture is valid, the above analyses can also lead to the
discovery of potentially useful bridge lemmas for making a proof attempt succeed.
These lemmas are formulated to unblock function definitions and ensure further sim-
plification. Using our earlier work on discovering lemmas for automating inductive
proofs [7], we propose repair strategies for failed proof attempts; this is discussed in
Section 5.

Section 6 includes a discussion of a preliminary implementation as well as a table
of examples tried using the proposed approach. This is followed by a brief conclusion
and ideas for future work.

This work is complementary to our work reported in [6, 8] where conditions on
function definitions and conjectures are identified that ensure that the inductive valid-
ity of a subclass of conjectures can be decided automatically without any user inter-
action. Compatibility among function definitions (which is anti-thesis of blocking)
plays a critical role there, albeit positively, in the sense that if functions appearing in
a conjecture have compatible definitions, then under certain conditions, its inductive
validity can be decided.

Predicting Failures of and Repairing Inductive Proof Attempts 179

1.1 Two Illustrative Examples

Example 1 Consider proving the conjecture

C1 : len(rev(x)) == len(x)

from the following rules defining functions len, append, and rev:

1. len(nil) → 0, 2. len(cons(x, y)) → s(len(y)),
3. append(nil, z) → z, 4. append(cons(x, y), z) → cons(x, append(y, z)),
5. rev(nil) → nil, 6. rev(cons(x, y)) → append(rev(y), cons(x, nil)).

with 0 and s (successor) as the constructors for natural numbers and nil and cons as
the constructors for lists.

The conjecture C1 cannot be decided by equational reasoning from the above rules.
An inductive proof of C1 can be attempted. Using the principle of structural induction
for lists, x is instantiated to be nil for the base case; for the induction step case, x is
instantiated to be cons(u, v) with a hypothesis generated by instantiating x to be v .1

The base case simplifies to true using rules 5 and 1. Focussing on the step case,
the conclusion in the subgoal is len(rev(cons(u, v))) == len(cons(u, v)), with the
induction hypothesis being len(rev(v)) == len(v). The conclusion simplifies using
rules 6 and 2 to len(append(rev(v), cons(u, nil))) == s(len(v)).

If the conjecture is viewed as oriented from left to right, then the left side of the
induction hypothesis cannot be applied to the left side of the conclusion.

A key result of this paper is that such a failure of an inductive proof attempt can be
predicted a priori (without attempting the proof) by analyzing the interaction among
the rules defining len and rev. When rev as an argument to len is expanded using the
recursive rule 6, the extra function append between len and rev cannot be eliminated
using the existing rules. Consequently, the corresponding induction scheme is said to
be flawed.

It will also be shown how the above analysis can be used to speculate bridge lem-
mas which can repair such a failed proof attempt. Such bridge lemmas can possibly
repair failed proof attempts and lead to proofs for valid conjectures.

Proof attempts of conjectures that are not assumed to be oriented can also fail
because neither side of the hypothesis is applicable to the corresponding conclusion
side. The next example illustrates such a failure.

Example 2 Consider proving the conjecture

C2 : x ∗ (z ∗ y) == z ∗ (x ∗ y)

1 In the next section, we discuss the cover set induction method [12] for generating induction
schemes from the terminating definitions of functions as implemented in our theorem prover RRL.
Using the terminating definition of rev (or len), the cover set method generates the same induction
scheme.

180 Mahadevan Subramaniam et al.

from the following rules defining + and ∗ on natural numbers:

1. x + 0 → x , 2. x + s(y) → s(x + y),
3. x ∗ 0 → 0, 4. x ∗ s(y) → x + (x ∗ y).

The cover set method identifies y as the only possible induction variable, and the
generated induction scheme is identical to the principle of mathematical induction.
The base case is x ∗ (z ∗ 0) == z ∗ (x ∗ 0), which simplifies to true using rule
3. For the step case, the conclusion is x ∗ (z ∗ s(u)) == z ∗ (x ∗ s(u)), with the
hypothesis being x ∗ (z ∗ u) == z ∗ (x ∗ u). The conclusion simplifies using rule 4
to x ∗ (z + (z ∗ u)) == z ∗ (x + (x ∗ u)), to which the hypothesis (on either side)
is not applicable. Hence, the proof attempt fails. This example cannot be handled by
the repair strategies proposed in Section 5.

1.2 Related Work

The manual overhead of analyzing failed proof attempts of theorem provers is a well-
known problem. Methods to aid users for analyzing failed inductive proof attempts
have been investigated earlier, ranging from the development of interactive proof
browsers [10], automatically patching faulty conjectures based on proof planning
[4, 5], and using rippling techniques [3]. The approach discussed in this paper was
first proposed in [11] and is radically different from the above approaches in its
attempt to predict guaranteed failures, thereby avoiding wasteful analyses of failed
proof attempts. Inspired by [2], flawed induction schemes for conjectures were
defined using the concept of definitional blocking in [11]. Two key results of this
paper stem from [11], with the difference that function definitions were assumed
to be shown terminating using a recursive path ordering and its variants in [11].
In contrast, we only require that function definitions are given using an arbitrary
terminating set of rewrite rules in this paper. As a result, we are able to extend the
class of conjectures from those considered in [11]. Also, [11] does not consider the
speculation of lemmas for repairing failed proof attempts.

2 Generating Induction Schemes

We briefly review the cover set method [12] for automating induction as imple-
mented in our theorem prover RRL. We assume familiarity with the concepts of term
rewriting [1].

Let T (F, X) denote the set of terms built using a set of function symbols F , par-
titioned into constructor symbols and defined symbols, and a set of variables X . Let
t |p stand for the subterm of t at position p, a sequence of positive integers. A term
is an f -term if its outermost function symbol is f . A substitution σ is a finite map
from variables to terms, written {x1 *→ t1, . . . , xn *→ tn}.

Predicting Failures of and Repairing Inductive Proof Attempts 181

Function definitions are given using a finite set R of ground-convergent, inter-
reduced, sufficiently complete, terminating rewrite rules of the form l → r , where
l is assumed to be of the form f (s1, . . . , sk) such that none of s1, . . . , sk contains
the function symbol f and the right side r contains zero or more recursive calls to
f and to other functions. Non-inductive positions of a function f are those posi-
tions such that the argument in that position is the same variable in the left side
and in all recursive calls to f on the right side. All other position are inductive
positions.

In the cover set method [12], induction schemes are automatically generated
for a conjecture C from its subterms of the form f (x1, . . . , xn, t1, . . . , tm) where
the x1, . . . , xn are distinct variables occurring on the inductive positions of f and
which do not appear in any of t1, . . . , tm . Let IndVar(f (x1, . . . , xn, t1, . . . , tm)) =
{x1, . . . , xn} denote the induction variables of the term f (x1, . . . , xn, t1, . . . , tm).
Each such subterm f (x1, . . . , xn, t1, . . . , tm) in a conjecture suggests an induction
scheme.

An induction scheme ϕ is a finite set of pairs 〈σ, {ϑ1, . . . , ϑn}〉 of substitutions
where for each subgoal the ϑi ’s produce the induction hypotheses and σ produces
the conclusion. For a subterm s = f (x1, . . . , xn, t1, . . . , tm) in C , each pair 〈σ, {}〉 in
ϕ corresponds to a non-recursive rule l → r in the definition of f , where σ is the mgu
(most general unifier) of l and s. A pair 〈σ, {ϑ1, . . . , ϑn}〉 is produced corresponding
to each recursive rule l → r where σ is the mgu of l and s, and each ϑi is the mgu
of s and the i th recursive call to f in r .

In an inductive proof attempt of C based on an induction scheme ϕ, a base case
Cσ is generated from each 〈σ, {}〉. An induction step case with conclusion Cσ and
n hypotheses Cϑi is generated for each pair 〈σ, {ϑ1, . . . , ϑn}〉 in ϕ. For example, the
inductive proof attempt of the conjecture C1 in Section 1.1 is based on the induction
scheme ϕ = {〈x *→ nil, {}〉, 〈x *→ cons(u, v), {{x *→ v}}〉}, which is suggested
by the subterm rev(x) and x is the only induction variable. The induction scheme
produces a base case by instantiating x with nil in C1; it produces a step case where
the conclusion is obtained by instantiating x with cons(u, v) in C1 and the hypothesis
is obtained by instantiating x with v .

To ensure that an induction proof attempt actually does get stuck whenever the
generated hypotheses cannot be applied, we make some further assumptions about
conjectures and induction schemes obtained from function definitions. We assume
that the conclusion of an inductive step case cannot be proved without using an
inductive hypothesis. We also assume that only one rewrite rule from R applies
to the instantiation of the subterm suggesting the induction scheme in the con-
clusion, and that that subterm of the conclusion cannot be simplified any further
afterwards. Furthermore, we assume that the inductive hypotheses are irreducible.
Induction schemes satisfying these properties have been called well-behaved induc-
tion schemes in [11]; more details about well-behaved schemes and their properties
can be found in [11]. Henceforth, all induction schemes are assumed to be well-
behaved.

182 Mahadevan Subramaniam et al.

3 Flawed Induction Schemes

We identify conditions on induction schemes that make it likely that an inductive
proof attempt based on a scheme satisfying these conditions fails. We define the
concept of flawed induction scheme, borrowing the terminology from [2]. This is
done based on identifying structural conditions on function definitions.

3.1 Blocking

The interaction among function symbols in a conjecture is captured using the concept
of blocking. Intuitively, a function definition f blocks another function definition g if
a term of the form f (. . . , g(. . .), . . .) cannot be simplified using R, which includes
rules defining functions as well as any additionally available lemmas about functions.

Definition 1 (Equational Blocking) The definition of a function f equationally
blocks the definition of a function g as its kth argument with respect to the rules R
iff the kth argument of l in all f -rules or f -lemmas l → r is neither a variable nor a
g-term.2

As an example, append in Example 1 equationally blocks append as its 1st argu-
ment w.r.t. the rules 1–6. Also, len equationally blocks both append and rev as its
argument.

By abuse of notation, we will simply say that f blocks g as its kth argument if this
holds true for the definitions of f and g in R.

Based on equational blocking, it can be determined if a subterm at a particular
position in a term is left unchanged when the term is simplified using R.

Lemma 2 Let s be an f -term with s|k = t , where t is an irreducible g-term. If f
equationally blocks g as its kth argument w.r.t. R and s →∗

R s′, then s′ is an f -term
with s′|k = t .

Proof sketch Since t is irreducible, no rewrite rule or lemma applies to the term s
at or inside the subterm t . Since f equationally blocks g, no rewrite rule or lemma
applies to s at the root position. Hence, the only possible rewrite steps occur inside the
remaining arguments to f , i.e., each simplified form of s has the form f (. . . , t, . . .).

�
The concept of equational blocking can be extended to an arbitrarily long sequence

of function symbols.

Definition 3 (Equationally Blocked Sequences) A sequence of function symbols
〈 f1, f2, . . . , fd〉 is equationally blocked on arguments 〈k1, k2, . . . , kd−1〉 if for each
1 ≤ i < d, fi equationally blocks fi+1 as its kth

i argument.

2 Recall that in an f -rule or an f -lemma l → r , the root of l is f .

Predicting Failures of and Repairing Inductive Proof Attempts 183

Recall that an induction scheme for a conjecture in the cover set method of mech-
anizing induction is generated from the terminating complete recursive definition of
a function symbol appearing in the conjecture. The definition of the function that is
used for generating the induction scheme is expanded in an inductive proof attempt
of the conjecture. To predict information about the simplified forms of conclusions in
induction step cases, we extend equational blocking to rules defining functions that
are used to generate induction schemes.

Let Hg denote the set of function symbols h different from g that can be obtained
by expanding the definition of g, i.e., Hg = {root(r) | l → r ∈ Rg} − {g}, where
Rg ⊆ R contains all g-rules.

Definition 4 (Definitional Blocking) A function f definitionally blocks a function
g as its kth argument if there is an h ∈ Hg such that f equationally blocks h as its
kth argument.

For example, append definitionally blocks rev as its 1st argument since it equa-
tionally blocks append ∈ Hrev as its 1st argument. The function len definitionally
blocks rev as its argument since it equationally blocks append ∈ Hrev.

3.2 Flawed Schemes

Definitional blocking is the key idea behind predicting failure of an inductive proof
attempt based on an induction scheme generated from a terminating recursive defi-
nition, as illustrated by Example 1. In conjecture C1, len has rev as its argument in
len(rev(x)), but len definitionally blocks rev. The induction scheme generated from
the definition of rev produces a step case where the conclusion contains the symbol
append as the argument of len which cannot be simplified using rules 1–6. However,
in the induction hypothesis, the argument of len will remain to be rev, the same as
in the conjecture. Therefore, the hypothesis cannot be applied due to this difference.
This failure can be predicted from the fact that len definitionally blocks rev.

In general, consider a conjecture that has a subterm s = f (. . . , g(. . .), . . .).
Suppose that f definitionally blocks g and that we generate an induction scheme
using the definition of g. An inductive proof attempt of the conjecture based on
such a scheme will produce an induction step case in which the conclusion contains
a term of the form f (. . . , h(. . . , g(. . .), . . .), . . .) where h belongs to Hg and is
equationally blocked by f . However, in the hypotheses of this induction step case,
the corresponding argument of f will be a subterm g(. . .).

In order to guarantee that the hypothesis cannot be applied, we additionally need
to ensure that this difference between conclusion and hypothesis cannot be removed
by simplifying subterms properly containing s. This can be ensured by requiring
that the sequence of function symbols on the path from the root symbol of the term
containing s to s in the conjecture is equationally blocked.

184 Mahadevan Subramaniam et al.

Definition 5 (Flawed Induction Scheme) An induction scheme ϕ for a conjecture
s == t is flawed if there is a position p = p1 p2 . . . pn in s such that s|p = g(. . .)
suggests the induction scheme ϕ and

1. the immediate superterm of s|p is an f -term and f definitionally blocks g as its
pth

n argument, and
2. 〈 f1, f2, . . . , fn〉 is equationally blocked on arguments 〈p1, p2, . . ., pn−1〉, where

s|p1 p2...pi = fi (. . .) for 1 ≤ i ≤ n.

The induction scheme suggested by the term rev(x) in Example 1 is flawed in
len(rev(x)) since len definitionally blocks rev. Since p = 1, the second condition in
Definition 5 is trivially satisfied.

We will also make use of induction schemes that are flawed in both sides of a
conjecture s == t . This is captured by the following definition.

Definition 6 (Doubly Flawed Scheme) An induction scheme ϕ is doubly-flawed for
the conjecture s == t if it is flawed in s as well as flawed in t.

From Example 2, the scheme ϕ suggested by both z ∗ y and x ∗ y is doubly flawed
in the conjecture x ∗ (z ∗ y) == z ∗ (x ∗ y) since ∗ definitionally blocks ∗ as its
second argument.

4 Predicting Failure of Inductive Proof Attempts

We show below that an inductive proof attempt generated using a flawed induction
scheme provably fails under certain conditions. We make distinction below between
oriented and general conjectures. In an oriented conjecture, only the left sides of the
induction hypotheses can be applied to the left side of the simplified conclusion. In
case of a general conjecture, there is flexibility in applying an induction hypothesis,
namely either the left side of an induction hypothesis is applied to the left side of the
simplified conclusion, or the right side of an induction hypothesis is applied to the
right side of the simplified conclusion.

4.1 Failure due to Inapplicability of Induction Hypotheses

Oriented Conjectures Inapplicability failures for oriented conjectures can be pre-
dicted as follows.

Theorem 7 (Inapplicability Failure for Oriented Conjectures) Aninductiveproof
attempt of an oriented conjecture s == t based on an induction scheme ϕ fails due
to an inapplicability failure if (i) ϕ is flawed in s and suggested by s|p, and (ii) no
x ∈ IndVar(s|p) occurs more than once in s (i.e., none of the induction variables
in ϕ occurs more than once in s).

Predicting Failures of and Repairing Inductive Proof Attempts 185

The second requirement ensures that the induction hypothesis is not applicable in
the conclusion of a subgoal generated from the conjecture at any place other than the
subterm suggesting the induction scheme. Note that we do not impose any restrictions
on how the termination of R is shown. In contrast, [11] requires that termination can
be shown using a recursive path ordering.

Proof sketch Let ϕ be flawed in s where s|p = g(. . .) suggests ϕ and the immediate
superterm u = f (. . . , g(. . .), . . .) of s|p is an f -term, where f definitionally blocks
g as its pth

n argument. Thus, there is an h ∈ Hg such that f equationally blocks h.
Consider an induction case of ϕ that is generated by a rule whose outermost function
symbol on the right side is h. For this induction case, the conclusion contains the
term u′ = f (. . . , h(. . . , g(. . .), . . .), . . .) instead of u after that rule is applied. Since
the induction scheme is well-behaved this is the only rule that can be applied. Since
f equationally blocks h, every simplified form of u′ has the same form by Lemma 2,
i.e., h appears between f and g. Thus, none of the inductive hypotheses is applicable
to a simplified form of u′. Since every proper superterm of u is equationally blocked,
no rewrite rule applies to any proper superterm of u′, either. Furthermore, none of the
inductive hypotheses is applicable to those terms since they don’t contain induction
variables. For subterms of s that don’t contain s|p as a subterm, the same argument
applies. �

The conjecture len(rev(x)) == rev(x) in Example 1 is an oriented conjecture. As
shown above, the scheme ϕ suggested by the term rev(x) is flawed in len(rev(x)).
The induction variable x occurs only once in len(rev(x)). Hence, by Theorem 7, the
proof attempt based on the induction scheme ϕ is predicted to fail, which is indeed
the case as illustrated in Example 1.

General Conjectures For an inductive proof attempt of a general conjecture to
provably fail, a stronger notion of flawed schemes is needed. Either side of a hypothe-
sis can be applied to and replaced in the corresponding side of a simplified conclusion
in a subgoal generated from a general conjecture. This can be taken care by requiring
that an induction scheme ϕ is doubly flawed (i.e., flawed in both sides s and t of the
conjecture s == t).

Similar to Theorem 7 for oriented conjectures, the following theorem for general
conjectures holds true.

Theorem 8 (Inapplicability Failure for General Conjectures) An inductive proof
attempt of a general conjecture s == t based on an induction scheme ϕ fails due
to an inapplicability failure if (i) ϕ is doubly flawed for the conjecture s == t and
suggested by s|p and t |q , (ii) no x ∈ IndVar(s|p) occurs more than once in s, and
(iii) no x ∈ IndVar(t |q) occurs more than once in t.

Consider the conjecture x ∗ (z ∗ y) == z ∗ (x ∗ y) from Example 2. As shown
above, the scheme ϕ suggested by both z∗ y and x ∗ y is doubly flawed. The induction
variable y occurs only once in both sides of the conjecture. Hence, by Theorem 8,
the proof attempt based on the induction scheme ϕ is predicted to fail, which it does
as illustrated in Example 2.

186 Mahadevan Subramaniam et al.

4.2 Simplification Failures

A proof attempt could still fail even if induction hypotheses are applicable to a
conclusion in each subgoal. This type of failure of a proof attempt is when simplifi-
cation of subgoals does not establish a conjecture. Below, due to lack of space, we
only consider general conjectures; simplification failures of oriented conjectures can
be predicted under similar conditions. The key idea is to identify a subterm in one
side of a conclusion of a subgoal that persists even after simplification, whereas that
subterm cannot appear in any simplification of the other side. For that, we introduce
the notion of t-preserving rules for any given nonvariable term t .

Definition 9 (t-Preserving Rules) A rule l → r is t-preserving iff any subterm of l
(including variables) that matches t also occurs in r .

Lemma 10 If t is an irreducible subterm of s, all rules in R are t-preserving, and
s →∗

R s′, then s′ has t as a subterm.

Proof sketch It suffices to show the claim for a single reduction s →R s′ since the
claim then follows by induction. Thus, let t be a subterm of s and assume that all rules
in R are t-preserving. Since t is a subterm of s we get s|p = t for some position p.
Let q be the position where the reduction s →R s′ takes place. If p ⊥ q or p < q,
then s′|p = t as well. Otherwise, p = qp′ for some position p′ and s|q = lσ for
some rule l → r and some substitution σ . Since t = s|p, we get t = s|qp′ = lσ |p′ . If
p′ is also a position in l, then lσ |p′ = l|p′σ , i.e., l|p′ matches t . By Definition 9, l|p′
is also a subterm of r and rσ contains t as a subterm. If p′ is not a position in l, then
p′ = p1 p2 where l|p1 is a variable. Since l → r is t-preserving and this variable
matches t , it occurs in r as well and rσ contains t as a subterm. �

The following theorem then establishes that the simplification failure of a proof
attempt can be provably predicted if the rules preserve the side of the hypothesis
where the scheme appears flawed.

Theorem 11 An inductive proof attempt of a general conjecture s == t based on
an induction scheme ϕ fails due to simplification if

• ϕ is suggested by subterms in both s and t, and
• ϕ is flawed only in s, and
• the rules applicable to the conjecture are s-preserving.

5 Possibly Repairing Predicted Failures

This section describes a heuristic for automatically repairing predicted failed proof
attempts by discovering bridge lemmas which possibly remove the cause of failure.
This is based on our earlier work for automatic lemma generation for inductive proofs

Predicting Failures of and Repairing Inductive Proof Attempts 187

[7]. We first briefly review the key ideas of the heuristic and then discuss how to
discover bridge lemmas to possibly fix failures due to inapplicability of induction
hypotheses.

The heuristic discussed in [7] assumes that the left side of a proposed lemma
is known and the structure of the right side, i.e., subterms appearing in it, can be
guessed. The right side is formulated as a template with parameters standing for
terms. Then, constraints on the template are generated by attempting an inductive
proof of the proposed lemma. For the heuristic to be applicable, it is thus necessary
that an inductive proof of the lemma can be attempted, i.e., that there is at least one
induction scheme suggested by the lemma that is not flawed. If that is not possible,
the proposed lemma can be generalized by abstracting a subterm to be a variable,
until an inductive proof can be attempted. Constraints on the template ensure that
the inductive proof attempt will be successful if the constraints are satisfied. Based
on constraints on the template and available function definitions, terms standing for
parameters are speculated. Among possible techniques used for the speculation of
these terms are higher-order unification, simple matching constraints on function
templates with function definitions, etc.; the reader can consult [7] for details. This
will be illustrated below using an example.

5.1 Speculating Bridge Lemmas

As discussed above, inapplicability failure arises because an induction hypothesis
cannot be applied to the conclusion generated from a subgoal in a proof attempt. This
failure can be repaired by speculating a bridge lemma that applies to the conclusion
to produce a result containing an instance of the hypothesis so that the hypothesis
indeed becomes applicable.

Consider a conjecture f (. . . , g(. . .), . . .) == t , whose proof attempt based on a
flawed scheme suggested by g(. . .) fails due to the inapplicability of the induction
hypotheses. The function f definitionally blocks g so the left side of the hypoth-
esis lh = f (. . . , g(. . .), . . .) does not apply to the left side of the conclusion
lc = f (. . . , h(. . . , g(. . .), . . .), . . .) because f equationally blocks h. The specu-
lated bridge lemma must reduce lc to a term which contains an instance of lh so that
the hypothesis is applicable. The left side of the proposed lemma is speculated to
be f (. . . , h(. . . , g(. . .), . . .), . . .) (or a general version of one of its subterms) since
one way to make lh applicable is to remove the equationally blocked function h
appearing between f and g. One way to ensure that the result of the proposed lemma
has an instance of the induction hypothesis lh is to have the right side of the lemma
to contain lh. The right side of the lemma is thus formulated as a template structure
F(lh, G(t1, . . . , tn)) where F and G are function templates standing for terms to be
discovered, and the ti are all subterms that appear as arguments to f and h in lc.

For the heuristic to be applicable, the proposed lemma must have an unflawed
induction scheme. In case all induction schemes generated from the proposed lemma

188 Mahadevan Subramaniam et al.

are flawed, the lemma is generalized by abstracting subterms appearing in them to be
variables. Using an unflawed induction scheme, a proof is attempted that generates
constraints on F and G. These constraints are then used to match against known func-
tion definitions and known lemmas about them, to speculate what F and G should be.

Consider the conjecture C1 from Section 1.1, which fails due to the inapplicability
of the induction hypothesis. A possible bridge lemma is formulated as:

L : len(append(rev(x), cons(x1, nil))) == F(len(rev(x)), G(x, rev(x))),

where lc = len(append(rev(x), cons(x1, nil))), lh = len(rev(x)), and F and G
are meta-variables which must be instantiated by terms.3

The scheme suggested by rev(x) in the conjecture L above is flawed since append
and len both definitionally block rev. The above lemma is generalized by uniformly
replacing rev(x) by z in L:

L ′ : len(append(z, cons(x1, nil))) == F(len(z), G(z)),

with an unflawed scheme suggested by append(z, cons(x1, nil)) and len(z).4

To generate constraints on the meta-variables F and G, a proof of L ′ using the
unflawed induction scheme suggested by append(z, cons(x1, nil)) is attempted.
From the basis case, 1. s(0) = F(0, G(nil)). From the step case after the application
of the hypothesis, the second constraint is 2. s(F(len(z), G(z))) = F(s(len(z)),
G(cons(z1, z))).

The above two constraints on F and G match the rules defining +: 0 + x → x ,
s(x)+ y → s(x + y). If the template F is instantiated to be +, additional constraints
on G are derived: {G(nil) = s(0), G ′(cons(z1, z)) = G(z)}. Based on these con-
straints, G can now be speculated by the constant function s(0). With F, G instanti-
ated, we get

Lemma : len(append(z, cons(x1, nil))) == len(z)+ s(0).

The proof of this bridge lemma follows from the reasoning employed, which can be
verified. This in turn generates another lemma len(z) + s(0) == s(len(z)), which
can be proved after generalizing it to y + s(0) = s(y).

The failed proof attempt of C1 can thus be repaired and C1 is an inductive theorem.
If + is defined by recursing on the second argument, then matching of constraints

on F, G to rules defining + will work by speculating the lemma by switching the
arguments of F .

Several techniques can be employed to speculate instantiations for templates using
constraints on them; in the example above we showed how constraints can be used
to match against function definitions. Higher-order unification can be used instead.
Narrowing techniques may be useful as well; see [7] for details.

3 Subterms cons(x1, nil), x1, and nil do not have to be included as arguments to G since
cons(x1, nil) appears in C1 only as the second argument to append, which does not change in
a proof attempt. However, including them as arguments to G does not change the derivation.
4 The variable x is removed from the argument of G in L ′ since it appears nowhere else in L ′.

Predicting Failures of and Repairing Inductive Proof Attempts 189

The above strategy can in general output multiple lemmas if there are multiple
ways to instantiate F and G. If lemmas thus generated are found not to be valid,
alternative proof attempts based on other unflawed schemes in the proposed bridge
lemma (or its generalization) are performed.

In the above discussion, we started with a conjecture with f (· · · , g(· · ·), · · ·) as
its left side where f definitionally blocks g. The repair strategy is easily adapted to
repair inapplicability failures of conjectures with a more complex left side containing
a sequence of equationally blocked symbols. In that case, many bridge lemmas may
have to be speculated to remove blocking in order to deal with the failure due to the
inapplicability of the induction hypotheses.

6 Implementation

The proposed approach has been implemented in the OCaml language. This prelim-
inary implementation has been successfully tested to predict a priori failures of proof
attempts for several conjectures over lists and numbers, due to inapplicability and
simplification failures; some of these are listed below. To evaluate the effectiveness
of the proposed approach, we also attempted to prove these conjectures from function
definitions using the inductive theorem prover RRL [9]. The results are given in the
table below. In the “Type” column, an “o” denotes an oriented conjecture, and a “g”
denotes a general (unoriented) conjecture. The “Repair” column indicates whether
the heuristic in Section 5 is successful in finding a lemma. The “n” column speci-
fies the number of inductions performed by RRL in a proof attempt. If the number is
less than 100, then the proof attempt succeeded using “n” inductions; if the reported
number is 100, this implies that RRL did not succeed in finding a proof even after 100
induction attempts. In the “Remarks” column, “d” denotes divergence of RRL, while
“d w/o g” denotes divergence of RRL if its generalization heuristic is not employed.

Conjecture Type Repair RRL n Remarks
len(rev(x)) == len(x) o Yes + 6 d w/o g
even((x + x) ∗ y) == true o No − 100 d
rev(append(x, y)) == g Yes + 4 d w/o g

append(rev(y), rev(x))
x ∗ (z ∗ y) == z ∗ (x ∗ y) g No − 100 d
x ∗ (y ∗ z) == (x ∗ y) ∗ z g Yes − 100 d

For all of the examples, the proposed approach can predict failure without
attempting a proof. RRL will not succeed on any of these examples (even if up
to 100 inductions are allowed) unless multiple inductions are attempted com-
bined with the generalization heuristic for aggressively speculating lemmas, in

190 Mahadevan Subramaniam et al.

which case the conjectures len(rev(x)) == len(x) and rev(append(x, y)) ==
append(rev(y), rev(x)) are eventually proved by RRL. The generalization heuristic
generalizes common subterms by variables. For both of these conjectures, the lem-
mas generated by RRL using the generalization heuristic are similar to the lemmas
generated by the repair heuristic discussed earlier.

7 Concluding Remarks and Future Work

An automated approach for a priori predicting provable failures of mechanized induc-
tive proof attempts of a large class of conjectures is proposed. Syntactic conditions
capturing the interaction among the definitions of function symbols appearing in a
conjecture are identified in order to predict two kinds of failures: (i) the inapplicabil-
ity of induction hypotheses and (ii) inability to simplify subgoals to valid formulas in
case induction hypotheses are applicable. The notions of equational blocking and def-
initional blocking among function definitions are introduced to characterize flawed
induction schemes suggested by function definitions. Failures of proof attempts for
conjectures are provably predicted if a function symbol f whose definition leads to
a flawed induction scheme, appear in contexts that definitionally block f .

For valid conjectures, the analysis for predicting failure can suggest bridge lemmas
which, if proved, can lead to a successful proof. The approach has been implemented
and effectively tried on several examples.

We believe that the proposed approach can also aid the user in case a conjecture
does not follow from the definitions. The above analysis can help in reformulating
the conjecture and/or the definitions to make a modified proof attempt which will not
provably fail. In case a proposed conjecture is false, it can also help in fixing it. This
will be investigated in future work.

Heuristics to support repair strategies for speculating lemmas from constraints on
templates need to be investigated. The proposed approach predicts failures for proof
attempts with a single application of induction. It will be interesting to extend this
approach to multiple applications of induction.

This failure analysis is complementary to our work on identifying a subclass of
conjectures about function definitions that can automatically be decided [6, 8]. If
a conjecture satisfies syntactic conditions given in [6, 8] and the definitions of the
function symbols occurring in the conjecture satisfy the stated structural conditions
in [6, 8], then it falls in the decidable class and and we are guaranteed to get a yes
or no answer by the theorem prover about its validity. If the conjecture is not in
the decidable class, we can then check whether its proof can be predicted to fail.
If yes, it can be further analyzed whether the failed proof attempt can be repaired,
in which case lemmas are generated and proved before the conjecture is attempted.
If the failed proof attempt cannot be repaired, then the conjecture can perhaps be
reformulated or function definitions need to be reformulated or some lemmas need
to be proved before attempting the conjecture. If it cannot be predicted that a proof

Predicting Failures of and Repairing Inductive Proof Attempts 191

attempt will fail, then a proof can be attempted with no guarantee about whether it
will fail or succeed. Or alternatively, it can be declared that nothing can be said about
the conjecture.

References

1. F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge University Press, 1998.
2. R. S. Boyer and J. S. Moore, A Computational Logic. ACM Monographs in Computer Science,

1979.
3. A. Bundy, The Automation of Proof by Mathematical Induction, Handbook of Automated Rea-

soning, 2001.
4. A. Bundy, Planning and Patching Proof, Proc. AISC ’04, LNCS 3249, 26–37, 2004.
5. A. Ireland, Productive Use of Failure in Inductive Proof, Journal of Automated Reasoning,

16(1–2):79–111, 1996.
6. D. Kapur, J. Giesl, and M. Subramaniam, Induction and Decision Procedures, Rev. R. Acad.

Cien. Serie A: Mat., 2004.
7. D. Kapur and M. Subramaniam, Lemma Discovery in Automated Induction, Proc. CADE ’96,

LNCS 1104, 538–552, 1996.
8. D. Kapur and M. Subramaniam, Extending Decision Procedures with Induction Schemes,

Proc. CADE ’00, LNAI 1831, 324–345, 2000.
9. D. Kapur and H. Zhang, An Overview of Rewrite Rule Laboratory (RRL), Proc. RTA ’89,

LNCS 355, 559–563, 1989.
10. M. Kaufmann, An Extension of the Boyer–Moore Theorem prover to Support First-Order

Quantification, Journal of Automated Reasoning, 9(3):355–372, 1992.
11. M. Subramaniam, Failure Analyses in Inductive Theorem Provers, Ph.D. Thesis, Department

of Computer Science, University of Albany, New York, 1997.
12. H. Zhang, D. Kapur, and M. S. Krishnamoorthy, A Mechanizable Induction Principle for Equa-

tional Specifications, Proc. CADE ’88, LNCS 310, 162–181, 1988.

Can Semi-Formal be Made More Formal?

Ansuman Banerjee, Pallab Dasgupta, and Partha P. Chakrabarti

Abstract Capacity limitations continue to impede widespread adoption of formal
property verification in the design validation flow of software and hardware systems.
The more popular choice (at least in the hardware domain) has been dynamic prop-
erty verification (DPV), which is a semi-formal approach where the formal properties
are checked over simulation runs. DPV is highly scalable and can support a signi-
ficantly richer specification language as compared to languages supported by formal
property verification tools. Though the main limitations of DPV revolve around its
dependence on the coverage of the relevant scenarios by simulation, there appears to
be ample scope of addressing these issues through new formal methods for cover-
age and consistency analysis. We survey some of the formal methods developed by
us in this direction, that can aid DPV in becoming more effective in practice and
more formal in nature. We also present a new platform for performing DPV over
state-event based software systems.

Keywords: Dynamic property verification, assertion.

1 Introduction

In recent years, the number of Electronic Control Units (ECU) built into automobiles
has increased dramatically, spanning all segments from power train, body electron-
ics, active and passive safety, as well as navigation and infotainment [4]. Communi-
cating over different bus systems (e.g. CAN, LIN, Bluetooth), these ECUs execute
a multitude of functions to improve safety, reduce emission and fuel consumption
or improve comfort and driver information. Such systems include safety-critical sys-
tems like a brake control or a dynamic drive control. A high-end car today contains
50 embedded electronic control units (or even more) [3].

The growing demand for feature-rich automotive systems and stringent time to
market constraints has forced the manufacturing companies to adopt a distributed
design methodology to facilitate component reuse at all levels of abstraction: increas-
ingly one automotive function is shared across multiple subsystems consisting of
multiple ECUs (a subsystem typically consists of one or more ECUs connected by
a bus) and it requires the correct and timely interaction of these multiple distributed

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 193
for Distributed Embedded Control Systems, 193–211.
c© Springer 2007

194 Ansuman Banerjee et al.

subsystems for achieving the system level performance. Such distributed hard real-
time systems contrast dramatically in complexity with the typically single ECU based
technologies. In addition, there has been a paradigm shift in the development model
as well. In the past, electronic system companies used to maintain full control of the
product development cycle from product definition to product manufacturing. This
is not the case today. Most of the ECU development task is outsourced to different
suppliers. The definition of the detailed system specifications, the development and
assembly of the components, and the manufacturing of the final product are tasks per-
formed more frequently by multiple suppliers (in contrast to the traditional scenario
where one supplier used to provide a complete solution).

The challenge for the design of such distributed and networked control units is to
define all requirements and constraints (at the subsystem level, for each individual
ECU and at the system level), to understand and analyze the manifold interactions
between the many control units, the car and the environment (road, weather, etc.)
in normal as well as stress situations (crash), within a development process which
is concurrent and distributed between the automobile manufacturers and suppliers.
In such a heterogeneous development model, two of the most important tasks are as
follows:

• The task of architecture analysis: This typically involves creating the subsystem
functionalities from the system level functionality and mapping a set of subsystem
functionalities into individual ECUs. This is of utmost importance since the auto-
mobile manufacturer needs to correctly and adequately specify the requirements
of the ECU to be developed by a supplier. Companies need a specification model
for the basis of contracts with suppliers.

• The task of integration verification: This involves the validation task to ascertain
that the set of sub-functions being realized by individual subsystems, each con-
sisting of multiple ECUs designed by different manufacturers, satisfies the system
level requirement. This is of significant importance at the hand-off points of the
design chain.

To address the first issue, the manufacturing industry is increasingly moving towards
a model-based development process, in which the largely textual way of requirement
capturing is replaced by executable specification models at different levels of abstrac-
tion. This allows creation of abstract models which are iteratively refined to arrive at
correct and adequate specifications to be passed on to the supplier. The second and
more important issue mandates the need for a platform of system integration that can
validate the distributed realization of different automobile functions. This calls for
a sound and complete compositional validation methodology that can validate/infer
the functionalities of the integrated system, from the functionalities of the individual
subsystems.

In the last few decades, formal property verification has established itself as an
effective validation methodology, both in the hardware and software verification
community for its ability of automatic and exhaustive reasoning. Researchers have

Can Semi-Formal be Made More Formal? 195

analyzed several historically significant failures and have shown that the use of for-
mal verification could have detected the bug in the design. Verification practitioners
have also been able to uncover flaws in the specifications of complex protocols and
intricate bugs in live designs.

Unfortunately, the exponential increase in complexity and the increasingly distri-
buted nature of functions renders the use of formal verification infeasible because
of its inherent capacity bottleneck in handling large systems. A typical automotive
system today consists of a number of subsystems, each responsible for executing a
multitude of tasks. Each subsystem, in turn, consists of a number of ECUs. Each
ECU, in turn, has an interface to one or two CAN-bus systems, as well as a number
of sensors and actuators directly connected to the ECU (to sense brake pressure,
acceleration, speed, RPM, etc.). Specification models of such systems would have
typically some 10 to 30 sub-functions, each with about 20 to 100 states [4]. To be
able to perform a validation of the integrated system, formal tools typically run into
capacity problems. Purely formal methodologies, might however, be feasible at the
subsystem level, particularly because of its philosophy of performing an exhaustive
validation.

Reasoning only about the correctness of the subsystems in isolation is not suffi-
cient, since most of the system level requirements needed to ensure safe and smooth
execution of the automobile will typically span multiple functions with different
responsible subsystems. As an example, consider the following requirement: upon
detecting a crash, the power steering mode will be deactivated and the side airbag
will be unfolded within 5 ms. Such a requirement cannot be validated considering the
power steering unit or the airbag control unit in isolation, since it demands correct
and timely interaction of both when a crash is detected. Validation of such system
level requirements which involve multiple subsystems is therefore, non-trivial.

In the last decade, the more popular validation methodology (at least in the hard-
ware domain) has been dynamic property verification (DPV). DPV is a semi-formal
approach where the formal properties are checked over simulation runs. DPV is
highly scalable and can support a significantly richer specification language as com-
pared to languages supported by formal verification tools.

The success of DPV depends largely on the ability of the simulation test gene-
rator to create good testcases for validating the requirements. Classical approaches
to testing are guided by the test engineer’s intuition and experience in designing
truly effective testcases which have a high likelihood in exposing errors. Typically,
each ECU development effort involves a testing team who, on the basis of textual
requirement documents, is responsible for designing testcases for acceptance testing
(for subsystems delivered by the suppliers) and integration testing. Ideally, the set of
testcases should cover all functionality, address boundary conditions, and cover all
scenarios. The sheer astronomical complexity of today’s feature-rich automotive sys-
tems renders the task of generating testcases notoriously difficult, even for the most
qualified test engineer. Even random test generators are ineffective for this purpose. It
is quite clear that the way out of this impasse cannot be achieved by purely formal or

196 Ansuman Banerjee et al.

Subsystem
Specifications

Yes

Integration Test Done

No

Generate
Testcases

Deduce
Coverage Gap

System-level
Specification

System-level
Specification Covered ?

Integration
+

DPV

Demand More
Features

From Supplier

Fig. 1 The overall flow

simulation-based techniques. The challenge, therefore, is to architect a semi-formal
reasoning framework, that is truly scalable and effective.
In this paper, we survey some of the formal methods developed by us in this direction
that can aid DPV in becoming more effective in practice and more formal in nature.
The overall architecture of the proposed flow is shown in Figure 1. To understand
the philosophy behind the proposed flow, let us look at the design process adopted
by an automobile manufacturer. In the first phase, the functional requirements of the
system are identified. To facilitate component reuse, the overall system functional-
ity is decomposed into a set of subsystem functionalities. The functionality of the
subsystems and their interconnections defines the system architecture. The subsys-
tem functionalities are in turn mapped to ECUs, many of which are available as off-
the-shelf components (having an advertised specification). In the second phase, the
manufacturer typically selects a set of ECUs (on the basis of the supplier promised
specifications) and conducts an acceptance test followed by a virtual integration test.
The acceptance test checks whether the ECU is really meeting the advertised require-
ments. The virtual integration test is performed to check whether the set of subsys-
tems (each having multiple ECUs) and the way they are connected actually realizes
the system requirement. The challenge lies in performing this validation task before
creating the integrated design, so that the manufacturer does not waste effort on a
flawed architecture. This is where the proposed methodology adds value. The pro-
posed method of integration test is based on compositional reasoning, which attempts

Can Semi-Formal be Made More Formal? 197

to derive a system level property from the properties of its components. The basic
steps are:

1. Determine whether the set of subsystem specifications guarantee the set of system-
level specifications. If the answer is yes, integration test is successful, and the
actual functional integration of the subsystems may be started.

2. If the answer to the above question is no, we propose to derive a set of coverage
gaps which demonstrate system-level functionalities that cannot be implied from
the subsystem guarantees. This has two major ramifications:

• If we are able to characterize the coverage gap at the subsystem level, the manu-
facturer may demand more functionality from the respective supplier. This may
continue in an iterative process till the coverage is achieved, provided that the
supplier is willing to add-on/provide additional guarantees.

• If we are able to characterize the coverage gap at the system level, the manu-
facturer can derive a set of scenarios that can exercise and verify these gaps
during actual DPV of the integrated system. (Automatically derived test sce-
narios can be used for hardware-in-the-loop or software-in-the-loop testing.
This addresses the key case of acceptance testing such as checking whether an
ECU delivered by the supplier conforms to a specification model (an ECU will
only be accepted if it reacts to all stimuli correctly).

• Perform DPV of integrated system with existing test plan augmented with the
set of testcases generated from coverage gaps.

In order to address the first two issues, we present here a methodology for comparing
specifications to address coverage of one specification by another (the system specs
and the subsystem specs). The methodology has been developed over Linear Tem-
poral Logic (LTL) [8]. The specification coverage methodology determines whether
the set of subsystem specifications cover the system level specification, and if not,
produces a coverage gap, both in terms of the system level uncovered functionality
or the desired guarantee required at the subsystem level that can close the coverage
gap. In addition, we present a methodology for automatic testcase generation from
LTL specifications. These testcases are used during DPV. We also present here a new
platform for performing DPV over state-event based software systems. While the
theory behind these have been presented in our earlier papers [1, 2], in this paper,
we attempt to fit these methods into an integrated flow in the context of automotive
control system design.

2 Comparing Specifications for Analyzing Coverage

In this section, we describe the notion of specification coverage, where we com-
pare two formal specifications and determine the coverage of one by the other. We
shall refer to one specification as the target specification, T , and the other as the

198 Ansuman Banerjee et al.

achieved specification, A. In our context, the ECU specification is the target speci-
fication and the subsystem specifications from the different suppliers constitute the
achieved specification. Our aim is to determine whether the achieved specification
covers the target specification. If the answer is negative, then we will further aim to
determine the coverage gap or difference, T − A, between the specifications, and
represent it in a way that is both legible and syntactically comparable with both T
and A. The problem is non-trivial, since both T and A may contain several temporal
properties.

The problem of determining the coverage of the system level properties by the
collective properties of the individual subsystems is computationally less expensive
than formally verifying the system level properties on the integrated system. This
is because the specification coverage problem does not involve the implementation
(whose size is the main bottleneck in formal verification). In the automotive industry
today, each subsystem typically comes with an SSTS (Sub System Technical Speci-
fication) stating the properties that they guarantee, and the proposed idea of spec-
ification matching can formally determine whether a given subsystem achieves the
desired intent within a larger system.

Formally, the inputs to the specification coverage framework are:

1. The target specification T as a set of LTL properties.
2. The achieved specification A as another set of LTL properties.

Definition 1 (Coverage Definition) The achieved specification covers the target
specification iff there exists no run that refutes one or more properties of the target
specification but does not refute any property of the achieved specification. �

Our coverage problem is as follows:

• to determine whether the achieved specification covers the target specification;
and

• if the answer to the previous question is no, determine a set of additional tempo-
ral properties that represent the coverage gap (these properties together with the
achieved specification succeed in covering the target specification).

In the proposed methodology, to check for specification coverage, we check if every
behavior that is inadmissible with respect to T is also inadmissible with respect
to A. The reverse need not be necessarily true, since additional design constraints
imposed at the subsystem level may restrict some of the behaviors that are permitted
by the integrated specification. For example, the target specification may require that
upon detecting a crash, the side airbag will be eventually unfolded – in a specific
airbag control subsystem implementation, we may guarantee that the airbag will be
unfolded within 5 ms. Therefore, the target specs admit those behaviors where the
airbag unfolds after 5 ms, but the subsystem specification restricts such behaviors.
Behaviors where the airbag never unfolds are inadmissible with respect to the target
specs, and therefore, inadmissible with respect to the achieved specs.

The following theorem shows us a way to answer the coverage question.

Can Semi-Formal be Made More Formal? 199

Theorem 2 (Reproduced from [2]) The achieved specification, A, covers the tar-
get specification T , iff the temporal property A⇒ T is valid. �

The theorem shows that the primary coverage question can be answered by test-
ing the validity of A ⇒ T . Most model checking tools for LTL and its derivatives
already have the capability of performing validity (or satisfiability) checks on tempo-
ral specifications, and can therefore be used to answer the primary coverage question.
Note that the complexity of LTL model checking coincides with that of checking the
satisfiability of LTL formulas (both being PSPACE-complete), but since the coverage
question does not involve the system implementation, the proposed approach scales
to much larger applications.

We shall use the following example to demonstrate the formal methods for speci-
fication coverage.

Example 3 This example has been adapted partially from the functional descrip-
tion [3] of the brake management system developed at BMW. Following are some of
the system-level requirements:

• If the driver presses the disable hold function, while the hold function is active,
the hold function must be deactivated in the next cycle. The hold function, when
active, is responsible for deactivating any movement of the vehicle.

• If the driver pushes the brake and the clutch pedals and the vehicle stops, then the
hold function remains active till the brake is released.

• When the brake is released and the accelerator is pressed, the gears must change
and the car must no longer be in neutral in the next cycle.

The system-level requirements (target-spec) may be expressed in LTL as follows:

T1: G ((hold ∧ disable) ⇒ X ¬hold)
T2: G ((brake ∧ clutch ∧ stop) ⇒ X (hold U ¬brake))
T3: G ((¬brake ∧ acc) ⇒ X ¬neutral)

The top-level activity chart of the STATEMATE model [3] of the brake management
system consists of 14 charts, each having its own functionality. These correspond
to the specifications of the different subsystems in terms of which the design was
planned. There are some information flows to and from other subsystems, e.g. the
sensor values come from the DME (Digital Motor Electronics), lamps in the cockpit,
etc. As a simple example, we consider the specifications of the hold management
subsystem and the automatic gear control subsystem. The inputs and outputs of these
are shown in Figure 2. To sense the status of the car (brake pressed or not, car stopped
or not, known from RPM, etc.), there are some sensory inputs. We describe the func-
tionalities of the subsystems below.

• Hold Management Unit: If the disable input is high, while the hold function is
active, the hold function is deactivated in the next cycle.

• Hold Management Unit: If the stop, clutch and brake inputs are high, the hold
function is activated in the next cycle.

200 Ansuman Banerjee et al.

HOLD CONTROL

disable

hold gear
GEAR CONTROL

automatic

brake

acc

brake

stop

clutch

Fig. 2 The hold management and automatic gear subsystems

• Automatic Gear Management Unit: If the brake is released while the automatic
gear is on, and the accelerator is pressed, the car must not be in neutral in the next
cycle.

The above (achieved spec) may be expressed in LTL as follows:

A1: G ((hold ∧ disable) ⇒ X ¬hold)
A2: G ((brake ∧ clutch ∧ stop) ⇒ X hold)
A3: G ((¬brake ∧ automatic ∧ acc) ⇒ X ¬neutral)

The primary coverage problem is to determine whether (A1 ∧ A2 ∧ A3) ⇒ (T1 ∧
T2 ∧ T3) is valid. In this case the answer is negative. It is clear that T1 is implied,
but we can see that neither T2 nor T3 is covered by the properties in the achieved
specification.

For example, whenever we have a scenario where the brake is released, the auto-
matic gear is off and accelerator is pressed, the target specification requires gears to
change from neutral, but the achieved specification does not have this requirement.
This shows that T3 is not covered.

Consider those scenarios where brake, clutch and stop are active together, but
clutch de-asserts before brake. In these scenarios, the target specification requires
hold to remain high as long as brake remains pressed (T2), but the achieved specifi-
cation does not guarantee this. �

2.1 Where is the Coverage Gap?

Theorem 2 shows that the primary coverage question, that is, whether the achieved
specification, A, covers the target specification, T , can be answered by checking the
validity of the implication A ⇒ T . If the implication is not valid, then we know
that there is a gap between the achieved specification and the target specification, but
how do we find out the gap?

As we shall show in this section, it is not hard to compute the coverage gap between
two temporal specifications and specify a property that theoretically represents the

Can Semi-Formal be Made More Formal? 201

coverage gap. The main challenge is in presenting the new property in a form that is
syntactically similar and visually comparable with the original specification, so that
the validation engineer is able to visually examine the new property and realize the set
of architectural behaviors that have not been covered by the achieved specification.
Let us first see how the coverage gap can be computed.

Example 4 Let us consider the coverage of the property, T3 of Example 3 by the
achieved specification. We have already established that T3 is not covered. However
this information does not accurately point out the coverage gap between T3 and the
achieved specification. Specifically the coverage gap lies only for those scenarios
where the brake is released and the automatic gear is off at some point of time.
In other words, the coverage gap can be accurately represented by the following
property that considers exactly the above scenarios:

U1: G((¬brake ∧ ¬automatic ∧ acc) ⇒ X ¬neutral)

We have A3 ∧ U1 ⇒ T3, and therefore U1 closes the coverage gap between A
and T3. In general, the aim is to determine the weakest set of temporal properties
that close the coverage gap between the achieved and target specifications. This is
formally expressed below. �

Definition 5 (Strong and Weak Properties) A property F1 is stronger than a prop-
erty F2 iff F1 ⇒ F2 and F2 �⇒ F1. We also say that F2 is weaker than F1. �

Definition 6 (Coverage Gap in Achieved Spec) A coverage gap in the achieved
specification is a property AH such that (A ∧ AH) ⇒ T , and there exists no
property, A′H such that A′H is weaker. In other words, we find the weakest property
that closes the coverage gap. Adding the weakest property strengthens the achieved
specification in a minimal way. �

Theorem 7 (Reproduced from [2]) The coverage gap in the achieved specification
is unique and is given by T ∨ ¬A. �

There is an intuitive explanation of the coverage gap as defined by Theorem 7. The
goal of the coverage analysis is to find those behaviors that refute T but satisfy A,
that is, those behaviors that satisfy:

ϕ = ¬T ∧ A

The property representing the coverage hole must reject exactly these behaviors,
hence the property is T ∨ ¬A which is ¬ϕ.
To demonstrate the part of the target specification that is not covered by the achieved
specification, we need a further level of abstraction. The definition of the uncovered
target specification is as follows.

Definition 8 (Uncovered Target Specification) The uncovered target specification
is a property TH such that (A ∧ TH) ⇒ T is valid, and there exists no property T ′

H
such that T ′

H is weaker than TH and (A ∧ T ′
H) ⇒ T is valid. �

202 Ansuman Banerjee et al.

2.2 How should we Present the Coverage Hole?

Theorem 7 gives us a formalism for computing the coverage gap, but does not con-
vey the missing properties in a meaningful way. Our aim is to present the coverage
gap and the uncovered target specification before the manufacturer in a form that is
syntactically close to the target specification and is thereby amenable to visual com-
parison with the target specification. The expressibility of the logic used for specifi-
cation does not always permit a succinct representation of the coverage gap. In such
cases, we prefer to present the coverage gap as a succinct set of properties that closes
the coverage gap, but may be marginally stronger than the coverage gap.

This methodology of representation of coverage gap is based on two key algo-
rithms. The first algorithm enables the computation of the bounded terms in the
coverage gap and then pushes these terms into the syntactic structure of the target
properties to obtain the uncovered part. The second algorithm takes target properties
having unbounded temporal operators (such as G, F and U) and systematically
weakens them into structure preserving decompositions. It then checks the compo-
nents that remain to be covered. Our intuitive idea in this step is to systematically
weaken the intermediate uncovered target specification, TU , while ensuring that
it still closes the coverage hole. Our methods are based on the observation that a
property can be weakened by appropriately weakening or strengthening a variable
occurrence. The details of these algorithms is left out of this paper, but can be found
in [2]. The following example illustrates the working of the proposed coverage
deduction methodology.

Example 9 Let us return to the specifications shown in Example 3 and let us consider
the coverage of T3 by A3:

T3: G ((¬brake ∧ acc) ⇒ X ¬neutral)
A3: G ((¬brake ∧ automatic ∧ acc) ⇒ X ¬neutral)

In the first step, we compute ψ as ((¬brake ∧ automatic ∧ acc) ⇒ X ¬neutral).
The set of terms, obtained by unfolding T3 ∨ ¬Gψ are as follows:

UM = {brake,¬acc, X (¬neutral), ¬brake∧automatic∧acc ∧¬X (¬neutral) }
We now distribute the terms in UM into T3 past the G operator (as shown in Figure 3).
The figure shows how the terms in UM distribute across the different operators in T3.
The value of ϑ shown besides the nodes indicate whether the incoming terms are
in conjunction or disjunction with the property rooted at that node (ϑ = 0 means
disjunction). The uncovered part of T3 after applying this is given by: G (¬brake ∧
¬ automatic ∧ acc ⇒ X ¬ neutral) . �

Can Semi-Formal be Made More Formal? 203

G imp

x n

t2t1

t1

U2

and

t1

t1

n

t2 t1

brake

t1

ng1 g1

U4

U5

t1

U6

U1

U3

neutral

acc

Fig. 3 Term distribution

Coverage
Gap Analyzer

LTL
SAT

checker

Weakening
Algorithm

PushTerm
CUDD

BDD package

SpecMatcher

Target
Specification

Achieved
Specification

Parse trees
(for each

terget prop)

Fig. 4 The architecture of SpecMatcher

2.3 SpecMatcher – The Intent Coverage Tool

SpecMatcher is our in-house tool for specification coverage over LTL specifications.
The architecture of the tool is shown in Figure 4. The tool accepts two specifications,
namely the target specification and the achieved specification. Both should be in
LTL. It produces the uncovered architectural specification (in LTL) as the output.
SpecMatcher uses an in-house LTL satisfiability checker for checking the primary
coverage question.

204 Ansuman Banerjee et al.

3 Testcase Generation for DPV

In the previous section, we presented a methodology to compare the system and the
subsystem specifications and deduce the coverage gap. Typically this coverage gap
is a function of the input scenarios. In other words, we often find that the subsystem
specification succeeds in covering the system specification under some input con-
straints and fails for the rest. The input scenarios under which the coverage fails is to
be targeted during DPV.

One option for solving this problem is by writing directed tests to cover the beha-
viors for which the gap exists. However, this is not practical. A property can be
triggered in complex ways. It is not easy for a validation engineer to visualize all
types of scenarios in which the property may become relevant.

The challenge is to find an automated solution to this problem. Given an assertion,
the aim is to develop an automatic methodology for guiding DPV to those behaviors
for which the assertion is relevant. The following discussion presents an approach
towards this problem.

3.1 The Concept of Vacuity

Given an assertion, we can partition all possible behaviors of the system under test
into two sets – the set of behaviors for which the assertion is relevant and the set of
behaviors for which the assertion is not relevant. The assertion is vacuously satisfied
in the second set of behaviors. Therefore, validation is meaningful with respect to a
given assertion only if DPV traces a run from the first set. Consider the following
example.

Example 10 Let us consider a slightly modified specification of the hold control unit
(Figure 2). We wish to target the following properties during DPV of this unit:

P1: G ((brake ∧ stop) ⇒ X hold)
P2: G ((hold ∧ disable) ⇒ X ¬hold)
P3: G ((brake ∧ ¬ stop) ⇒ (X (stop ∨ hold) ∨ X X hold))

It may be noted that except hold, all the other functions occurring in the above set
of properties are outputs with respect to the hold control unit. We now explain the
notion of vacuity through the above properties.

• The first property, P1, is relevant in only those scenarios where brake and stop are
both active. In all other scenarios (e.g. when brake or stop is low), P1 is satisfied
vacuously because the system under test (the hold management unit) plays no part
in satisfying the property in this way. In order to cover P1, DPV must drive both
brake and stop to high.

Can Semi-Formal be Made More Formal? 205

• Let us consider the second property, P2. Obviously P2 is satisfied vacuously in all
scenarios where disable is low.
Is it vacuously satisfied when disable is high, but hold is low? In this case, the
antecedent of the implication is false, but the property is satisfied non-vacuously.
This is because the system under test played a role in falsifying the antecedent.
The system can satisfy an implication property by satisfying the consequent or
by refuting the antecedent. In both cases the property is satisfied non-vacuously,
since the behavior of the system under test is responsible for the satisfaction.
In order to cover P2, the test generator must drive disable as high.

• The third property, P3, is vacuously satisfied at all times where brake is not
pressed or if the brake is pressed and the car stops. It is satisfied non-vacuously if
brake is pressed and the car does not stop but the system asserts hold in the next
cycle.
What if the system does not assert hold in the next cycle? We have two cases,
namely (a) the car stops in the next cycle, and (b) stop remains false in the next
cycle. In the first case, the property is again satisfied vacuously. In the second
case, the property is satisfied (non-vacuously) if hold is asserted in the subsequent
cycle.
What is the role of the test generator in this case? In order to cover P3, it must
drive brake to high and stop to low and study the response in the next cycle. If the
system asserts hold, then the test generator has a non-vacuous hit. Otherwise, it
must drive stop to low again, which is now guaranteed to result in a non-vacuous
match or fail. �

The last case suggests that the test generator needs to be online and adaptive. The
coverage of a temporal property may span over multiple cycles – in each cycle, the
test generator needs to study the response of the system-under-test in order to deter-
mine the non-vacuous inputs for the next cycle.

3.2 Non-Vacuous Test Generation

Our procedure for non-vacuous test generation with respect to an assertion revolves
around the unfolding of a temporal property during DPV. In the discussion below, we
present the methodology over LTL. We first present a few definitions.

Definition 11 (X-Pushed Formula) A formula is said to be X-pushed if all the X
operators in the formula are pushed as far as possible to the left.

Definition 12 (X-Guarded Formula) A formula is said to be X-guarded if the cor-
responding X-pushed formula starts with an X operator whose scope covers the
whole formula.

Example 13 Let us consider the temporal property

P = ((X p) U (X X q)) ∧ (X F r)

206 Ansuman Banerjee et al.

The X-pushed form of P is:

PX = X ((p U (X q)) ∧ (F r))

Now P is a X-guarded formula as the corresponding X-pushed formula PX starts
with an X operator whose scope covers the whole formula. �

The task of monitoring the truth of a given property along a DPV run works as
follows. If we are required to check an LTL property, ϕ, from a given time step, t ,
we rewrite the LTL property into a set of propositions over the signal values at time
t and a set of X-guarded LTL properties over the run starting from time t + 1. The
rewriting rules are standard, and are as follows:

Fϕ = ϕ ∨ X Fϕ
Gϕ = ϕ ∧ XGϕ
p U q = q ∨ (p ∧ X (p U q))

The property checker reads the signal values from the simulation at time t and
substitutes these on the rewritten properties and derives a new property that must
hold on the run starting from t + 1, by dropping the leftmost X operator from each
X-guarded term.

Example 14 To check the property p U (q U r) at time t , we rewrite it as:

(r ∨ (q ∧ X (q U r))) ∨ (p ∧ X (p U (q U r)))

If the simulation at time t gives p = 0, q = 1, r = 0, then by substituting these
values, we obtain the property X (q U r). Therefore at time t + 1 we need to check
the property q U r . We repeat the same methodology on q U r at time t + 1. �

For automatic test generation, the test generator should choose the values of the input
signals at each time step t while monitoring the property. The following definition is
useful to characterize the goal of the test generator.

Definition 15 (Vacuous Test) A test stimulus, Î , is vacuous at a given DPV step with
respect to a property, ϕ, iff ϕ becomes true at that step on Î regardless of the values
of the remaining variables. �

For each property, the target is to drive a sequence of tests such that a non-vacuous
success/failure of the assertion is reported. To develop the formal algorithm for test
generation, let us study a DPV run between the system-under-test and a testcase with
respect to a given property, L. The initial system configuration is the first step. If
the initial configuration is sufficient to satisfy or refute L, then the test-generator has
a non-vacuous success since the initial configuration contains assignment to non-
inputs only. Otherwise, there must exist some non-vacuous test input with respect to
L. The test generator must choose one such assignment. Simulation is done for one
cycle with the chosen input test and the system response (that is, the values of the
non-inputs) is recorded. If L is now satisfied or refuted, then the test generator stops.
We repeat the process till the end of simulation or till a success/failure is hit. The

Can Semi-Formal be Made More Formal? 207

Stimulus generation simulation Design under test
(DUT)

Assertion
Status

True/False

Assertion
Unfold

Assertion

Continue with next assertion

Fig. 5 Assertion-guided test-generator

details of the test generation algorithm can be found in [1]. The overall architecture
of the test generation platform is shown in Figure 5. The following example illus-
trates a sample run.

Example 16 Consider the specification P3 : G ((brake ∧ ¬ stop) ⇒ (X (stop ∨
hold) ∨ X X hold)) in Example 10. Let us assume a hypothetical implementation
of the hold control unit, which is being tested through DPV. Initially, hold is low.
Substituting the values of hold, the specification does not evaluate to true or false.
In the first step, the test generator is called with P3 as argument, which discards the
X-guarded terms and generates the non-vacuous input scenario (brake ∧ ¬ stop).
One step simulation is performed and let us assume that the hold unit again fails to
assert the hold signal. The input condition pertaining to this time step is stop which
is generated and another step of simulation is run. Now, assuming that hold remains
de-asserted, a non-vacuous failure of P3 is reported. On the other hand, if hold is
asserted, the process is repeated since P3 is an invariant property. �

4 A Platform for DPV for Software Systems

In this section, we describe the details of a DPV framework for validating properties
of automotive control subsystems designed using UML Statecharts. Our work was
inspired by the fact that purely formal techniques are not suitable for verification in
the context of automotive control due to the following factors:

• FPV is unable to handle large designs. Even with symbolic encodings of the finite
state structure of the model, FPV cannot scale to the kind of systems arising out
of composition of subsystems in automotive control.

• ECUs react on continuously changing sensor readings, monitoring the controlled
system or its environment. This may be modeled using real valued variables with

208 Ansuman Banerjee et al.

unbounded domains (this is one of the factors that contributes to the undecidabi-
lity result in software validation). For FPV, we need to abstract from unbounded
domains to get a finite representation of the system model. FPV tools, therefore,
cannot be both sound and complete when applied in the context of software vali-
dation unless the specification language is severely constrained.

• FPV specification languages have limited features (properties over real-value
comparisons, software events, etc. are not supported).

DPV is a semi-formal technique in which the assertions are validated over simulation
runs. DPV is scalable, and can support a much more enriched specification language
as compared to FPV. DPV gels well with the model development process as well,
considering the fact that model development languages like UML [7] have support
for a wide variety of modeling constructs.

The main idea of DPV is based on validating the truth/falsification of the asser-
tions on the basis of the responses of the system under test during simulation. These
responses are based on valuations assigned by the models to its attributes. There-
fore, one of the major requirements in building DPV is to define an interface for
accessing values of model variables during simulation. The system under verifica-
tion must allow some external hooks to access the model attributes and events needed
by the verification engine. Adding hooks inside the source code of a model requires
perturbation of source code and may introduce coding and execution overheads. In
addition, the granularity of model attribute sampling is also important, due to the
absence of a universal clock (as in the hardware domain) and values of data attributes
and events sampled at different points may result in different validation results. For-
tunately, current software simulators like Rhapsody for UML allow external hooks
for sampling model parameters at the appropriate level of granularity, without having
to disturb the model. We exploit this feature in the proposed DPV approach.

In the following subsection, we present a DPV platform for verifying behavioral
properties of communicating concurrent software systems described using UML
Statecharts. Our work is based on the semantics of Statecharts, as employed by
Rhapsody from I-logix [5].

4.1 DPV for UML over Rhapsody

The development of DPV over Rhapsody posed some non-trivial challenges. We
explain these with respect to the basic requirements for DPV in the context of ECU
or subsystem validation. These are as follows:

• A modeling language for the system under test and a simulator.
• An assertion specification language: The language should be rich enough to

support correctness requirements arising in software systems.

Can Semi-Formal be Made More Formal? 209

• An interface to monitor model responses: The verification engine should be able
to sample model attributes and events after every step.

• A verification engine running on top of the simulator: The verification engine
should be easily integrable into any model.

To address the first issue, we considered UML as the model development language,
and Rhapsody as the UML simulator. For this, we needed to understand the simu-
lation semantics of Rhapsody, the way it handles concurrency, communication and
other features.

To describe correctness properties for ECU validation, one needs to describe prop-
erties over data attributes and events as well. Property specification languages that
have been widely used in the formal verification community are predominantly either
state-based or event-based. However, in the context of automotive control, we need to
specify both state information and events (communication among components). For
example, the Local Interconnect Network (LIN) [6] protocol specification has the
following requirement: In slave node, detection of break/synch frame shall abort the
transfer in progress and processing of the new frame shall commence. As this shows,
both states (for describing a transfer in progress) and events (break/synch event) are
required to capture the desired behavior. In our work, we extended Linear Tempo-
ral Logic (LTL) with some interesting features, specifically, the ability to express
requirements over events, ability to express arithmetic and relational queries over
data attributes (both Boolean and integer valued), the concept of local variables and
the concept of parameterized events. Our logic is called Action-LTL and is used
within the DPV framework for specifying assertions.
To address the third issue, we overloaded the event handler of Rhapsody (RicGEN)
to send the verification engine a copy of every event generated after every simulation
step. The verification engine developed by us which was integrated inside Rhapsody
exploits this. The model parameters are sampled by the assertion engine separately
by calling appropriate methods.

UML Models

Assertion Checkers Interface signals

Rhapsody
Simulation Engine

Action−LTL specs

Fig. 6 The DPV platform over Rhapsody

210 Ansuman Banerjee et al.

Specifications described in Action-LTL are compiled into an assertion monitor
and integrated with the Rhapsody models of the system under test. The assertion
monitor is built as a Rhapsody object with embedded C routines The verification
procedure enjoys a symbolic implementation (based on the CUDD package) and
is therefore very space efficient. The assertion monitor is then cosimulated with the
Rhapsody model of the design-under-test and success/failures are shown as events on
the generated sequence diagram. This facilitates debug. Figure 6 shows the overall
architecture.

Our main contributions may be summarized as follows:

• We have extended LTL to be able to express a wide range of requirements using
local variables and parameterized events.

• We have developed a complete DPV solution for UML models over Rhapsody.
• We have developed the complete property suite of the Local Interconnect Protocol

(LIN) [6] in Action-LTL and tested the concept of DPV on Rhapsody-based LIN
models.

5 Conclusion

Existing static verification techniques do not scale beyond components of moderate
size, thereby posing a major limitation in the applicability of FPV within the design
validation flow. The more promising technique in this context has been Dynamic
Property Verification, but it relies on appropriate and exhaustive modeling of test-
cases. The verification by specification coverage approach presented in this paper is
a serious attempt towards extending the frontiers of DPV, by enabling the coverage
of system level properties by the collection of subsystem guarantees, and generating
testcases to aid DPV.

In the context of automotive control, systems are far too complex, and they typi-
cally consist of both software and hardware. Especially software execution properties
must be timely taken into account, since software modules more and more dominate
the functionality. The execution of software in such real-time systems is, in general,
controlled by a real-time operating system (RTOS). The presence of the RTOS creates
a major verification challenge, since properties to be verified now critically depend
on the strategies of the RTOS, and we need to consider this in the specification cov-
erage framework as well. In addition, there are issues like bus latency, interrupts,
etc. which also need to be considered. We believe the simplicity and effectiveness
of the approach will encourage further research on the verification by specification
coverage paradigm in the context of automotive control.

Can Semi-Formal be Made More Formal? 211

References

1. Banerjee, A., Pal, B., Das, S., Kumar, A., and Dasgupta, P., Test Generation Games from Formal
Specifications, In Proc. of Design Automation Conference (DAC’2006), San Francisco, pages
827–832.

2. Basu, P., Das, S., Banerjee, A., Dasgupta, P., Chakrabarti, P.P., Mohan, C.R., Fix, L., and
Armoni, R., Design Intent Coverage – A new paradigm for Formal Property Verification. IEEE
Trans. on CAD, pages 1922–1934, 2006.

3. Bienmüller et al., Verification of Automotive Control Units, In Ernst-Rdiger Olderog and Bernd
Steffen, editors, Correct System Design, vol. 1710 of LNCS, pages 319–341.

4. Eckard et al., Adding Value to Automotive Models, In Automotive Software – Connected Ser-
vices in Mobile Networks, vol. 4147/2006 of LNCS, pages 86–102.

5. http://www.ilogix.com
6. http://www.lin-subbus.org/
7. Object Management Group, Unified Modeling Language Specification, Version 1.4, Draft,

OMG(2001), http://cgi.omg.org/cgibin/docad/018214.
8. Pnueli, A., The Temporal Logic of Programs. In Proc. of Foundations of Computer Science,

pages 46–57, 1977.
9. Reference Verification Methodology for Vera,

http://www.synopsys.com/products/simulation/pdf/va vol4 iss1 vera.pdf
10. System Verilog. http://www.systemverilog.org/

Beyond Satisfiability:
Extensions and Applications∗

Natarajan Shankar

Abstract Satisfiability procedures are used to check if a formula representing a con-
straint has a solution. They are gaining popularity as core engines for a number of
applications. These procedures can be adapted for uses beyond testing satisfiabil-
ity. We describe the underlying ideas and enumerate some of the applications and
extensions of satisfiability procedures for verification, test generation, planning, and
scheduling.

Keywords: boolean satisfiability, satisfiability modulo theories, decision proce-
dures, automated theorem proving

Propositional satisfiability (SAT) procedures date back to the work of Post (1921)
and Bernays (Zach, 1999) around 1920, but recent advances have rendered them
useful for an impressive array of applications. The increased efficiency of these pro-
cedures stems mainly from representations and algorithms that are cache-aware and
support low-overhead backtracking. SAT procedures have been used for testing both
combinational and state machine equivalence of hardware circuits, for generating test
cases and plans, and for the bounded model checking of both hardware and software
systems. They can also be instrumented to generate proofs corresponding to unsat-
isfiability and interpolant formulas that can be used to partition such proofs. Given
a collection of constraints that are not simultaneously satisfiable, satisfiability proce-
dures can be extended to construct the solution that violates the fewest constraints.
SAT procedures can be extended beyond the propositional realm to decide the satis-
fiability of quantifier-free formulas in a theory such as equality or arithmetic, or even
a combination of such theories. The resulting procedure decides satisfiability modulo
theories (SMT), and can be applied to problems in real-time and hybrid systems as
well as assertion checking, predicate abstraction, and model checking of programs.

1 Propositional Satisfiability

The principles of modern SAT solving have their origin in the 1960 procedure of
Davis and Putnam (1960), as simplified in 1962 by Davis et al. (1983). A proposi-
tional formula φ can be a propositional variable p or a negation ¬φ, a conjunction

∗This research was supported NSF Grants CCR-ITR-0326540 and CCR-ITR-0325808.
S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 213
for Distributed Embedded Control Systems, 213–225.
c© Springer 2007

214 Natarajan Shankar

φ0∧φ1, a disjunction φ0∨φ1, or an implication φ0 ⇒ φ1 of smaller formulas φ0, φ1.
A truth assignment ρ for a formula φ maps the propositional variables in φ to {�,⊥}.
A given formula φ is satisfiable if there is a truth assignment ρ such that ρ |� φ under
the usual truth table interpretation of the connectives.

A literal is either a propositional variable p or its negation ¬p. The negation of
a literal p is ¬p, and the negation of ¬p is just p. A formula is in negation normal
form (NNF) if the negation operation appears only in literals of the form ¬p. to
propositional variables. Any formula can be converted to NNF by transforming ¬¬φ
to φ, ¬(φ0 ∧ φ1) to ¬φ0 ∨ ¬φ1, ¬(φ0 ∨ φ1) to ¬φ0 ∧ ¬φ1, and ¬(φ0 ⇒ φ1) to
φ0 ∧ ¬φ1, wherever such subformulas occur in the formula. A formula is a clause if
it is the iterated disjunction of literals of the form l1 ∨ · · · ∨ ln for literals li , where
1 ≤ i ≤ n. A formula is in conjunctive normal form (CNF) if it is the iterated
conjunction of clauses Γ1 ∧ · · · ∧ Γm for clauses Γi , where 1 ≤ i ≤ m.

The first step in the Davis–Putnam–Logemann–Loveland (DPLL) procedure is to
convert the formula to conjunctive normal form (CNF) by introducing new variables
to label the subformulas. A formula can be converted to clausal form by introducing
fresh variables for each compound subformula and adding suitable clauses, e.g., in
converting ¬p∨ (¬q∧r), we label ¬q∧r as b and ¬p∨b as a to obtain the clauses
a, a ∨ p, a ∨ ¬b,¬a ∨ ¬p ∨ b, b ∨ q ∨ ¬r,¬b ∨ ¬q,¬b ∨ r .

The input to the satisfiability procedure is given as a set of clauses K represent-
ing the CNF formula

∧
K . The DPLL procedure works by building up a partial truth

assignment to the variables by successively guessing an assignment for a literal, prop-
agating the consequences of the partial assignment with respect to the clauses, and
backtracking on the partial assignment when a conflict is detected in the form of a
falsified clause. The procedure terminates either with a truth assignment satisfying
each of the clauses, or with a demonstration that no such assignment can be con-
structed. The state of the search procedure is a 4-tuple 〈h, M, K , C〉 consisting of
the decision level h, the partial assignment M , the input clause set K , and a set C of
conflict clauses derived from K that are constructed during the search.

At a decision level h, the partial assignment consists of a sequence 〈M0, . . . , Mh〉.
Each Mi at decision level i is of the form d; 〈l1[Γ1], . . . , lk[Γk]〉 for some k, where
d is the decision literal at level i , and each li is an implied literal. The assignment
M0 contains no decision literal. A decision literal or implied literal in M is said to
be an assigned literal in M . No assigned literal in M occurs twice in M , nor does
it occur negated in M . The assignment corresponding to M maps a variable p to
� (respectively, ⊥) if p (respectively, ¬p) is an assigned literal in M . If neither p
nor ¬p occcurs in M , then the assignment is undefined. Given an assigned literal
l occurring in M at level i , the assignment preceding l, written as M<l , consists
of 〈M0, . . . , Mi−1, M<l

i 〉, where M<l
i consists of the part of the assignment of Mi

preceding the occurrence of l. For each entry l[Γ] in M , the clause Γ occurs in
K ∪ C and is of the form l ∨ Γ ′, where M<l |� ¬Γ ′.

The DPLL search algorithm works by constructing the partial assignment M
through the use of propagation, analysis/backjumping, and decision literal selection,
until it has constructed an assignment satisfying the input clauses K or it can be
shown that there is no such assignment. For decision level h, propagation works by

Beyond Satisfiability: Extensions and Applications 215

adding l[Γ] to Mh , where Γ ∈ K ∪ C is of the form l ∨ Γ ′, where M0 |� ¬Γ ′.
When h0, each unit clause l in K ∪ C is placed in M0 as l[l]. Propagation can
also detect a conflict where there is a clause of the form Γ such that M |� ¬Γ . If a
conflict is detected at decision level 0, then the algorithm reports unsatisfiability. Oth-
erwise, each conflict can be analyzed to construct a conflict clause that is added to C .
If clause Γ in K ∪ C is the source of the conflict, then it is of the form l1 ∨ · · · ∨ ln
where M contains ¬li [¬li ∨ Γi], for 1 ≤ i ≤ n. The analysis phase successively
replaces Γ with the result of resolving Γ with each clause ¬li ∨ Γi for li occurring
at level h until Γ contains a unique literal l at level h.

Note that M |� ¬Γ for each such clause Γ generated through analysis. Further-
more, the clause Γ contains at least one literal at level h since the conflict is detected
at level h. The analysis process will arrive at a point where there is a unique literal
at level h in Γ since the negation of the decision literal at level h will eventually be
generated from any other literal at level h.

The clause Γ constructed by the analysis phase is added as a conflict clause to C
to obtain the new conflict clause set C ′. Let h′ be the level of the next highest literal l
such that ¬l occurs in Γ . The search is resumed with the state 〈h′, Mh′ , K , C ′〉. Note
that the unique literal l at level h in Γ is now an implied literal at level h′. Though
the partial assignment has shrunk, it now contains more implied literals at level h′.
On the other hand, if no conflict is detected at level h, then an unassigned literal
d is selected as the decision literal at level h + 1, and the search is resumed with
the state 〈h + 1, 〈M; d〉, K , C〉. If no unassigned literals remain, then the algorithm
terminates with a satisfying assignment M for K . Termination (Nieuwenhuis et al.,
2005; Shankar, 2005) follows since each step of propagation, backjumping (with
propagation), or selection increases the quantity h

i |Mi |∗N (N−h) towards the bound
N (N+1) for N |vars(K)|.

The algorithm can either terminate with an assignment M satisfying the input
clause set K , or with an unsatisfiability when a conflict is reported at the decision
level 0. The SAT procedure can also generate a proof of unsatisfiability since a con-
flict at level 0 implies that some clause Γ in K when resolved with other clauses from
K ∪C yields a contradiction. The clauses in C are themselves derived by resolution.
An example computation of the DPLL algorithm for demonstrating the unsatisfiabil-
ity of the input K given by {p∨ q,¬p∨ q, p∨¬q, s ∨¬p∨ q,¬s ∨ p∨¬q,¬p∨
r,¬q ∨ ¬r}. is shown in Figure 1. In this example, there are no unit input clauses.
The partial assignment M0 is therefore empty. The literal s is selected as the decision
literal at level 1. Propagation does not yield any new implied literals at level 1. Then,
literal r is selected as the decision literal at level 2. Now propagation adds the literals
¬q and p, but then detects the conflict with clause ¬p ∨ q. Analyzing this conflict,
we obtain the conflict clause q which is added to C while backjumping to level 0.
Now there is a unit clause q, and propagation adds the literals p and r to M0 before
detecting the conflict on the clause ¬q ∨¬r . Since this conflict is at level 0, the input
clause is judged to be unsatisfiable.

The proof of unsatisfiability for the example in Figure 1 can be constructed by
resolution. The conflict clause q is proved by resolving ¬p∨q with p∨q. The proof
of unsatisfiability is constructed by resolving¬q∨¬r with¬p∨r to obtain¬p∨¬q

216 Natarajan Shankar

Step h M K C Γ

selection s 1 ; s K ∅ –
selection r 2 ; s; r K ∅ –
propagation 2 ; s; r,¬q[¬q ∨ ¬r] K ∅ –
propagation 2 ; s; r,¬q, p[p ∨ q] K ∅ –
conflict 2 ; s; r,¬q, p K ∅ ¬p ∨ q
analysis 0 ∅ K q –
propagation 0 q[q] K q –
propagation 0 q, p[p ∨ ¬q] K q –
propagation 0 q, p, r [¬p ∨ r] K q –
conflict 0 q, p, r K q ¬q ∨ ¬r

Fig. 1 Example of the DPLL satisfiability procedure

which is in turn resolved with p∨¬q to obtain¬q which is resolved with the conflict
clause q to derive ⊥.

Key ideas in the development of efficient SAT solvers originate from SATO
(Zhang, 1997), GRASP (Marques-Silva and Sakallah, 1999), and Chaff (Moskewicz
et al., 2007). Efficient implementations of SAT algorithms include ZChaff (Zhang
and Malik, 2002; Zhang, 2003), Berkmin (Goldberg and Novikov, 2002), Siege (Ryan,
2004), and MiniSAT (Eén and Sörensson, 2003).

1.1 Extensions and Applications

The satisfying assignment ρ(M) generated by a satisfiability procedure has many
uses since it can be used as a solution to the input constraints encoded by the clause
set K . The formulas given to a SAT solver can represent

1. Combinational logic oF(x1, . . . , xn)
2. Combinational equivalence F(x1, . . . , xn)G(x1, . . . , xn)
3. The k-fold unwinding of a state machine with initial state I and transition relation

R: I (s0) ∧ N (s0, s1) ∧ . . . ∧ N (sk−1, sk)
4. Bounded model checking (Biere et al., 1999): I (s0)∧N (s0, s1)∧· · ·∧N (sk−1, sk)∧

(¬P(s0) ∨ · · · ∨ ¬P(sk))
5. An invariance proof obligation for a state machine: P(s) ∧ N (s, s′) ∧ ¬P(s′)
6. A k-induction proof (Sheeran et al., 2000) I (s0)∧ N (s0, s1)∧· · ·∧ N (sk−1, sk)∧

P(s0) ∧ · · · ∧ P(sk−1) ∧ ¬P(sk)

The satisfying assignment in these instances can be a counterexample or a test
case. For the case of invariant proof obligations, the satisfying instance can be used
to suggest a strengthening of the invariant.

Beyond Satisfiability: Extensions and Applications 217

AllSAT The AllSAT version of the problem requires a representation of all possi-
ble satisfying instances, for example, as a binary decision diagram or in disjunctive
normal form (DNF). Let l1, . . . , ln be a satisfying assignment M found by the satis-
fiability procedure, then ¬d1 ∨ · · · ∨ ¬dn for the decision literals d1, . . . , dn can be
added as a blocking clause to C and the search can be continued until the resulting set
of clauses is unsatisfiable. The complete set of blocking clauses B can be extracted
from the conflict clause set C . The DNF equivalent of the input formula φ is then just∨{¬Γ | Γ ∈ B}. For example, with a failed invariant proof, the AllSAT procedure
can be used to enumerate a symbolic representation of the set of states s such that
P(s)∧ N (s, s′)∧¬P(s′). The AllSAT procedure can be used to get the CNF equiv-
alent of a given formula without the extra variables introduced by the syntactic CNF
conversion shown above (McMillan, 2002). The CNF equivalent of φ is obtained by
just negating the DNF equivalent of ¬φ.

For example, the DPLL search with the input clause set ¬a∨b, c yields an assign-
ment Mc; a, b. The negation ¬c ∨ ¬a ∨ ¬b is added as a blocking clause. The new
clause yields a conflict so that backjumping followed by search yields a new assign-
ment c; a,¬b, which creates a conflict. The search is continued with the addition of
the conflict clause ¬c∨¬a to C following analysis and backjumping. A new satisfy-
ing assignment c,¬a; b is generated, and the resulting blocking clause¬c∨a∨¬b is
added to B. Further conflict analysis, backjumping, and search yields the satisfying
assignment c,¬a,¬b and the blocking clause ¬c ∨ a ∨ b. With this, there is now a
conflict at level 0. The resulting DNF is

(c ∧ a ∧ b) ∨ (c ∧ ¬a ∨ b) ∨ (c ∧ ¬a ∧ ¬b).

The procedure can be optimized by pruning each satisfying assignment M to a
minimal set of literals M such that each clause in K contains at least one literal
in M . In the above example, the first blocking clause can be reduced to ¬c ∨ ¬b.
Now, propagation at level 0 yields the assignment c,¬b[¬c∨¬b],¬a[¬a ∨ b]. The
resulting blocking clause is ¬c ∨ a, yielding a conflict at level 0. The DNF returned
is the more compact (c ∧ b) ∨ (c ∧ ∧a).

Boolean quantification can also be computed using the normal form conversion
so that if C N F(φ) ≡ Γ1 ∧ . . . ∧ Γn , then ∀x : φ ≡ ∀x : C N F(φ) ≡ (∀x :
Γ1) ∧ . . . ∧ (∀x : Γn) ≡ Γ1\x ∧ . . . ∧ Γn\x. Existential quantification ∃x : φ can
be computed as ¬∀x : ¬φ. SAT-based Boolean quantification can be used as an
alternative to BDDs in symbolic model checking (McMillan, 2002).

Interpolation Given a proof of unsatisfiability, it is possible to generate a Craig inter-
polant (Craig, 1957). The Craig interpolation theorem for first-order logic asserts
that when two formulas A ⇒ B is valid, then there must be an interpolant I so
that the language of I , namely the set of non-logical function and predicate symbols
occurring in I , is contained in the languages of A and B. Equivalently, if A ∧ B is
unsatisfiable, then there is an interpolant I that is entailed by A such that I ∧ B is
unsatisfiable.

218 Natarajan Shankar

In the propositional case, the interpolant I will be a propositional formula whose
propositional variables are included in those of both A and B. If we have two sets of
clauses K1 and K2 with a proof of unsatisfiability for K1 ∪ K2, the interpolant can
be constructed from the proof of unsatisfiability. Each clause Γ in the proof can be
decomposed as Γ1∨Γ2, where vars(Γ2) ⊆ vars(K2) and vars(Γ1)

⋂
vars(Γ2). If we

let ¬Γ1 represent the formula that is the negation of Γ1, then a clause Γ1 ∨Γ2 can be
read as the implication¬Γ1 ⇒ Γ2. Each such clause Γ in the proof has an associated
interpolant I(Γ) with vars(I(Γ)) ⊆ vars(K1)

⋂
vars(K2) such that K1 . ¬Γ1 ⇒

I(Γ) and K2 . I(Γ) ⇒ Γ2. For each clause (Γ) in K1, the interpolant I(Γ)Γ2,
and for each clause Γ in K2, I(Γ)�, where � is the empty clause. Whenever a
clause Γ is derived by resolution from clauses Γ ′ and Γ ′′, we know that we have
interpolants I(Γ ′) such that K1 . ¬Γ ′

1 ⇒ I(Γ ′) and K2 . I(Γ ′) ⇒ Γ ′
2, and

similarly for I(Γ ′′). If the resolution is on a literal p such that p occurs in Γ ′
1 and

¬p in Γ ′′
1 , then since K1 . ¬(Γ ′

1) ⇒ I(Γ ′) and K2 . I(Γ ′) ⇒ Γ ′
2, and similarly

for Γ ′′, we have that I(Γ)I(Γ ′) ∨ I(Γ ′′) since K1 . ¬Γ ⇒ p ∨ I(Γ ′) and K1 .
¬Γ ⇒ ¬p∨ I(Γ ′). Correspondingly, if p occurs in Γ ′

2 and Γ ′′
2 , then the interpolant

I(Γ) is I(Γ ′) ∧ I(Γ ′′) since K1 . ¬Γ ⇒ I(Γ ′) and K1 . ¬Γ ⇒ I(Γ ′′) and
K2 . I(Γ) ⇒ p ∨ Γ ′

2 and K2 . I(Γ) ⇒ ¬p ∨ Γ ′′
2 .

For example, consider the input clause set K partitioned as K1∪K2, where K1{a∨
e[e],¬a ∨ b[b],¬a ∨ c[c]}, and K2{¬b ∨¬c ∨ d[�],¬d[�],¬e[�]}. Here K1 and
K2 share the variables, b, c, and e. The interpolation can be constructed from the
annotated proof as shown below.

Γ Γ ′ Γ ′′

a[e] a ∨ e[e] ¬e[�]
b[e ∨ b] ¬a ∨ b[b] a[e]
c[e ∨ c] a[e] ¬a ∨ c[c]
¬c ∨ d[e ∨ b] b[e ∨ b] ¬b ∨ ¬c ∨ d[�]
d[(e ∨ b) ∧ (e ∨ c)] ¬c ∨ d[e ∨ b] c[e ∨ c]
⊥[(e ∨ b) ∧ (e ∨ c)] ¬d[�] d[(e ∨ b) ∧ (e ∨ c)]

Interpolation has a number of uses (McMillan, 2005; Jhala and McMillan, 2006).
It can be used in bounded model checking to identify assertions that are implied by
the prior computation that are sufficient to achieve the desired unsatisfiability.

Planning A planning problem involves a set of actions, various domain constraints,
an initial state, and a goal state (Kautz et al., 1996). The task is to find a schedule of
actions leading from the initial state to the goal state that is consistent with the domain
constraints. Examples of planning problems include blocks worlds, transportation,
resource usage, and even human activity. A typical problem would be as follows:
Given cities A, B, C , and D, where only A and C can be used for refueling. Given
trucks u and v , where u is initially at A, and v is at B. The packages AB, AD, BC ,
B A, C A, C D, and DB, are labeled by source and destination. The trucks consume

Beyond Satisfiability: Extensions and Applications 219

half a tank of fuel in moving from one city to another, and they can fill their tanks
when they are at either A or C . The actions are those of

1. Loading a package on to a truck if both the package and the truck are in the same
city

2. Unloading a package from a truck to a city if the package is on the truck and the
truck is at the city

3. Moving a truck from one city to another provided there is at least half a tank of
fuel in the truck

4. Refueling a truck, i.e., filling the tank, provided the truck is at either A or C

A plan is a trajectory consisting of a series of steps, where each step consists of one
or more independent actions. A plan is optimal if it takes the fewest steps.

The above planning problem can be coded as a SAT problem using Boolean vari-
ables

1. location(truck, city, step) for each truck, city, and step
2. at(package, city, step) for each package, city, and step number
3. in(package, truck, step) for each package, truck, and step number
4. fulltank(truck, step) indicating whether the fuel tank is full
5. halftank(truck, step) indicating the tank is empty

There are constraints asserting that a truck can have at most one location, a package
can have at most one location either in a truck or a city, and a fuel tank cannot both
be full and half full.

The actions are indicated by Boolean variables

1. fill(truck, step): Initiates the action of filling the truck at the given step.
2. go(truck, city, step): The truck is driven to the destination city.
3. load(package, truck, step): Loads the package on to the truck.
4. unload(package, truck, step): Unloads the package from the truck to the city

where the truck is located.

Constraints are asserted binding the Boolean variables corresponding to each
action to the actual action. Note that the fill, load, and unload actions cannot occur
concurrently with the go action for the truck in question. Finally, the initial configu-
ration is asserted of the initial state at step 0, and the final state which can be chosen
as some number n.

The existence of an n step plan can be established by solving the constraints.
By starting from a conservative target n for the number of steps and progressively
decreasing the value of n by 1, when there is a value of n for which the constraints
are unsatisfiable, we know that the plan at length n + 1 is optimal.

MaxSAT and Weighted MaxSAT Many satisfiability problems contain a mixture of
hard constraints that have to be satisfied, and soft constraints that should be satisfied
if possible. The goal with MaxSAT is to find the assignment that satisfies all the hard
constraints and the maximum number of soft constraints. In the weighted case, there

220 Natarajan Shankar

are numerical penalties associated with the soft constraints, and the goal is to find
an assignment with minimum overall penalty, where the latter quantity is the sum of
the penalties over each of the falsified constraints. There are several ways in which
weighted and unweighted MaxSAT problems can be solved with similar techniques.
Each soft constraint A with weight w is represented using a fresh Boolean variable a
as the formula a∨A, and the weight constraint is specified as i pi∗ai ≤ M , for some
limit M . The latter pseudo-Boolean constraint can be turned into an ordinary Boolean
constraint by means of conditional addition and comparison. As with planning, we
can start with a conservative bound M that is progressively narrowed until the set of
constraints is unsatisfiable.

MaxSAT and its variants are useful for problems where some constraints are either
lower in reliability or importance than others. It is also useful where there is a pre-
ferred solution and one would like to minimize the distance of the obtained solution
from the preferred one. A simple but common example of MaxSAT is that of mini-
mizing abnormality. For example, given a circuit with a battery B in series with two
lamps L1 and L2 in parallel. If the battery is normal, then each normal lamp will light
up. If lamp L1 and L2 both fail to light up, the abnormality can be attributed to the
battery, and otherwise, if at least one of the lamps is lit, then the abnormality is only
attributable to the other lamp.

2 Theory Satisfiability

While many practical problems can be encoded in terms of propositional satisfiabi-
lity, there are lots of problems where the constraints are not purely propositional.
They involve other logical symbols such as equality and inequality and function sym-
bols that are interpreted in theories such as equality over uninterpreted function sym-
bols, arithmetic, arrays, and datatypes. The resulting problem of satisfiability modulo
theories (SMT) was first worked on by Shostak (1979) and Shostak et al. (1982) and
Nelson and Oppen (1979) and Nelson (1981). The goal with such constraints is to
find a satisfying assignment for the variables, including propositional variables, that
satisfies the constraints when the symbols are interpreted according to specific theo-
ries. For example, many proof obligations involve propositional logic with the theory
of uninterpreted equality. For hardware proofs showing the correspondence between
the unpipelined instruction set architecture (ISA) and the pipelined register-transfer
level (RTL), the datatype operations can be modeled as uninterpreted function sym-
bols since these remain the same in both descriptions and only the control operations
have changed. Verification conditions for imperative programs and induction steps
in proofs can also be established by treating certain operations as uninterpreted. For
example, in proving the associativity of the append operation, we may have to prove
the induction subgoal

append(append(cons(u, x), y), z)append(cons(u, x), append(y, z))

Beyond Satisfiability: Extensions and Applications 221

in the context of the assertions

append(cons(u, x), y) cons(u, append(x, y)) (1)
append(cons(u, append(x, y)), z) cons(u, append(append(x, y), z)) (2)
append(cons(u, x), append(y, z)) cons(u, append(x, append(y, z))) (3)

Here, the function symbols cons and append can be treated as uninterpreted.
The significance of For the theory of uninterpreted function symbols, the Acker-

mann reduction can be used to reduced formulas φ to Boolean form by introducing
individual variables x f (y1,...,yn) and asserting for each pair of terms f (y1, . . . , yn)
and f (z1, . . . , zn), the clause y1 �= z1 ∨ · · · ∨ yn �= zn ∨ x f (y1,...,yn)x f (z1,...,zn).
The resulting formula φ′ is equivalent to φ but contains only propositional variables
and equalities between individual variables. Such formulas can be further reduced to
Boolean form by finite instantiation by identifying a finite domain D for the individ-
ual variables that is sufficient for exhibiting satisfiability.

In general, when deciding theory satisfiability of a formula φ with respect to a
theory T , one can identify a finite set Lφ of formulas (lemmas) valid in the theory T
concerning the theory atoms in φ such that the propositional satisfiability of Lφ ∧ φ
implies the satisfiability of φ. This eager approach (Bryant et al., 2002) to theory
satisfiability suffers from the problem that the lemmas are generated indiscriminately
and can overwhelm the SAT solver.

In the lazy approach (Stump et al., 2002; de Moura et al., 2002; Flanagan et al.,
2003), the DPLL procedure is modified so that the partial assignment M is now a
decision procedure context. The decision procedures can then decide if a literal l is
entailed in the context M and generate a lemma clause ¬l ∨ ¬l1 ∨ . . . ∨ ln encapsu-
lating the explanation, where l1, . . . , ln are literals asserted into M . The contextual
entailment can be used for detecting conflicts and enriching Boolean constraint prop-
agation to theory propagation. Since contextual entailment is expensive, it is usually
better to use an incomplete but efficient entailment procedure for theory propagation,
and a complete procedure for detecting conflicts.

Typically, the theory T is a combination of theories T1, . . . , Tn , where these the-
ories can include uninterpreted equality, arithmetic, arrays, datatypes, bit-vectors,
among other theories. Variable abstraction can be used to convert each theory atom
A in φ to a pure atom A by replacing each flat theory term f (x1, . . . , xn) by the
fresh (interface) variable y and adding the conjunct y f (x1, . . . , xn) to φ. The deci-
sion procedure for the theory T can be obtained from those for the individual Ti pro-
vided we introduce case splits y1 y2 ∨ y1 �= y2 for pairs of interface variables y1, y2.
These tautologous case split clauses can also be added as clauses in the DPLL search
procedure. The theory decision procedures are also allowed to generate clauses. The
Ackermann reduction can be seen as a generated clause from the equality theory. The
array theory can generate the clause i j∨(A[i : v][j]A[j]whenever a term equivalent
to A[i : v][j] appears in the context. This kind of case-splitting was introduced in
Shostak’s STP solver (Shostak et al., 1982) for satisfiability modulo theories.

The Simplify theorem prover is a widely used SMT solver (Detlefs et al., 2003).
Yices (Dutertre and de Moura, 2006) is a high-performance SMT solver with a

222 Natarajan Shankar

powerful range of capabilities developed at SRI. It supports an expressive language
with higher-order types, dependent types, and predicate subtypes, for capturing
constraints. Yices supports constraint solving in a combination of theories includ-
ing Booleans, uninterpreted functions, linear arithmetic, records, tuples, datatypes,
arrays, and bit-vectors. Yices also supports quantifier instantiation through e-graph
matching (Nelson, 1981), incremental and interactive use, MaxSMT, and model
construction. Yices also includes a competitive SAT solver. It can be used interacti-
vely through a command language with incremental definitions, assertions, context
creation and examination, pushing/popping contexts, and MaxSAT-checking. Yices
is integrated with SAL (http://sal.csl.sri.com) and PVS (http://pvs.csl.sri.com). It is
used in hardware/software verification, bounded model checking, planning, proba-
bilistic consistency using MaxSAT, and symbolic execution.

Procedures for satisfiability modulo theories have a number of interesting appli-
cations. We have already mentioned hardware verification as a motivating appli-
cation. Since programs with variables ranging over integers, arrays, datatypes, and
bit-vectors can also be captured directly with theory formulas, the procedure can
be used for bounded model checking for infinite state systems including timed
and hybrid systems, assertion checking, extended type checking, k-induction, test
case generation, predicate abstraction, scheduling, and plan generation and valida-
tion (Rushby, 2006). We illustrate the use of SMT solvers for predicate abstrac-
tion (Lahiri et al., 2006).

Predicate Abstraction The goal in predicate abstraction is to construct a Boolean
approximation α(φ) of a formula φ with respect to some atomic formulas A1, . . . , An .
The formula α(φ) uses the Boolean propositions p1, . . . , pn to stand for A1, . . . , An ,
respectively, so that . φ ⇒ α(φ)[A1/p1, . . . , An/pn]. The formula α(φ) can be
constructed using the CNF construction strategy from the previous section with the
formula ¬φ ∧∧i pi Ai can be used to generate the set of blocking clauses Γ such
that ¬φ ∧∧i pi Ai ∧ ¬Γ is satisfiable. The conjunction of the blocking clauses in
the Boolean variables p1, . . . , pn when reduced to its prime implicates yields the
appropriate α(φ).

Abstract Reachability Predicate abstraction can be used to over-approximate the
reachable set of states for a transition system (Graf and Saı̈di, 1997; Das and Dill,
2001; Henzinger et al., 2002) with initial state predicate I and next-state relations N ,
where S0α(I), and Si+1Si

⋃
α(N (γ (Si))). Since the abstract state space is infinite,

the iteration must converge to a set S. A concrete condition E is abstractly reachable
if S

⋂
α(E) is nonempty. This yields an abstract trace t0, . . . , tm such that t0 ∈ S0

and each ti+1 is in Si+1 − Si . The concrete version of this trace can be converted into
a formula γ (S0)∧N (s0, s1)∧γ (S1)∧· · ·∧N (sm−1, sm)∧γ (Sm). If the latter formula
is satisfiable, then there is a concrete trace exhibiting the reachability of the condi-
tion E . Otherwise, if the formula is unsatisfiable, then the abstract trace is a spurious
one, and the proof of unsatisfiability can be used to suggest new predicate to refine
the abstraction. The interpolants at the individual states s1, . . . , sm−1 can be used to
suggest new predicates (Jhala and McMillan, 2006). The interpolant ψ at state si is

Beyond Satisfiability: Extensions and Applications 223

entailed by the formula γ (S0)∧ N (s0, s1)∧ γ (S1)∧ · · · γ (Si) and is unsatisfiable in
conjunction with N (si , si+1) ∧ γ (si+1) ∧ · · · ∧ γ (sm). Including the predicates con-
tained in the interpolants thus ensures that the spurious trace is ruled out under the
refined abstraction. Quantifier-free interpolants can be constructed for theories such
as linear arithmetic and equality. For some theories, such as arrays, there may not be
any quantifier-free interpolants even for quantifier-free input formulas.

Quantification When the given formula contains quantifiers, the satisfiability prob-
lem may not be decidable. Quantifiers can be eliminated by

1. Skolemization to replace the existential quantifiers by Skolem constants.
2. Quantifier elimination for formulas within theories that support the elimination of

quantifiers.
3. E-graph matching (Nelson, 1981) to instantiate universally quantified variables

by matching modulo the term equalities in the context M . The use of e-graph
matching is heuristic and therefore incomplete.

3 Conclusions

We have outlined the basic ideas in the construction of satisfiability procedures for
the case of propositional formulas and first-order formulas, including quantifier-free
and quantified formulas. We have examined extensions to the basic satisfiability par-
adigm including the construction of proofs of unsatisfiability, the generation of all
possible satisfying assignments, satisfiability under soft and weighted constraints,
and the generation of interpolants. We have also examined applications of satisfi-
ability in planning, test case generation, and verification. Satisfiability is the core
technology for a number of applications and is likely to remain a fertile and exciting
research discipline into the foreseeable future.

References

A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT pro-
cedures instead of BDDs. In Proceedings of the ACM Design Automation Conference (DAC’99).
ACM Press, 1999.

Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and verifying systems
using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In
Proceedings of CAV’02, volume 2404 of Lecture Notes in Computer Science, 2002.

W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
Journal of Symbolic Logic, 22(3):269–285, 1957.

Satyaki Das and David L. Dill. Successive approximation of abstract transition relations. In Annual
IEEE Symposium on Logic in Computer Science01, pages 51–60. The Institute of Electrical and
Electronics Engineers, 2001.

Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. 2006.

224 Natarajan Shankar

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communi-
cations of the ACM, 5(7):394–397, July 1962. Reprinted in Siekmann and Wrightson [SW83],
pages 267–270, 1983.

Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In A. Voronkov, editor, 18th International Conference on Auto-
mated Deduction (CADE), volume 2392 of Lecture Notes in Computer Science, pages 438–455,
Copenhagen, Denmark, July 2002. Springer-Verlag.

D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: A theorem prover for program checking. Technical
Report HPL-2003-148, Hewlett-Packard Systems Research Center, 2003.

M. Davis and H. Putnam. A computing procedure for quantification theory. JACM, 7(3):201–215,
1960.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of SAT 2003, 2003.
Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theorem proving using lazy

proof explication. In Proceedings of the 15th International Conference on Computer-Aided
Verification (CAV 2003), volume 2725 of Lecture Notes in Computer Science, pages 355–367.
Springer-Verlag, 2003.

E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver, 2002.
S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In Conference on Computer

Aided Verification CAV’97, Volume 1254 of Lecture Notes in Computer Science, Springer
Verlag, 1997.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy abstraction. In
ACM Symposium on Principles of Programming Languages02, pages 58–70. Association for
Computing Machinery, January 2002.

Ranjit Jhala and Kenneth L. McMillan. Lazy abstraction with interpolants. In Proceedings of
CAV’06, pages 123–136. Springer-Verlag, 2006.

Henry Kautz, David McAllester, and Bart Selman. Encoding plans in propositional logic. In Pro-
ceedings of the International Conference on Knowledge Representation (KR’96), 1996.

Shuvendu Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT techniqes for fast predicate
abstraction. In Proceedings of CAV’06, 2006.

Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model checking. In Pro-
ceedings of CAV 2002, pages 250–264. Springer-Verlag, 2002.

Kenneth L. McMillan. An interpolating theorem prover. Theoretical Computer Science,
345(1):101–121, 2005.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference
(DAC’01), June 2001.

J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, May 1999.

G. Nelson. Techniques for program verification. Technical Report CSL-81-10, Xerox Palo Alto
Research Center, Palo Alto, Ca., 1981.

G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM Transactions
on Programming Languages and Systems, 1(2):245–257, October 1979.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and abstract DPLL mod-
ulo theories. In F. Baader and A. Voronkov, editors, Proceedings of the 11th International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’04), Monte-
video, Uruguay, volume 3452 of Lecture Notes in Computer Science, pages 36–50. Springer,
2005.

E.L. Post. Introduction to a general theory of elementary propositions. American Journal of Math-
ematics, 43:163–185, 1921. Reprinted in [J. van Heijenoort, editor., pages 264–283].

John Rushby. Harnessing disruptive innovation in formal verification. In Dang Van Hung and Par-
itosh Pandya, editors, Fourth International Conference on Software Engineering and Formal
Methods (SEFM), pages 21–28, Pune, India, September 2006. IEEE Computer Society.

Beyond Satisfiability: Extensions and Applications 225

Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University, 2004. M.Sc. Thesis.

Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity checker. In Pro-
ceedings of CAV’02, volume 2404 of Lecture Notes in Computer Science, 2002.

Natarajan Shankar. Inference systems for logical algorithms. In R. Ramanujam and Sandeep Sen,
editors, FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science,
volume 3821 of Lecture Notes in Computer Science, pages 60–78. Springer-Verlag, 2005.

Robert E. Shostak. A practical decision procedure for arithmetic with function symbols. Journal of
the ACM, 26(2):351–360, April 1979.

R.E. Shostak, R. Schwartz, and P.M. Melliar-Smith. STP: A mechanized logic for specification and
verification. In D. Loveland, editor, 6th International Conference on Automated Deduction
(CADE), volume 138 of Lecture Notes in Computer Science, New York, NY, 1982. Springer-
Verlag.

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction
and a SAT-solver. In Warren A. Hunt, Jr. and Steven D. Johnson, editors, Formal Methods in
Computer-Aided Design (FMCAD 2000), volume 1954 of Lecture Notes in Computer Science,
pages 108–125, Austin, TX, November 2000. Springer-Verlag.

J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Classical Papers on Computa-
tional Logic, Volumes 1 & 2. Springer-Verlag, 1983.

J. van Heijenoort, editor. From Frege to Gödel: A Sourcebook of Mathematical Logic, 1879–1931.
Harvard University Press, Cambridge, MA, 1967.

Richard Zach Completeness before Post: Bernays, Hilbert, and the development of propositional
logic. Bulletin of Symbolic Logic, 5:331–366, 1999.

Hantao Zhang. SATO: An efficient propositional prover. In Conference on Automated Deduction,
pages 272–275, 1997.

Lintao Zhang. Searching for Truth: Techniques for Satisfiability of Boolean Formulas. PhD thesis,
Princeton University, 2003.

L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In A. Voronkov, editor,
Proceedings of CADE-19, Berlin, Germany, 2002. Springer-Verlag.

Compositional Reactive Semantics of SystemC
and Verification with RuleBase

Rudrapatna K. Shyamasundar, Frederic Doucet, Rajesh K. Gupta, and Ingolf
H. Krüger

Abstract We present a behavioral semantics of SystemC that succinctly captures
its reactive features, clock and time references, macro- and micro-time model, and
allows the specification of a network of synchronous and asynchronous components
communicating through either high-level transactions or low-level signal and event
communications. The proposed semantic framework demonstrates the anomalies
introduced by the simulation kernel, in spite of the macro- and micro-time scales.
The framework further relates the simulation and logical correctness and provides
a technique for scaling up the verification while keeping the correctness intact.
Furthermore, we translate SystemC components to RuleBase using our semantic
characterization that permits testing and verification of heterogenous designs. We
illustrate the verification of a Central Locking System (CLS) designed in SystemC.

Keywords: SystemC, semantics, verification, model checking

1 Introduction

System-level modeling using SystemC facilitates the use of various features and con-
cepts such as perfect synchrony, asynchrony, reactive, and time specifications through
a C++ class library. SystemC provides a bridge between hardware and software
design and thus, provides a unifying framework for hardware/software design. Sys-
temC consists of C++ libraries and a simulation kernel for creating behavioral and
register-transfer level (RTL) designs. It provides a common development environ-
ment needed to support software engineers working in C/C++, and hardware engi-
neers working in HDLs such as VHDL, Verilog, etc., particularly system-on-a-chip
designs. While the simulation behavior of a SystemC description is well understood
by engineers, existing frameworks have not catered to a comparative evaluation of
simulation and verification particularly to the various perfect-synchrony features as
well as macro- and micro-time scales. We also show that the two time scales, while
intended to avoid some of the anomalous behaviors possible in perfectly synchro-
nous languages like Esterel, cannot indeed be avoided. In fact, it also throws open
the question whether the δ-cycle can indeed be avoided to speed up simulation with-
out foregoing correctness.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 227
for Distributed Embedded Control Systems, 227–243.
c© Springer 2007

228 R.K. Shyamasundar et al.

In this paper, we describe a compositional semantics using the rewrite framework
of Esterel. A sound semantic model provides the ability to reason regarding issues
with composition of SystemC models without adding global restrictions other than
those imposed by SystemC language itself. With the ever increasing of complexity
of systems, it is important to exploit the notion of compositionality that is deeply
embedded in the rationale of SystemC. A clean separation of process reaction, and
computing the next environment provides a basis for simulation and verification with-
out flattening the composed model into a single uniform model. The main contribu-
tions of the paper are:

1. a semantic foundation that captures (i) the synchronous and asynchronous process
composition, (ii) all levels of abstractions for communications, and (iii) relation
between simulation correctness and logical correctness;

2. a way to scale up the verification while ensuring the simulation and logical cor-
rectness and equivalence are intact; and

3. an automatic translation to the model checkers for verification of SystemC com-
ponents, providing a powerful workbench for testing and verification.

2 Overview of SystemC

SystemC is essentially a C++ library that provides macros to model hardware and
software systems. The difference between a system-level modeling language rooted
in C++ such as SystemC, and C++ itself, is that the system-level modeling macros
are used to model a system, but not to implement it. Figure 1 shows an abstract
syntax for SystemC, where we consider only the statements specific to modeling with
SystemC and not the general statements in the C++ language. A SystemC program
is a set of interconnected modules communicating through channels, signals, events,
and shared variables. A module is composed of a set of ports, variables, a process and
a set of methods. A process is sensitive to a set of events, and optionally can have

program := { modules, channels, signals, events, variables }
module := { ports, variables, process-decl, process-body, methods }
process-decl := <process name> <sensitivity> <reset-condition>
process-body := <event-comm | signal-comm | chan-comm | control-flow |

arithmetic>*
event-comm := wait(event) | wait(event,time) |

wait(time) | wait(event list)
notify(event) | notify-delayed(event) |

signal-comm := signal.read | signal.write |
chan-comm := tlm port->put(value) | tlm port->get(var) |

tlm port->method(parameters)
control-flow := <C++ control flow>
arithmetic := <C++ arithmetic>

Fig. 1 Simplified abstract syntax for SystemC.

Compositional Reactive Semantics of SystemC and Verification with RuleBase 229

a reset condition. Some of the distinctive characteristics are informally summarized
below:

– A process is in the ready state when either the SystemC program starts or there
is an event that the process is waiting for. A process is in the waiting state when
it is waiting for an event. A process is unblocked when it is notified by an event.
Events can be notified immediately, or the notification can be delayed until all
processes are waiting.

– Time is modeled through macro-time in some pre-defined quantifiable unit; a
process waits for a given amount of time, expiration of which is notified through
an event.

– Between processes, the basic communication is by reading and writing signals.
During the execution of a SystemC program, all signal values are stable until
all processes reach the waiting state. When all processes are waiting, signals are
updated with the new values.

– Transaction-level communications are through channels, which are accessed using
an interface defined by a set of methods. The transaction-level model (TLM) inter-
face can be put and get methods, to connect to channels like FIFO buffers, etc., or
a custom set of methods to connect to specific channels. In the body of the meth-
ods, communication is done by using the shared variables, events, signals or other
channels defined in the channel.

When executing a SystemC program, the illusion of concurrency is provided to
the user by a simulation kernel implementing a discrete event simulation loop. The
simulation loop divides time into macro-time and micro-time, where micro-time is
used for creating a partial ordering of the events that can occur in a macro-time
unit. Micro-time events are called delta events, processed into the simulation queue,
advancing micro-time as needed without advancing macro-time (to simulate synchro-
nous reactions). Micro-time events are not observable in a macro-time scale because
they are used only to simulate a synchronous concurrent reaction on a sequential
computer.

The discrete-event simulation loop is used to compute the next environment which
contains the events to which the processes synchronize. The simulation kernel first
synchronizes all the processes with immediate events, and then picks one process to
react. This reaction loop is repeated until there are no more immediate events and all
processes are waiting. Then, the processes are synchronized with micro-time events,
followed by a new reaction loop. When there are no more immediate nor micro-time
events, the processes are synchronized with the macro-time events, leading to another
reaction loop.

Note that simulation cannot guarantee correctness due to:

1. the inability of simulation to produce all possible behaviors, and
2. the simulation loop can introduce anomalous behaviors that cannot happen logi-

cally. For example, due to the underlying scheduler (as we discuss in Section 4),
the simulation kernel can introduce nondeterminism and causality cycles in a
design description.

230 R.K. Shyamasundar et al.

3 Semantic Framework

We now define the behavioral semantics of SystemC compositionally to capture all
possible behaviors that can be computed by a SystemC program by composing the
semantics of its components. First, we divide the observables as controllable vari-
ables and environment variables. For a given SystemC module, the controllable vari-
ables are output signals, internal variables, output channels, output events, and the
program counter for the process. The environment variables are input signals, input
events, input channels, and global variables.

At any point during the program, there is at most one process that is reacting to
the environment. One can locally visualize instants during which reactions occur
by observing the state (C++ variables and program counters for each processes)
of the program, denoted σ , or the modeling environment (events, channels, signals,
processes, etc.), denoted E . An environment only lasts an instant; i.e., it is not per-
sistent like the state and an event occurs only right after the instant it is emitted. For
describing, how a statement changes the configurations of the observables, we use
rewrite rules of the form (〈stmt〉, σ)

EO ,b−−−→
E

(〈stmt ′〉, σ ′) where:

– stmt is a SystemC program text with the location of the program counter, before
the reaction, and stmt ′ is the program text with the location of the program counter
after the transition,

– σ and σ ′ are the states before and after the reaction respectively,
– E is the environment while taking the transition, EO is the output emitted during

the transition; in general, an environment is a 4-tuple E = 〈E I , Eδ, V δ, L〉where:
• E I is the set of immediate events,
• Eδ is the set of next delta events,
• V δ is the set of next delta updates for variable,
• L is a set of pending transactions or pending asynchronous tasks,

– b is a Boolean flag indicating if the process completed in the instant or not.

Keeping in view the simulation explained above, a SystemC model behaves in an
alternating sequence of synchronizations and reactions (→sync→react)

∗), observable
as a sequence of environments and states (E0σ0)(E1σ1)(E2σ2)

3.1 Reactive Statements

The reactive semantics forms the crux of the simulation. Some of the rules are
given Table 1. The wait-syntactic rule defines that a wait statement is syntactically
reduced to the sequence of a pause statement followed by a semantic wait statement.
The wait argument e is passed verbatim through the reduction. A pause statement
pauses a reaction until the next environment – it does not terminate in the current
instant and reduces to nothing. The behavior of the semantic wait statement is to wait

Compositional Reactive Semantics of SystemC and Verification with RuleBase 231

Table 1 Semantics of reactive statements.

(wait-syntax-rewrite)
(wait(e)) → (pause;wait(e))

(pause)

(pause)
0−→
E

()

(wait-1)
e /∈ E ∧ ¬reset(Pi)

(wait(e))
0−→
E

(wait(e))

(wait-2)
e ∈ E ∧ ¬reset(Pi)

(wait(e))
1−→
E

()

(event-notify)

(e.notify())
〈e,∅,∅,∅〉,1−−−−−−−→

E
()

(event-notify-delta)

(e.notify delta())
〈∅,e,∅,∅〉,1−−−−−−−→

E
()

(weak-reset-unblock)
reset (Pi)

(wait; Pi)
〈∅,∅,∅,∅〉,1−−−−−−−→

E
(body(P)i)

(signal-read)

(s.read(v), σ)
1−→
E

(, σ [sv /v])

(signal-write-1)
sv �= v

(s.write(v))
〈∅,se,v/sv ,∅〉,1−−−−−−−−−−→

E
()

(signal-write-2)
sv = v

(s.write(v))
1−→
E

()

(sequential-composition-1)

(P1, σ)
〈E1,Eδ

1,V δ
1 ,L1〉,b1−−−−−−−−−−−−→

E
(P ′1, σ ′)

(P1; P2, σ)
〈E1,Eδ

1,V δ
1 ,L1〉,b1−−−−−−−−−−−−→

E
(P ′1; P2, σ ′)

(sequential-composition-2)

(P1, σ)
〈E1,Eδ

1,V δ
1 ,L1〉,b1−−−−−−−−−−−−→

E
(, σ ′)

(P1; P2, σ)
〈E1,Eδ

1,V δ
1 ,L1〉,b1−−−−−−−−−−−−→

E
(P2, σ ′)

for an event e to be in the environment. Rule wait-1 defines that when event e is not
in the environment and the reset condition specific to the current process (defined in
by variable Pi) is false, the process continues to wait without doing anything. In rule
wait-2, when event e is present in the environment and the reset is not asserted, the
wait statement terminates and reduces to nothing.

The event notification statement immediately emits an event e in the next envi-
ronment, and terminates. The delayed notification statement emits event e to be in
the next delta environment. The processes waiting on these events will unblock in
either the synchronization with the next environment and the synchronization with
the next delta environment respectively. The weak-reset-unblock rule shows that
when a process is waiting for some event and the reset variable is asserted, the process
resets to the initial value for its program counter.

Now let us look at statements concerned with signal communications. A SystemC
signal s is persistent and is associated with a variable sv which holds the data value,
and to an event se to notify signal value transitions. For a signal write operation, if
the value v being written to a signal is different than the current value, the statement
terminates, reduces to nothing, and emits event se in Eδ and v/sv in V δ . Otherwise
the statement terminates without doing anything. Finally, there are two cases for
sequential composition. If statement P1 does not terminate in the current instant,
then P2 cannot start. If P1 terminates then P2 starts in the environment in which
P1 terminates.

232 R.K. Shyamasundar et al.

P1 rL P2

sL

kL

Fig. 2 Asynchrony interface.

Table 2 Semantics of timed statements.
(wait-timeout)

(wait(t))
〈sL Pi (t),∅,∅,L Pi 〉,0−−−−−−−−−−−−−→

E
(wait (r L Pi))

(wait-event-timeout)

(wait(t, e))
〈sL Pi (t),∅,∅,L Pi 〉,0−−−−−−−−−−−−−→

E
(wait (r L Pi |e))

(wait-timeout-event-1)
(r L Pi ∈ E) ∧ ¬reset (Pi)

(wait (r L Pi |e))
1−→
E

()

(wait-timeout-event-2)
(r L Pi /∈ E) ∧ (e ∈ E) ∧ ¬reset (Pi)

(wait (r L Pi |e))
〈kL Pi ,∅,∅,∅〉,1−−−−−−−−−→

E
()

3.2 Statements for Time

Wait-timeout statements are used to request a notification at a later macro-time. For
this purpose, we shall assume the presence of an asynchronous timer process in the
environment as in CRP [2], that can be called from any process in need of setting an
alarm.

Figure 2 shows the asynchronous gateway interface. The timer is an asynchronous
task, which is started and controlled, indirectly, by the process. The timer has the
general interface of the asynchronous task which is described as follows. The asyn-
chronous task is started with an event sL , and the completion of the asynchronous
task is notified with event r L . Event kL is used to kill an asynchronous task. The set
L contains the labels of all the currently active asynchronous tasks.

The semantic functions for the timed statements are given in Table 2. The wait-
timeout statement requests an alarm after t units of time by sending t on signal sL Pi

to a timer L Pi in the environment, with, Pi being the label for the current process.
The process then proceeds to wait for an event r L Pi which is to be sent by the timer
after t time units. A process can also wait for an event e, with a timeout t , as showed
in rule wait-event-timeout. If event e occurs before the time out (before receiving
event r L Pi), the process will resume and kill the pending timer by notifying event
kL Pi . It is necessary to kill the pending timer so that, after time t the process will not
receive any unnecessary timeout event.

3.3 Rules for Parallel Composition

In SystemC, the parallel composition of the processes is defined as each module
is instantiated. All modules are to be executed concurrently once the simulation is

Compositional Reactive Semantics of SystemC and Verification with RuleBase 233

Table 3 Semantics of parallel composition.
(sync-imm)
∀i ∈ {1..l} : ∃e ∈ E I : waiting(Pi , e) ∀ j ∈ {l + 1..m} : ∀e ∈ E I : ¬waiting(P j , e)

(P1‖...‖Pl‖Pl+1‖...‖Pm)
〈∅,Eδ,V δ,L〉,1−−−−−−−−−→
〈E I ,Eδ,V δ,L〉 I

(P ′1‖...‖P ′l ‖Pl+1‖...‖Pm)

(async-react)
∀i ∈ {1...l} : waiting(Pi) ∀ j ∈ {l + 1..m} : ready(Pj)

select x ∈ {l + 1..m} : (Px , σ)
〈Ex ,Eδ

x ,V δ
x ,Lx 〉,0−−−−−−−−−−−→

E
(P ′x , σ ′)

merge(〈Eδ
x , Eδ〉, 〈V δ

x , V δ〉, 1)

(P1‖...‖Pl‖Pl+1‖...‖Pm)
〈Ex ,Eδ

x∪Eδ,V δ
x ∪V δ,Ls∪L〉,1−−−−−−−−−−−−−−−−−−−→

〈E I ,Eδ,V δ,L〉
(P ′1‖...‖P ′l ‖Pl+1‖...‖P ′x‖...‖Pm)

(sync-micro)
∀i ∈ {1..n} : waiting(Pi)

(P1‖...‖Pn, σ)
〈Eδ,∅,∅,L〉,1−−−−−−−−→
〈∅,Eδ,V δ,L〉 δ

(P1‖...‖Pn, σ [V δ/V])

(sync-macro)
∀i ∈ {1..n} : waiting(Pi) et = next time()

(P1‖...‖Pn, σ)
〈et ,∅,∅,L〉,1−−−−−−−−→〈∅,∅,∅,L〉 T

(P1‖...‖Pn, σ [V δ/V])

started. The various booking operations for building the environment can be parti-
tioned as:

1. synchronizing processes with the events in the environment (denoted →I),
2. reaction of the selected process (denoted →),
3. building next micro-environment (denoted →δ), and
4. building next macro-environment (denoted →T).

The complete simulation loop can then be captured as iterative composition of rela-
tions given by: ((→I→)∗ →δ)

∗ →T)∗.
The various semantic rules of composition are given in Table 3. Rule sync-imm

is defined to unblock all processes that are waiting for events that are in the envi-
ronment. We use the notation waiting(P, e) to mean that P is waiting on event e,
meaning P is of the form wait; P ′. In other words, it is a synchronous composition,
but only for the wait statements.

Rule asynch-react defines the reactivity. A process which is ready, is selected to
run until it reaches the next pause. The merge predicate provides a check on whether
or not to allow nondeterministic environments in the composition. Nondeterministic
environment are possible when two different values can be written to a signal in the
same reaction. The merge predicate checks the feasibility of partially ordering the
events in the delta cycle. Setting the third parameter to “1” indicates that the partial

234 R.K. Shyamasundar et al.

order has to be consistent. One can allow nondeterministic environment by setting
the third parameter to −1.

Rule sync-micro defines the synchronization on delta events to build the next
micro-environment. The rule proceeds only when there is no immediate events and
there exists some delta events. The transition makes the delta events in Eδ become
the immediate events in the next instant, and updates the state variables.

The rule for the synchronization on timed events builds the next environment from
time events and advance macro-time. It is effective when all processes are blocked,
where there are no immediate event nor delta event. Timed events are posted by
wait(time) statements, timers and clocks. For simplicity in this rules, we use
next time() to broadly indicate moving to the next time.

3.4 Statements for Transaction-Level Modeling

For transaction-level method calls, we simply inline the body of the method inside
the caller module. The put/get transaction-level channels from the SystemC TLM
library, when used as a single place buffer in a point-to-point connection, do not cause
nondeterministic behaviors. This is because the state changes in the transaction-level
buffers are visible immediately for the calling process, but only at the next delta cycle
for the other processes. This behavior is useful to avoid the kind of nondeterministic
behavior described in Section 4. Furthermore, using these channels in combination
with the step scheduler (described in Section 5) enables efficient transaction-level
verification.

Table 4 lists the semantic rules for the TLM statements. We consider only the rules
for communication with single place TLM FIFO buffers. Rule tlm-put writes data on
the buffer if the buffer is empty. Otherwise, it waits that the data already on the buffer
is read. Rule tlm-get works similarly in the complementary fashion. Note that these
rules are to be used only with the step scheduler as their generalization for the full
scheduler would significantly complicate the semantics and require extra copies of
the variables in the verification environment (see Section 5).

Table 4 Semantics of transaction-level statements.
(tlm-put-1)

¬ f ull(f)

(f->put(v), σ)
〈∅, fw,∅,L〉,1−−−−−−−−→

E
(, σ [v/put(f)])

(tlm-put-2)
f ull(f)

(f->put(v))
0−→
E

(wait(fr);f->put(v))

(tlm-get-1)
¬empty(f)

(f->get(v), σ)
〈∅, fr ,∅,L〉,1−−−−−−−−→

E
(, σ [get(f)/v])

(tlm-get-2)
empty(f)

(f->get(v))
0−→
E

(wait(fw);f->get(v))

Compositional Reactive Semantics of SystemC and Verification with RuleBase 235

3.5 Computing the Semantics of SystemC Components

We now show how we generate the transition system for a SystemC component by
applying the semantic rules. For a process P , the transformation yields the reactive
sequences from initial state σ0 to state σn such as:

(stmt, σ0)
E0,1−−→

E
...

En−1,0−−−−→
E

(stmtn, σn)

where from a given state, the process will react until the next wait statement (or up
until termination). During the reaction, the states in the sequence between σ0 and
σn are observable only from within P , and no other process in the environment can
observe the intermediate states. Hence, from another SystemC process, only the first
and last states of the reaction are observable:

(stmt, σ0)
EO ,0−−−→

E
(stmtn, σn)

Therefore, when building the transition system for a process, we can reduce a
detailed graph to an observable graph with all the intermediate transitions, form an
initial state σ0 to a state σn , collapsed to one single transition.

From the process description, we use the semantic rules to construct the control-
flow graph, and add the predicate for the conditions and assignments. Since we do not
keep the state implicitly in the semantic structure, we use the weakest precondition on
observable paths to convert the control-flow graph to a graph with only the observable
reactive steps. We use the standard definitions for constructively computing weakest
precondition. For all the pair of observable points (paths from a pause statement to
the next pause statement in the graph) we compute the weakest precondition between
the points, and add it to the observable graph if the weakest precondition is satisfiable.
Note that one cannot constructively compute the weakest precondition for loops that
cannot be unrolled. This is a well known limitation of the approach, but we can
alleviate it by requiring wait statements inside loop bodies.

Figure 3 shows an example of the semantic translation of a SystemC process. The
process is first converted to the control-flow graph, and then to the observable graph.
Every transition is labeled with a guard (the conjunction of the labels starting with a
G), and the variable assignments should the transition be taken. The process initial-
izes a counter variable to 0, waits on the clock, re-initialize it to 10, and then counts
up until it is reset.

4 Anomalous Behaviors

We illustrate various anomalous behaviors such as causality (as in Esterel), non-
determinism, etc.

236 R.K. Shyamasundar et al.

class Module30 : public sc_module {
public:
 Module30(sc_module_name module_name)
 : sc_module(module_name)
 , clk()
 , reset_signal()
 , counter(0) {
 SC_CTHREAD(process,clk.pos());
 reset_signal_is(reset_signal,true);
 }
 SC_HAS_PROCESS(Module30);

 // Ports
 sc_in<bool> clk;
 sc_in<bool> reset_signal;
 unsigned int counter;

 void process() {
 counter=0;
 wait();
 counter=10;
 while(1) {
 wait();
 counter++;
 }
 }
};

2
INIT

1

0

counter:=0

G: reset_signal__posedge_event??
counter:=0

counter:=0
G: reset_signal__posedge_event??

G: clk__posedge_event??
G: (TRUE)&&(!(reset_signal__posedge_event))
counter:=10

G: clk__posedge_event??
G: (TRUE)&&(!(reset_signal__posedge_event))
counter:=(counter)+(1)

7
INIT

0
FINAL

1

6

2

TAU

4

G: reset_signal__posedge_event??

9

bflag

8

counter:=0

bflag

counter:=(counter)+(1)

G: TRUE

G: reset_signal__posedge_event??

G: !(TRUE)

G: clk__posedge_event??
G: !(reset_signal__posedge_event)

G: clk__posedge_event??
G: !(reset_signal__posedge_event)

3

5

counter:=10

Fig. 3 Example of semantic translation.

4.1 Causality Cycle

A causality cycle is a behavior that triggers an infinite amount of action in a finite
amount of time. It is important to look for causality cycles in a SystemC design
as causality cycles are not always triggered in simulation. Indeed, a causality cycle
can be triggered by a corner case condition in the behavior of the composition of a
system of asynchronous components. In a simulation, one can observe a causality
cycle when a computation does not stabilize to specific output values in an instant
and keeps re-triggering itself. In our semantics rules, a causality cycle occurs when it
never gets to the next synchronization with the macro-time events. Indeed, the causal
cycle occurs in the reaction (((→I→)∗ →δ)

∗ →T)∗ when step →T is never taken.
We now give an example of a SystemC program that has a causality cycle. The

component definition for a “watching process” is given in Figure 4(a). The behavior
of the watching process is to watch another module, and if the other module has not
been triggered, the watching process will trigger it. The component by itself does not

Compositional Reactive Semantics of SystemC and Verification with RuleBase 237

...
t0 t1 t2 t3 t4

e1
e2
e3
!ex1
!ex2
!ex3

ex1
ex2
ex3

!ex1
!ex2
!ex3

ex1
ex2
ex3

!ex1
!ex2
!ex3

SC_MODULE(WATCH_PROCESS) {
 sc_in<bool> clk;
 sc_in<bool> trigger;
 sc_in<bool> wp_triggered;
 sc_out<bool> trigger_wp;
 sc_out<bool> triggered;

 SC_CTOR(WATCH_PROCESS) {
 SC_METHOD(process);
 sensitive << clk << trigger
 << wp_triggered;
 }
 void process() {
 if (!wp_triggered.event())
 trigger_wp= !trigger_wp;
 triggered= !triggered;
 }
};

M1 M2M3
e3

e2 e2x
e1

e1xe3x

(b)

(c)(a)

Fig. 4 Example of causality cycle: (a) watching component (b) three such components watching
each others, and (c) depiction of the causality cycle.

have a causality cycle. However, if one builds a system where instances of watching
processes in are connected in a cycle such as depicted in Figure 4(b), there will be a
causality cycle. When executing the program, the system will enter a causality cycle
as depicted in Figure 4(c). The reason is that the modules will keep triggering each
other.

Note that causal loop can sometimes be desirable when used to produce an oscil-
lating behavior (i.e., generate a clock). For instance, a SystemC untimed model never
takes the →T step by construction. We find a causality loop by searching for a loop
in the state graph where the next time is never reached. We use the model checker to
verify that, for a given design, it is always possible to reach the next clock – thus no
divergence.

4.2 Nondeterminism

None of the SystemC syntactic constructs are meant to explicitly produce nonde-
terministic behavior, in the sense of a nondeterministic choice operator. A program
is nondeterministic if, for a given input, it is possible to observe multiple different
output behaviors. Causes of nondeterministic behavior in SystemC can be commu-
nications with shared variables, immediate event notification, or using uninitialized
signals and variables. Nondeterministic behavior may not be observable in the Sys-
temC simulation of a program because the output behavior is decided by the implicit
process selection priorities in the scheduler.

We now give an example of a nondeterministic SystemC program, depicted in
Figure 5. The program is composed of two modules which communicate through an
event e. The first module notifies the second module, and the second module termi-
nates the simulation upon reception of the event notification. To effectively receive

238 R.K. Shyamasundar et al.

int sc_main(int argc,
 char* argv[]) {
 M1 m1("m1");
 M2 m2("m2");
 // M2 m2("m2");
 //M1 m1("m1");

 sc_start(10);
 return 1;
};

SC_MODULE(M2) {
 SC_CTOR(M2) {
 SC_THREAD(b);
}

 wait(e);
 sc_stop();
}

};

sc_event e;

SC_MODULE(M1) {
 SC_CTOR(M1) {
 SC_THREAD(a);
}

 e.notify();
}

};

 void p1() {

 void p2() {

Fig. 5 SystemC code whose behavior is dependant on the scheduler.

SC_MODULE(Buffer) {
 bool data_avail;
 int data_value;

 SC_CTOR(Buffer) {
 data_avail= false;
 }

 void read(int& val) {
 while(!data_avail)
 wait();
 val= data_value;
 data_avail=false;
 }

 void write(int val) {
 while(data_avail)
 wait();
 data_value= val;
 data_avail=true;
 }

 bool peek_data(int& val) {
 if (data_avail) {
 val= data_value;
 return true;
 } else
 return false;
 }
};

Fig. 6 Definition of a buffer which can cause nondeterministic behavior.

the event notification, process p2 must wait on the event before the event is notified.
If the notification is done before p2 runs, then the event notification will be lost.
The behavior of this program is dependent on the scheduler because the scheduler
will decide which process will run first. If process p1 is run before process p2, then
event e will be missed by p2. With the reference implementation of the SystemC
simulation kernel, the initial process triggering schedule is determined by the order
into which the modules are instantiated. If we permute the order of instantiation (as
commented), then the problem is not observable as process p2 will be waiting for
the event, and will terminate the simulation. An example of a nondeterministic TLM
buffer using shared variables is also illustrated in Figure 6.

5 Verification Framework

For a given SystemC program, we automatically build an SMV description that
allows verification of desired properties. We have built the prototype for both IBM
RuleBase and NuSMV. We do not build a global transition system explicitly, but
rather we only translate the modules and use the model checker to compose the envi-
ronment model with the transition systems of each module (process). We automate

Compositional Reactive Semantics of SystemC and Verification with RuleBase 239

process n

process 1

process
selector

scheduler

clock
generator

...
current
environment

next
environment

status

fire

process n

process 1

clock.
generator

scheduler

... environment

status

(b)(a)

Fig. 7 Example of verification setup: (a) full scheduler and (b) step scheduler.

the composition rules by building an environment that manages the events and fires
the processes. For this purpose, it is possible to use two different schedulers:

1. Full scheduler: fires the process one by one and compute all the possible inter-
leavings and synchronizations.

2. Step scheduler: fire all processes synchronously and synchronize them at the same
time on the delta events (no immediate events).

Figure 7 depicts the difference between the schedulers. The full scheduler cap-
tures the effect of nondeterminism in shared variable communications, while the step
scheduler does not. But the good thing is that the verification algorithms are signifi-
cantly more efficient with the step scheduler because there is no process selection and
it does not require duplicating the variables in the environment. However, using the
step scheduler introduces the following restrictions on the design. First, nondetermin-
ism, immediate notifications are not allowed. Second, there can be no interference on
shared variable communication: this means that, at every cycle, only one process can
write to a shared variable.

It happens that a large family of SystemC program satisfy these conditions. This
is because these restrictions match the traditional synchronous semantics, to which
all RTL models and many TLM models are built. Since the size of the state space
is exponential to the number of variables this has the potential for significant perfor-
mance improvements.

6 An Example: Central Locking System

We illustrate our approach by verifying the transaction-level model of a the design of
a design of a Central Locking System (CLS), a system used to lock and unlock the
doors, and validate who can perform these operation and when. We consider it to be
an interesting example since it is distributed over many components in the car, and

240 R.K. Shyamasundar et al.

LM

LockCtrl

LS

IntLight

SM

CmdSrc

DB

Fig. 8 Structural specification for the Central Locking System.

!LOCKED

Alt

getId

LockCtrlCmdSrc

ok_SM

handleId

userID

LS LM

LOCKED
unlock

ok_LM

unlockCmd

doorUnlockSignal

SM

fail_SM

Alt

getId

LockCtrl SM DB

handleId

userID

unlock

CmdSrc

setId(userID)

ok_DBok_SM

fail_SM

unlock
turnOn

IntLightLockCtrlCmdSrc

InteriorLight Authorization

TransferCmdSrcId2
Parallel

Authorization TransferCmdSrcId2

InteriorLight System

Fig. 9 Behavioral specification for the Central Locking System.

one has to be careful to avoid synchronization or deadlock problems. The structural
specification of the CLS is illustrated in Figure 8 and the behavioral specification of
the CLS is depicted in Figure 9. The high-level system specification describes the
system as being the parallel composition of the three basic services illustrated in the
interaction diagrams.

We implemented the CLS with the SystemC language and we replicated the local
structure of the system into the component structure. Table 5 shows the verifica-
tion statistics for the verification of the SystemC implementation of the CLS against
the interaction specifications. The data domain for the keys has been reduced from
undefined integer range from −1 to 9, which corresponds to the values transmitted
between the modules.

Compositional Reactive Semantics of SystemC and Verification with RuleBase 241

Table 5 Verification of SystemC CLS with the services.
NuSMV 2.4.1 RuleBase

Property Time (s) Memory Used Time (s) Memory Used
No causal loops 2200.234 47172 K 632 n/a
All services 2031.379 46880 K 218 743 MB
TransferKeyId2 service 418.482 19832K 136 480 MB
IntLight service 185.940 18064 K 178 288 MB
Authorization service 500.835 19456 K 142 447 MB

The verification runs are much faster using RuleBase but require more memory.
The first entry is for the verification of the conjunction of all services together, while
the next three entries are for the verification of the individual services. All the runs
are with the cone of influence reduction and with dynamic BDD variable re-ordering.
Using NuSMV, we always verify that the FSM has fair paths and has no deadlocks,
increasing the verification times.

7 Related Work

Our approach incorporates the reactive synchronous features of SystemC succinctly
and distinguishes from other works and further, it is based on frameworks proposed
in [1], [2], and [8].

Recently, there has been two interesting approaches based on synchronous lan-
guages. The first one, advocated in [6], is based on deriving the transactional-level
models of SystemC into a automata encoded in Lustre, and refining the channel inter-
faces through a protocol automata. Subsequently, it uses the Lustre model checking
tools for analysis. While the approach is nice, it carries over the full delta-cycle
details which compromises the scalability of the verification. We improve on their
results by defining the TLM abstraction by restricting the design and mapping the
semantics to a synchronous transition system ala Esterel, which enables us to improve
on the scalability. The approach in [9] describes how to translate the body of a Sys-
temC process into a set of Signal equations, and synchronously compose all the equa-
tions into the transition system. The problem with this work is that it ignores the
simulation anomalies, timing statements and the TLM statements. The work in [5]
uses a process algebra but ignores the need of distinctions between synchronous and
asynchronous compositions, ignores δ cycles, etc.

Approaches such as [3,7] translate SystemC program simulation into ASML units
of compiled code. While it appeals as a nice global executional simulation system,
the reactive features of the SystemC such as reset (that has priority as well), broadcast
to waiting processes, cannot be succinctly captured in synchronous fashion like an
Esterel transition system. Indeed, by going to the ASML, one does not have access
to the nice results of the synchronous community and it is also unclear how one can

242 R.K. Shyamasundar et al.

exploit the power of modern model checkers. Our translation is similar to the work
of [4] that similarly generates SMV transition relations for SystemC code. Our work
fully uses the reactive rules and with the addition of TLM abstractions and uses the
step semantics.

8 Summary and Conclusions

In this paper, we have presented a compositional reactive semantics for SystemC
that captures both at signal and TLM levels of abstractions. We are able to reduce
the design without anomalies to pure synchronous transition systems to exploit the
full power of the SMV-based verifiers. Further, the framework provides techniques
to detect anomalies and enable relating simulation to logical correctness. It also has
brought to light how verification can be speeded up without foregoing correctness.
Another interesting question that has been brought to light is the need to arrive at
quantitative/qualitative comparisons of δ-cycles of SystemC with respect to the con-
structive semantics of Esterel. Our system translates a given SystemC program into
RuleBase – industrial strength verifier. This allows a variety of design integrations
and exploits the power of industrial strength model checkers. Further, our results
improve on previous published results and we are now able to verify TLM within
some reasonable (scalable) times, while enjoying all the capabilities of the modern
model checkers. The work needs to enriched to take into account dynamic memory
allocations, exceptions, custom channels, etc. Furthermore, the computation of the
weakest precondition can be inefficient and yield unnecessary overhead for medium
and large processes.

The focus for our future work is to generalize the methodologies to support cus-
tom channels, develop compositional design methodologies, and provide appealing
abstractions for application-level transactions and compositions of transactions.

Acknowledgements Thanks go to Mr. Saurabh Joshi, IBM India Research Lab, for various experiments
with the system developed for RuleBase.

References

1. G. Berry. The Foundations of Esterel. MIT Press, 2000.
2. G. Berry, S. Ramesh, and R.K. Shyamasundar. Communicating Reactive Processes. In Proc.

Symp. on Principles of Programming Languages, 1993.
3. A. Habibi and S. Tahar. Design and Verification of SystemC Transaction-level Models. IEEE

Trans. on Very Large Scale Integration (VLSI) Systems, 14(1):57–68, January 2006.
4. D. Kroening and N. Sharygina. Formal Verification of SystemC by Automatic Hardware/

Software Partitioning. In Proc. of Formal Methods and Models for Codesign, 2005.
5. K.L. Man. SystemCF L : Formalization of SystemC. In Proc. of 12th IEEE Mediterranean Elec-

trotechnical Conference, 2004.

Compositional Reactive Semantics of SystemC and Verification with RuleBase 243

6. M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: A Toolbox for the Analysis of Systems-
on-a-Chip at the Transactional Level. In Proc. of Application of Concurrency to System Design,
2005.

7. W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf, and W. Rosenstiel. The Simulation
Semantics of SystemC. In Proc. Design Automation and Test in Europe Conf., 2001.

8. B. Rajan and R.K. Shyamasundar. Multiclock Esterel: A Reactive Framework for Asynchronous
Design. In Proc. of 13th Intl. Conf. on VLSI Design, 2000.

9. J.-P. Talpin, D. Berner, P. Le Guernic, A. Gamatie, S. Shukla, and R. Gupta. A Behavioural
Type Inference System for Compositional System-on-Chip Design. In Proc. of Application of
Concurrency to System Design, 2004.

PSL: Beyond Hardware Verification

Ziv Glazberg, Mark Moulin, Avigail Orni, Sitvanit Ruah,
and Emmanuel Zarpas

Abstract In recent years, the language PSL (Property Specification Language, a.k.a.
IEEE P1850) has been embraced and put to successful use by chip design/verification
engineers across the electronics industry. While PSL is mainly used for hardware ver-
ification, it can, in fact, be used to verify a wide variety of systems, including missile
interception systems, railway interlocking protocols, system automation policies, and
even business processes. We discuss and exemplify how PSL can be used as a general
purpose language for the specification of models and properties, beyond hardware
systems.

Keywords: PSL, nonlinear controllers, concurrent reactive systems, policy-based
system automation.

1 Introduction

Since its approval by the IEEE, the Property Specification Language (PSL IEEE
P1850, [21]) has met with huge success in the hardware verification community. It is
widely used for industrial hardware verification and is supported by a wide range of
vendors. PSL is mainly considered a hardware specification language; however, its
use is not restricted to hardware verification. While some features such as clocking
are close to hardware, on the whole PSL is a general property specification language.

The goal of this paper is to illustrate how PSL can be used outside the hardware
verification scope. Section 2 describes PSL. Section 3 focuses on the use of PSL
for the modeling and verification of antimissile interception hybrid control system.
Section 4 describes our work in statically checking the output of IBM Rational Rose
Real-Time (RoseRT), a widely used model-driven development tool for concurrent
reactive systems. Section 5 deals with the modeling and verification of Tivoli System
Automation policies.

2 Property Specification Language (PSL)

PSL, the Property Specification Language, is a language for specifying properties. It
is typically used for specifying temporal properties of systems, i.e., properties that
deal with the behavior of a system over time. The main part of PSL is based on the

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 245
for Distributed Embedded Control Systems, 245–260.
c© Springer 2007

246 Ziv Glazberg et al.

temporal logic Linear Time Logic (LTL) [13], augmented with regular expressions.
PSL originated as the Sugar language, which was used by the IBM RuleBase PE
model checking tool [22], and later evolved into an IEEE standard.

This section presents a brief overview of PSL. Only a small selection of the lan-
guage is shown here. A clear and comprehensive introduction to PSL can be found
in [7]. The official definition of PSL is in IEEE Std. 1850-2005 [21].

2.1 Simple PSL Examples

We consider a system that accepts requests of some sort and processes them. The
assumption is that our system has some definition of time points, which may be
points at which a system clock ticks (if the system is synchronous), or points at
which certain chosen events occur. PSL only requires that we have a sequence (finite
or infinite) of discrete time points. (The notion of time in PSL is discussed more fully
in the “The Granularity of Time” section.)

Our system has variables such as req, ack, start, busy, and done.
Each variable is true at certain time points. We demonstrate how each of the follow-
ing English statements, which describe system behavior, can be formulated in PSL.

• “Whenever start is true at a time point, busy will be true at the following time
point.”

always (start -> next busy) (1)
• “For every occurrence of req that is immediately followed by ack, processing

of the acknowledged request begins at the next time point after the ack. The
processing sequence begins with start, which is followed by busy for some
number of time points, and ends with done.”

{[*]; req; ack} | => {start; busy[*]; done} (2)

PSL is mathematically rigorous, therefore the properties in PSL are precise and
unambiguous. However, they are also easy to read. Thus, a specification written in
PSL can be used as input for automatic tools and may also serve as part of a human-
readable specification document. In the following section, we present some PSL con-
structs and operators. Many of the PSL operators are based on LTL operators. Other
PSL constructs are based on SEREs (discussed below), which are a type of regular
expression. Another set of PSL operators is based on the CTL language [9] and is not
discussed here.

2.2 SEREs – Regular Expressions in PSL

PSL includes a type of regular expression called a SERE, a Sequential Extended Reg-
ular Expression. SEREs are used to describe scenarios. The simplest type of SERE
is a sequence of Boolean expressions separated by semicolons, such as

PSL: Beyond Hardware Verification 247

{req; !ack; ack}. This SERE describes a scenario spanning three time points,
in which req holds at the first time point, ack does not hold at the second, and ack
does hold at the third.

Generally, a SERE may describe a set of scenarios. For example, the operator [*]
indicates an interval of zero or more time points, in which anything may occur. There-
fore, the SERE {start;[*];done} describes any scenario that begins with start
and ends with done. The [*] operator may also be attached to a Boolean expression.
The expression busy[*] describes an interval of zero or more time points in which
busy is true.

Additional operators serve as shorthand for longer constructions. For example,
{busy[*4]} is equivalent to {busy; busy; busy; busy}. For any constant
number n, the expression busy[*n] describes a sequence of exactly n time points,
where busy holds for all the points. The expression req[=n] describes n occurrences
of req, which may be non-consecutive.

SERE conjunction and disjunction operators create compound SEREs. The con-
junction of two SEREs, using the && operator, describes two scenarios that happen
simultaneously.

For example, in {start; busy[*]; done} && {cancel[=1]}
the left-hand side sub-SERE states that processing takes place (starting with start
and ending with done). On the right-hand side, cancel occurs exactly once. In the
conjunction, both sides happen simultaneously, so cancel occurs exactly once, at
some time point, while processing is in progress.

The disjunction of two SEREs, using the | operator, describes a scenario in which
either the left-hand side or the right-hand side of the disjunction (or both) must occur.

SERE operators may also be nested and combined, as shown:

{{busy[*]} && {cancel[=0]}} | {{req; ack}[*2]}

2.3 PSL Properties with SEREs

SEREs may be used as building blocks of PSL properties. Typically, a property may
be composed of SEREs using the suffix implication operator | =>. For example

{[*]; req; ack} | => {start; busy[*]; done} (3)

This property states that any occurrence of the left-hand side scenario must be
followed by an occurrence of the right-hand side scenario. In this particular case,
{[*]; req; ack} describes a sequence of req followed immediately by ack,
which may occur at any time point (due to the [*] at the beginning of the SERE).
The property states that such a sequence must immediately be followed (starting at
the next time point) by a scenario matching {start; busy[*]; done}. This
property makes a requirement for any occurrence of a {req; ack} sequence,

248 Ziv Glazberg et al.

at any time point, including overlapping occurrences. The following property is very
similar to Formula 3:

{[*]; req; ack} | => {start ;busy[*]; done}! (4)

This property uses the strong version of the right-hand side SERE. Generally, a
SERE is strong if it is followed by an exclamation point (!), and weak if it is not. The
property in Formula 3 is satisfied by a right-hand side scenario in which done never
occurs, and busy stays true until the end of the scenario. The property in Formula 4
is only matched by a scenario in which done eventually occurs.

2.4 Other Property Styles

A PSL property may be written without using SEREs at all. For example:

always (start -> next busy) (5)

The sub-property (start -> next busy) uses the logical implication opera-
tor ->, which has the standard “if-then” meaning. The next operator refers to the
time point that immediately follows the current one. So (start -> next busy)
means, “if start is true at the current time point, then busy must be true at the
next time point”. Applying always to this sub-property means that the sub-property
must hold at every time point. So the entire property means, “Whenever start is
true, busy must be true at the time point that immediately follows”.

The eventually! operator can be used to state that start must occur at some
time point after req occurs (or simultaneously with req), as follows:

always (req -> eventually! start) (6)

In addition, we can combine non-SERE operators with SEREs, creating properties
such as (always {req; ack}| => (start && eventually! done))

2.5 PSL Layers and Flavors

PSL is structured in four layers: the Boolean layer, which contains the Boolean
expressions used in properties; the temporal layer, which contains the temporal prop-
erties and SEREs; the verification layer, for directing the use of PSL by a tool; and
the modeling layer, for modeling behavior of inputs and auxiliary variables.

Based on this layered structure, several flavors of PSL have been defined. The
most generic is the GDL flavor, which is based on the General Description Lan-
guage (GDL). GDL was designed especially for use in the PSL modeling layer, and
can be used for modeling systems in diverse problem domains, at various levels of
abstraction.

PSL: Beyond Hardware Verification 249

The other PSL flavors are based on hardware description languages (HDLs). In
each flavor, the Boolean and modeling layers follow the syntax of the underlying
HDL (or of GDL). The temporal and verification layers are not affected by flavors.

2.6 The Granularity of Time

Time in PSL is discrete; that is, time advances in pre-defined units. For example, the
property ((size == 3) -> next (size > 5)) requires that if size equals
3 now, then at the next time point (size > 5) must hold. The time points are set
by the system, that is, the system being verified has some function that advances by
one time point.

Some PSL operators are not affected by the granularity of time. For example:

• never (at critical [1] && at critical [2]) requires that
at critical [1] and at critical [2] are never true at the same time.

• eventually!(p) requires that p holds now or at some point in the future.
• next event(p)(f) requires that at the first time point at which p holds,
f holds, regardless of the granularity of time.

The PSL operators that are affected by the granularity of time are next, next e, next a
and some of the SERE operators.

The user can change the granularity of time given by the system using the @
operator. For example, assume you want to advance one time point whenever (sta-
tus==OK). You can use the PSL @ operator on your property as follows:

(always ((size==3) -> next (size > 5)))@(status==OK)
(7)

3 Missile Interception Control System

It is a considerable challenge to verify aerospace hybrid control systems, especially
when they include a significant amount of nonlinear dynamics. Recently, in [14],
different nonlinear controllers were applied to a complex aircraft design problem.
While each of the controllers demonstrated some ability to achieve the design criteria,
it was noted that the controllers are labor intensive to design and would require new
approaches for verification other than simulations. In this section, we present PSL-
enhanced formal verification of antimissile control system.

An initial step in formal verification of a hybrid system is to make a reasonable
approximation (discretization) of the nonlinear dynamics to reduce the possibly infi-
nite state space system into a finite state space system. A weakness of such a con-
servative approximation is that it may require a large number of samples, and both
the memory requirements and the computation time of a formal verification tool may

250 Ziv Glazberg et al.

aM VM

VT

T

aT

y

x

reference

r
LOS

α

ϕ

ϕ

β

M

Fig. 1 Geometry of the planar tracking problem

soon become impractical [15]. Usually, the number of states to examine is huge in
applications of practical interest, but in the case of missile tracking, the physical
process is time limited, and can be translated into a bounded model checking appli-
cation. Formal methods verify the antimissile interception using the same difference
equations representation of the system used by the Matlab simulation tool, and the
system properties have straightforward descriptions in PSL.

Consider the problem of a planar moving target interception, depicted in Figure 1
[10, 12]. Both the target T and pursuing missile M are assumed to be point masses
moving in a plane. These are the polar system equations of motion that appear in [10]:

ṙ = VT cos(β − ϕ)− VM cos(α − ϕ)
ϕ̇ = VT sin(β − ϕ)− VM sin(α − ϕ)

(8)

where LOS is the instantaneous missile-target line-of-sight, a time-variant vector
from the pursuer to target; r is the range i.e., the length of the LOS; ϕ is the bearing
angle i.e., the angle between the LOS and the reference line; α is the missile heading
angle; and β is the target heading angle.

The missile is governed by its guidance system, i.e., a compensation network
placed in series with engagement process Eq. (8) to accomplish an interception.
Most of the applied guidance laws belong to the family of Proportional Naviga-
tion guidance laws [11], which have shown good performance against moderately-
maneuvering targets. In the True Proportional Navigation guidance laws, missile
acceleration is usually applied normal to LOS:

⎧
⎨

⎩

aM = −λṙ ϕ̇

V̇M = aM sin(α − ϕ)
α̇ = aM/VM cos(α − ϕ)

(9)

where λ > 0 is a navigation constant. In practice, the control dynamic is implemented
as a sampled control system (a computer-based control).

The closed-loop hybrid tracking system has a free system input; this is the tar-
get acceleration. An intelligent target is expected to perform evasive maneuvers

PSL: Beyond Hardware Verification 251

to increase the probability of its escape. The target maneuver considered below in
Eq. (10) is restricted to the application of the lateral target acceleration normal to the
target velocity; this governs the following input dynamics for the target:

⎧
⎨

⎩

aT = b/(r ϕ̇)

V̇T = aT sin(β − ϕ)

β̇ = aT /VT cos(β − ϕ)
(10)

where b > 0 is a positive constant.
The tuning of this hybrid control system is a very tedious task. The performance of

the derived guidance law is characterized by the capturability (i.e., the ability of the
guidance law to ensure the capture or interception of a target), which is translated into
the capture region bounds. The capture regions may not exist when the initial condi-
tions on range, bearing angle, and their rates are high. Usually, the qualitative analysis
technique is used to obtain the capture region from the chosen target maneuver, final
time to intercept, and sufficient initial conditions for interception [10]. The resulting
controller is relevant only to this specifically chosen target maneuver according to
the specific b parameter value.

In contrast to this, formal methods provide a full coverage of the impacts of b para-
meter perturbations by verifying a logical model of the system to satisfy/dissatisfy
the particular properties. Formal verification formulates the design problem as fol-
lows: define the particular final time and initial conditions, and find the guidance
system parameters that could prevent the escape of the target under these conditions.
This property is realistic and helps design robust controllers, which take into account
realistic target maneuvers.

Systems that have been traditionally analyzed by formal methods are discrete;
therefore, the continuous-time Eq. (8) is transformed into the difference equation
presentation of the continuous-time systems as a periodically-updated system. The
overall system is described in the Verilog language, which has a powerful compiler
that can synthesize the Verilog model into the logical circuit of basic logical gates.
All numbers are represented by 32-bit vectors.

The tracking algorithm is applied to a realistic interception scenario with the ini-
tial range varying around 30 kilometers for a maneuvering target. For this case, the
property is based on a necessary capturability condition that after 10 seconds from
the start of the interception process (or after the k sequences of state transitions),
the distance r between the missile and target must always decrease from the initial
range of 30000 meters to less than 20000 meters. The specially-chosen gain of the
controller (navigation constant) λ = 3 must ensure this. The simulation procedure
usually used to check controller consistency is the launch of Monte Carlo trials. A
formal verification engine found a counterexample in a single run after verifying the
following property formulated in PSL:

Property 1:
define λ = 3;
always(range(0)=30000 − > next[k] (range(k)<20000)) (11)

252 Ziv Glazberg et al.

relative to all possible perturbations of target acceleration parameter b= [950. . .
1000] with granularity 5.

The SAT solver was launched for k = 5 sequences of state transitions (cycles).
The counterexample provides the target acceleration that caused the range to be at
least 21000 meters after the first 10 seconds of the interception process. Because
the designed controller with λ = 3 has not met the requirements of the intermedi-
ate range value, we must tune the navigation constant of the guidance law Eq. (9).
The following property claims that it is impossible to find the navigation constant
λ = [3. . . 5] with granularity 0.1 that ensures the condition r (5) < 20000 meters.

Property 2:
forall λ =[3...5]
always(range=30000 -> next[k] (range>20000)) (12)

After a 94 second run, the RuleBase PE provides a counterexample to Property 2,
saying that navigation constant λ = 3.8 is a suitable control gain for this case.

This successful example illustrates a general methodology for formal analysis of a
control system:

1. Create a discrete model of the system and control law.
2. In PSL, specify the system properties.
3. Verify the initial solution (model vs. properties).
4. If system properties hold, the system design is acceptable.
5. Otherwise, select a (possibly new) candidate control law.
6. Choose a new set of candidate values for control parameters.
7. Create a model of the system with the new control law.
8. Specify the fail claim property: the selected control law, for all perturbations of

control parameters, always fails.
9. Check the model against the fail claim property.

10. If the fail claim property holds, go back to Step 5 or 6.
11. If the fail claim property does not hold, conclude that the values of the control

parameters provided in the counterexample are robust.

This methodology provides a possibility of efficient application of formal analysis
to design and verification of control systems.

4 SMARRT: Static Model Checking and Analysis
for Rose Real-Time

IBM Rational Rose Real-Time (RoseRT) is a widely used model-driven development
tool for concurrent reactive systems. The system’s behavior is specified using a col-
lection of UML [5] diagrams. RoseRT generates code based on the given model.
Since RoseRT is intended to support the entire development process and not just the
design stage, it allows the user to execute and debug the system at the model level.

PSL: Beyond Hardware Verification 253

The model defines the system in an exact and complete representation so that there
is no disparity between the code and the model. In the SMARRT project, we set a
goal to allow users of RoseRT to formally verify the model. As opposed to traditional
testing, formal verification can prove the absence of a bug, and not only the existence
of a feature. Often in the model checking process, verification expertise is required
to build the model, define the specifications, and observe and understand the results.
We, instead, intend to equip RoseRT users with the advantages of model checking,
without requiring the user to be an expert in the field.

4.1 Defining the Model

The RoseRT model describes the entire system, therefore it can be used as the model
that is checked. Using a simple transformation [8], the same behavior is expressed
in a PSL model. In RoseRT, the user can work with certain building-blocks that are
available for describing the behavior of the system. For example, one building block
is a simple message queue. Generated code based on the RoseRT model uses an
efficient code template to perform the desired behavior. The efficiency of this code
should not be misunderstood—it is optimized for execution but not for verification.
Thus, we have hand-modeled these building-blocks in a verification-efficient tem-
plate. When the RoseRT model is translated into PSL, the PSL template is used, just
as the code template is used when the model is translated to code.

Figure 2 shows a small client-server protocol example [6]. This example has two
state machines: one for the client and one for the server. They are connected using

Fig. 2 Client–server protocol

254 Ziv Glazberg et al.

a two-way message queue. The client state machine has three states: Ready, Wait,
and Register. The Server state machine also has three states: Idle, Service, and Fault.
A state machine changes the state, either due to a message it receives or an internal
event. In this protocol, each transition is either associated with the reception or dis-
patch of a message. A state transition is represented by an arc. The arc is tagged by
a sign: plus (+m) represents message reception and minus (−m) represents message
dispatch. Initially, the client is in the Ready state and the server is in the Idle state.

SMARRT generates a PSL model that includes a state variable for each state
machine defined in a state diagram, and a variable for each state machine that defines
non-deterministically which port the state machine will check (the environment
port, a communication port, or none). The variable that defines the state of the state
machine changes according to the content of the checked port and the current state.
If a transition occurs, the appropriate port action is executed (whether sending a
message or getting a message). Different interleavings are modeled by allowing the
state machine to not examine any port, and thus forcing it to stay in the same state.

4.2 Defining the Specification

SMARRT takes advantage of the fact that RoseRT users are comfortable working
with models. The specification is written using an extension of the UML sequence
diagram. Sequence diagrams depict the interactions between objects and their states.
They define a clear timeline, allowing the user to express temporal specifications with
a user-friendly interface. The specification is later translated into a PSL formula that
needs to be verified. Even if users are not familiar with the PSL, they can express
complex constraints that the verified system needs to hold. For a verification process
to be successful, the user must understand which specification to verify. This is key
to the usefulness of the entire process. Though the user should know which “ques-
tions” to ask, SMARRT allows the users to express these questions without prior PSL
expertise.

Figure 3 shows a specification requirement over the client–server protocol spec-
ifying that the client does not enter into a deadlock state. A PSL translation of this
requirement would be eventually! Client State=Ready.

4.3 Model Checking the PSL Model

The translated PSL model and specification is fed to IBM RuleBase PE [4]. Rule-
Base PE can utilize different model checking engines (e.g., SAT-based, BDD-
based, abstraction-refinement, and others) to verify the model. Though a specialized
software-oriented engine exists for RuleBase PE [2, 3] we do not utilize it in verify-
ing these models. We observe that concurrent reactive systems are more similar to
hardware than common software. Typically, in software systems, a relatively small

PSL: Beyond Hardware Verification 255

Fig. 3 Specification equivalent to “eventually! Client State=Ready”

set of variables changes in every cycle, but in hardware, all variables may change
in every cycle. Similarly, in communicating state machines for concurrent reactive
systems, all machines may change their states in every cycle. Due to this similarity,
we believe that hardware model checking techniques are more likely to succeed
on these systems. RoseRT models sometimes introduce hierarchy into the model.
Once the code is generated, the entire hierarchical structure is flattened. Though the
model that needs to be verified is the flattened model, the hierarchy may be used for
abstraction purposes if the model is too big for the model checker to cope with [16].

4.4 Counterexample Generation

If the model is verified and a counterexample is found, it is presented to the user in
a simple and straightforward manner. The counterexample is described using a stan-
dard UML sequence diagram. As every sequence diagram depicts a possible execu-
tion of the system, the counterexample is exactly that—an execution of the system
that violates the specification.

5 System Automation

System automation through policy-based management allows IT administrators to
define high-level policies for various management tasks, such as networked systems
and applications for business environments, network planning, problem detection,
and quality of service provisions. This approach (e.g., [17]) to system management

256 Ziv Glazberg et al.

allows the separation of the rules that govern behavioral choices of the system from
the functionality provided by that system. In a very general way, policies are plans of
an organization to achieve its objectives. A policy can be understood as a high-level
specification of the system to be automated. It is, therefore, natural to translate it into
a formal language and then verify it. Here, we consider policies for the IBM Tivoli
System Automation (TSA) for Multi-Platform [19]. This section focuses on how to
model and check TSA policy with PSL. We translate real-life industrial policies into
PSL and then verify the system with the RuleBase PE model checker.

A TSA policy is a collection of relationships that describes the automated behav-
ior to be enforced by TSA. TSA describes temporal relationships (e.g., A should
start after B) or topological relationships (e.g., A is co-located with B) between
resources that should be enforced by the system. The building blocks of TSA
policies are resources, which can be any piece of hardware or software in the TSA
management scope, located on several nodes of the system. There are three types
of resources in the TSA policy language: fixed resources (Resource), floating
resources (MoveGroup), and references to a resource outside the management
scope of TSA (ResourceReference). Resources can be grouped using the
ResourceGroup or Equivalency constructs, so that they are easier to handle.
TSA policies are described with XML syntax. See [20] for a detailed description of
the TSA policy language.

5.1 Modeling TSA Policies with PSL

To model TSA policies, fixed and floating resources are modeled as state machines in
the GDL flavor of the PSL modeling layer and the relationships are modeled as PSL
assumptions. In the systems we are modeling, time is continuous, while PSL time is
discrete. We deal with this by allowing events to happen at a non-deterministic time
and by considering the atomic unit of time to be the minimum possible time between
two events in the system.

The TSA description provides the name and node of a resource. A resource
can have five states: Unknown, Online, Offline, FailedOffline, and StuckOnline. A
resource state is Unknown when its state is not known by TSA for some reason; a
resource is Online when it is running and Offline when it is not running. A resource is
FailedOffline when it is down with a fatal failure and StuckOnline when it is running
with a fatal failure. Possible transitions (where a transition takes one atomic unit of
time) for the resource state:

Unknown -> Unknown | Online | Offline | FailedOffline | StuckOnline
Online -> Unknown | Online | Offline | FailedOffline | StuckOnline
Offline -> Unknown | Online | Offline | FailedOffline
FailedOffline -> FailedOffline
StuckOnline -> StuckOnline

PSL: Beyond Hardware Verification 257

The amount of time a resource stays in a specific state is non-deterministic and
independent of the behavior of other resources. Resources, resource groups, move
groups, and equivalencies are coded in the PSL modeling language as an array. The
first part of the array codes the node and the second part codes the state. For simplic-
ity’s sake, we denote the node and the state of a resource “r” by r.node and r.state.
Resource transitions are constrained by the relationship.

Relationships are modeled as constraints using the PSL verification layer direc-
tive assume (the assume statement allows specifying an invariant). This allows us
to provide a formal description of TSA policy relationships that are only informally
described in [19] and [20]. We give a few examples of the way relationships are
modeled in PSL.

A StartAfter B means that A must start after B starts. More precisely, when A
starts, B should already be online. This translates to the following PSL verification
directive:

assume always(rose(A.state=Online) -> (B.state=Online &
!rose(B.state=Online))) ;

This means the following property should be an invariant of the model: when A
goes online, B should be online but did not go online at the same moment as A
(always p is PSL syntax for the LTL Gp). This is more complex than expected.
Translation to PSL allows a clearer and non-ambiguous description of the relation-
ships.

A StopAfter B means that A must stop after B does, i.e., when A stops, B is already
offline:

assume always (fell(A.state=Online) -> (B.state in
{Offline, FailedOffline} & !rose(B.state in {Offline,
FailedOffline}))) ;

A Collocated B means that if A is online, A and B are on the same node:

assume always ((A.state=Online) -> A.node=B.node) ;

A Anti Collocated B means that if A is online, A and B are not on the same node:

assume always ((A.state=Online) -> A.node!=B.node) ;

5.2 Verification

Once the model is built, we can check PSL properties against it to perform conflict
detection, validation of the specified policy to ensure it is consistent with the capa-
bilities of the system, deadlock detection, and loop detection.

258 Ziv Glazberg et al.

We don’t check how the system managed by TSA behaves; rather, we check prop-
erties on the policy controlling its behavior. For example, we check that the policy
is not over-constrained in ways that prevent the system from running satisfactorily,
we check that the system can reach the desired state, and we identify whether there
exists a single point of failure with regard to these properties. The following PSL
properties should hold for every policy:

1. assert EF nominal state ;
2. assert AG EX true ;
3. assert AG (desired state1 -> EF desired state2) ;
4. assert AG (desired state1 -> EX desired state1) ;

where nominal state is true when all resource groups are in the desired states
specified in the policy, and desired state1 and desired state2 are chosen
non-deterministically from all the desired states of the system. A desired state of the
system is a state in which each resource group is in a known state, and not failed or
stuck. Thus there are two “good” values per resource group: Online and Offline, and
2n possible values of desired state1 and desired state2.

Property 1 means the system can reach the nominal state specified by the policy.
Property 2 means the system can always follow the policy; i.e., there is no truncated
path. Property 3 means that while running and in a desired state, the system can
reach any other desired state (for instance, if resource group X is offline, all other
resource groups are online, and it is possible to bring the desired resource group
X online and take groups Y and Z offline). Property 4 means that once the system
reaches a desirable state, it can stay there forever (this can be seen as some sort of
termination property; it ensures, for instance, that no loop prevents the system from
staying as long as needed in the desired state). RuleBase automatically checks that
the model is not empty. These properties are rather different to the properties com-
monly used in hardware verification; as, for example, in [18]. The most commonly
used properties for hardware verification are safety properties; non-LTL properties
are uncommon. The properties we have shown so far should hold for every policy,
and thus checking them can be completely automated. In addition, it is possible to
perform policy-specific checks using RuleBase PE.

We built an ad hoc translator that semi-automatically translates the XML TSA
policy into a model (described in the previous section) and extracts the definitions
needed for the automated properties. We then checked these properties with the Rule-
Base PE model checker. Our work was used to verify several real-life TSA policies.

6 Conclusion

In this paper, we encourage readers to view PSL from a novel perspective, such that
its use should not be limited to hardware verification. We do this by reviewing the
application of PSL to various fields, such as missile interception algorithms, gener-
ated code for concurrent systems, or policies from policy-based middleware. There is

PSL: Beyond Hardware Verification 259

a large amount of literature available about CTL and LTL use; this is also relevant for
PSL since CTL and LTL are sub-languages of PSL. As PSL is an IEEE standard, we
believe it can be used successfully for a wide variety of problems beyond hardware
verification.

Acknowledgements The authors wish to thank Cindy Eisner for her helpful suggestions.

References

1. Dakshi Agrawal et al. Policy Management of Networked Systems and Applications. In Proc. of
9th Intl. Symp. on Integrated Network Management, IFIP/IEEE 2005.

2. S. Barner, Z. Glazberg, and I. Rabinovitz. Wolf—Bug Hunter for Concurrent Software Using
Formal Methods. In Proc. of 17th International Conference on Computer Aided Verification,
LNCS 3576, Springer, 2005.

3. S. Barner and I. Rabinovitz. Efficient symbolic model checking of software using partial dis-
junctive partitioning. CHARME, LNCS 2860, 2003.

4. I. Beer et al. RuleBase: An Industry-Oriented Formal Verification Tool. In Proc. of the 33rd
Design Automation Conference, 1996.

5. G. Booch, J. E. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide. Addison-
Wesley, 1999.

6. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the Association
for Computing Machinery, 30(2), 1983.

7. Cindy Eisner, Dana Fisman. A Practical Introduction to PSL. Springer, August 2005.
8. Janees Elamkulam et al. Detecting Design Flaws in UML State Charts for Embedded Software,

to In Proc. of Haifa Verification Conference HVC 2006. LNCS 4383, Springer, 2006.
9. E.M. Clarke and E.A. Emerson, Design and Synthesis of Synchronization Skeletons Using

Branching Time Temporal Logic. In Proc. of Workshop on Logics of Programs, LNCS 131,
Springer, 1981.

10. D. Ghose. True Proportional Navigation with Maneuvering Target, IEEE Trans. on Aerospace
and Electronic Systems, 1994.

11. C.-F. Lin. Modern Navigation, Guidance and Control Processing. Prentice Hall, 1991.
12. M. Moulin, L. Gluhovsky, and E. Bendersky. Formal Verification of Maneuvering Target Track-

ing. Proc. of the AIAA Conf. of Guidance, Navigation and Control, Austin, TX, 2003.
13. A. Pnueli. A Temporal Logic of Concurrent Programs. In Theoretical Computer Science, Vol

13, 1981.
14. M. L. Steinberg. Comparison of Intelligent, Adaptive, and Nonlinear Flight Control Laws, Jour-

nal of Guidance, Control and Dynamics, 2001.
15. A. van der Schaft, H. Schumacher. An Introduction to Hybrid Dynamical Systems. Springer,

2000. V.251 of Lecture Notes in Control and Information Sciences.
16. A. Wasowski. Flattening Statecharts without Explosions. In Proc. of the 2004 ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, 2004.
17. S. Wright, R. Chadha, and G. Lapiotis (eds): Special Issue on Policy Based Networking, IEEE

Networking 16, 2002.
18. Emmanuel Zarpas. A Case Study: Formal Verification of Processor Critical Properties, Correct

Hardware Design and Verification Methods: CHARME 2005, LNCS 3725, Springer 2005.
19. IBM Tivoli System Automation for Multi-platforms, Guide and Reference, version 1.2, IBM,

2004.

260 Ziv Glazberg et al.

20. IBM Tivoli System Automation for Multi-platforms, Base Component Reference, version 2.1.1,
2006.

21. IEEE Standard for Property Specification Language IEEE Std. 1850-2005, 2005.
22. RuleBase PE homepage.

http://www.haifa.il.ibm.com/projects/verification/RB Homepage/index.html, 2006

On the Polychronous Approach to Embedded
Software Design

A POMSET Interpretation of Endochrony

Sandeep K. Shukla, Syed M. Suhaib, Deepak A. Mathaikutty,
and Jean-Pierre Talpin

Abstract Formal approaches for designing mission critical embedded software are
gaining importance due to the complexity of concurrent nature and the asynchro-
nous interaction with the environment by such software. “After-the-fact” formal
verification is one way to provide correctness guarantees, but is plagued with state-
space explosion and other problems. “Correct-by-construction” design approach is
therefore often the methodological choice for such software design. Polychronous
or “multi-clock” model of computation (MoC) in the context of synchronous pro-
gramming has been successfully used in many safety critical embedded software
design in avionics, and other industries in France. SIGNAL is an example of such
an embedded software system description language that captures a polychronous
MoC. SIGNAL compiler generates deterministic embedded software with provable
properties from polychronous specifications. However, an embedded software often
interacts with operating systems, hardware interrupt controllers, and other software
applications. Therefore, determinism itself may not provide enough guarantee for
the correct operation of a software component designed this way. Tighter charac-
terizations beyond determinacy have been invented to guarantee safe usage of such
software in an embedded context with lesser restrictive requirements on the environ-
ment. “Endochrony” is one such characterization, which is often hard to understand
by regular embedded software designers due to the complications of the semantic
domain in which such characterization has been expressed in the past. In this paper
we provide a true concurrency based semantics which we believe makes the notion
of endochrony easier for real system engineers to comprehend and use as a technique
to guarantee usage safety.

Keywords: Concurrency, synchronous programming, polychrony, pomset, partial
order, semantics, embedded systems and software, true concurrency.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 261
for Distributed Embedded Control Systems, 261–273.
c© Springer 2007

262 Sandeep K. Shukla et al.

1 Introduction

Embedded software is often safety-critical, and hence their correctness is of para-
mount importance. For example, safety of human lives may be compromised if the
software used in avionics applications, and automotive applications are erroneous.
Furthermore, the software in such applications are not stand-alone components. They
interact with an environment of software and hardware components. Therefore, prov-
ing correctness of such software components in isolation is not enough. Since the
behavior of such environments may not be known a priori, for the strongest cor-
rectness guarantees, one has to prove that the components under design work under
fully asynchronous environmental interactions. Of course, if the environment is also
designed by the same group of designers, one could assess if such strong assump-
tion (e.g., full asynchrony) is required, and might be able to assume more predictable
environmental conditions. However, for the maximal robustness against all possible
environments, one would want such components to satisfy some extra conditions.

“Determinacy” of embedded software components is one such important condi-
tion. Designers do not want a component to behave differently under identical input
stimuli from the environment, at identical internal states. Moreover, if the environ-
ment is fully asynchronous, the subsequent stimuli on each input may arrive with
unspecified interarrival delays. in order for the component to be safely used in such
fully asynchronous environment without showing any change in behavior one has to
further tighten the characterization of the components. In the context of Polychrony
and SIGNAL (Guernic et al., 2003; Benveniste et al., 2005) this has been thoroughly
understood, and the notion of “endochrony” has been introduced. The software com-
ponents that are endochronous are safe to use in a fully asynchronous environment
without worrying about any change in behavior due to delays in interarrival times
on the inputs from the environment. Surely, endochrony is a very restrictive criteria,
and is needed when the designers do not make any assumptions on the timing behav-
ior of the environment. However, as timing behaviors of the environments are made
explicit, one can loosen the requirements for the components to be endochronous.
However, such characterizations will be even more complex, and dependent on the
timing characteristics of the environment.

Since this article is about polychrony and SIGNAL, one relevant question is why
SIGNAL and polychrony are used exclusively inside industries (e.g., AirBus) where
the users are closely working with the inventors of polychrony and related semantic
models. In fact, a number of concepts germane in polychrony and its characteri-
zations such as endochrony, isochrony, etc., are often rediscovered in many contexts
elsewhere. These include the notion of interface automata based theory for safe usage
of components, latency insensitive design in the context of hardware design, etc. We
believe that the main reason for such useful theory not being more widely utilized
is the abstruseness of the semantic theory in which polychrony has been embedded.
In particular, a tagged-signal model is used to provide semantics for polychrony.
However, the presence of tags in the synchronous interpretation of that model, and

On the Polychronous Approach to Embedded Software Design 263

their absence in the asynchronous case leads to non-uniform semantic domains which
make the model difficult to comprehend thwarting wide usage by engineers.

Here, we describe a uniform and intuitive semantic framework in which synchro-
nous and asynchronous interpretations of polychronous models can be made uni-
formly, facilitating understanding, and hopefully wider usage by various embedded
systems applications.

1.1 Polychrony and Synchronous Programming

Synchronous programming languages implement a model of computation (MoC)
in which time is abstracted by symbolic synchronization and scheduling relations
to facilitate behavioral reasoning and functional verification. In the particular case
of Polychrony (Guernic et al., 2003), time is represented by partially ordered syn-
chronization and scheduling relations, to provide an additional ability to model
high-level abstractions of system paced by multiple clocks: globally asynchronous
systems. Polychrony favors the progressive design of “correct by construction” sys-
tems by means of well-defined model transformations that preserve the intended
semantics of early requirement specifications and eventually provide a function-
ally correct deployment on target architectures. The notions of determinacy and
endochrony (Benveniste et al., 2005) that exist in polychronous model of com-
putation are used to decide the feasibility of single clock implementation of a
specification, or of a distributed implementation over asynchronous channels.

For embedded software determinism is an important criterion, because we do not
want a piece of embedded software to produce distinct outputs when the same inputs
are provided. However, such value-determinism or functional-determinism is not the
only property for such software that guarantees its safe usage in an embedded envi-
ronment. If we have not designed the environment ourselves, or if we have been pro-
vided a precompiled software environment whose timing behavior is not under our
control, then the timing of input signal arrivals may also be arbitrary, and hence asyn-
chronous with respect to the component we design. So we need a notion of timing-
determinism. Timing-determinism is guaranteed when a piece of software produces
the same sequences of output values given the same sequences of input values, irre-
spective of the delay between subsequent values on each inputs, and irrespective of
the relative timings of occurrences of the input values on the different input lines.
This of course, is a very restrictive requirement on the component under design. One
may consider this as a worst case scenario based design, where the designer is not
making any timing assumption on the environments. However, if embedded com-
ponents under design is planned to be reused in many different environments, such
strong criteria may be appropriate. As more about a specific environment is known,
the requirement can be gradually relaxed. In this paper, however, we only consider the
characterization of components with such timing-deterministic behavior, and in the
literature on Polychrony, it is called endochrony (Guernic et al., 2003).

264 Sandeep K. Shukla et al.

This property of endochrony has been defined with distinct semantic domains (syn-
chronous transition systems or STS) by Benveniste et al. (2000) , where they state that
for endochronous systems, the presence and absence of all variables can be inferred
incrementally from the known values of the present variables and the state variables.
Le Guernic et al. (2003) provide a tag-signal model based definition of endochrony.
We attempt to provide a different viewpoint to make this notion easily usable in
design.

In our view, the most important aspect of this paper is to bring forth the pom-
set based semantic model which removes the need for a tagged-signal model (Lee
and Sangiovanni-Vincentelli, 1996). That model has an artifact of tags with each
new value of the variables/signals during the program execution. Our exposition
here shows that these tags were unnecessary for the purpose of characterizing
polychronous programs. In fact their usage makes asynchronous interpretation of
programs unduly complicated, resulting in difficult to understand theories for char-
acterizing polychronous programs. Such characterizations include deterministic
programs, endochronous programs (Guernic et al., 2003), self-synchronous pro-
grams (Benveniste et al., 2005), etc. As we have discussed earlier, one of the most
important question is when can one place a program in an asynchronous environment
and expect to obtain the correct output sequence, similar to what one would expect
from the program in a synchronous environment. Such question is related to the
issue of asynchronous interpretation of a program. Our semantic model is naturally
an asynchronous interpretation, and its synchronous interpretation is constructible
for deterministic polychronous programs by way of “levelling functions” defined in
Section 4. Interestingly, the same deterministic program may have multiple possible
synchronous interpretations, and a choice one makes leads to a refinement of the
original polychronous specification. However, having multiple possible synchro-
nous interpretation would mean that the program does not have a unique single
clocked implementation. So if one is interested only in the class of programs that
has unique single clocked possible implementation, one would be interested in the
class of endochronous processes. So in this sense, this paper demystifies the notion
of endochrony in very simple terms.

The main exports of this paper are as follows: (i) We show a true concurrency
semantics for polychronous specifications using POMSETS (Pratt, 1986). (ii) We
formalize properties such as determinism, and endochrony in terms of pomset seman-
tics, and show that they are intuitive and visually relatable in this formalism.

2 Related Work

While multi-clocked synchrony offers a way to model both synchronous systems
and concurrent ones within the same semantic framework, casting it into a model of
computation that homogeneously captures both synchrony and concurrency has, to
our knowledge, never been achieved. Meanwhile, the aim of capturing both syn-
chrony and asynchrony in a unifying model of computation is shared by several
approaches: interaction categories of Abramsky (1996), communicating sequential

On the Polychronous Approach to Embedded Software Design 265

processes of Hoare (1978), Kahn networks (Kahn, 1974), models of computation
(Lee and Sangiovanni-Vincentelli, 1996), latency insensitive systems (Carloni et al.,
2001), the polychronous model of computation (Guernic et al., 2003), heteroge-
neous systems (Benveniste et al., 2005). In these models, synchrony and asynchrony
are partitioned into related yet disjoint mathematical domains: one for synchrony
with a relational structure for time, one for asynchrony with a relational structure
for temporal causality. For instance, heterogeneous systems consists of a tag-less
model for asynchrony and a time-tagged model for synchrony (Lee and Sangiovanni-
Vincentelli, 1996; Jantsch, 2003). One can relate one to the other through specific
morphisms but one is not included in the other.

The polychronous model of computation slightly differs by considering a domain
of tagged traces and of a semi-lattice structure that renders the synchronous hypoth-
esis using a timing equivalence relation: clock equivalence. Asynchrony can be
superimposed on this model by considering a flow equivalence relation as well as
heterogeneous systems (Benveniste et al., 2005) by parameterizing composition
using arbitrary timing relations. Still, synchrony is modeled by tag equality that
is irrelevant to asynchrony. The notion of self-synchrony, endochrony (Benveniste
et al., 2005) and isochrony (Guernic et al., 2003), etc. have been formulated for
synchronous/polychronous MoCs to characterize classes of programs whose asyn-
chronous interaction can be predicted by analyzing synchronous interactions. These
are interesting subclasses of deterministic programs that are implementable in an
asynchronous networked environment without having to insert special interfaces and
protocols.

Pomsets have been used to model true concurrency in many contexts. A good intro-
duction to pomsets can be found in (Pratt, 1986). A large body of literature exists on
using pomsets to give true concurrency semantics to Petrinets, to parallel functional
programs (Hudak and Anderson, 1987), for synchronization and recursion (Meyer
and de Vink, 1989), etc. Complexity analysis of pomset equivalences have been stud-
ied (Jategaonkar and Meyer, 1993). A number of category theoretic models based on
true concurrency representations have been proposed. However, in this paper, we
take the concept of pomsets to obtain a simple semantic domain which allows us
to understand the semantics of polychrony model of computation, and characterize
some subclasses of polychronous processes. We believe that our characterizations
clarifies much of the complex world of polychronous model of computation, which
often gates the wide usage of this powerful model of computation.

3 Background

In this section, we introduce the background and preliminary definition necessary to
understand our formalism. We first briefly introduced the tagged signal trace model
for polychrony (Guernic et al., 2003) and the pomset based semantic model (Pratt,
1986).

Let V denote the universal set of all variables and D be the set of all data values.

266 Sandeep K. Shukla et al.

3.1 A Polychronous Model of Computation

Polychronous MoC (Guernic et al., 2003) facilitates the description of systems in
which components obey multiple clock rates. It provides a mathematical foundation
to a notion of refinement and the ability to model a system from the early stages of
its requirement specifications to the late stages of its synthesis and deployment.

In the tagged-signal model, a partially-ordered set (T ,≤, 0) of tags is considered.
A tag t ∈ T denotes a symbolic instant or a period in time. C ∈ C is a chain of values
in T . Signals, behaviors and processes are defined starting as follows:

An event e ∈ T × D is the pair of a tag and a value. The absence of an event,
is denoted as ε. A signal s ∈ C → D is a function from a chain of tags to values.
A behavior b ∈ B is a function from names x ∈ V to signals s ∈ S. A process p ∈ P
is a set of behaviors that have the same domain.

We write tags(s) and tags(b) for the tags of a signal s and of a behavior b; b|X for
the projection of a behavior b on X ⊂ V and b/X = b|vars(b)\X for its complemen-
tary; vars(b) and vars(p) for the domains of b and p.

The synchronous composition r || s of two processes p and q is defined by the
union of all behaviors br (from r) and bs (from s) which carry the same values at the
same time tags.

r || s = {br ∪ bs | (br , bs) ∈ r × s, I = vars(r) ∩ vars(s), br |I = bs |I }
A trace consists of a sequence of events ordered based on their time instants.

A clock for the trace can be derived based on these time instants. Therefore, each
variable is associated with a clock that denotes the chronology of the occurrence of
events. For a variable v , we denote its clock by v̂ . Consider the following example:
Consider the observation of the trace of variable a shown below. The data values that
are assigned to variable ‘a’ are 1, 2, and 3, and their respective tags are t1, t3, and t5.
The clock â is 〈t1, t3, t5〉, which is based on the occurrence of events for a.

t ime : t1 t3 t5
a : 1 2 3

3.2 Pomsets

Definition 1 A pomset (Pratt, 1986) is an isomorphism class of a labelled partial
order (lpo) defined as a 4-tuple as 〈V,≤, , µ〉 where:

• V is the set of vertices modeling events. Each event (ē) in V is an instance of an
action ∈ .

• ≤ is the partial order defined on V which expresses precedence between events. If
ā, b̄ ∈ V , then ā ≤ b̄ is interpreted as event ā preceding event b̄ in time. (So ≤ is
really a pre-order).

On the Polychronous Approach to Embedded Software Design 267

• is the alphabet modeling actions. For example an action can be an assignment
of a data value to a variable (e.g., reset:=true).

• µ : V → is a labelling function that assigns the actions to vertices.

4 Pomset Representation of Polychrony

An event of a pomset is represented as ē, where ē = (x, d), for x ∈ V and d ∈ D.
An event set is a set of such events that are related by a partial ordering relation (≤).
A pomset is visualized as a graph, where each node corresponds an event from the
vertex set V , and the arcs order the events based on (≤). In the graphical representa-
tion, we only show arcs between two events ēi , ē j ∈ V , iff ēi ≤ ē j , �ēk : ēi �= ēk �=
ē j s.t. ēi ≤ ēk ∧ ēk ≤ ē j . We denote the partial order ≤ by *→ if there is an edge
between the event vertices in the pomset graph.

The pomset P for the trace of variable ‘a’ in the previous example is 〈VP ,≤P ,
P , µP 〉, where VP = {ā1, ā2, ā3} and āi = (a, i), i = 1, 2, 3 ∈ N. The par-
tial order, ≤P is defined on VP , where ā1 *→ ā2 *→ ā3, and P the action set is
{a := 1, a := 2, a := 3}. µP is the labelling function that maps the events to their
actions. For example, ā1 is mapped to action a := 1. The pomset visualization of
polychronous variable a is shown in Figure 1. We now need to extend a pomset with
the notion of functional pomset, that captures functional dependency between events
in the set. The partial order only captures temporal precedence of events, and does
not capture the dependency caused by the fact that some events occur due to a func-
tion computation on some other events. Later in the paper, when we show how to
construct a new pomset from pomset representations of two processes which interact
in the sense that events in them participate together in a function computation, we
need to introduce a new pre-order (≤ f) on the resulting event set, that expresses the
ordering based on functional dependency. If b̄ = f (ā) for ā, b̄ ∈ V , then ā ≤ f b̄
is interpreted as event ā precedes in functional sense event b̄ and b̄ is functionally
dependent on ā.

Definition 2 (Functional Dependence) An event āi is functionally dependent on an
events b̄ j1 , b̄ j2 , . . ., b̄ jn if āi = f (b̄ j1 , b̄ j2 , . . . , b̄ jn). We denote functional dependence
with ≤ f and represent the corresponding edge in the pomset visualization with ↪→
arc.

The addition of functional dependence order among events in a pomset means that
we have a new semantic object which is a pomset together with another non-reflexive

a1 a2 a3

(a,1) (a,2) (a,3)

Fig. 1 Visualization of pomset P

268 Sandeep K. Shukla et al.

partial order ≤ f . For the rest of the paper for ease of writing, we call this functional
pomset also pomset, with the understanding that a ≤ f may or may not be attached to
it. If one considers, a single input variable of a program, and all the events happening
for that variable, we usually get a totally ordered pomset, or a tomset. Such a pomset
does not have any ≤ f associated with it. It is only when we construct the pomsets
corresponding to a program that computes functions based on such input variables,
that we obtain pomsets with such ≤ f relations in addition to the causal partial order.

One important construction fact to know is how to capture synchronization
between two events in the ≤. Let x and y be two variables in the program, and
events happening in those variables are expressed as tomsets {x1, x2, . . . , xi , . . .}
and {y1, y2, . . . , y j , . . .}. Suppose the program requires that xi and y j to be synchro-
nized. This can be captured by adding (xi , y j+1) and (y j , xi+1) in ≤.

Furthermore, we define the notion of levelization of the events in the event set by
using a level function l. Levelization involves arranging the events into levels based
on their partial ordering.

Definition 3 (Levelling Function) Given a pomset p : 〈Vp,≤p, p, µp〉 and its
associated functional ordering ≤ f

p , a level function l : V → N has the following
properties:

1. ∀ēi , ē j if ēi ≤p ē j , then l(ē j) > l(ēi)
2. Let V (ē j) = {ēi1, ēi2 , ..., ēik } be the set of events s.t. ∀ēi ∈ V (ē j)

if ēi ≤ f
p ē j , �ēk /∈ V (ē j) (ēk ≤ f

p ē j), then l(ē j) = maxēi∈V (ē j) l(ēi)

Let Lp be the set of all levelling functions l : V → N for the pomset, as defined
above. Let Lp

1 ⊂ Lp denote the set of all levelization functions l with two extra
conditions:

1. Let V1 = {ēi |�ē j , ē j ≤p ēi } then for at least one ē ∈ V1, l(ē) = 1
2. Let V (ē j) = {ēi1, ēi2 , ..., ēik } be the set of events s.t. ∀ēi ∈ V (ē j)

if ēi ≤p ē j , �ēk /∈ V (ē j) (ēk ≤p ē j), then l(ē j) = maxēi∈V (ē j) l(ēi) + 1

Figure 2 shows a graphical representation of a pomset, where events ā and b̄ may
happen concurrently followed by event c̄, and then event d̄ . It also shows one possible
levelization for the pomset.

b

a

c d

b

a

c d

1 2 3

Fig. 2 Graphical representation of pomset

On the Polychronous Approach to Embedded Software Design 269

Given a pomset p : 〈V,≤, , µ〉, and a levelling function l ∈ Lp, (p, l) is an
l-synchronous view of pomset p. A pomset may have multiple l-synchronous views.
If l ∈ Lp

1 , then we call it a asap-synchronous view of the pomset. Note that “asap”
stands for “as soon as possible”. One can imagine a levelling function as a schedule
for the events of the pomset. In this sense, an asap-synchronous view is provided by
a levelling function which makes at least some of the events occur as soon as they
are permissible by the constraints of ≤ f

p and ≤p.
Intuitively, given a pomset without an associated level function, we have an asyn-

chronous view of the event occurrences, without caring about whether the non-causal
events happen synchronously or not. In an l-synchronous view, one can imagine
that events that have the same level happen at the same synchronous step. So an
l-synchronous view imposes a scheduling on the events of the pomset.

Now, if one replaces the clause (1) in extra conditions on Lp
1 by the condition

∀ē ∈ V1, l(ē) = 1, then it provides an “exactly-asap” view. We will call the set of
such levelling functions as Lp

1 -exact . So the corresponding “exactly-asap” schedule,
therefore, makes events that results from computing a function on other events, syn-
chronously occurring with the events it depends on. It also makes event sequences in
each input to occur in consecutive steps (levels). All events that are inputs (events that
do not functionally depend on other events in the pomsets), their sequence happens
synchronously in a lock step. So an “exactly-asap” view of a pomset is a synchronous
scheduling of events, assuming input events all come in the lock step. In Figure 2,
one can easily see that right-hand side we have an exactly-asap-synchronous view of
the pomset on the left-hand side. The level function l in this view maps ā and b̄ to
level 1, and c̄ to level 2 and d̄ to level 3. Since this pomset does not have an associated
≤ f , this level function can be easily seen to be in Lp

1 .
A process can have multiple behaviors, and can be represented by either a single

pomset or by multiple pomsets.

Definition 4 (Process) A process P = {p1, p2, . . .} is a collection of pomsets, where
p1, p2, . . . are pomsets with disjoint event sets of the process.

Note that the different pomsets of a process capture different possible behaviors.

Definition 5 (Pomset Projection) A projection of a pomset on a variable set I
denoted by denoted by p|I is defined as follows. Given p = 〈V,≤, , µ〉 and a
variable set I ⊆ V , p|I = 〈V |I ,≤ |I , |I , µ|I 〉, where,

1. |I ⊆ denotes the set of all actions that pertain to variables only in I ,
2. V |I ⊆ V denotes all events that pertain to the variable set I only, (∀ē ∈ V ,

ē ∈ V |I iff µ(e) ∈ |I),
3. µ|I : V |I → |I is restriction on µ to V |I , and
4. ≤ |I ⊆ ≤ is a restriction of ≤ to the events only in V I .

Intuitively, a restriction of a pomset p on variable set I can be obtained by deleting
all events not pertaining to variables in I , and all dependency arrows that shows
dependency between such events.

270 Sandeep K. Shukla et al.

A process P for all variables in I considered as input to the process and given their
corresponding tomsets is deterministic, iff the pomset corresponding to the process
behaviors are unique up to isomorphism.

Definition 6 (Deterministic Process) A process P is deterministic iff ∃I ⊂ VP s.t.
∀p, q ∈ P, if p|I = q|I then p = q.

For every given input sequence, in the pomset representation of a deterministic
process there exists a single pomset p such that p|I matches that given input
sequence. Note that for independent input variable set I , the input sequence cor-
respond to a set of tomsets, each tomset representing each input variable’s event
sequence. For non-deterministic processes, multiple pomsets may represent possible
behaviors of the process for the same given input sequences. For the rest of the paper,
we only talk about deterministic processes.

5 Flow and Clock Equivalence

The synchronous structure of polychrony is defined by a clock equivalence relation.
Two behaviors are clock equivalent if they have the same partial order up to an iso-
morphic choice of time tags.

Definition 7 (Clock Equivalence) A behavior c is a stretching of b, written b ≤ c,
iff vars(b) = vars(c) and there exists a bijection f on T which satisfies
∀t, t ′ ∈ tags(b), t ≤ f (t) ∧ (t < t ′ ⇔ f (t) < f (t ′))
∀x ∈ vars(b), tags(c|{x}) = f (tags(b|{x})) ∧ ∀t ∈ tags(b|{x}), b|{x}(t) = c|{x}(f (t))

b and c are clock equivalent, written b ∼ c, iff there exists d s.t. c ≥ d ≤ b.

The asynchronous structure of polychrony is modeled by a flow equivalence rela-
tion. Two behaviors are flow equivalent if they hold the same values in the same
signal-wise total order.

Definition 8 (Flow Equivalence) A behavior c is a relaxation of b, written b 2 c, iff
vars(b) = vars(c) and, for all x ∈ vars(b), b|{x} ≤ c|{x}. b and c are flow-equivalent,
written b ≈ c, iff there exists d s.t. b 3 d and d 2 c.

Asynchronous composition r ‖ s is defined by considering the partial-order struc-
ture induced by the relaxation relation. The parallel composition of r and s consists
of behaviors d that relax the behaviors br and bs from r and s along shared signals
I = vars(r)∩vars(s) and that stretch br and bs along independent signals of r and s.

p‖q = {
d ∈ B|vars(r)∪vars(s) | ∃(br , bs) ∈ r × s, d/I ≥ (br /I || bs/I) ∧ br |I 2 d|I 3 bs |I }

We now extend these notions of flow and clock equivalence to pomsets. Let p :
〈Vp,≤p, p, µp〉 and q : 〈Vq ,≤q , q , µq〉 be two pomset and P a process, such
that p, q ∈ P . We denote the variable set of p and q by Vp and Vq . Let VP be the
variable set of the process, such that VP (p) is the set of variable associated with
pomset p. Two pomsets are flow equivalent iff the tomsets representing the event
sequences for the variables are isomorphic for each variable.

On the Polychronous Approach to Embedded Software Design 271

Definition 9 (Flow Map between Pomsets) Given two pomsets p and q with their
associated functional dependency pre-orders ≤ f

p and ≤ f
q , a flow map between p and

q is an injective map f pq : Vp → Vq such that

1. Vp = Vq
2. ∀v ∈ Vp,∀a, b ∈ Vp|{v} if a ≤p b then f (a) ≤q f (b), f (a), f (b) ∈ Vq |{v}
3. ∀a, b ∈ Vp if a ≤ f

p b then f (a) ≤ f
q f (b)

Note that in the above definition Vp|{v} denotes only the events in Vp that pertain to a
variable v only. So a flow map basically requires that if one observes events happen-
ing on each individual variable in one behavior (pomset), then there is a correspond-
ing event happening in the same order in the other behavior (pomset). Moreover,
if one observes the events across variables that have functional dependence among
themselves, such dependence is preserved in the corresponding mapped events.

Definition 10 (Flow Equivalent Pomsets) Two pomsets p and q with their associ-
ated functional dependency pre-order ≤ f

p and ≤ f
q , p and q will be called flow equiv-

alent iff there exists a flow map f pq from p to q such that f −1
pq is also a flow map

from q to p.

Two pomsets (with their functional dependency) are flow equivalent iff by just
observing event sequences for each variables separately (without considering their
causality with events from other variables, except for functional dependency), one
cannot distinguish between the behaviors represented by the two pomsets.

Theorem 11 For a deterministic process, the flow equivalence classes are singleton
sets.

Proof sketch Since the pomsets representing the behaviors of the processes are
unique for a given input behavior, and pomset events does not have any associated
time tag, the theorem follows. �

Let LP denote the set of levelling functions for a pomsets in process P , then Lp

and Lq denote the sets of levelling functions for pomsets p and q. Two pomset are
clock equivalent if they have isomorphic levels.

Definition 12 (Clock Equivalent Pomsets) Given two pomsets p = 〈Vp,≤p, p,

µp〉 and q = 〈Vq ,≤q , q , µq〉 and their associated functional dependency ≤ f
p and

≤ f
q , we say p and q are clock equivalent, denoted as p ∼ q, iff there exists a bijection

f : Vp → Vq, and levelling functions lp ∈ Lp
1 and lq ∈ Lp

1 s.t. ∀x ∈ Vp, l p(x) =
lq(f (x)) ∧ ∀y ∈ Vq, lq(y) = l p(f −1(y))

What this means is that two pomsets are clock equivalent if asap-synchronous
views of both are created, then a bijection between the events in both would exist
with the following property. Events in one pomset that are in the same level under its
levelling function, will be mapped to events in the other in a way that they all have
the same level under that pomset’s levelling function. In other words, if one thinks
of events in the same level happening in the same cycle, then in both pomsets events
that correspond to each other would happen in the same cycle.

272 Sandeep K. Shukla et al.

5.1 Understanding Endochrony

A pomset represents a single behavior of a polychronous program for a given input
event sequence. So from an asynchronous observer’s point of view, a pomset provides
a specification such that his/her observations of event sequences (without looking into
the program itself) must never violate the pomset’s ≤ and ≤ f . On the other hand, a
levelling function l provides a view of the program execution with the scheduling
of the events, which means the observer can also see inside the program’s execu-
tion schedule with respect to some clock. Each possible levelling function may cor-
respond to a different clock, and schedule. In polychrony, an interesting class of
processes/programs are called endochronous processes/programs. This is the class of
programs that can be scheduled with a single clock uniquely.

Definition 13 (Guernic et al., 2003) A process is endochronous iff, ∀p, q ∈ P,
p≈ q implies p ∼ q.

What this means is that if we have behaviors that are flow equivalent, we could sched-
ule them uniquely with respect to one clock. The way to schedule them will be given
by the L1 levelling function set for the behaviors.

Now we state the following theorem which demystifies the idea of endochrony. A
more detailed proof will be given in a future version of the paper.

Theorem 14 A process is endochronous iff ∀p ∈ P the set Lp
1 is singleton and

coincides with Lp
1 − exact.

Proof sketch By the definition of endochrony, all flow equivalent pomsets of an
endochronous process must be clock-equivalent. Since the flow equivalence class of
pomsets are singletons, so we only have to consider if the same pomset can have
multiple clock inequivalent scheduling. If that happens, then that means flow equiva-
lence does not imply clock equivalence. On the other hand, if flow equivalence does
imply clock equivalence, then these singleton sets cannot have more than one way of
scheduling. �

6 Concluding Remarks

In contrast to these approaches based on tagged traces, we propose a formulation of
polychronous system specifications using the truly concurrent structure of pomsets.
This formulation achieves an unambiguous characterization of both synchrony and
asynchrony by exclusively considering the scheduling structure of a pomset. Instead
of considering a tag structure to give a model-specific time-stamp to events, we sim-
ply consider events to be timely unique instances of generic actions (as a pomset
requires). The synchrony and asynchrony are captured by considering the structure
of the partial order relation that models the causal relations between events.

On the Polychronous Approach to Embedded Software Design 273

References

Abramsky, S. (1996). Semantics of interaction. In Trees in Algebra and Programming, Lecture
Notes in Computer Science, Springer Verlag, volume 1059.

Benveniste, A., Caillaud, B., and Le Guernic, P. (2000) Compositionality in dataflow synchro-
nous languages: specification & distributed code generation. Information and Computation,
163, 125–171.

Benveniste, A., Caillaud, D., Carloni, L.P., and Sangiovanni-Vincentelli, A.L. (2005). Tag
machines. In Proceedings of Embedded Software Conference, Lecture Notes in Computer Sci-
ence, Springer-Verlag, October.

Carloni, L., McMillan, K., and Sangiovanni-Vincentelli, A. (2001). The theory of latency insensi-
tive design. IEEE Transactions on Computer Aided Design of Integrated Circuits and System,
20(9):1059–1076.

Guernic, P. Le, Talpin, J.-P., and Lann, J.-C. Le (2003). Polychrony for system design. Journal of
Circuits, Systems, and Computers – Special Issue: Application Specific Hardware Design,
12(3):261–303.

Hoare, C. (1978). Communicating sequential processes. Communications of the ACM, 21(8).
Holzmann, Gerard (2003). The SPIN Model Checker. Addison-Wesley Professional.
Hudak, Paul and Anderson, Steven (1987). Pomset interpretations of parallel functional programs.

In Proceedings of the Functional Programming Languages and Computer Architecture, pages
234–256, London, UK. Springer-Verlag.

Jantsch, A. (2003). Modeling Embedded Systems and SOC’s Concurrency and Time in Models of
Computation. Morgan Kaufmann Publishers.

Jategaonkar, L. and Meyer, A. R. (1993). Deciding true concurrency equivalences on finite safe
nets. In Proceedings of ICALP, pages 519–531. Springer-Verlag LNCS.

Kahn, G. (1974). The semantics of a simple language for parallel programming. In proceedings of
Information Processing, pages 471–475.

Lee, E.A. and Sangiovanni-Vincentelli, A.L. (1996). Comparing models of computation. In Inter-
national Conference on Computer-Aided Design (ICCAD), pages 234–241.

McMillan, K.L. (1993). Symbolic Model Checking. PhD thesis, Boston.
Meyer, John-Jules Ch. and de Vink, Erik P. (1989). Pomset semantics for true concurrency with

synchronization and recursion (extended abstract). In MFCS ’89: Proceedings on Mathemat-
ical Foundations of Computer Science 1989, pages 360–369, London, UK. Springer-Verlag.

Pratt, Vaughan R. (1986). Modelling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33–71.

Scaling up Model-checking

A Case Study

Aniket Kulkarni, Ravindra Metta, Ulka Shrotri, and R. Venkatesh

Abstract A typical formal development method includes specification of the
functionality, formal analysis of the specification and finally code generation on
to a platform. Often formal analysis is done using model-checking and scalability of
model-checking is an area of concern. In this paper we describe our work on inte-
grating two specific tools – Statemate and SAL, to scale up model-checking. More
specifically we highlight the benefits, in terms of scalability, that can be obtained
by exploiting peculiar usage patterns in the specifications under consideration. The
paper briefly introduces the tools and their respective notations, describes a trans-
lation strategy as a means to integrate the notations, and presents how we achieved
improved scalability of verification using SAL by exploiting peculiar usage of lan-
guage constructs in the Statecharts of interest. We also present the results of using
our tool on some randomly selected Statecharts demonstrating the scalability of our
approach.

Keywords: statemate, statecharts, SAL, translation, model-checking.

1 Introduction

There has been a significant increase in the number of embedded systems being
developed in the automotive [3], and other industries such as avionics and home
appliances. Clear and executable models of such systems are constructed and ana-
lyzed before investing heavily in the implementation stages. Typically, these models
are specified using formalisms such as Statecharts [4] and Esterel [1] enabling auto-
mated analysis. These formal models are verified, using model-checkers, for pro-
perties such as state reachability and absence of non-determinism before generating
code for the chosen platform. Scalability of model-checkers is an important issue.
In this paper we describe the integration of two tools – Statemate and SAL, to scale
up model-checking of Statecharts and list challenges that need to be addressed to
make the effort more rigorous.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 275
for Distributed Embedded Control Systems, 275–283.
c© Springer 2007

276 Aniket Kulkarni et al.

We integrated the two tools by building a translator that implements transforma-
tions between their notations. To ensure scalability of verification various optimiza-
tions have been implemented in the Statechart to SAL translator. Many of these
exploit the patterns present in the source specifications under consideration. This
exploitation of the structure and language usage within a given set of specifications
and the support needed for it is the main focus of this paper.

The rest of the paper is organized as follows – The first few sections briefly present
Statecharts and SAL, and a translation strategy from Statecharts to SAL. The next
few sections describe the source specific optimizations and the result obtained due
to these. We end by listing interesting problems to be solved in building a tool-chain
and a possible approach to these.

2 Statecharts

In Statemate a reactive system maybe specified as a collection of Statecharts, which
are extensions of conventional state transition diagrams. The main extension is hier-
archy of states supported by means of and and or states. An and state has multiple
direct sub-states all of which are active if the and state is active; i.e. they execute
in parallel. An or state has non-zero direct sub-states of which exactly one will be
active if the or state is active. A state that does not contain any other state is a basic
state. The state at the highest level is the root state. In Figure 1, S2 is an and state,
and both its sub-states and S1 are or states, and the rest of the states are basic states.

S1

t7: e1 [v1 <= 10] t8: e1 [v1 >= 10]

t2: e1/v1 := 10

t3: e2/v3 := v2

t5: e3/v2 := 10

t6: e4/v3 := v1

S3 S4

S5 S6

S7 S8

t1:

t4:

S2

Fig. 1 Statechart C1

Scaling up Model-checking 277

A transition is specified using the syntax e[c]/a, where e is an event, c is a con-
dition, a is an action and all are optional. A transition may cut through a hierarchy
of states and has a priority equal to that of the highest source state it exits. When a
transition’s target state is a non-basic state, there are multiple ways to specify which
sub-state(s) to enter. The most commonly used one is default transition, which is a
transition with a target state but no source state. Whenever its parent state is entered
by a transition, by default it enters the target sub-state of the default transition.
In Figure 1, t1 and t4 are default transitions and the rest are normal transitions. Note
that transitions t7 and t8 have the same priority as they exit the same outermost state
viz. S2. But both t7 and t8 have higher priority over transitions t2, t3, t5 and t6 as
they exit states lower than S2.

A transition e[c]/a is enabled if its source state is active, event e occurs, condition
c holds true and no higher priority transition is enabled. Whenever a transition is
taken, the corresponding action a is executed, the source state exited and target state
entered. It is also possible to associate actions to special events like state entry or exit
and a state being active.

Statechart also has support for data-items that store values with specific types.
Execution of a Statechart model proceeds in a sequence of steps. Events live for

exactly one step, the next step to the one in which they are generated. All transitions
that are enabled in a step are taken simultaneously and their corresponding actions
executed, which may result in new internal events being raised. In the next step if any
transitions are enabled, due to either some internal events or internal data changes,
those are taken. This continues till no more transitions are enabled. At this point
external events are sensed and the process continues. The steps at which external
events are sensed are called super-steps.

3 SAL

Symbolic Analysis Laboratory (SAL) is a framework developed at SRI for com-
bining different tools for program analysis, abstraction, theorem proving, and model-
checking of transition systems. SAL has a language for describing transition systems.
Following is a short list of important features in the SAL language. For more details,
the reader may refer to the SAL language manual [2].

The basic building block of any SAL program is a module. A SAL module consists
of: a state, an initialization condition on this state and a binary transition relation of
a specific form on the state. The state consists of INPUT, OUTPUT, GLOBAL and
LOCAL variables. The input variables are read-only variables. The rest are read–
write variables. INITIALIZATION is carried out exactly once and that is when the
system execution starts. All transitions are defined in the TRANSITION section. In
the transition section, variables from the next state can be referred to by using a ‘′’
suffix.

278 Aniket Kulkarni et al.

Modules can be composed synchronously or asynchronously using ‖ and [] respec-
tively. Properties expressed as LTL formulas can be specified in SAL as theorems.
SAL has a suite of model-checkers of which we used SAL-smc, which is a symbolic
model-checker and SAL-bmc, which is a bounded model-checker that can be used to
verify the properties. A sample SAL specification is given below for illustration.

C1_C1 : CONTEXT =
BEGIN

C1_ENUM: TYPE = {S1, S2, <upto>, S8};
...
C1: MODULE =
BEGIN

INPUT e1, e2, e3, e4 : BOOLEAN
OUTPUT t1Enabled, t2Enabled, <upto>, t8Enabled: BOOLEAN
OUTPUT v1, v2, v3: INTEGER

LOCAL state : { s3, s4, s5, s6, s7, s8 }
INITIALIZATION

v1 = 0; ...
DEFINITION
t1Enabled = e1 = TRUE && state = s3;
...

TRANSITION
[

...
[]
t2Enabled = TRUE --> v1’ = 10;
[]
t3Enabled = TRUE --> v3’ = v2;
[]
...

]
END; %% END OF MODULE
...

END %% END OF CONTEXT

(Sample SAL Example for Statechart C1 of Figure 1)

3.1 Analysis

Statechart specifications may have non-determinism, races (both read–write and
write–write) and unreachable states. These are detected using a model-checker and
scalability of model-checkers is an issue. The default model-checker bundled as
a plug-in with Statemate cannot analyze large models. We integrated Statemate

Scaling up Model-checking 279

with SAL to improve scalability of model-checking. Some such properties in the
Statechart C1 include:

• Non-determinism: t7 and t8 can be simultaneously enable hence leads to non-
determinism.

• Read–Write Race: When transitions t3 and t6 are taken in the same step, variables
v2 gets read and written respective in the actions of t4 and t5.

• Write–Write Race: When transitions t3 and t6 are taken in the same step, variables
v3 is assigned to in the actions parts of both t3 and t6.

• Drive to State: There is no input C1 which will drive i to reach state S4! This is
because, t2 never gets enabled as whenever the system is in state S3 and the even
e1 occurs either t7 or t8 or both will be enabled and both are of higher priority
than t2.

4 Translating Statecharts to SAL

A Statechart with the root state as an or state or a basic state is translated into one
single SAL MODULE while Statecharts with and root state with n direct sub-states is
translated into n different SAL MODULEs composed synchronously. A SAL variable
of enum type is generated for capturing current state of the Statechart with enum
literals corresponding to states.

• All the data-items modified by the Statechart are translated as OUTPUT variables
of appropriate SAL type.

• All conditions modified and the events raised by the Statechart are translated as
OUTPUT Boolean variables.

• All data-items. conditions and events used in the Statechart are translated as
INPUT variables of appropriate type.

Additionally each such MODULE will contain Boolean variables corresponding to
each transition. this variable is defined to be true whenever the Statechart is in the
source state of the transition and it’s enabling condition is true. A special Boolean
ElseTransition variable is defined to be true when none of the transitions are enabled.
The state transitions and actions present in the Statechart are translated as guarded
actions in the body of the corresponding MODULE. Following is a template SAL
specification that illustrates some of these concepts.

Structure of SAL-code for Statechart 1:

MODULE S
BEGIN
INPUT
< all variables used in S >
< variables corresponding to events and guards used
in S >

280 Aniket Kulkarni et al.

OUTPUT
< all variables assigned in S variables generated for
keeping track of states and transitions >

< variables corresponding to events and guards
generated by S and used in other charts >

LOCAL
< variables for storing the true/false/changed values
of conditions used in S >

< variables corresponding to events and guards >
< generated by S and NOT used in other charts >
DEFINITION
< Invariant definitions such as transition enabling
condition>

TRANSITION
< transition-action pairs for C1’s transitions >
< code to set the state variables, new events, etc. >
< code to disable active events in the current step >
END

A Statemate model M consisting of many Statechart specifications is translated
to a SAL CONTEXT that contains variables corresponding to the globals of M and
MODULES corresponding to M’s charts. Execution of these MODULES in parallel
is done using the synchronous composition provided by SAL.

Corresponding to each property to be analyzed we generate a Boolean variable
that is defined to be true whenever the property is violated, and a theorem that asserts
that the property is globally false. For instance, in the case of read–write race the cor-
responding variable is true whenever an action that reads the variable and an action
that writes to it are simultaneously enabled.

4.1 Key Issues

Both Statecharts and SAL have a notion of states and transitions from one state to
another. However Statecharts have the following features that do not have a direct
mapping in SAL.

• A notion of step and super step where external events are sensed only at the start
of the next super step.

• A rich hierarchical structuring mechanism in the form of and states and or states.

Our solution to these are described below.

Scaling up Model-checking 281

4.2 Step and Super Step

Statechart models take the environment events/changes every super step. SAL treats
each INPUT variable of any module that is not OUTPUT of any module as an envi-
ronment input and generates random values for them every single step. To implement
super step semantics, we capture all environmental inputs as OUTPUT of one spe-
cial module ASYNC SYS MOD and update them with SAL environment inputs only
when the system is stable. For example, if there are n environment variables v1 to vn,
then the special module ASYNC SYS MOD will have n INPUT variables env v1
to env vn which SAL updates every single step. The actual variables representing the
Statechart environment variables (v1 to vn) will be updated with these only when the
system reaches a stable state.

4.3 Implementation of Hierarchy

State transitions are implemented in SAL by having a state variable in a module that
takes the value of the current basic state of the Statechart.

Or state maybe a source or target of a transition. For every transition t, of which
this is a source state we generate a guarded transition that is enabled whenever the
Statechart is in a basic state that is a child of the or state and the other enabling
conditions of the transition are satisfied. Additionally for every transition that has a
lower priority than t we output an additional condition that t should not be enabled
thus implementing the priority of transitions. In the case of transitions that end at this
state we set the target state as the target state of the default transition of the or state.

And state is flattened by taking a cross product of the sub-states of the direct
children of the and state, and treating the elements of the cross-product as basic
states of the Statechart.

5 Optimizations

The naive translation from Statecharts to SAL did not scale up to desired levels and
we had to implement some optimizations. Two standard optimizations that gave us
maximum benefits are:

• Generating a different SAL specification for each property.
• Partially retaining the hierarchical structure in the case of non-basic or states as

described above.

282 Aniket Kulkarni et al.

However these were not enough and we analyzed all the available specifications
for some common syntactic patterns that we could translate differently to achieve
better scaling. Following are the ones that gave the maximum benefits.

5.1 Slicing

The Statecharts that were being analyzed were all well structured with different Stat-
echarts implementing different functionality. Therefore for a given functionality only
a small subset of the Statecharts were relevant. As a corollary given a Statechart it
forms part of a small subset that implements a functionality. More formally, given
a Statechart the variable/event set that it used or modified intersected with the vari-
able/event set of only a few other Statecharts. So for a given property our slicing
algorithm forms a slice-set of all Statecharts whose variable/event set intersected
with the variable/event set of the Statechart on which the property is to be checked or
belongs to the slice-set. More formally the sliced set of Statecharts Ss , is the smallest
set that contains the Statechart on which the property is to be checked and

∀s · ∃s′ ∈ Ss · input (s′) ∩ output (s) �= {}

5.2 And State as Child of Root or State

In most of the Statecharts we found that the and state was the child of the root state.
Since this translates naturally to SAL as synchronous composition of two modules,
we treated this case separately from a deeply nested and state.

5.3 Variable Type Abstraction

Many variables with type real or integer were used only to compare against a specific
constant or to check equality or inequality against other variables of the same type.
In the first case we abstracted the type of the variable to Boolean and in the second
case to the SAL type SCALARSET.

6 Experimental Results

The results of running our tool on eight randomly chosen real-life models are pre-
sented in Table 1. As can be seen from the entries marked abort our tool analyzed
more models than the standard model-checker could.

Scaling up Model-checking 283

Table 1 Timing results
Read–Write Race Write–Write Race Non-Determinism

Model
Commercial SAL-smc Commercial SAL-smc Commercial SAL-smc

M1 0 0 abort 29 m abort 14 m
M2 45 m 11 m:7 s 2 m 9 m 1 m:8 s 5 m:30 s
M3 1 m:20 s 11 m:20 s 14 m:49 s 2 m:26 s 1 m:8 s 3 m:26 s
M4 1 m:20 s 32 s 2 m:9 s 15 s 16 s 5 m:6 s
M5 1 m 10 s 1 m 2 s 0 3 s
M6 43 m 18 s 0 0 abort 50 s
M7 1 m 2 s 0 0 25 s 4 s
M8 abort 6 m:17 s abort abort abort 19 m

7 Problems and Future Work

We believe there is going to be an increasing need to integrate different tools into a
tool-chain, this gives rise to the problem of transformation between their notations
being correct. A high level notation to specify analyzable transformations between
specification languages will help. We plan to experiment with Object Management
Group’s Query, View and Transformation [5] language as a notation for this. Since
application specific transformations can give a lot of benefit. The ability to inde-
pendently specify such transformations and analyze these incrementally will be very
useful.

References

1. Gerard Berry and Georges Gonthier. The esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992.

2. Leonardo de Moura, Sam Owre, and N. Shankar. The sal language manual. Technical Report
SRI-CSL-01-02 (Rev. 2), SRI International, Computer Science Laboratory, August 2003.

3. Hans-Georg Frischkorn. Automotive software – the silent revolution. In Automotive Software
Workshop San Diego, San Diego, United States of America, Jan. 10–12 2004.

4. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program., 8(3),
June 1987.

5. OMG. Mof qvt final adopted specification. Technical report, 2005.

Performance Debugging of Heterogeneous
Real-Time Systems

Unmesh D. Bordoloi, Samarjit Chakraborty, and Andrei Hagiescu

Abstract Today most real-time embedded systems are made up of a heterogeneous
collection of processors, communication subsystems and partially programmable or
fixed-function components. These are typically supplied by different vendors and as a
result have different interfaces, require different programming models and implement
different resource scheduling and arbitration policies. Hence, performance analysis
and debugging of such systems is increasingly becoming complex. Although a lot
of work exists in the real-time systems literature on timing and schedulability analy-
sis of specific task and event models—which can be applied to analyze individual
subsystems—the issue of compositionality has not received sufficient attention so
far. In this paper we discuss a framework which can help in the analysis and per-
formance debugging of such heterogeneous real-time systems. It can account for a
variety of combinations of task and event models and scheduling policies and does
not require any global state-space construction. As a result, it is highly scalable and
can be used to analyze real-life hardware/software architectures. The main focus of
this paper is on illustrating the utility of this framework in analyzing a heterogeneous
collection of electronic control units that communicate via a FlexRay bus.

Keywords: Performance modeling and debugging, heterogeneous embedded sys-
tems, FlexRay.

1 Introduction

Modern real-time embedded systems are highly complex and distributed in nature.
They often consist of a collection of processing and communication elements and
run multiple concurrent, communicating tasks. An underlying characteristic of
such systems is their heterogeneity—which stems from the different activation
rates and execution demands of the different tasks, and the different interfaces and
resource scheduling/arbitration policies of the processing and communication ele-
ments. Although timing/performance analysis of such individual elements is now
fairly well-established in the real-time systems literature, compositional performance
analysis is still a challenging problem.

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 285
for Distributed Embedded Control Systems, 285–300.
c© Springer 2007

286 Unmesh D. Bordoloi et al.

Recently, there has been a number of efforts to address this problem (see [8] for
an overview). For example, [9] and [7] proposed techniques for composing timing
analysis results for individual components of a system which were analyzed using
potentially different analysis techniques. However, such a composition technique
is only applicable to architectures whose components interact using fairly standard
event models such as periodic, periodic with bounded jitter and sporadic. More com-
plex interaction patterns are supported by the framework presented in [1], albeit at the
cost of increased analysis complexity. This framework was then extended in a number
of subsequent papers to allow the modeling of variable activation rates and execution
demands of tasks and complex scheduling policies (see, for example, [2, 4, 5, 10]).

The focus of this paper is on illustrating the utility of this framework through a
real-life case study. Towards this, we model a heterogeneous collection of electronic
control units (ECUs) that communicate via a FlexRay bus [3]. Each ECU runs a set
of tasks and communicates with other ECUs via signals and data streams that are
transmitted over the bus. The main challenge is to analyze the different scheduling
policies implemented on the ECUs, as well as the FlexRay protocol, and compose
these analysis results for end-to-end timing guarantees.

The rest of this paper is organized as follows. In the next section we briefly intro-
duce this framework. This is followed by an overview of the FlexRay protocol in
Section 3. In Section 4 we discuss how this protocol is formally modeled for tim-
ing analysis. Using an Adaptive Cruise Control application which is mapped onto
multiple communicating ECUs, we then show how to perform compositional timing
analysis and performance debugging using the abovementioned framework. Finally,
Section 6 lists some directions for future work.

2 The Basic Framework

Our system architecture consists of multiple processing elements (PEs) which are
connected to a bus. One or more applications are partitioned into tasks and are
mapped onto these PEs. Some of these tasks are triggered by external events at a
prespecified rate, while the remaining are triggered by data or signals generated by
other tasks. Such data/signals might travel over the bus when the two communicating
tasks are on different PEs. Once activated, a task needs to be processed and hence
consumes a fixed number of processor cycles from the PE it is running on. Finally,
each PE might use a different scheduling policy and multiple data streams might
attempt to access the communication bus at the same time, and this contention is
resolved using some bus arbitration policy. At the heart of the framework being dis-
cussed lies the modeling of (i) the triggering pattern of tasks (or the event model)
which generates an execution demand on a PE and communication demand on the
bus, and (ii) the service offered by a PE (or the bus) to each task running on it
(i.e. the resource model).

Performance Debugging of Heterogeneous Real-Time Systems 287

Event Model The arrival rate of any event stream triggering a task is upper- and
lower-bounded by two functions αu(∆) and αl(∆). Let R(t) be the total number of
events that arrive during the time interval [0, t]. Then αl(∆) = mint≥0{R(t + ∆) −
R(t)} for any ∆. Similarly, αu(∆) = maxt≥0{R(t + ∆) − R(t)}. Hence, αu(∆)
and αl(∆) denote the maximum and minimum number of events that might arrive
within any interval of length ∆. The timing properties of standard event models—like
periodic, periodic with jitter and sporadic—as well as more arbitrary arrival patterns
can be represented by an appropriate choice of αu and αl . For example, a periodic
event stream with period 9 can be represented by an upper and lower bound shown in
Figure 1(a). It is also possible to determine the values of αu and αl corresponding to
any given arbitrary event trace which was, for example, obtained from a simulation.

Resource Model Similarly, let βu(∆) and βl(∆) denote upper and lower bounds on
the service available to a task. Let S(t) be the number of activations of this task that
were serviced during the time interval [0, t]. Then, βl(∆) = mint≥0{S(t+∆)−S(t)}
for any ∆, and βu(∆) = maxt≥0{S(t+∆)−S(t)}. If there are multiple tasks running
on a PE, the service bounds βu and βl available to any task will clearly depend on
the scheduling policy being used. Further, if βu(∆) and βl(∆) are expressed in terms
of the maximum and minimum number of available processor cycles, then they can
easily be converted to represent service expressed as the number of task activations
that can be serviced within any ∆. This is done by scaling βu(∆) and βl(∆) with the
execution requirement incurred by the task due to each activation.

As an example, the upper and lower bounds on the service in the case of an
unloaded PE can be represented as two straight lines that coincide with each other
(see Figure 1(b)). The slope of these lines denotes the clock frequency of the PE.
Communication resources (e.g. buses) can be similarly modeled, the service curves
in this case typically bound the number of transmittable bits within any given time
interval. Such service curves can be derived from a formal model of the resource, or
from data sheets, or in some cases by simple measurements.

4

3.5

3

2.5

2

1.5

1

0.5

0
0 5 10 15 20 25 30

ev

en
ts

period = 9

jitter = 0

(a)

30

25

20

15

10

5

0
0 5 10 15 20 25 30

p

ro
ce

ss
o

r
cy

cl
es

(b)

Fig. 1 (a) αu and αl corresponding to a periodic activation. (b) βu and βl of an unloaded processor

288 Unmesh D. Bordoloi et al.

System Composition and Analysis An event stream entering a resource gets
processed, thereby generating an outgoing stream of events/data which can activate
other tasks on the same PE, or might be transferred over the bus to trigger tasks
running on other PEs. Let αu ′(∆) and αl ′(∆) denote upper and lower bounds on
the number of such events generated within any time interval of length ∆. It can be
shown that (see [10]):

αl ′(∆) = min{ inf
0≤µ≤∆

{sup
λ>0

{αl(µ+ λ)− βu(λ)} + βl(∆− µ)}, βl(∆)}
αu ′(∆) = min{sup

λ>0
{ inf
0≤µ<λ+∆

{αu(µ)+ βu(λ+∆− µ)} − βl(λ)}, βu(∆)}

Similarly, the bounds on the remaining service after processing the activations of
a task are given by:

βl ′(∆) = sup
0≤λ≤∆

{βl(λ)− αu(λ)}

βu ′(∆) = max{ inf
λ>∆

{βu(λ)− αl(λ)}, 0}

Given αu , αl and βu , βl , it is also possible to compute the maximum delay expe-
rienced by a task before its activation is serviced and the maximum number of back-
logged activations. These are: delay ≤ supt≥0{infτ≥0{αu(t) ≤ βl(t + τ)}} and
backlog ≤ supt≥0{αu(t)− βl(t)}.

With the help of an example, we now show how a system architecture may be
modeled using the above results. Consider the setup shown in Figure 2(a). It consists
of two tasks T1 and T2 which are being scheduled using a rate monotonic scheduler.
Both T1 and T2 are activated periodically, with T1’s period being 4 time units and T2’s
period being 9 time units. Each activation of T1 and T2 requires 1 and 2 processor
cycles respectively to process. The upper and lower bounds on the activation of T2
(i.e. αu

2 and αl
2) were shown in Figure 1(a). They are similar for T1, except for the

1

1 2

2

21

(a)

1

22 2

1 1

(b)

Fig. 2 (a) Rate monotonic scheduling of two tasks. (b) Corresponding scheduling network

Performance Debugging of Heterogeneous Real-Time Systems 289

25

20

15

10

p

ro
ce

ss
o

r
cy

cl
es

5

0
0 5 10 15 20 25 30

(a)

3.5

4

3

2.5

2

2j

ev

en
ts

1.5

1

0.5

0
0 5 10 15 20 25 30

(b)

period

period = 9
jitter = 1

Fig. 3 (a) Bounds on the remaining service after processing task T1. (b) Bounds on the messages
generated by T2

difference in the length of the period. The upper and lower bounds on the service
offered by the unloaded PE (in terms of the number of processor cycles available
over any time interval) were shown in Figure 1(b). Since T1 has a smaller activation
period, it has a higher priority (because of rate monotonic scheduling) and hence the
full service offered by the unloaded PE is available to it.

As discussed above, using αu
1 , αl

1 and βu
1 , βl

1, we can compute βu
1
′ and βl

1
′, which

are bounds on the remaining service (that is left over after processing T1). This
remaining service is now available to the lower-priority task (i.e. T2). This concept
is illustrated in the form of a scheduling network for a rate monotonic (or any fixed
priority) scheduler in Figure 2(b).

β1
′ is used for servicing task T2 (see Figure 3(a)), which along with α2 can be

used to compute upper and lower bounds on the events generated by each serviced
activation of T2 (β and α often refer to the tuples βu , βl and αu , αl). These bounds
are shown in Figure 3(b). From this figure, note that this event stream is periodic with
a period of 9 time units and a jitter of 1 time unit. It is straightforward to see that the
distance between αu

2
′, αl

2
′ is equal to twice the jitter of the event stream.

So far we described how to use this framework to analyze a PE, but the same
technique is also applicable to communication resources (e.g. buses). To illustrate
this, we now model the complete architecture (along with the communication bus)
shown in Figure 2(a). Assume that the bus transmits the processed streams α1

′ and α2
′

as messages to another PE (which is not shown in this architecture). The performance
model of the complete architecure including the bus is now shown in Figure 4(a).
Suppose that each serviced activation of T1 and T2 generates a message of size 1
byte that is to be transmitted over the bus. The T DM A scheduler running on the
bus has a cycle length of 10 time units and provides slot sizes that are suitable for
transmitting 4 and 3 bytes of data from T1 and T2 respectively during every cycle. The
service curves corresponding to this bus availability to T1 is shown in Figure 4(b).

290 Unmesh D. Bordoloi et al.

1

2 2

11 1

22

bus

bus1

bus2 bus1

bus2’

’

bus

1
f

2
f

(a)

30

25

20

b

yt
es

15

10

5

0
0 10 20 30 40 50 60 70

(b)

Fig. 4 (a) Performance model of the complete architecture. (b) The bounds on the service available
on the TDMA bus to messages from T1

9

8

7

6

ev

en
ts

5

4

3

2

1

0
0 5 10 15

(a)

20 25 30

5

4.5

4

3.5

3

ev

en
ts

2.5

2

1.5

1

0.5

0
0 5 10 15 20 25 30

(b)

Fig. 5 (a) Upper and lower bounds on the transmitted messages over the bus arising from T1.
(b) Bounds on the transmitted messages from T2

Finally, Figure 5 shows the timing properties (or bounds on the arrival rate) of the
transmitted messages from T1 and T2. From the timing properties of the message
stream injected by T2 on the bus (Figure 3(b)) and the timing properties of these
transmitted messages (Figure 5(b)), it may be noted that the jitter increases from 1
to 7.5 time units. These transmitted messages can now trigger tasks running on other
PEs and the same procedure may be applied to analyze them as well.

3 The FlexRay Protocol

As mentioned in Section 1, the rest of this paper is concerned with modeling an
Adaptive Cruise Control (ACC) application running on multiple ECUs that commu-
nicate via a FlexRay bus. Towards this, in this section we give a brief overview of the
FlexRay communication protocol.

Performance Debugging of Heterogeneous Real-Time Systems 291

Communication in FlexRay takes place in periodic cycles and each communication
cycle is partitioned into an ST and a DYN segment. The lengths of these segments
need not be equal, but are fixed over the different cycles (hence these lengths are
among the parameters that need to be determined when the FlexRay schedule is syn-
thesized). The ST segment is further partitioned into a fixed number of equal-length
slots. Each slot is allocated to a specific task and a task is allowed to send a message
only during its allocated slot. If a task has no messages to send, then its slot goes
empty (i.e. other tasks are not allowed to use it).

The DYN segment is also partitioned into equal-length slots, but each slot size
is much smaller and is referred to as a minislot. Tasks which send messages on the
DYN segment are assigned fixed priorities. At the beginning of each DYN segment,
the highest priority task is allowed to send a message. The length of such a message
can be arbitrarily long (i.e. can occupy an arbitrary number of minislots), but has to fit
within one DYN segment. However, if the task has no messages to send, then only one
minislot goes empty. In either case, the bus is then given to the next highest-priority
task and the same process is repeated till the end of the DYN segment. Further, when
its turn comes, a task is only allowed to send a message if it fits into the remaining
portion of the DYN segment. For further details of this protocol, we refer the reader
to [6] or to the full specification [3].

As an example, consider eight tasks T1, . . . , T8 mapped onto different ECUs,
which send messages on the FlexRay bus. Any message sent by a task Ti is labeled
as mi . Tasks T1, T2 and T3 send messages over the ST segment and T4 to T8 over
the DYN segment. For the DYN segment, the priorities of the tasks decrease from
T4 to T8. Figure 6 shows two consecutive FlexRay communication cycles resulting
from this mapping. In the first cycle, task T2 has no message to send (hence the cor-
responding slot in the ST segment is empty) and in the second cycle T1 and T3 have
nothing to send.

Similarly, in the first cycle, tasks T5, T6 and T7 have messages to send, but not T4
and T8. Hence, there is one empty minislot corresponding to T4 in the DYN segment,
followed by the message m5. The size of m6 is bigger than the remaining length of
the DYN segment, hence it is not sent; instead there is one empty minislot in its place.
This is followed by m7 and another empty minislot resulting out of no message from
T8. In the second cycle, T4 and T5 have no messages to send, which results in two

1 3 5 7 2 6

Fig. 6 Two typical FlexRay communication cycles

292 Unmesh D. Bordoloi et al.

empty minislots. These are followed by m6 which could not be sent in the first cycle.
The DYN segment ends with one empty minislot which might either be because T7
had nothing to send or its message was longer than 1 minislot.

Below, we only highlight the modeling of the DYN segment of FlexRay. The
ST segment uses a TDMA scheme which can easily modeled, as illustrated in the
last section.

Difficulties in Modeling FlexRay We just saw that in FlexRay, the task with the
highest priority is offered access to the bus at the start of the DYN segment. Further,
once given access to the bus, a task can occupy it till the end of the current DYN
segment. Hence, the most straightforward approach would be to model this protocol
as a fixed priority scheduler, as shown in Figure 2(b). Here, β would be used to model
the total service offered by the DYN segment and successive βs would be computed
from the message sizes and message generation rates of the different tasks. However,
this approach does not work because of the following properties of FlexRay: (i) A
task is only allowed to send a message if it fits into the remaining portion of the DYN
segment, i.e. a message cannot straddle two communication cycles. (ii) Once a task
misses its turn in the DYN segment (because there were no ready messages), it has
to wait till the next communication cycle before it can access the bus (which is the
TDMA-like property of the DYN segment). (iii) A task can send at most one message
in each DYN segment (where the maximum length of the message can be equal to
the length of the DYN segment).

The modeling framework presented in Section 2 does not incorporate these restric-
tions when representing the service availability of a resource using the upper and
lower bounds βu(∆) and βl(∆). To see this, consider Figure 7(a), which shows αu

corresponding to the arrival of a single message (of length equal to 10 minislots) that
is to be transmitted over the DYN segment (of length 8 minislots). Here, the length of
each communication cycle (or period) is assumed to be p time units and the length
of the DYN segment is equal to d time units. The lower bound on the service βl

corresponding to the DYN segment is also shown in this figure. Note that over time
intervals ∆ of length less than or equal to p − d, no service might be available from

∆

∆

∆

u

|

Fig. 7 (a) Computing maximum delay from αu and βl . (b) Total service offered by the DYN
segment

Performance Debugging of Heterogeneous Real-Time Systems 293

the DYN segment due to the blocking by the ST segment. Since the length of the
message in this case is longer than the length of the DYN segment, this message will
never get transmitted. However, the framework we described in Section 2 models the
message to be transmitted over two communication cycles, thereby incurring a delay
equal to the maximum horizontal distance between αu and βl (see Figure 7(a)).

4 Formal Timing Analysis of FlexRay

To correctly model the DYN segment of FlexRay, we need to modify our representa-
tion of the service bounds βu(∆) and βl(∆) to reflect the FlexRay-specific properties
listed in Section 3. Towards this, assume that tasks T1, . . . , Tn send messages over the
DYN segment with any message from task Ti being denoted by mi and has a length
of ki minislots. The length of the DYN segment is assumed to be equal to k minislots
(or d time units) and the length of a communication cycle, as before, is equal to p
time units. Each minislot is assumed to be MS time units long.

Let βl(∆) be the lower bound on the service (expressed in terms of number of
minislots) offered by the unloaded DYN segment to all the tasks. Further, let βl

i be
the service offered by the DYN segment to task Ti . To obtain βl

1, the function βl

needs to be transformed using the following steps.

1. Extract k1 minislots of service during each communication cycle from βl . This is
because during any communication cycle at most k1 minislots are available to T1
(since a task can send at most one message).

2. Discretize the service bound obtained from Step (i), i.e. convert it into a step-
function. This is to model that a message cannot straddle two communication
cycles. Steps (1) and (2) are shown in Figure 8(a).

3. The resulting service bound is shifted by d time units. This is again to model
that a message has to be completely sent within a single DYN segment. Note from
Figure 8(c) that any interval ∆ of length less than p+MS×k1 can be positioned to
straddle two communication cycles. Hence, the minimum service available from
the DYN segment over intervals of such length is equal to 0. The shifted service
bound in Figure 8(b) reflects this. It also reflects the property that once a task
misses its turn in the DYN segment, it has to wait for the next communication
cycle.

The resulting service bound, which we denote as βl
1 correctly represents the mini-

mum or guaranteed service from the DYN segment that is available to messages from
T1. This βl

1 can now be plugged into the framework outlined in Section 2 to compute
the maximum delay suffered by any m1, the maximum number of backlogged m1s
and the timing properties of the transmitted messages (which might trigger other
tasks). Towards this αu

1 (∆) is used as an upper bound on the number of messages
generated by T1 within any interval of length ∆.

294 Unmesh D. Bordoloi et al.

1

1

1

1

1
1

1 1 1

∆

∆× × ×

|

1

1

1

1

1 1 1
× × ×

∆

∆|

1 1 1 1× × ×

×

×

×

1

1

Fig. 8 (a) Steps (1) and (2) for transforming βl . (b) Shifting the resulting service bound. (c) Block-
ing time

The service available to the lower priority tasks (i.e. T2, . . . , Tn) is made up of two
components: (i) The remaining service left after performing transformation 1 (i.e.
the service that was unavailable to T1). This is given by β̄l(∆) = sup0≤λ≤∆{βl(λ) −
βl

1(λ)}. (ii) The service that was unutilized by T1. This can be computed from βl
1 and

αu
1 and is denoted by βl

1
′. However, βl

1
′ cannot be directly added to β̄l because it is

specific to messages from task T1 (i.e. incorporates message size information). So it
first needs to be transformed by applying the “inverse” of Steps (2) and (3) that were
applied to βl , and the resulting function is added to β̄l . This sum then represents the
service available to the lower priority tasks, which is transformed in the same way as
βl , but using information specific to messages from task T2. This procedure is then
repeated for all the tasks T3, . . . , Tn .

To illustrate this scheme, consider the architecture shown in Figure 9(a), consist-
ing of two tasks T1 and T2 running on two different ECUs. T1 generates a periodic
stream of messages (denoted by m1) which are transmitted over the DYN segment
of a FlexRay bus. The transmitted messages trigger T2 on ECU2, which in turn gen-
erates a stream of messages m2 which are also transmitted over the DYN segment
of the same bus to an actuator. m1 is assigned a higher priority than m2 and both
m1 and m2 cannot fit into one DYN segment. In this context, Figure 9(b) show an
application of our model. Here, α1 bounds the arrival rate of m1 at the bus and β is
the service offered by the unloaded bus. β1 is the service available to m1. β ′ is the
service remaining from β (i.e. unavailable to m1). β

′ is the service that is unutilized
by m1 (from what was available to it). The sum of β and β1

′ is the service available
to m2. Finally, the triggering rate of T2 (which is equal to the arrival rate of m2 at the
bus) is bounded by α1

′, that is computed from α1 and β1.

Performance Debugging of Heterogeneous Real-Time Systems 295

ECU1

Actuator

FlexRay Bus

T2
T1

ECU2

(a)

m1 m2

a1

a1’
a2’

a2

⎯

(b)

+

b

a1

a2’

a1�
b1’

b2

b

b1

b’

Fig. 9 (a) Example architecture. (b) Overview of the FlexRay model

5 Adaptive Cruise Control Application: A Case Study

We will now show the utility of the framework discussed in Section 2 in model-
ing an Adaptive Cruise Control (ACC) application. This is followed by an illustra-
tion of how this model can be used for formal performance analysis and debugging
of an architecture consisting of multiple heterogeneous ECUs communicating via
a FlexRay bus. When compared to simulation-oriented approaches—which can be
time consuming and do not provide any formal guarantees—our framework can be
used to quickly evaluate multiple design choices to determine whether they meet the
performance constraints at hand. The main challenge here is to determine end-to-end
timing properties of event/data streams which pass through multiple ECUs (imple-
menting different scheduling policies) and the FlexRay bus. Each of these process-
ing/communication elements modify the timing properties of the stream as it passes
through it.

System Description As shown in Figure 10, the ACC subsystem consists of four
ECUs communicating via a FlexRay bus. The bus has a communication cycle of
14 ms. The length of the DYN segment is of 6 ms and consists of 84 minislots, and the
length of ST segment is 8 ms. Each minislot in the DYN segment can accommodate
2 bytes of data. ECU1 receives data from two radar sensors periodically every 50 ms,
and ECU3 periodically receives data from a wheel sensor every 25 ms.

The data received by ECU1 from each radar is processed by an Object Detec-
tion task. The processed data streams m1 and m2 are sent over the DYN segment
of the FlexRay bus to ECU2 to be processed by the Data Fusion, Object Selection
and Adaptive Cruise Control tasks. The resulting data stream m3 is transmitted over
the ST segment of the bus to ECU3 which runs the Throttle and Brake Arbitration
task. This task also receives input from the Anti-lock Braking System which runs on
ECU4. This input is sent as the message stream m7 over the ST segment of the
bus. The output from the Throttle and Brake Arbitration task is fed into the Brake
Control and Throttle Control tasks, which in turn sent their outputs to two different
actuators. These final output control signals are bounded by the functions α

f
B and

296 Unmesh D. Bordoloi et al.

B
rake C

o
n

tro
l

TDMA

Object
Detection

Object
Detection

Radar 1 Radar 2

ECU2

D
ata F

u
sio

n

O
b

ject S
electio

n

A
d

ap
tive

C
ru

ise C
o

n
tro

l

T
h

ro
ttle an

d
B

rake T
o

rq
u

e
A

rb
itratio

n

Actuators

P
ath

 E
stim

ato
r

T
h

ro
ttle C

o
n

tro
l

W
h

eel S
en

so
r

ECU4

A
n

ti-lo
ck

B
rakin

g
 S

ystem

Sensor
Task

dependencies
DYN message
ST message

ECU1

Fixed
Priority

ECU3

Fixed
Priority

m1 m2 m3m4 m5 m6 m7

a3

a’

a2a1

aBf aTf

(to crash control sub system)

FlexRay Bus

Fig. 10 The system architecure of an Adaptive Cruise Control subsystem

Table 1 The workload on the FlexRay bus and the ECUs for the ACC subsystem
Bus ECUs

Message # Bytes Task WCET
m1 128 Data Fusion 14.78 ms
m2 128 Object Selection 1.45 ms
m3 4 Adaptive Cruise Control 0.66 ms
m4 64 Arbitration 0.88 ms
m5 4 Path Estimation 1.67 ms
m6 4 Brake Control 0.45 ms
m7 4 Throttle Control 0.30 ms

Anti-Lock Braking System 7 ms
Wheel Sensor 0.13 ms
Object Detection 6 ms

α
f
T respectively. ECU2 also transmits a message stream m4 to a Crash Control sub-

system via the DYN segment of the bus. Finally, the Wheel Sensor task running on
ECU3 receives its input from a sensor, processes it, and sends messages m5 and m6
to ECU2 and ECU4 respectively via the ST segment.

In Figure 10, the dashed lines represent messages transmitted via the DYN seg-
ment of the FlexRay bus (m1 has the highest priority, followed by m2 and then m4),
while the solid lines represent messages transmitted via its ST segment. The arrows
between tasks in ECU2 and ECU3 represent data dependencies (i.e. data from the
incoming arrow flows into the task pointed to by the arrow). It may be noted that
ECU1 uses a TDMA policy to schedule the tasks running on it, and ECUs 2 and
3 use a fixed-priority scheduler. Finally, Table 1 shows the lengths of the different
messages and the execution times of the various tasks running on the different ECUs.

Performance Debugging of Heterogeneous Real-Time Systems 297

Performance Debugging For above the ACC subsystem, we computed perfor-
mance metrics like end-to-end delays (radar to actuators), delays experienced by
individual message streams, and buffer requirements at the ECUs. If some of these
metrics violate prespecified constraints, we show how to use our framework to debug
a design in order to satisfy these constraints.

Towards this, we implemented the FlexRay model described in Section 4 using a
combination of Java and Matlab. Our implementation also models basic scheduling
policies like fixed priority and TDMA, as outlined in Section 2. Based on the setup
outlined above, Figure 11(a) shows the lower bounds on the resource availability for
the DYN segment of the FlexRay bus. In this figure, β denotes the lower bound on
the availability of the unloaded DYN segment of the bus. Similarly, β f denotes the
lower bound on the remaining capacity of this segment after accommodating all the
message streams that have been mapped onto it. β ′m1 and β ′m2 denote lower bounds
on the availability of the DYN segment after accommodating the message streams
m1 and m2.

It may be noted from Table 1 that messages from both m1 and m2 cannot fit into
the same DYN segment because their total length exceeds the capacity of a single
DYN segment (168 bytes). From β ′m1 (i.e. the bus capacity available to m2) and β ′m2
it can be observed that there can be time intervals of up to 35 ms during which
m2 cannot access the bus, although the bus is already available. This is because a
message can be sent over the DYN segment only if it fits into a single segment.
Finally, Figure 11(b) shows the lower bounds on the arrival rates of the data from
the two radars and the wheel sensor. Since these data streams are periodic, the upper
bounds would be similar. This figure also shows the upper (α f u

T) and lower (α f l
T)

bounds on the final output stream that feed into the throttle actuator. As explained
in Section 2, from these bounds it is possible to compute the maximum jitter of
this stream.

The computed end-to-end delay along the path from Object Detection to Data
Fusion (via the FlexRay bus) to the crash control subsystem is equal to 243.11 ms.
This delay includes the waiting time of a message at the two ECUs (ECU1 and

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

m

in
is

lo
ts

(a)

β

∆(ms)

bf

b’m2

b’m1

0 50 100 150 200 250 300 350 400
0

5

10

15

ev

en
ts

(b)

∆(ms)

a1

a2

a3

a fuT

a f lT

Fig. 11 (a) The bounds on the resource curves for the DYN segment. (b) The bounds on the input
and the output signals for the system

298 Unmesh D. Bordoloi et al.

Table 2 Delay and buffer requirement of each message stream on the FlexRay bus
ST Segment DYN Segment

Message Delay Buffer Message Delay Buffer
m3 37.08 ms 8 Bytes m1 18.57 ms 128 Bytes
m5 21.8 ms 4 Bytes m2 54.64 ms 256 Bytes
m6 21.8 ms 4 Bytes m4 151.39 ms 256 Bytes
m7 23.2 ms 8 Bytes

ECU2), as well as the delay experienced in the bus. On the other hand, the maximum
end-to-end delay from any of the radars or the wheel sensor, to an actuator is equal
to 141.62 ms. The messages sent to the crash control subsystem experience a higher
delay because of the DYN segment of the bus being more heavily loaded than the ST
segment. The delay and buffer requirements of all the different message streams are
listed in Table 2. These buffer sizes refer to the input buffers in which messages are
stored while they wait to access the FlexRay bus.

Given a set of performance constraints, this framework can now be used to quickly
evaluate whether a given design meets specified constraints. Further, it can also
be used to evaluate delay and buffer requirements of individual message streams
and ECUs, which can provide insights into performance bottlenecks and potential
hotspots in an architecture. Such insights can also help in appropriate resource dimen-
sioning. Finally, this framework can also help in determining appropriate combina-
tions of scheduling parameters and activation rates of the different tasks for optimal
performance under specified resource constraints. The design of all modern embed-
ded systems involve determining the values of many system parameters, which influ-
ence each other in complex ways. As a result, their impact on various performance
metrics is not immediately clear.

In what follows, we illustrate how this framework can be used to evaluate the
impact of various parameters on the end-to-end delay from the radar to an actuator in
the ACC subsystem. Two such parameters that directly affect the delay directly are:
(i) the lengths of the DYN and ST segment of the FlexRay bus, and (ii) the data arrival
rates from the radars/sensors. Figure 12(a) shows how the end-to-end delay varies
for various combinations of ST and DYN segment lengths for a bus cycle length (or
period) of 14 ms (with all the other parameters being as described above). It turns
out that this delay attains its minimum value when the length of the DYN segment is
equal to 9 ms and the length of the ST segment is 5 ms. Finally, Figure 12(b) shows
the variations in the end-to-end delay for different sampling rates (or periods) of the
radar and the wheel sensor. The lengths of the ST and DYN segments are assumed
to be as described earlier (i.e. 8 and 6 ms respectively). It can be seen that a smaller
period of the sensor leads to smaller end-to-end delays, albeit at the cost of some
information loss due to the lower sampling rate. However, the decrease in the delay
is not always linearly proportional to the reduction in the sampling rate.

Performance Debugging of Heterogeneous Real-Time Systems 299

D
el

ay
 (

m
s)

ST Length (ms)

D
YN

 L
en

gt
h

(m
s)

(a)

9 8 7 6 5

5

7

9

115

116
117

118

119

120

121

122

123

124

125

D
el

ay
 (

m
s)

Radar

Perio
d (m

s)Wheel Sensor Period (ms)
(b)

25
30

35
40

60
55

50
45

120

125

130

135

140

145

150

Fig. 12 Performance Debugging: (a) Influence of ST and DYN segment lengths on the end-to-end
delay. (b) Influence of sampling rates on the end-to-end delay

6 Concluding Remarks

As a part of future work, we plan to implement this framework as a plug-in for
standard FlexRay-based tools such as those from DECOMSYS. On the modeling
side, we plan to extend it to be able to model correlations between different streams.
In the current form, each data or message stream is specified independent of the
other streams. In cases where two or more streams are correlated, such correlation
information might lead to tighter bounds on timing and resource usage.

Acknowledgements Thanks are due to P. Sampath, V. Ganesan and S. Ramesh for numerous discussions
and help with the case study presented here.

References

1. S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analysing system properties
in platform-based embedded system designs. In DATE, 2003.

2. S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan. event count automata: a state-based model
for stream processing systems. In RTSS, 2005.

3. The FlexRay Communications System Specifications, Ver 2.1. www.flexray.com, 2005.
4. A. Maxiaguine, S. Kunzli, and L. Thiele. Workload characterization model for tasks with vari-

able execution demand. In DATE, 2004.
5. A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning soc platforms for multimedia

processing: identifying limits and tradeoffs. In CODES+ISSS, 2004.
6. T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay communication

protocol. In ECRTS, 2006.
7. K. Richter and R. Ernst. Model interfaces for heterogeneous system analysis. In DATE, 2002.

300 Unmesh D. Bordoloi et al.

8. K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance verification.
IEEE Computer, 36(4):60–67, 2003.

9. K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling analysis
in platform design. In DAC, 2002.

10. E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization of event streams in
analysis of hard real-time applications. Real-Time Systems, 29(2-3):205–225, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

