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Abstract
The selection of suitable beam angles in external beam radiotherapy is at present
generally based upon the experience of the human planner. The requirement
to automatically select beam angles is particularly highlighted in intensity-
modulated radiation therapy (IMRT), in which a smaller number of modulated
beams is hoped to be used, in comparison with conformal radiotherapy. It has
been proved by many researchers that the selection of suitable beam angles
is most valuable for a plan with a small number of beams (� 5). In this
paper an efficient method is presented to investigate how to improve the dose
distributions by selecting suitable coplanar beam angles. In our automatic
beam angle selection (ABAS) algorithm, the optimal coplanar beam angles
correspond to the lowest objective function value of the dose distributions
calculated using the intensity-modulated maps of this group of candidate
beams. Due to the complexity of the problem and the large search space
involved, the selection of beam angles and the optimization of intensity maps
are treated as two separate processes and implemented iteratively. A genetic
algorithm (GA) incorporated with an immunity operation is used to select
suitable beam angles, and a conjugate gradient (CG) method is used to quickly
optimize intensity maps for each selected beam combination based on a dose-
based objective function. A pencil-beam-based three-dimensional (3D) full
scatter convolution (FSC) algorithm is employed for the dose calculation. Two
simulated cases with obvious optimal beam angles are used to verify the validity
of the presented technique, and a more complicated case simulating a prostate
tumour and two clinical cases are employed to test the efficiency of ABAS.
The results show that ABAS is valid and efficient and can improve the dose
distributions within a clinically acceptable computation time.
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1. Introduction

Intensity-modulated radiation therapy (IMRT) has gained more and more attention because of
its advantage of producing a highly three dimensional conformal dose distribution to the target,
while sparing organs at risk (OARs) and normal tissues. Compared with traditional three-
dimensional conformal radiation therapy (3D-CRT) that conforms only two dimensionally to
the target projection in the plane perpendicular to the beam orientation, IMRT can significantly
improve the outcome of radiation therapy. Many efforts have been made to make IMRT an
easy implementation through increasing the automatization of beam set-up, shortening the
optimization time of inverse planning, enhancing the ability of dose verification, and so on
(Webb 2000).

The selection of suitable beam angles in external beam radiotherapy is at present generally
based upon the experience of the human planner. Normally several trial-and-error attempts are
needed in order to find a group of adequate beam angles. Although this leads to good treatment
plans, they are not necessarily optimal (Rowbottom et al 1998a). Computer optimization of the
beam directions has the potential to achieve optimal plans that are customized for each
individual patient. The requirement to automatically select beam angles is particularly
highlighted in IMRT, in which a smaller number of modulated beams is hoped to be used, in
comparison with conformal radiotherapy, in order to shorten the treatment time. It has been
proved by many researchers that the selection of suitable beam angles is most valuable for a plan
with a small number of beams (� 5) (Bortfeld and Schlegel 1993, Soderstrom and Brahme
1995, Stein et al 1997, Rowbottom et al 1998a, 1998b, 2001, Pugachev et al 2000). The
ultimate goal of the beam angle optimization is to achieve the best possible dose distribution
by using the minimum number of beams (Pugachev et al 2000).

The problem of selection of suitable beam directions in external beam radiation therapy
was studied as early as 1992 by Soderstrom and Brahme. They proposed entropy and Fourier
transform measures for the selection of suitable beam orientations. Bortfeld and Schlegel
(1993) used simulated annealing to optimize the beam directions in the frequency domain.
Their general conclusion is that the optimal beam configuration for multiple-beam irradiations
(with more than three beams) tends to be an even distribution over an angular range of 0 to 2π ,
whereas it is very important to optimize the beam directions when the number of beams is only
two or three. They also concluded that it is not in general useful to avoid beam orientations
through organs at risk for modulated beams. Similar conclusions have also been made by
Soderstrom and Brahme (1995), Stein et al (1997), Rowbottom et al (1998a, 1998b, 2001)
and Pugachev et al (2000).

The genetic algorithm (GA), as a powerful global optimization approach, has been
introduced by many researchers to solve radiation optimization problems. Ezzell (1996) used
GA to find an optimal combination of external beams. Langer et al (1996) used GA to optimize
the beam weights for treatment of abdominal tumours. Yu and Schell (1996) chose GA for the
optimization of prostate implants. Wu and Zhu (2000) proposed a technique to optimize
the beam directions and weights using a mixed-encoding GA. Zhang et al (2001) used a
hybrid algorithm called guided evolutionary simulated annealing (GESA), which combined
the GA and SA together, to optimize the gamma knife treatment planning. Despite the
drawback of extensive computation, similar to simulated annealing, the potential of GA is very
attractive.

In this paper, a new efficient technique is developed to implement automatic beam angle
selection (ABAS). In ABAS a specified number of angle candidates are selected from a discrete
angle candidates pool using a GA, and then the intensity maps of these angles are optimized
using a conjugate gradient (CG) method under the guidance of a dose-based objective function.
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After a great number of iterations (generations), the angle combination with the highest fitness
value is regarded as giving the optimal beam angles for the case. A final refined beam intensity
map optimization is performed using these optimal beam angles, under the guidance of a more
complicated dose–volume-based objective function. In section 3 two simulated test cases with
obvious optimal beam angles are used to verify the validity of the presented technique, and
a more complicated case simulating a prostate tumour and two clinical cases are employed
to test the efficiency of ABAS. The results show that ABAS is valid and efficient and can
improve the dose distributions within a clinically acceptable computation time.

2. Materials and methods

2.1. Objective function

A whole form of the objective function used in this paper can be written as

Fobj(�x(k)) = α · FOAR(�x(k)) + β · FPTV(�x(k)) (1)

FOAR(�x(k)) =
NOAR∑
i=1

NTi∑
j=1

δ · wj · (dj (�x(k)) − pj )
2 (2)

FPTV(�x(k)) = γ ·
NTPTV∑
j=1

δ · wj · (
dj (�x(k)) − pj

)2

− η ·
NTPTV∑
j=1

δ · wj ·
(

dj (�x(k)) − pj − dj (�x(k)) · log

(
dj (�x(k))

pj

))
(3)

dj (�x(k)) =
Nray∑
m=1

ajm · �x(k)
m . (4)

Here FOAR(�x(k)) is the part associated with all the OARs, FPTV(�x(k)) is the part associated
with the target, NOAR is the total number of OARs, NTi is the point number in the ith OAR,
NTPTV is the point number in the target, δ = 1 when the point dose in the volume breaks the
constraints, else δ = 0, wj is the weight of the jth point, dj is the calculated dose of the jth point
in the volume, pj is the prescribed dose of the jth point in the volume, a, β are the regularizing
factors that control the importance between target and OARs, γ, η are the importance factors
of the first and second parts in equation (1), Nray is the total ray (also called pencil beam)
number, ajm is the dose deposited at the jth point from a unit weight of the mth ray, �x(k)

m is the
intensity of the mth ray.

The second part in equation (3) is used to measure the homogeneity of dose distribution in
the target through the entropy information (Wu and Zhu 2002). According to the information
theory, maximum entropy is equivalent to minimizing information in the system, i.e. to
maximize the homogeneity of dose distribution.

In our objective function both dose and dose–volume constraints are embedded. A dose
constraint for the target is expressed as ‘all doses should be higher than DD max and lower than
DD min’, and a dose–volume constraint for the target is expressed as ‘no more than Vmin% of
the target volume can absorb doses lower than DDV min’. For the OARs, a dose constraint is
denoted as ‘all doses should be lower than DD max’, and a dose–volume constraint is denoted as
‘no more than Vmax% of the volume can absorb doses higher than DDV max’. The dose–volume
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Figure 1. A chromosome with five genes (i.e. five beam angles): 0◦, 40◦, 100◦, 190◦ and 300◦.

constraints are realized through the penalty of those points breaking Vmax% or Vmin% after
sorting the doses in ascending or descending order.

During the optimization of beam angles, the part associated with entropy measurement in
the objective function is not involved, and also those dose–volume constraints are skipped in
order to simplify the calculation. This is just a simple but popularly used dose-based quadratic
objective function. Whereas the whole form of the objective function is employed to optimize
the final intensity maps at those optimal angles using CG method.

2.2. Beam angle selection using the genetic algorithm

2.2.1. The genetic algorithm. The genetic algorithm (GA) is a global optimization technique
that simulates the natural process of evolution in which the fittest solutions survive after
numerous generations of natural selection and genetics (Goldberg 1989). Usually, an unknown
variable in a solution is represented as a gene in a chromosome, and a solution with many
variables is represented as a chromosome (also named individual). This process is called
coding. Fitness is defined for each individual to evaluate its goodness. During the optimization
process, GA keeps a group of candidate individuals (solutions) in each generation. Through
genetic operations, such as selection, crossover and mutation, those individuals with better
fitness will be propagated to the next generation with higher probability. After numerous
generations of genetics, the individual with the best fitness among the last population is
regarded as the optimal solution.

2.2.2. Coding scheme of GA. In this study a one-dimensional integer-coding scheme is
adopted, in which the combination of beam angles is represented by a chromosome (an
individual) with a length of user-specified beam number for the plan, and each gene in the
chromosome represents a trial beam angle. Figure 1 shows a chromosome with five genes
(i.e. five beam angles): 0◦, 40◦, 100◦, 190◦ and 300◦. The genes in one chromosome are
different from each other, which means that there should be no two beams with the same
angles in one plan.

2.2.3. Determination of the angle search space. The beams in this study are restricted to
coplanar ones. To reduce the search space covering the total 2π gantry rotational angle,
some beam angles that cannot be used because of the physical limitation or potential danger
for treatment are specified by planners or by a knowledge-based database. Then the angle
space excluding the discarded ranges is divided into equally spaced directions with a given
angle step, such as 5◦ or 10◦. There are three main situations for beam angle restriction:
(1) beam orientations that would result in a collision between the treatment gantry and the
patient couch; (2) beam orientations passing through the OARs that have a extra low radiation
tolerance, e.g. the lens of the eye (Rowbottom et al 2001); and (3) beam orientations directly
passing the metal frames of the patient couch or immobilizing couch that can heavily attenuate
radiation.

Figure 2 shows an interactive tool for defining angle constraints in order to reduce the
search space of beam angle optimization. There are two orientation constraints defined so that
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Figure 2. An interactive tool for defining angle constraints.

no beam is allowed to pass through. Constraint A is defined to protect the spinal cord and to
avoid the right-hand side of the metal frame of the immobilizing couch, and constraint B is
defined to avoid the left-hand side of the metal frame of the immobilizing couch.

2.2.4. Initialization of the first generation. The population size (i.e. the individual number
in one generation), NPsize, is empirically set to double the total number of angle candidates
(Wu and Zhu 2000). For example, if there are six beam angles to be selected, NPsize can be set
to 12 or a little more. Among these NPsize individuals, two strategies are used to implement
the initialization: (1) some are initialized with equispaced angles with different rotations, and
(2) the rest are randomly initialized. For example, if the beam number is 6 and the angle step is
10◦ for the discrete space of the whole 2π gantry angle, then the genes of the first individual are
occupied by 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦, respectively, and 10◦, 70◦, 130◦, 190◦, 250◦

and 310◦, respectively, for those of the second individual. Analogous operations are applied
to the other four individuals, i.e. among the 12 individuals there are 6 individuals initialized
with equispaced angles. Then the remaining six individuals are initialized randomly.

2.2.5. Definition of individual fitness. The quality of each individual is evaluated by a fitness
value, and the purpose of optimization is to find the individual (i.e. a group of beam angles)
with maximum fitness. The fitness value is calculated by

Fitness(�s) = Fmax − Fobj(�s) �s = (
s1, s2, . . . , sNangle

)
. (5)

Here Fmax is a rough estimation of the maximum value of the objective function, �s is a
group of angles to be selected, and Nangle is the number of beam angles to be selected. Both
Fmax and Fobj(�s) are calculated using equations (1)–(4). Especially, Fmax can be simply
determined by setting it to be a little greater than the maximum objective function value of the
individuals in the current generation, which ensures that all the fitness values are positive, a
requirement of the selection operation to be mentioned below. It should be noted that the value
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Figure 3. An illustration of genetic operations.

of Fmax has no effect on the GA optimization, because there is a minus sign before Fobj(�s) in
equation (5) and the minimum of Fobj(�s) always corresponds to the maximum of Fitnessi .

2.2.6. Fitness scaling. In order to enhance the performance of genetic progress, the following
formulae are adopted to scale the fitness of each individual

Fitnessi = exp(Fitnessi/Tk) (6)

Tk+1 = T0 · λk. (7)

Here Fitnessi is the fitness of the ith individual in the kth generation, λ is a factor between (0, 1),
normally 0.90 to 0.99, T0 is a parameter called initial temperature. The idea of equation (7)
is from the simulated annealing (SA) genetic algorithm, which aims to overcome premature
convergence at the earlier stages of the evolution, or stalling at the later stages of the evolution.

Premature convergence is a problem often discovered in GA with small populations. At the
start of a small population GA search it is common to have a few extraordinary individuals with
a very high fitness in a population of mediocre individuals. These extraordinary individuals
would take over a significant proportion of the population in a single generation. This would in
turn lead to premature convergence and the optimal solution may not be found. The opposite
phenomenon is apparent in the later stages of genetic progress. The average fitness of the
population becomes very close to the maximum fitness of the population. This leads to the
best members getting the same number of copies for reproduction as the mediocre members,
and stalling the genetic evolution.

With equations (6) and (7), the few extraordinary chromosomes are scaled down while the
lowly members of the population get scaled up. Also the difference of fitness values should
be scaled up at the later stages because of the decreased temperature, which could make those
best individuals more outstanding.

2.2.7. Genetic operations. There are four genetic operations adopted in this study, i.e. (1)
selection, (2) crossover, (3) mutation and (4) immunity (figure 3). Parent individuals with
higher fitness are selected into the next generation with a higher probability. To any two
randomly selected parent individuals (angle sets), a crossover operation will be applied
according to a specified crossover probability, normally 0.5–0.95. Then a mutation operation
to the two children angle sets will be done according to a mutation probability, normally
0.001–0.02. Finally, an immunity operation is applied to the two children angle sets in order
to enhance the genetic progress.
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The selection probability of the ith individual, Pi, is determined according to a simple
strategy of proportional fitness assignment expressed as (Goldberg 1989)

Pi = Fitnessi∑NPsize
j=1 Fitnessj

. (8)

After all the fitness values are calculated, a scheme called Roulette Wheel selection is used to
determine which parent individual will be selected.

A crossover operation is illustrated in figure 3. The crossover positions Xc are randomly
selected, and the two parts of the chromosome are exchanged with each other. After crossover
two new chromosomes are generated: a chromosome with 310◦, 90◦, 140◦, 190◦ and 300◦, and
another with 0◦, 80◦, 190◦, 330◦ and 220◦. The two new children will be selected as members
of the new generation if their fitness values are greater than that of their parents, else their
parents will be reserved.

If mutation can be done according to the mutation probability, this operation will be
applied to a randomly selected gene of the two children individuals. The gene with 190◦ of the
first new individual and the gene with 0◦ of the second new individual are randomly selected
in figure 3. Then a choice is randomly made to determine which new angle will replace this
selected gene. It should be noted that the new angle is required to be different from any of the
existing angles in the chromosome. For example, the existing angles in the first chromosome
are 310◦, 90◦, 140◦, 190◦ and 300◦, then the new angle used for mutation operation can be
any one except these six angles. Here 40◦ is used to replace 190◦ for the first chromosome,
and 110◦ to replace 0◦ for the second chromosome.

After mutation operation two new chromosomes are generated: a chromosome with 310◦,
90◦, 140◦, 40◦ and 300◦, and another with 110◦, 80◦, 190◦, 330◦ and 220◦. Then an operation
called immunity will be applied to the two genes with 310◦ and 300◦ of the first chromosome
and to the two genes with 110◦ and 80◦ of the second chromosome (figure 3), because we think
that angles with 310◦ and 300◦ and angles with 110◦ and 80◦ are too close for a five-beam
plan. Then one of the two angles of the first chromosome (randomly determined, here 310◦)
is randomly replaced with 220◦, and one of the two angles of the second chromosome (80◦) is
randomly replaced with 10◦.

The genetic operation will be terminated if there is no better individual found in a
specified number of successive generations, and the individual with the highest fitness in the
last generation will be regarded as the optimal set of beam angles.

2.3. Optimization of beam intensity maps using the conjugate gradient method

To each new individual an intensity map optimization is applied using the beam angles
contained in the chromosome. The optimization is implemented fast using a CG method with
the help of some special steps adopted to speed up the calculation. The final objective function
value is saved to calculate the individual fitness.

The optimization of beam intensity maps has been studied by many researchers and a
variety of algorithms have been published. These algorithms can be basically divided into
two classes: (1) deterministic algorithm, such as gradient-based algorithm (including steepest
descent, conjugate gradient and so on), maximum likelihood method and linear programming,
and (2) stochastic algorithm, such as simulated annealing (SA) and GA. The stochastic
algorithms have the powerful global searching ability, but the drawback of excessive
computation time limits their clinical application. Gradient-based algorithms are fast, but
have the potential to get trapped in local minima (Deasy 1997, Borgers and Quinto 1999,
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Wu and Mohan 2002, Llacer et al 2003). Here a gradient-based algorithm is adopted
considering the computation time.

The gradient-based algorithm used here is a conjugate gradient (CG) method similar to
that adopted by Spirou and Chui (1998), which can be written as

�x(k+1)(λ) = �x(k) + λ · �h(k+1) (9)

�h(k+1) = −∇Fobj(�x(k+1)) +
[∇Fobj(�x(k+1)) − ∇Fobj(�x(k))] · ∇Fobj(�x(k+1))

∇Fobj(�x(k)) · ∇Fobj(�x(k))
· �hk. (10)

Here k means the kth iteration, �x(k) is the beam profile vector of the kth iteration, ∇Fobj(�x(k))

is the gradient of the objective function at the point �x(k), λ is the step size of the kth iteration,
which can be easily calculated using a one-dimensional linear optimization, such as the golden
section method. Equation (10) is initialized by setting �h(1) = −∇Fobj(�x(1)).

Mathematically, rays (i.e. beamlets) with negative weights will appear during the
optimization of the intensity maps, which is not physically realizable. One common approach
is to simply set the negative ray weights to zero at the end of each iteration. The problem
with this approach is that the conjugate gradients of successive directions are no longer valid
and there is no guarantee that an optimal solution will be found. To avoid this shortcoming,
a method similar to Spirou and Chui (1998) is adopted in this paper. The non-negativity of
ray weights is treated as a hard constraint that may not be violated under any circumstances.
When the constraint prohibits the algorithm from taking the step λ that will make the objective
function the minimum along the direction �h, the solution is to restart the recurrence relation
of equations (9) and (10) from the current point.

The optimization of intensity maps is terminated when (Fobj(�x(k)) − Fobj(�x(k−1)))/

Fobj(�x(k)) is less than a sufficiently small value (0.001 is used in this study) after the kth
iteration.

2.4. Dose calculation

In our study, the dose calculation is based on a pencil-beam-based three-dimensional full
scatter convolution (FSC) algorithm, in which both the scatter effects and tissue heterogeneity
correction are involved. For all the discrete angle candidates, the doses at each point contributed
by each pencil beam, called dose deposition matrices, are previously calculated for all volumes
before the optimization. The corresponding matrices are used if some beam angles are selected
by GA during the optimization. To speed up the calculation, two main measures are adopted:
(1) only the doses of those pencil beams in the BEV of the target are calculated, we called them
effective rays, and (2) the deposition matrices are indexed so that only a very small number
of point doses that exceed a specified threshold value will participate in the dose calculation
because these matrices are very sparse. With the optimal beam angles, a refined intensity map
optimization is applied and a final dose calculation is done using the non-indexed deposition
matrices.

3. Results and discussion

In order to verify the presented ABAS technique, first two simulated phantom cases (test cases
A and B) with obvious optimal beam angles are carefully selected to see if ABAS can find
the optimal beam angles. Then a more complicated phantom case (test case C) simulating
a prostate tumour is used to test the efficiency of ABAS. Finally, two clinical tumour cases
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Figure 4. Two simulated cases with known optimal beam angles. For case A, two groups of
angles, 30◦, 150◦ and 270◦, or 90◦, 210◦ and 330◦, are the known optimal angles if three beams
are used, and 0◦, 90◦, 180◦ and 270◦ for case B if four beams are selected.

are used to demonstrate the advantage of ABAS again. All the tests are done on a personal
computer (AMD athlon(tm) MP 1800+, 1.53 GHz, 512 MB RAM).

3.1. Test cases A and B

The two simulated cases shown in figure 4 are used to test the validity of ABAS. For case A
two groups of angles, 30◦, 150◦ and 270◦ or 90◦, 210◦ and 330◦, are the known optimal angles
if three beams are used, and 0◦, 90◦, 180◦ and 270◦ for case B if four beams are selected.
It should be noted that, because these known optimal angles are equispaced, here we only
randomly initialize those individuals in the first generation and do not initialize them with
equispaced angles, in order to fully test the validity of ABAS. The whole 2π gantry angle is
sampled with a discrete angle step of 5◦, and no beam angle constraint is added. Thus there
are 72 discrete angles in the candidate pool.

As expected, the optimal angles for these two cases are found after a time of less than
5 min. The optimized beam angles and the dose distributions are shown in figure 5. The
optimized beam angles are 30◦, 150◦ and 270◦ for case A, and 0◦, 90◦, 180◦ and 270◦ for
case B, the same as the known ones. It should be noted that the transverse dose distributions
of both cases are not symmetrical because the isocentres of the two cases are not the exact
centres of the two phantoms.

3.2. Test case C

A more complicated case simulating a prostate tumour is used to test the efficiency of ABAS.
The simulated case includes a prostate (PTV) with a concave outline with adjoining organs
at risk (OARs), bladder and rectum (figure 6). In this phantom case, volumes occupy 10 CT
slices and the contours of volumes are the same on different slices. The dose prescription to
the PTV is set to 73 Gy, which is normalized to 100%. The CT slice intervals are 0.5 cm, and
the size of the voxel volume is set to 0.5 cm × 0.5 cm × 0.5 cm for all of the volumes. The
pencil beam size is 0.5 cm × 0.5 cm at the isocentre plane. Five coplanar 6 MV photon beams
are used to irradiate the PTV. The case is optimized using both pre-defined equispaced beams
and auto-selected beams using ABAS.
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Figure 5. The optimized beam angles and dose distributions using ABAS. The optimized beam
angles are 30◦, 150◦ and 270◦ for case A, and 0◦, 90◦, 180◦ and 270◦ for case B.

The angles of those five pre-defined equispaced beams are 0◦, 72◦, 144◦, 216◦ and 288◦.
The beam set-up and the dose distribution are shown in figure 6(A). As for the optimization
using ABAS, an angle step of 5◦ is used and no beam orientation constraint is applied. After a
13 min optimization, the final optimized angles are found: 0◦, 70◦, 130◦, 240◦ and 295◦. The
beam set-up and dose distribution are shown in figure 6(B). The comparison of dose–volume
histograms (DVHs) is shown in figure 7. Both of the dose distributions and DVHs show the
improvements given by ABAS: a more uniform dose for PTV and lower doses for bladder
and rectum. There are two main reasons to explain why the optimized beam set-up is not
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Figure 6. A more complicated case simulating the prostate tumour, including a prostate (PTV)
with a concave outline with adjoining organs at risk (OARs), bladder and rectum. Cases A and B
are the beam angles and dose distributions using five equispaced beams and optimized angles with
ABAS, respectively.

symmetrical: one is that not all of the three volumes are symmetrically located in the phantom,
and another is that the PTV is not itself symmetrical.

3.3. Spine case

Figure 8 shows a clinical case with a spine tumour with adjoining OAR (spinal cord). The dose
constraint added to PTV is a minimum dose of 75 Gy. The constraints applied to the OAR are
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Figure 7. DVH comparison of test case C shown in figure 6.

a maximum dose of 50 Gy, with no more than 50% of the OAR volume receiving more than
20 Gy. The dose prescription to the PTV is set to 75 Gy, which is normalized to 100%. The CT
slice intervals are 0.5 cm, and the size of the voxel volume is set to 0.3 cm × 0.3 cm × 0.5 cm
for both the PTV and OAR because of the small volumes. The pencil beam size is
0.5 cm × 0.5 cm at the isocentre plane. Five coplanar 6 MV photon beams are used to irradiate
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Figure 8. A clinical case with spine tumour with adjoining OAR (spinal cord).

the PTV. Similar to test case C, this case is optimized using both pre-defined equispaced beams
and auto-selected beams using ABAS.

The angles of the five pre-defined equispaced beams are 0◦, 72◦, 144◦, 216◦ and 288◦.
The corresponding beam set-up and the final dose distribution are shown in figure 9(A). As for
the optimization using ABAS, an angle step of 10◦ is used and no beam orientation constraint
is applied. After a 19 min optimization, the final optimized angles are found: 20◦, 100◦, 170◦,
240◦ and 310◦. The optimal beam set-up and the corresponding dose distribution are shown
in figure 9(B). The comparison of dose–volume histograms (DVHs) is shown in figure 10.
From the DVHs we can see that the OAR receives a lower dose for the plan using optimal
beam angles, compared with that using equispaced beams, under the condition of a slightly
more uniform dose in PTV. This is also demonstrated in dose distributions: most of the OAR
is outside the 50% iso-dose line for the plan with optimal beams (figure 9(B)).

3.4. Prostate case

A more complicated clinical case is shown in figure 11, in which a prostate (PTV) is surrounded
by four OARs: bladder, rectum, left femur head and right femur head. The sizes and relative
positions of the volumes change substantially from slice to slice, and on most of the slices
the contours of the rectum and bladder overlap with the PTV. Figures 11(a) and (c) show the
volume structures on two different slices: slice position with 0.0 cm and 2.5 cm. The CT slice
intervals are 0.5 cm, the size of the voxel volume is set to 0.5 cm × 0.5 cm × 0.5 cm for PTV,
bladder, left and right femur heads, and 0.3 cm × 0.3 cm × 0.5 cm for the rectum, because of
the relatively small volume size. The dose prescription to the PTV is set to 76 Gy, which is
normalized to 100%.

Optimization with seven beams is studied, and the results of ABAS are compared with
those of a manual plan with a set of seven coplanar beams with angles of 0◦, 50◦, 100◦, 150◦,
210◦, 260◦ and 310◦ (figures 11(a) and (c)), which has become an informal standard for beam
set-up for prostate cases. With the same optimization parameters, the case is also optimized
using the ABAS method. For ABAS, a small angle step of 5◦ is used and no beam orientation
constraint is applied. After a relatively long 36 min optimization, the final optimized angles
are found: 10◦, 60◦, 110◦, 155◦, 200◦, 250◦ and 300◦ (figures 11(b) and (d)).
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Figure 9. The dose distributions of the spine case shown in figure 8. In case A five pre-defined
equispaced beams with 0◦, 72◦, 144◦, 216◦ and 288◦ are used. In case B five angles with 20◦,
100◦, 170◦, 240◦ and 310◦ are derived from ABAS.

The dose distributions of the manual plan on two different slices are displayed in
figures 11(a) and (c), and the corresponding dose distributions of ABAS are shown in
figures 11(b) and (d). From these dose distributions we can see that, with a higher conformality,
the PTV in ABAS is more tightly surrounded by high doses, and the OARs are spared high
doses for larger volumes, especially for the rectum, compared to the dose distributions of the
manual plan. The DVH comparisons in figure 12 also demonstrate the better results of ABAS.
Even the DVH of PTV of the manual plan is a little better than that of the ABAS plan, but there
is no obvious difference between them. As for the four OARs, the DVHs of ABAS are much
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Figure 10. DVH comparison of the clinical case shown in figures 8 and 9.

Figure 11. The volume structures and dose distributions of the prostate case. There are a total of five
volumes involved: 1—bladder, 2—PTV (prostate), 3—rectum, 4—right femur head, 5—left femur
head. The straight dotted lines and solid dose lines on (a) and (c) represent the beam directions
(0◦, 50◦, 100◦, 150◦, 210◦, 260◦ and 310◦) and dose distributions of the manual plan, the straight
dotted lines and solid dose lines on (b) and (d) represent the beam directions (10◦, 60◦, 110◦, 155◦,
200◦, 250◦ and 300◦) and dose distributions of the ABAS plan. (a) and (b) show the slice with
position 0.0 cm, and (c) and (d) show the slice with position 2.5 cm.
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Figure 12. DVH comparison of the manual plan and the optimized plan for the prostate shown in
figure 11, (a) for right femur and bladder, and (b) for PTV, rectum and left femur.

better than that of the manual plan. There is no big difference in beam directions between the
manual plan and the ABAS plan, whereas ABAS gives much better dose distributions, one
of the main reasons may be the complicated anatomy structures: PTV with a concave outline
with adjoining OARs (rectum and bladder), even overlapping with each other.
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4. Conclusions

In this paper, an efficient IMRT tool is developed to automatically select beam angles for
inverse planning. In our automatic beam angle selection (ABAS) algorithm, the selection
of beam angles and the optimization of intensity maps are treated as two separate processes
and implemented iteratively. A genetic algorithm (GA) is used to select suitable beam
angles, and a conjugate gradient (CG) method is used to fast optimize intensity maps for each
selected beam combination based on a dose-based objective function. A pencil-beam-based
three-dimensional (3D) full scatter convolution (FSC) algorithm is employed for the dose
calculation. In section 3, two simulated cases with obvious optimal beam angles are used to
verify the validity of the presented technique, and a more complex case simulating a prostate
tumour and two clinical cases are employed to test the efficiency of ABAS. Both of the
DVHs and dose distributions show that ABAS is valid and efficient and can improve the dose
distributions.

In order to implement the beam angle optimization within a clinically acceptable
computation time, some special tricks are adopted to enhance the optimization efficiency: (1)
the objective function is simplified during beam angle selection, and the whole complicated
function is only used for the optimization of final intensity maps, (2) an immunity operation
is incorporated in GA, and (3) a useful fitness-scaling process is done in order to improve
the genetic progress. We think that GA is very suitable for the optimization of beam angles,
for it can provide an effective crossover and mutation operation and no decoding operation is
needed for the calculation of individual fitness.

In this paper, we have assumed that the number of beams was previously defined by a
planner before beam angle optimization. A disadvantage is that several trial-and-error tests
may be needed to specify a suitable beam number if a complicated case is hoped to be treated
using a very small number of beams. The choice of the optimal number of beams represents
another important issue in IMRT planning (Pugachev and Xing 2002), which is a work that
should be addressed in further research with much effort, even though it has been studied by
many researchers (Soderstrom and Brahme 1995, Stein et al 1997).

The beams in this study are restricted to coplanar ones. It should be noted that the
algorithm could be easily extended to non-coplanar beam angle selection by just adding a
couch angle variable in the optimization scheme, with the sacrifice of a longer computation
time. Of course, a better dose distribution may be potentially acquired by using a smaller
number of beams with non-coplanar angles.

The main limitation of the automatic beam angle selection algorithm is the long
computation time in order to find the optimal results. At the same time, the plentiful experience
in selecting beam angles that physicists and oncologists have accumulated cannot be utilized
during the beam angle optimization. In section 2.2.3 a useful tool is provided which can be
utilized by those experienced planners. By defining enough beam angle constraints, planners
can reserve the orientations that beams may pass through with highest probability, according
to their experience. With this tool, not only the optimization time will be saved because of
the reduction of the search space, but also the accumulated experience of the physicists and
oncologists can be incorporated into the optimization.

As a powerful IMRT tool, ABAS has been embedded in the anti-tumour radiation treatment
planning (ARTP) system (Topslane Inc., Pleasant Hill, CA, USA) for routine use. We are
currently working on: (1) building a knowledge database to guide the beam angle selection in
order to fully utilize the accumulated experience in manual selection of beam angles (Xing et al
1999, Pugachev and Xing 2002), and (2) implementing GA through parallel computation on
a PC with dual or more CPUs.



1932 Y Li et al

Acknowledgments

This work is supported by a grant from NSFC of China, grant no 90208003, a grant from
the Doctor Training Fund of the Ministry of Education (MOE), China, and a grant from
TRAPOYT of China, and also partially supported by Topslane Inc. The authors would like
to thank Wenyan Chen, Lin Feng, Jiancheng Zheng and Dongmei Lu of Topslane for their
helpful discussions and assistance.

References

Borgers C and Quinto E T 1999 On the non-uniqueness of optimal radiation treatment plans Inverse Problems 15
1115–38

Bortfeld T and Schlegel W 1993 Optimization of beam orientation in radiation therapy: some theroretical
considerations Phys. Med. Biol. 38 291–304

Deasy J O 1997 Multiple local minima in radiotherapy optimization problems with dose–volume constraints Med.
Phys. 24 1157–61

Goldberg D E 1989 Genetic Algorithms in Search, Optimization, and Machine Learning (Reading, MA: Addison-
Wesley)

Ezzell G A 1996 Genetic and geometric optimization of three-dimensional radiation therapy treatment planning Med.
Phys. 23 293–305

Haas O C L, Burnham K J and Mills J A 1998 Optimization of beam orientation in radiotherapy using planar geometry
Phys. Med. Biol. 43 2179–93

Langer M et al 1996 A generic genetic algorithm for generating beam weights Med. Phys. 23 965–71
Llacer J, Deasy J O, Bortfeld T R, Solberg T D and Promberger C 2003 Absence of multiple local minima effects in

intensity modulated optimization with dose–volume constraints Phys. Med. Biol. 48 183–210
Pugachev A B, Boyer A L and Xing L 2000 Beam orientation optimization in intensity-modulated radiation treatment

planning Med. Phys. 27 1238–45
Pugachev A B and Xing L 2002 Incorporating prior knowledge into beam orientation optimization in IMRT Int. J.

Radiat. Oncol. Boil. Phys. 54 1565–74
Rowbottom C G, Khoo V S and Webb S 2001 Simultaneous optimization of beam orientations and beam weights in

conformal radiotherapy Med. Phys. 28 1696–702
Rowbottom C G, Webb S and Oldham M 1998a Improvement in prostate radiotherapy from the customization of

beam directions Med. Phys. 25 1171–9
Rowbottom C G, Webb S and Oldham M 1998b Beam-orientation customization using an artificial neural network

Phys. Med. Biol. 44 2251–62
Spirou S V and Chui C S 1998 A gradient inverse planning algorithm with dose–volume constraints Med. Phys. 25

321–33
Soderstrom S and Brahme A 1992 Selection of suitable beam orientation in radiation therapy using entropy and

Fourier transform measures Phys. Med. Biol. 37 911–24
Soderstrom S and Brahme A 1995 Which is the most suitable number of photon beam portals in coplanar radiation

therapy? Int. J. Radiat. Oncol. Boil. Phys. 33 151–9
Stein J, Mohan R, Wang X H, Bortfeld T, Wu Q W, Preiser K, Ling C C and Schlegel W 1997 Number and orientations

of beams in intensity-modulated radiation treatments Med. Phys. 24 149–60
Webb S 2000 Intensity-Modulated Radiation Therapy (Bristol: Institute of Physics Publishing)
Woudstra E and Storchi P R M 2000 Constrained treatment planning using sequential beam selection Phys. Med.

Biol. 45 2188–49
Wu Q and Mohan R 2002 Multiple local minima in IMRT optimization based on dose–volume criteria Med. Phys. 29

1514–27
Wu X and Zhu Y 2000 A mixed-encoding genetic algorithm with beam constraint for conformal radiotherapy treatment

planning Med. Phys. 27 2508–16
Wu X and Zhu Y 2002 A maximum-entropy method for the planning of conformal radiotherapy Med. Phys. 29

2241–6
Xing L et al 1999 A medical knowledge based system for the selection of beam orientations in intensity modulated

radiation therapy (IMRT) Int. J. Radiat. Oncol., Biol. Phys. 45 (Suppl. 1) 246–7
Yu Y and Schell M C 1996 A genetic algorithm for the optimization prostate implants Med. Phys. 23 2085–91
Zhang P et al 2001 Optimization of gamma knife treatment planning via guided evolutionary simulated annealing

Med. Phys. 28 1746–52


