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1. Introduction 

Insulin-like growth factor I (IGF I) is a ubiquitous 
peptide that has a fundamental role in both prenatal and 
postnatal development (reviewed in [1,2]). It is the major 
mediator of growth hormone’s effects on postnatal growth. 
IGF II and insulin are structurally-related hormones with 
40%-50% amino acid sequence similarity. This review 
will focus primarily on IGF I and its actions and expres- 
sion in the cardiovascular system. 

IGF I is the product of the IGF I gene which has been 
mapped to chromosome 12 in humans [3] and to chromo- 
some 10 in mice [4]. The mammalian gene consists of at 
least six exons [2,5-71. Transcription of the mammalian 
gene results from at least two transcription start sites 
located on exon 1 and exon 2. Exons 1 and 2 encode 
mutually exclusive 5’ untranslated regions and there are 
several in-frame translation initiation codons yielding sig- 
nal peptides differing at their N-terminus. The mature 
peptide coding sequence is present in exons 3 and 4. 
Additional complexity results from the presence of distinct 
carboxyterminal E domains of the IGF I preprohormone 
(Ea and Eb variants). Exon l- and Ea-containing tran- 
scripts are expressed ubiquitously whereas exon 2 and Eb 
transcripts are expressed more specifically in the liver. 
Northern blot hybridization of mammalian tissues reveals 
multiple IGF I transcripts varying from around 0.9 kb to 
7.5 kb in length. IGF I expression is regulated both at the 
level of transcription, mRNA stability and post-translation- 
ally. For a more detailed discussion of the organization of 
the IGF I gene the reader is referred to recent reviews 
[X71. 

IGF I exerts all of its known physiological effects upon 
binding to the type 1 IGF receptor (reviewed in [8]). The 
related peptide IGF II binds to both the IGF I and IGF I1 
receptors. The IGF II receptor is identical to the cation-in- 
dependent mannose-6-phosphate (M-6-P) receptor [9]. It is 
felt, however, that the physiological effects of IGF II are 

* Tel. ( i l-404) 727-8119; Fax (+ l-404) 727-3330. 

000X-6363,‘95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 
SD/ 0008.6?631~5)00167-X 

mediated on binding to the IGF I receptor and that the 
M-6-P receptor functions essentiahy as a scavenging re- 
ceptor mediating the degradation of IGF II. A possible 
exception. however, may be during eariy fetal develop- 
ment, i.e., in the pre-implantation embryo [lo]. 

The human IGF I receptor (IGF IR) is the product of a 
single-copy gene located on chromosome 15 [ 1 l]. The ICF 
IR resembles the insulin receptor in primary and tertiary 
structure [12]. The mature receptor is a tetramer consisting 
of two extracellular o-chains and two intracellular @ 
chains. The putative IGF I binding-site is within the cys- 
teine-rich domain in the extracellular o-subunit. The fi- 
chain includes an intracellular tyrosine-kinase domain that 
is thought to be essential for most of the receptor’s biologi- 
cal effects. For a detailed discussion of the molecular 
organization of the IGF IR gene the reader is referred to a 
recent review [8]. 

The IGF-binding proteins are proteins that are present 
in the circulation and in extracellular fluids anti bind with 
high affinity to both IGF I and IGF Il. Six IGF-binding 
proteins have belen isolated (reviewed in ]I]). The IGF-bi- 
nding activity in rat and human serum consists predomi- 
nantly of a 150 kDa complex consisting of IGFBP-3, an 
acid-labile subunit (ALS) and IGF I or IGF II. A smaller 
complex in serum (40-50 kDa) contains 1GF 1 or II bound 
to IGFBP- 1, IGFBP-2, or IGFBP-4. This smaller complex 
may also contain some IGFBP-3. IGFBP-S and IGFBP-6 
in rat and human serum are present in extremely low 
concentrations. It is felt that IGFBP-3 in serum is essen- 
tially saturated whereas IGFBP-1 and --2 are unsaturated 
[ 131. The large 150 kDa ternary complex likely acts to 
increase the half-life of IGF 1 in the circulation, providing 
a stable serum source of bioactive peptide. This complex 
does not cross the endothelium [14], whereas data in the rat 
have demonstrated that smaller binding proteins, namely 
BP-I, BP-2 and BP-4, may traverse the endothelium 
[ 15,161. It has thus been hypothesized that lower molecular 
weight binding proteins may increase transloctltion of JGF 
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I into the vasculature and tissues and thus modulate IGF I 
action. It is of note that while the IGF-binding proteins 
consistently have extremely high affinity for their ligands, 
the N-terminally truncated des(l-3) IGF I [ 171 and a 
variety of IGF I analogs [ 181 have markedly reduced 
affinity for binding proteins but retain normal affinity for 
IGF receptors. 

2. Expression of IGF I, the IGF I receptor and IGF- 
binding proteins in the cardiovascular system 

2.1. In uiuo studies 

In situ hybridization analysis has demonstrated expres- 
sion of IGF I in multiple tissues in the human fetus, as 
reported by Han et al. [19]. In this study, IGF I expression 
in the heart was localized predominantly to the epicardium 
and in coronary vessel walls. The presence of IGF I 
transcripts in conduit or resistance arteries was not re- 
ported in this study. Studies in neonatal rat have demon- 
strated that ventricular tissue contains both IGF I and IGF 
II receptors [20]. Additionally, in situ data indicate that 
neonatal rat cardiomyocytes express predominantly IGF II 
and low amounts of IGF I transcripts. In the adult rat IGF I 
mRNA is expressed at low levels in the left ventricle 
[21-231. In situ hybridization data are lacking but im- 
munostaining shows low level myocyte staining. IGF IR is 
likewise expressed at low levels in normal rat heart 1221. In 
conduit (elastic) arteries IGF I mRNA is expressed at low 
levels in the adventitia and in the media [24-261. IGF I 
expression is significantly higher in resistance (muscular) 
arteries (P. Delafontaine, unpublished results). The IGF IR 
is expressed mainly in the media in normal rat aorta 
[27,28]. Limited data exist on expression of IGF-binding 
proteins in the cardiovascular system. However, in situ 
hybridization analysis has demonstrated that the hepatic 
portal venous and sinusoidal endothelium expresses abun- 
dant IGFBP-3 mRNA [29]. It is thus hypothesized that a 
majority of circulating BP-3 may originate from the en- 
dothelium. Recently IGFBP-3 and IGFBP-4 expression 
have been demonstrated in rat aorta [30]. 

2.2. In vitro studies 

IGF I is synthesized by rat [31,32] and porcine [33-351 
vascular smooth muscle cells (VSMC) in vitro. There are 
primarily three transcripts, sized 0.9-l .2 kb, 1.7 kb and 
7.5 kb. Solution hybridization/RNase protection analysis 
has demonstrated that rat aortic tissue possesses only the 
class C 5’ untranslated IGF I mRNA transcripts [36]. 
Radioligand binding studies have demonstrated that VSMC 
in vitro express significant levels of the high-affinity type 
1 IGF receptor [37-411. Binding-affinity for IGF I is 
between 0.1 and 5 nM (K,). Binding studies and cross-lin- 
king studies have indicated that VSMC in vitro possess no 
detectable cell surface IGF-binding proteins [42]. How- 
ever, both porcine and rat aortic smooth muscle cells 
secrete several binding proteins, specifically IGFBP-2, 
IGFBP-3 and IGFBP-4 [42-461. In rat aortic smooth mus- 
cle cells, two glycosylated forms of IGFBP-4 have been 
demonstrated [42]. Macrovessel and microvessel endothe- 

lial cells also express high-affinity IGF IR [47-491. There 
is also low level expression of IGF I in endothelial cells 
[31,50], although measurements of IGF I in conditioned 
medium from endothelial cells may reflect to a significant 
extent IGF I sequestered from serum [5 1 I. Endothelial cells 
in culture secrete IGF-binding proteins [52,53]. Recently 
porcine endothelial cells have been shown to express 
mRNA for IGFBP-2, 3, 4, 5 and 6 [54]. Microvessel 
endothelial cells secrete predominantly IGFBP-2 and 
IGFBP-3, while large vessel endothelial cells secrete es- 
sentially IGFBP-3 and IGFBP-4 [54]. Recently IGFBP-3 
and IGFBP-5 have been shown to associate with endothe- 
lial cell surfaces through C-terminal heparin-binding do- 
mains [55]. This allows competition for binding by heparin 
and heparan sulfate. 

3. Regulation of IGF I, the IGF IR and IGF-binding 
proteins in cardiac and vascular cells in vitro 

3.1. IGF I 

As noted previously, IGF I is secreted by VSMC in 
vitro [3 l-351. Stiles et al. have shown that in BALB/c3T3 
fibroblasts IGF I functions as a “progression” factor to 
stimulate passage of cells through G, into S phase, in 
contradistinction to platelet-derived growth factor (PDGF) 
that induces “competency,” i.e., entry of cells from G, 
into the G, phase of the cell cycle [56]. Clemmons et al. 
have demonstrated that anti-IGF I antiserum inhibited 
PDGF-induced growth of VSMC [33]. Additionally, anti- 
IGF I antiserum inhibited growth hormone-induced fibrob- 
last DNA synthesis 1571. Increased IGF I immunoreactivity 
in conditioned medium from PDGF-treated cells has sug- 
gested that PDGF induces synthesis of IGF I [35]. Subse- 
quent expression studies have reported conflicting results, 
potentially related to differences in cell types and condi- 
tions of quiescence. Thus PDGF and serum have been 
reported to both increase [32] or decrease [46,58] IGF I 
mRNA levels in VSMC. IGF I acts additively with PDGF 
and insulin in the induction of the c-myc protooncogene 
and cellular proliferation in bovine aortic VSMC [59]. 
Yamamoto et al. have shown that in primary rabbit VSMC, 
IGF I is required for cells to enter the S phase [60]. IGF I 
stimulates elastin [61] and fibronectin [62] gene expression 
in rat aortic VSMC. Recently it has been reported that 
angiotensin II transcriptionally regulates the IGF I gene in 
rat aortic VSMC and that angiotensin II-induced growth of 
smooth muscle cells is completely inhibited by anti-IGF I 
antiserum [63]. These findings support a central role for 
IGF I in mediating VSMC growth. Unlike angiotensin II, 
thrombin downregulates IGF I mRNA and protein levels in 
aortic smooth muscle cells [64], as has been described in 
fibroblasts [65,66]. It is of note that IGF I stimulates 
growth of myometrial smooth muscle cells [67] and of 
airway [68] and pulmonary artery smooth muscle cells 
1691. 

IGF I stimulates neutral amino acid and glucose uptake 
and DNA synthesis in microvessel but not macrovessel 
bovine endothelial cells [47]. However, IGF I stimulates 
DNA synthesis in human cornea1 endothelial cells [70]. 
IGF I is a potent stimulator of myogenic differentiation 
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[7 l-731, inducing expression of myogenin in L6 myoblasts 
[72]. Furthermore, IGF I stimulates hyperplasia and hyper- 
trophy of skeletal myofibers [74]. A variety of recent 
reports have documented an important role for IGF I and 
the IGF IR in cardiac myocyte growth. Thus ventricular 
myocytes from rat ventricular tissue post myocardial in- 
farction express higher levels of IGF I and IGF IR [75]. Ito 
et al. [76] have reported that IGF I induces hypertrophy of 
neonatal rat cardiomyocytes, with induction of expression 
of myosin light chain-2, troponin I, and skeletal a-actin. 
Kajstura et al. [77] have reported that IGF I stimulates 
DNA synthesis in neonatal rat cardiac myocytes and that 
antisense IGF IR oligonucleotides suppress cardiocyte 
replication. Adult rat cardiomyocytes in long-term culture 
upregulate their IGF IR, and respond to IGF I with en- 
hanced myofibril development and downregulation of 
smooth muscle a-actin [78]. Furthermore, IGF I is a potent 
stimulator of adult cardiomyocyte protein synthesis [79]. 

3.2. IGF IR 

The IGF IR is a membrane tyrosine-kinase consisting of 
two alpha chains and two beta chains linked through 
disulfide bonds (reviewed in [8]). The receptor binds IGF 1 
and IGF II with high affinity and insulin with at least a 
hundred-fold lower affinity. Recently, the existence of 
insulin receptor-IGF IR hybrids has been demonstrated 
[80,81]. IGF IR signaling involves autophosphorylation 
and subsequent tyrosine phosphorylation of IRS-I and 
potentially other tyrosine-containing substrates. IRS-I 
serves as a docking-protein and can activate multiple 
signaling pathways including PD-kinase, Syp, Nck, and 
the Ras-MAP kinase pathway. For a detailed discussion of 
IGF I/insulin signaling the reader is referred to recent 
reviews [8,82]. A variety of growth factors and specifically 
PDGF, fibroblast growth factor (FGF), angiotensin II and 
thrombin upregulate IGF IR on VSMC [37,83,84]. This 
upregulation of IGF IR may play a critical role in the 
growth response of smooth muscle cells. Thus antisense 
transcription of a rat IGF IR cDNA in VSMC markedly 
suppresses growth of these cells in response to 10% serum 
[85]. This anti-proliferative effect correlates with a reduc- 
tion in receptor number of approximately 50%, without 
changes in binding-affinity. These findings suggest that the 
upregulatory effects of growth factors on IGF IR may be a 
important component of their ability to induce compe- 
tency. This concept is supported by data from Pietrzkowski 
et al., indicating that in BALB/c3T3 cells overexpressing 
IGF I and IGF IR, IGF I mediated growth occurs indepen- 
dently of the EGF and PDGF receptors [86]. Furthermore, 
SV40 T antigen transformation of BALB/c3T3 cells 
markedly increases secretion of IGF I, and antisense target- 
ing of the IGF IR inhibits the growth of these transformed 
cells [87]. These cells still require PDGF or 1% serum for 
growth; however, if the IGF IR is overexpressed in SV40 
T antigen transformed cells, they will grow in serum-free 
medium. In mouse fibroblasts a functional IGF IR is 
required for the mitogenic effects of the EGF receptor [SSI. 
These data again support the concept that IGF IR number 
per cell is important in cellular growth responses. Thus 
downregulation of IGF IR using antisense phosphoroth- 

ioate oligonucleol.ides markedly inhibits the growth re- 
sponse of rat aortic VSMC to serum as well as to an- 
giotensin 11 and thrombin [84,89]. A recent report has 
documented that a sense oligonucleotide targeting the AUG 
site of the rat IGF IR mRNA markedly upregulates IGF 
IR, leading to increased growth responses [89]. The mech- 
anism for this effect is incompletely understood but may 
be related to the presence of a natural antisense transcript, 
a transcriptional or a translational repressor protein. It has 
been reported that PDGF and FGF-induced upregulation of 
IGF IR on VSMC is protein kinase C @KC)-dependent, 
but that angiotensin II upregulation of IGF IR is PKC-in- 
dependent [37]. Similarly, FGF-induced DNA synthesis 
has been reported to be PKC-dependent [37,90], whereas 
angiotensin II-induced growth responses in VSMC [37] 
and in cardiac fibroblasts [91] are PKC-independent. 
Molecular mechanisms whereby growth factors upregulate 
IGF IR are poorly understood. A recent report has demon- 
strated that the PDGF-responsive sequence of the IGF XR 
gene is located within w 100 bp proximal to the transcrip- 
tion start site [92],. 

As noted above, the ability of several growth factors to 
increase IGF IR density may be critical for their mitogenic 
effects. Thus upregulation of IGF IR could lead to stimula- 
tion of IGF IR mediated signaling events. This is consis- 
tent with cross-talk between growth factors and the IGF 
IR, and has been recently demonstrated in the case of 
thrombin stimulation of VSMC growth [84]. More direct 
mechanisms of cross-talk between the IGF IR and other 
growth factors may exist. Thus Yoshinouchi et al. [162] 
have suggested that FGF may transphosphorylate the IGF 
IR. Furthermore, angiotensin II and thrombin have been 
shown to increase phosphorylation of IRS-l in VSMC (P. 
Delafontaine, unpublished results). Potential cross-talk IX- 
tween the IGF IR and other growth factors may have 
profound implications for understanding pathways whereby 
growth factors exert their effects in viva. Thus the IGF IR 
could function as the final common mediator for the 
effects of multiple growth stimulatory peptides. 

3.3. IGF-binding proteins 

VSMC in culture synthesize IGFW-L, IGFBP-3 and 
IGFBP-4 [42-461. In rat aortic VSMC, FGF [42] and 
PDGF [46] have been reported to increase IGFBP-4 pro- 
duction. Porcine VSMC express BP-4 and BP-2 mRNA 
and secrete primarily BP-2. Cohick et al. have reported no 
effect of PDGF, FGF, transforming growth factor /3 
(TGFfi >, and epidermal growth factor (EGF) on BP-2 and 
BP-4 mRNA levels in porcine VSMC [45]. The regulation 
of IGF-binding protein levels in smooth muscie cells is 
affected by various proteases. Thus porcine VSMC secrete 
IGFBP-2, IGFB:P-4, and IGFBP-5 proteases [93,94]. In rat 
aortic VSMC, biosynthesis and IGF-dependent proteolysis 
of IGFBP-4 arc increased with the confluent state [95]. 
Recently angiotensin II [96] and thrombin (P. Dela- 
fontaine, unpublished results) have been shown to markedly 
reduce IGFBP-4 levels in rat aortic VSMC conditioned 
medium. It is of note that thrombin also downregulates 
IGF-binding-protein production by rat skeletal muscle cells 
and mouse myocytes 2971. The physiological significance 
of these binding, proteins secreted by VSMC remains to be 
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determined. IGFBP-1 has been shown to inhibit VSMC 
growth in serum-free medium [98], but to increase VSMC 
growth in the presence of low concentrations of platelet- 
poor plasma [99]. BP-l binds via its RGD sequence to the 
(~5pl integrin receptor, and this may be necessary for its 
growth-stimulatory effect [ 1001. This stimulatory effect has 
also been ascribed to the phosphorylated isoform of BP-l 
[loll. Bovine BP-2 has likewise been shown to have 
bifunctional effects on VSMC growth with an inhibitory 
effect in serum-free medium and a stimulatory effect in 
platelet-poor plasma [102]. The effect of BP-3 on VSMC 
growth has not been determined but preincubation of 
fibroblasts with BP-3 potentiates the IGF I response [103], 
possibly because of prevention of IGF IR downregulation 
[104]. The cell-surface association of IGFBP-3 appears to 
be required for this potentiating effect. Conversely, coincu- 
bation of IGF I and BP-3 results in inhibition of the IGF I 
response [103]. It is of note that a direct growth inhibitory 
effect of IGFBP-3 has been suggested [ 1051. BP-4 does not 
adhere to cell-surfaces and inhibits IGF I growth effects on 
VSMC [45]. It is thus possible that angiotensin II and 
thrombin-induced downregulation of IGFBP-4 production 
serves to increase availability of free IGF I. In microvessel 
endothelial cells BP-2 may potentiate the effect of IGF I 
on glucose transport and cy-aminoisobutyric acid uptake 
[106]. Stimulation of CAMP markedly increases BP-4 
mRNA levels in a clonal endothelial cell line [107]. Re- 
cently serum deprivation or contact inhibition of porcine 
endothelial cells has been shown to be associated with 
markedly increased gene expression and secretion of 
IGFBP-3 [log]. Because IGFBP-3 may have marked an- 
tiproliferative effects [105], it is possible that BP-3 acts as 
a growth-arrest gene for endothelium. 

4. Regulation of IGF I, the IGF IR and IGF-binding 
proteins in cardiovascular tissues in vivo 

4.1. Hemodynamic forces, hypertension, &hernia 

In vitro data have indicated that stretch increases au- 
tocrine secretion of IGF I from skeletal muscle cells [ 1091, 
suggesting that alterations in physical forces may regulate 
IGF I expression in vivo. An increase in vascular load 
induced by ligation of the femoral artery in the rat pro- 
duces increased IGF I immunoreactivity in endothelium 
and smooth muscle cells in the contralateral femoral artery 
[ 1101. In the heart, supravalvular aortic stenosis in the rat 
results in rapid increases in IGF I mRNA levels in the left 
ventricle [23]. These findings are consistent with hemody- 
namic regulation of IGF I. A variety of studies have 
documented increases in cardiac IGF I mRNA and protein 
levels in hypertensive rats. Models have included 
suprarenal aortic constriction; the uninephrectomized spon- 
taneously hypertensive rat; the uninephrectomized, deoxy- 
corticosterone-treated, saline-fed rat (DOCA salt); and the 
two-kidney, one clip, hypertensive rat [21,22]. Further- 
more, volume-overload induced by creation of an aorto- 
caval fistula in the rat is associated with marked induction 
of IGF I expression in the right ventricle [ 1111. In these 
models conclusive demonstration of the site of IGF I 
synthesis remains to be determined. However, immunohis- 

tochemical analysis has suggested increases in IGF I stain- 
ing in the subendocardium. In these models of cardiac 
hypertrophy, expression of the IGF IR appears unchanged. 
It is of note, however, that in right ventricular biopsies 
from patients with hypertrophic cardiomyopathy, there is 
an increase in IGF IR binding sites [112]. Consistent with 
hemodynamic regulation of IGF I expression are data 
indicating that IGF I mRNA expression is increased in the 
rat bladder following urethral ligation [ 1131. In this model 
IGF IR mRNA levels are unchanged, but there is a signifi- 
cant induction in IGFBP-2 and IGFBP-4 mRNA [114]. 
Recently, infusions of IGF I in the rat following myocar- 
dial infarction have been shown to enhance ventricular 
hypertrophy and to have potentially beneficial effects on 
hemodynamic function [ 1151. 

IGF I-stimulated myocardial growth could result from 
the effects both of systemic IGF I that crosses the endothe- 
lium [ 15,16,51], and of locally synthesized peptide [21- 
23,111]. Local synthesis of IGF I potentially derives both 
from myocyte and non-myocyte cells, notably endothe- 
lium, VSMC, and fibroblasts. In view of their abundance 
in areas of myocardial scarring, one may speculate that 
fibroblasts serve as a significant source of IGF I in the 
postischemic remodeling myocardium. Clearly myocytes 
from infarcted hearts have higher levels of IGF I and IGF 
IR [75]. In addition, monocytes in ischemic hearts may 
produce IGF I [ 1281. Although adult cardiac myocytes are 
terminally differentiated, evidence exists suggesting that 
myocytes close to the infarct zone undergo DNA replica- 
tion [75], consistent with the ability of IGF I to stimulate 
myocyte proliferation in vitro [77]. The specific role of 
IGF-binding proteins in modulating IGF I effects on the 
heart is largely unexplored but of great potential interest. 

IGF I mRNA levels have been shown to be increased in 
hypertensive aortae from rats following abdominal aortic 
coarctation [24]. In situ hybridization analysis has shown 
that the induction of IGF I is localized to the smooth 
muscle cell layer. These data are consistent with a role for 
IGF I as an autocrine mediator of hypertrophic/hyperplas- 
tic responses in hypertension. However, in the DOCA/salt 
model of hypertension in the rat, it has been reported that 
there is no change in IGF I mRNA [116]. The increase in 
aortic expression of IGF I mRNA in the abdominal coarc- 
tation model of hypertension is accompanied by a progres- 
sive decrease in IGF IR expression [ 1171. This is consistent 
with ligand-induced downregulation of the receptor, a 
phenomenon previously demonstrated in cultured VSMC 
[37]. Recently IGFBP-4 mRNA levels have been shown to 
be markedly elevated in the hypertensive aorta following 
abdominal coarctation in the rat [30]. The induction of 
IGFBP4 is limited to the hypertensive blood vessel, be- 
cause IGFBP-4 mRNA levels in the normotensive abdomi- 
nal aorta and in the liver are transiently decreased. These 
data suggest that increases in vascular load directly stimu- 
late IGFBP-4 expression. The transient decrease in hepatic 
IGFBP-4 and IGFBP-3 expression in this model may be 
related to effects of circulating angiotensin II, consistent 
with in vitro data [96]. Because IGFBP-4 may function as 
a inhibitory binding protein [45], its induction in the 
hypertensive vasculature may serve a counterregulatory 
role to blunt growth responses. 
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Potential regulation of IGF I and its binding proteins in 
human hypertension is largely unexplored. However, one 
group has reported higher circulating IGF I levels in 
patients with essential hypertension and left ventricular 
hypertrophy [118- 1201. Larger trials to address this issue 
are clearly warranted. 

4.2. Injury 

A variety of studies are consistent with an important 
role for the IGF I-IGF IR autocrine system in vascular 
injury. An initial report by Hansson et al. demonstrated 
that IGF I immunoreactivity was increased in endothelial 
cells and in the neointima following femoral artery injury 
in the rat [121]. Studies from Cercek et al. [36] and 
Khorsandi et al. (261 showed peak induction of IGF I 
mRNA at 7 days in the balloon-injured rat aorta, with a 
reciprocal decrease in IGF IR expression. The increase in 
IGF I expression following balloon injury in rat aorta is 
localized to the smooth muscle cell layer and to the 
neointima. Consistent with the major role of growth hor- 
mone in regulating IGF I expression in vivo, there is a 
marked decrease in the intimal hyperplasia that develops 
following aortic balloon-injury in the hypophysectomized 
rat [ 122,123]. Interestingly, intimal proliferation is a char- 
acteristic change that occurs after subarachnoid hemor- 
rhage [161]. It has recently been shown that exposure of rat 
femoral artery to periarterial blood results in a marked 
increase in IGF I mRNA expression and IGF IR binding 
sites [ 1241. This provides further evidence for a role of the 
IGF I autocrine system in vascular growth responses. 
Bomfeldt et al. [125] have also reported increases in IGF I 
mRNA in balloon-injured rat aorta; however, in this study 
IGF IR mRNA levels were also increased. It is of note that 
in this study the infusion of IGF I increased DNA synthe- 
sis in injured aorta in the diabetic rat. 

4.3. Angiogenesis and wound healing 

IGF I stimulates migration and tube formation by vascu- 
lar endothelial cells [126] and has been shown to promote 
rat aortic angiogenesis in vitro [127]. Following microem- 
bolisation in the porcine heart there is increased IGF I 
mRNA expression in infiltrating monocytes in areas of 
capillary sprouting, consistent with a role for IGF I in 
angiogenesis in vivo [128]. It is of note that macrophage 
IGF I synthesis is inhibited by interferon-y [129]. Several 
studies have documented that IGF I (alone or complexed 
to binding proteins) accelerates wound healing in vivo 
[130-1321. 

4.4. Diabetes, hyperinsulinemia 

The function of IGF I as a potential mediator of vascu- 
lar growth responses in insulin-dependent diabetes and in 
hyperinsulinemic states is unclear. Murphy et al. have 
reported that insulin increases IGF I expression in rat aorta 
[25]. In the streptozotocin diabetic rat, IGF I mRNA levels 
are markedly decreased in the heart, skeletal muscle and 
aorta, and levels are restored by insulin infusion but not by 
IGF I infusion [ 1331. In the insulin-deficient diabetic rat, 

DNA synthesis following balloon-injury of the aorta has 
been reported to be either decreased 11254 or unchanged 
[ 134,135]. There are conflicting reports regarding the po- 
tential association between higher circulating IGF 1 levels 
and the incidence and progression of diabetic retinopathy 
[ 136-1391. It is of note that IGF I has been shown to 
significantly improve control of blood glucose in the in- 
sulin-resistant state; however, its use in humans has been 
associated with significant deleterious side-effects [ 1401. 
The recent demonstration that advanced glycosylation 
end-products (AGE) induce IGF I synthesis by human 
monocytes may have relevance to understanding mecha- 
nisms whereby hyperglycemia induces vascular prolifera- 
tive changes [ 1411. Indeed, it is possible that AGE-induced 
IGF I synthesis ‘by monocytes within the subendothelial 
space promotes VSMC growth. Furthermore, the effect of 
IGF I and of insulin to stimulate plasminogen activator 
inhibitor type 1 (PAI-1) synthesis [ 1421 may be reievant to 
understanding mechanisms of accelerated atherosclerosis 
in diabetes. 

4.5. IGF I and uusodilation 

IGF I has been shown to induce renal arteriolar 
(glomerular) dilation with increases in renal plasma flow 
and glomerular filtration rate [ 143,144]. This effect is 
likely mediated by induction of nitric oxide (NO) produc- 
tion. Indeed IGF I stimulates release of NO from cultured 
endothelial cells [160]. A beneficial effect of IGF I m 
animal models of acute renal failure has been demon- 
strated [145,146]. Recently infusion of IGF I into the 
brachial artery in humans has been shown to increase 
forearm blood flow [ 1471. Consistent with those findings is 
the report that insulin-induced vasodilation in humans is 
blocked by the NO-synthase inhibitor, L-NMMA [1481. It 
is of note that contrary to its effect on endothelial cells, 
IGF I inhibits cytokine-induced production of NO in VSMC 
[1491. 

4.6. Atherosclerosis 

Studies of IGF I expression in atherosclerosis are lim- 
ited. A recent report has documented increased IGF 1 
immunostaining in synthetic VSMC in human atheroscle- 
rotic plaque [ 1501. Furthermore, IGF IR mRNA expression 
has been demonstrated in smooth muscle cells in 
atherosclerotic lesions [ 15 11. Inhibitors of the growth hor- 
mone-IGF I axis, namely the somatostatin analogs oc- 
treotide and angiopeptin, inhibit VSMC proliferation in 
vitro and in vivo [ 152-1561. A recent human trial has 
indicated that angiopeptin decreased clinical events during 
12 months of follow-up after coronary balloon angioplasty 
by approximately 22% [ 1571. This clinical effect contrasted 
with the lack of any evident effect upon angiographic 
variables. 

5. Summary and conclusion 

A large body of evidence has conclusively shown that 
IGF I is an essential regulator of developmental growth. 
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Thus mice bearing a null mutation for the IGF IR gene 
invariably die shortly after birth, and mice bearing a null 
mutation for the IGF I gene have a high neonatal mortality 
rate and marked growth retardation [ 158,159]. The ubiqui- 
tous effects of IGF I make it likely that this autocrine/en- 
docrine system plays an important role in cardiovascular 
development. Its potential role in cardiovascular patho- 
physiology has raised considerable interest over the last 
several years. There is strong evidence that IGF I is a 
critical determinant of vascular growth responses in vitro 
and in vivo. Regulation of VSMC IGF IR availability 
appears to be crucial for the control of VSMC growth, and 
as such is at a convergence point for the effects of multiple 
growth factors. Clinical studies relating to IGF I in hyper- 
tension are extremely limited but significant data from 
animal studies now suggest a role for IGF I as a mediator 
of hypertrophic/hyperplastic responses in hypertension. 
Furthermore, significant animal data now exist implicating 
IGF I as an important mediator of cardiac hypertrophic 
responses. The development of a specific pharmacologic 
inhibitor of the IGF IR should allow rational clinical trials 
to address the function of IGF I as a mediator of cardiovas- 
cular growth responses. Specifically, areas of great interest 
will include the potential prevention of post-angioplasty 
restenosis, of atherosclerotic lesion development and pro- 
gression, and of the complications of hypertensive vascular 
disease. The use of IGF I to ameliorate myocardial growth 
and function post infarction, to promote angiogenesis and 
collateral artery formation in the setting of peripheral 
vascular disease, are other important directions for future 
research. The use of IGF I to improve wound healing, 
improve recovery from acute renal failure and improve 
glucose control is currently under investigation. Clearly 
ongoing studies addressing the mechanisms whereby IGF I 
interacts with its receptor and binding proteins to produce 
its effects in cardiovascular tissues, will provide a rationale 
for novel and pertinent clinical research. 
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