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Abstract

The concepts of muddy environment and
muddy tasks set the ground for us to understand
the essence of intelligence, both artificial and nat-
ural, which further motivates the need ofDevel-
opmental Learning for machines. In this paper, a
biologically inspired computational model is pro-
posed to study one of the fundamental and contro-
versial issues in cognitive science – “Object Per-
manence.” This model is implemented on a robot,
which enables us to examine the robot’s behav-
ior based on perceptual development through real-
time experiences. Our experimental result shows
consistency with prior researches on human in-
fants, which not only sheds light on the highly
controversial issue of object permanence, but also
demonstrates how biologically inspired develop-
mental models can potentially develop intelligent
machines and verify computational modeling that
has been established in cognitive science.

1. Introduction

Object permanence is the understanding that objects con-
tinue to exist, even when they cannot directly be per-
ceived. It is an important theoretical construct that
has been widely researched with infants. However, the
understanding of the underlying principles that enable
the development of cognitive and behavioral capabilities
demonstrated in object permanence goes beyond the is-
sue per se. Above all, it bears upon a fundamental issue
of the origin of knowledge that has divided scientists and
great thinkers ever since the time of classical antiquity.

Where does our knowledge come from? Two kind
of sources are ususally considered: what is given us by
virtue of our nature, or what we know as a consequence of
our nurture. This debate of “nature vs. nurture” was orig-
inally started by Plato (428-347 BC), who believed that
all knowledge is innate, and his student Aristotle (384-
322 BC), who argued that mind is only atabula rasa at
birth. In modern times, this debate has resulted into two
academic schools in developmental psychology. On the

one side, the constructivists, represented by Jean Piaget,
believed that infants make sense of sensory information
through interaction with environment. On the other side,
the nativists believed that some physical knowledge, one
facet of which is the sense of object permanence, are in-
nately available for perception.

More recently, however, advances in brain science un-
derstanding are reshaping this “nature vs. nurture” debate
closer to a “nature AND nurture” consensus. The fact we
know now is that learning involves changes in synaptic
connections, and these changes are effected by the prod-
ucts of specific genes which are expressed only under cer-
tain environmental conditions. In other words, there must
be something intrinsic that is innate to generate behaviors
under certain environmental conditions, however, this lit-
tle something might not be the knowledge itself, but cer-
tain intrinsic learning mechanisms.

Experimentally, this idea has been supported by re-
cent research work in both psychology and neural sci-
ence. For example, in a language study by Saffran et
al. in 1996, infants of 8 month old were found out
to be able to segment words solely based on statistical
learning, indicating that babies may have an innate sta-
tistical learning mechanism which allows them to carry
out such tasks instead of innate understanding ability
(Saffran et al., 1996). In another experiment conducted
on neonatal ferrets by Mriganka Sur in 2000, auditory
cortex shows orientational selectivity after rewired into
visual pathway (Melchner et al., 2000). This demon-
strated that orientation selection is not embedded in the
visual system as innate knowledge, but rather a princi-
ple developed from sensory inputs through general neural
mechanisms, such as lateral inhibition and hebbian learn-
ing rule, etc.

In this paper, we focus on “Object Permanence” as one
of the most fundamental issues in this general debate. By
applying our computational model on a robot as a unique
test-bed, we try to find out what potential innate mech-
anisms may be possible for the development of object
permanence. This methodology provides an important
complement to the observational and descriptive nature
of developmental psychology.
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Unfortunately, developing such computational mod-
els with general purpose is quite difficult. Schlesinger
and Mareschal et al. have proposed some compu-
tational models to study the object permanence issue
(Mareschal et al., 1995) (Schlesinger, 2002). However,
their models are either embedded with prior knowledge,
such as temporal contiguousness of objects, or limited
with the capability to interact with the environment. In
contrast, we propose a new experience-based learning
mechanism calledDevelopmental Learning. That is, no
function of a specific task is predefined, and the internal
representation is autonomously generated from all possi-
ble interactions with the environment. In addition, our
model conducts incremental, real-time computation so
that the association between real world experience and
consequences of actions can be sensed and learned right
away while the physical events carry on.

The result of this work is the first that we know to pro-
vide detailed developmental analysis for the study of ob-
ject permanence on an autonomous robot. Specifically,
our contributions in this paper include: (a) Implemen-
tation of the Developmental Learning mechanism into a
task-independent developmental program on a robot; (b)
Establishment of a general computational theory for nov-
elty detection and novelty-based value system; (c) Train-
ing the robot in general environments (d)Testing the robot
in a simulated setting (e)Testing the robot in the real ex-
perimental environment; (f) Comparison of our experi-
mental data on 12 developed robot “brains” with prior
results on human infants and its implications.

2. Background and Related Work

The term object permanence and its measure was first
introduced by Jean Piaget in 1954 (Piaget, 1954). In
his classic A-not-B task experiment, Piaget discovered
that seven-to-twelve-month-old infants failed to retrieve a
completely hidden object, showing insensitivity to object
permanence when “out of sight is literally out of mind.”

On the other hand, contemporary researchers have
suggested that Piaget’s manual search task was too
conservative as a test for object permanence since it
required sophisticated motor skills and efficient memory.
Baillargeon and Spelke et al., then proposed a new
type of experiment named “drawbridge”, which only
requires looking times as a measure, making it possible
to test very young infants (Baillargeon et al., 1985).
In their experiments, infants as young as 5 months old
showed well-documented tendency to look longer at the
impossible event than the possible event. According to
Baillargeon and her colleagues, this is because babies
were surprised or puzzled by the violation of physical
laws in the impossible event, indicating that they already
possessed an early physical knowledge of object perma-
nence. However, recent studies by Schilling, Bogartz,
Shinskey, Cashon, etc. argued that Baillargeon’s results
may reflect infants’ perceptual capacities instead of con-
ceptual understanding of “object permanence,” which can

be the preference for either familiarity, novelty or larger
movement (Roder et al., 2000) (Rivera et al., 1999)
(Cashon and Cohen, 2000) (Bogartz et al., 2000).

The open question is then: what mechanism if it is
not physical knowledge that gives rise to such early per-
ceptual capabilities? Although it is extremely difficult
to give an exact answer, recent neuroscientific findings
provides supporting evidence of novelty preference since
a population of novelty neurons in monkey brain has
been identified active during an occluding experiment in
(Baker et al., 2001). These studies inspired us to use our
robot as a computational model to test its perceptual nov-
elty preference in the “drawbridge” experiment.

3. System Architecture

Fig. 1 shows the architecture implemented on our SAIL
robot, which includes a sensorimotor system, motor map-
ping units and a value system. Sensations from both ex-
ternal and internal sensors are first sent to the sensorimo-
tor system for learning. Here, the external sensors are two
cameras to capture the visual images and the internal sen-
sor is a sensor to sense the neck position from the neck
motor. At the same time, external sensations from the
keyboard are sent directly into the motor mapping unit,
where the action output from the sensorimotor system is
also captured and processed. The reason that only neck
position is fed back as internal sensation is for experi-
mental control. Just as mothers holding their babies in
the original experiments, we try to prevent the robot from
moving other than turning the neck during the experiment
in order to avoid distraction. At last, the value system
is employed to determine which neck action will be exe-
cuted – stay, turn left or turn right, based on the individual
Q-value of each action.

Different from the traditional computational model-
ing, our approach aims at enabling the robot to au-
tonomously explore the world without much predefined
physical knowledge. This is demonstrated in the follow-
ing two ways:

We avoid modeling the world. The architecture does
not need to include explicit knowledge about what the
environmental world is like. Instead, it autonomously
builds representation of the world, in a distributed and
implicit way, through interactions with the world.

We avoid modeling the agent behavior. The architec-
ture does not decompose the behaviors into any hierarchy,
in the sense that one layer takes care of one behavior and
another layer takes care of another. Although a number of
basic behaviors are programmed, the amount is very lim-
ited compared with the behaviors that will be developed
autonomously.

3.1 Representation

Autonomous generation of internal representation is the
essential capability that is required to fulfill our goal.
Therefore, the internal representation in our architecture
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Figure 1: The architecture of SAIL robot mainly consists of three components: sensorimotor system, motor mapping unit and value
system. The central unit of this architecture, as magnified,is the sensorimotor system, a distributed design to simulate neural activities
and structures in the brain.

has to meet the following requirement.
Firstly, internal representation includes both external

sensations from external sensors, such as cameras, mi-
crophone, etc. as well as those from internal ones such as
motor sensors. Take humans as an example, when pulling
a door, we know exactly how much force each muscle
exerts, although often unconsciously. Similarly, when an
agent enters a room, it should not only remember what it
sees through cameras, but also the physical information
such as its neck position at that time.

Secondly, the internal representation in our model is
highly distributed since no single neuron in a human brain
corresponds with any particular symbol or object. Unlike
the traditional models which typically uses symbolic rep-
resentation, our model uses high dimensional numerical
vectors for internal representation.

With the realization of above distinctions, there comes
the question as how such internal representation can be
applied to high-level extension, especially conceptual de-
velopment. We suggest that this can be achieved by mul-
timodel integration at the representation level since each
of the sensory inputs is so closely tied to a unique subjec-
tive impressions. Foe example, when we use a word to re-
fer to an object we see or touch, we categorize the object
together with others to which we might apply the same
term. More specifically, objects in our model are inter-
nally represented as high-dimensional numerical vectors.
When it is referred by a term, the corresponding auditory,
visual and somatosensory sensation will all be combined
together. Since the reference term implies an underlying

conceptual mechanism, the concept is then a hypothetical
construct which consists of all the representation and in-
dividual possesses about a category of objects or events.

Although our current architecture allows such valu-
able extension, the uncertainty that how integration takes
place in human brain still prevents us from the actual ap-
plication. Moreover, a baby’s early intellectual develop-
ment is largely non-verbal, rather it is more concentrated
on learning to coordinate purposeful movements through
sensory information. Therefore, in this paper, our archi-
tecture only considers two sensory modalities, vision and
somatosensory (neck position). This sensory-motor rep-
resentation resembles one of the most fundamental phe-
nomena of the natural world, although in a much simpler
way.

3.2 Sensory-motor Subsystem

Built upon a regression engine called incremen-
tal hierarchical discriminant regression (IHDR)
(Hwang and Weng, 2000), the sensori-motor sub-
system magnified in Fig. 1 is the central unit of the
architecture. Because of space limit, we will not go into
details of IHDR. Statistically, it is a hierarchical tree
structure of (nested) partitions on the input space, with
the boundary of each partition determined by Bayesian
estimation. Thus, when an input vector comes in, its
projection onto the most-discriminating feature subspace
will be conducted in a coarse-to-fine fashion until the
closest matched prototype be retrieved.
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It should be noticed that there are two IHDR trees in
the sensori-motor subsystem. The upper one is called the
reality tree or R-tree, and the bottom one the priming tree
or P-tree. The P-tree is only different from R-tree by hav-
ing a prototype updating queue (PUQ), which will be dis-
cussed in the following section.

3.3 Priming Mechanism

Representation is not only to remember, but in some cases
to anticipate based on experiences. This ability to retrieve
the past and predict the future is also called priming, one
of the most elementary forms of learning.

In order to implement priming in our architecture, it
is necessary to keep a doer and a predictor at each state
in the IHDR tree. The doerl(s(t)), which is called ‘last
context,’ includes the last sensation and last action, while
the predictorp(s(t)), also ‘primed context,’ includes the
primed sensation and primed action. At each time frame,
the agent uses the last context of the next state to update
the current primed context in order to predict the future.
The rule is shown in the following equation based on Q-
learning[9]:

p(n)(s(t)) = n−1−a(n)
n

p(n−1)(s(t))+
1+a(n)

n
γl(n−1)(s(t + 1)),

(1)

where,p(n)(s(t)) is the primed context at time instance
t, n represents the number of timesp(n)(s(t)) has been
updated,l(n−1)(s(t + 1)) is the last context of the next
state, andγ is a time-discount rate.a(n) is an amnesic
parameter used to give more weight on the newer data
points. Generally, the last context of the next state will be
used to sharpen the primed representation of the current
state and help the agent to reliably predict the future next
time when it encounters the same visual experience.

In order to have a farther prediction capability, espe-
cially when an agent is required to prime several steps
before the real seeing, we need a strategy called con-
text updating. This is done by the prototype updat-
ing queue(PUQ), which maintains a list of pointers to
the primed contexts that have been recently retrieved by
IHDR. At every time instance, a pointer to a newly re-
trieved primed context enters the PUQ while the oldest
one moves out. When the pointers are kept in PUQ, the
primed contexts they point to will be updated with a re-
cursive model based on the same learning rule as above:

p(n)(s(t)) = n−1−a(n)
n

p(n−1)(s(t))+
1+a(n)

n
γp(n−1)(s(t + 1)).

(2)

3.4 Value System

Value system signals the occurrence of salient sensory in-
puts, modulates the mapping from sensory inputs to ac-
tion outputs, and evaluates candidate actions. A devel-
opmental robot should be able to perform this task since

otherwise it is just a passive receptor without knowing
what it needs. In our model, the value system is based
on two parts, namely, internal preference to novelty as
well as external reinforcements. Since early-stage learn-
ing such as “drawbridge” experiment does not include
much reward and punishment effects, we will only con-
centrate on internal preference to novelty in this paper,
readers are referred to (Huang and Weng, 2002) for rein-
forcement learning and its reward system.

In 1998, Brown & Xiang found novelty neurons
in ventral temporal lobe, which respond strongly to
the first presentation of a novel stimulus and only
weakly to its repeated presentation some minutes later
(Brown and Xiang, 1998). It is suggested that priming,
which causes a sharpening of stimulus representation
for more efficient processing in the cortex, may lead
to such neural activities in those novelty neurons. In-
spired by this, the novelty in our model is measured based
on priming, as the disagreement between what is pre-
dicted by the predictor and what is really seen by the
doer. Algorithmatically we define novelty as the nor-
malized distance between the selected primed sensation
p(n)(s(t)) = (p

(n)
1 , p

(n)
2 ...p

(n)
m ) and the last (actual) sen-

sationl(s(t + 1)) at the next time:

n(t) =

√

√

√

√

1

m

m
∑

j=1

(p
(n)
j (s(t)) − lj(s(t + 1)))2

σ2
j (t)

, (3)

wherem is the dimension of sensory input andσj is
the time-discounted average of the squared difference
(p

(n)
j (s(t)) − lj(s(t + 1)))2.

There are two problems associated with the novelty.
First, the novelty so defined is sporadic in time since con-
secutive frames may have very different novelties. Sec-
ond, the novelty is typically delayed. A baby might
not realize a novel stimuli until it is clear and obvious
enough. Therefore, novelty values need to be smoothed
and look ahead in time.

To solve these problems, we keep a valueQ(s(t), a(t))
for every possible action a for states at timet. Since the
values are highly distributed in the robot’s brain, so is the
value system. The actiona′(t + 1) that maximizes the
valueQ(s(t), a(t)) for the current states will be chosen
as the action for the next states′ with a novelty ofn(t+1)
to be received. The Q-learning updating expression of
this process is as follows:

Q(s(t), a(t)) = (1 − α)Q(s(t), a(t)) + α(r(t + 1)+
γmaxa′Q(s′(t + 1), a′(t + 1)),

(4)
whereα is the updating rate andγ a time-discounter. The
above algorithm shows thatQ-values are updated accord-
ing to the immediate noveltyn(t + 1) and the value of
the next state, which allows delayed value to be back-
propagated in time during learning.
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Figure 2: The animated settings used in (a)Habituation Event
(b)Impossible Event (c)Possible Event.

4. Simulation Experiment

SAIL (Self-orgnizing Autonomous Incremental Learner)
is a human-size mobile robot, house-made at Michigan
State University. With a total number of 13 degrees of
freedom and a variety of sensors and effectors, SAIL has
been serving as a test-bed for psychological and develop-
mental experiments for more than five years. The “draw-
bridge” experiment was originally conducted in a dimly
lit room, where a special setting was set up, including a
gray table with black background, a silver screen and a
yellow box with a clown face painted on it. Three events
were then presented during the experiment, namely, ha-
bituation event, impossible event and possible event.

In the habituation event, the yellow box is absent and
the screen has a full rotation of 4 sec away from the
robot, 1 sec pause in the middle and 4 sec back toward the
robot. In the impossible event, the box is presented and
the screen moves all the way to180◦ as if the box were
not there, whereas in the possible event, the screen rotates
up to the position of the box at120◦ and then comes back.

For precise control of the experiment, we created a 3-D
animated experimental setting (Fig. 2) by using OpenGL.
The three events were shown sequentially one after an-
other as consistent with the original “drawbridge” exper-
iment.

Fig. 3 showed the novelty that was detected by SAIL
during each of the three events. As is shown, after
being habituated, the robot found more novelty in the
impossible event than in the possible one, especially
during the first 1200 image frames. This primary re-
sult reinforced our hypothesis that the value system in
our architecture can be used to develop the robot’s per-
ceptual capabilities and show behaviors that are consis-
tent with those of human babies in the original experi-
ments (Baillargeon et al., 1985) (Baillargeon, 1987).

5. Online Experiment

The simulation experiment is conducted on SAIL with-
out any pre-experimental experiences. In order to be
more consistent with the psychological experiment and to
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Figure 3: Novelty measured in the simulation experiment.

Figure 4: SAIL in the drawbridge experiment.

conduct a statistical analysis of the results, we create 12
subjects for the “drawbridge” experiment by developing
SAIL under different environments. Totally, we obtain
12 ”babies”, with an average living time of 15 minutes
per day for four days, and the average growing speed of
brain size at 9.0MB per day. The settings that these robot
“babies” experienced include toys, objects, people, in the
room and along the corridor. Fig. 5 shows the actual set-
ting of the online experiment.

All subjects are then tested in two sections separately:
Section 1 – the impossible event is presented first and
Section 2 – the possible event first. Totally, we obtain a
full set of12×2 samples for each experiment. During the
experiment, the robot has seven head positions with three
actions for each state: stay, turn left and turn right. At
each time frame, the novelty detected by the value system
leads the robot to act. If the novelty of staying is higher
than that of the other positions, the robot just stays, oth-
erwise, it turns the head. Once the robot turns away, we
record the time and then prepare for the display of the
next event.
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(a)

(b)

(c)

Figure 5: The actual settings of “drawbridge” experiment in(a)
Habituation Event (b) Impossible Event (c) Possible Event.

Fig. 6 shows the novelties detected in baby 1. In the
habituation event, the baby stays still without turning un-
til the 99th time frame (the solid line in Fig. 6-(1)). If six
trials of screen rotation has not been finished by the time
the robot turns its head, the screen will keep rotating un-
til it is done (the dash line in Fig. 6-(1)). The+ signs in
the figure mark the points when the robot turns its head
away and the∗ signs represent the points that the robot
is turned back to the setting. During all other time, the
robot stays still.

After the habituation event, we set up the yellow box
and start the two sections separately. In Section 1, we
play the impossible event first and then possible event;
while in Section 2, the possible event is displayed first.
Every time when the robot turns away from the setting af-
ter one event, time is recorded and it is turned back when
the next event begins.

In Section 1, as shown in Fig. 6-(2), the robot spends
199 (from the 119th to 317th) time frames on the impos-
sible event, and only 97 (from the 337th to 433th) time
frames on the possible one. In Section 2, as shown in
in Fig. 6-(3), the robot spends 127 (from the 119th to
245th) time frames on the possible event and 98 (from
the 262th to 349th) on the impossible one. In this case,
baby 1 spend more time looking at the impossible event
than the possible one in Section 1 but almost equal time
at the events in Section 2.

The above experiment is then carried on all other
brains that have been developed on SAIL. First two fig-
ures in Fig. 7 shows the experimental results on all 12
subjects during the two sections respectively. It must be
noticed that the time measurement in this figure is the real
time instead of the frame number. Generally, the robot
can process two to three frames per second, considering
the variance on the real-time system. Each robots shows
consistently longer looking time at the impossible event
than the possible event no matter which event is displayed
first.

The last figure in Fig. 7 demonstrated that the differ-
ence between the impossible and the possible event dur-
ing Section 1 is obviously bigger than that during Section
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Figure 6: Novelties detected in 1) Habituation event. 2) Impos-
sible and Possible events in Section 1. 3) Possible and Impossi-
ble events in Section 2.

2. It indicates that in Section 1, when impossible event
is first presented, the robot “babies” look reliably longer
than in the possible event. Whereas in Section 2 when
possible event parented first, the robot “babies” tend to
look equally long at the two events.

Compared with the original experimental results in
(Baillargeon et al., 1985), our experimental results are
very consistent. Specifically, a significant main effect of
event is detected (F(1,47)= 58.21, P<0.0001), which is
also found in (Baillargeon et al., 1985) (F(1,83)=13.66,
P=0.0004). Although in our experiment, the order is
not significant in terms of the looking time of the two
events (F(1,47)=0.01, P=0.9300), significance of order in
terms of time difference of the two events does emerge
(F(1, 23)=4.35, P=0.0488). This significance reflects dif-
ferent looking patterns for the two orders in our exper-
iment. Specifically, during Section 1, when impossible
event is first displayed, the robot looks reliably longer at
this event (M=47s, SD=6.7823) than at the possible one
(M=32.5s, SD=3.4510), whereas when possible event
(M=35.25s, SD=6.0772) is presented first and the im-
possible event the second (M=44.6667s, SD=4.6188), the
robots tend to look less differently at both events (fig .8).

5.1 Conclusion

By conducting the “drawbridge” experiment on our SAIL
developmental robot, we find out that innate mechanisms
plus the developmental learning paradigm, especially
novelty detection based on experience learning, should
have played an important role during the early stage of in-
fant perceptual and cognitive development. Particularly,
our computational model of novelty detection enables the
robot to show similar behavior as the infants do in the
original experiment without prior physical knowledge of
object permanence, which indicates that during the first 9
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Figure 7: Looking times of twelve babies in both sections and
the time difference in each of the two sections.
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month (as suggested by Jean Piaget), the babies might
still use the perceptual mechanism instead of sophisti-
cated conceptual knowledge to generate correspondent
behaviors.

There are several reasons to support our hypothesis:
First is the influence of the habituation effect. In the
original experiments, only fast habituators (those who
reached the habituation criterion in six or seven trials)
looked significantly longer at the impossible event, while
slower ones tended to look about equally at the two
events. We doubt whether infants were using possibil-
ity and impossibility of the events since the habituation
phase should not have such an obvious effect. Second
is the influence of the order. In the original experiments,
only when impossible event was presented first would the
infants look longer at it. Otherwise, the infants spent
equal time looking at the two events. Although Bail-
largeon claimed that “such order effects are not uncom-
mon in infancy research and are of little theoretical inter-
est (Baillargeon et al., 1985),” again, we doubt whether
this is really the case. Moreover, we find influence of or-

der in the looking time difference of two events, showing
that the order does change the looking patterns. Finally,
Baillargeon and her colleges reported in 1995 that they
did not find the same results with 61

2 -month-olds, while
Cashon and Cohen successfully replicated the previous
findings with those infants who responded based on fa-
miliarity.

Because of the above inconsistency, we doubt whether
the conceptual point of view holds any water in the
“drawbridge” experiment case. Our experiment results
show that the phenomenon detected in the original “draw-
bridge” experiment may be mainly caused by visual pref-
erence for novelty, which should be considered as the
origin of the conceptual knowledge of object perma-
nence rather than the outcome. More control experiments
should be conducted and compared with the original re-
sults in order to add more credibility to this work.
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