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Abstract

Virtually all existing mobile robot localization techniques
operate on a static map of the environment. When the
environment changes (e.g., doors are opened or closed),
there is an opportunity to simultaneously estimate the
robot’s pose and the state of the environment. The re-
sulting estimation problem is high-dimensional, render-
ing current localization techniques inapplicable. This pa-
per proposes an efficient, factored estimation algorithm
for mixed discrete-continuous state estimation. Our al-
gorithm integrates particle filters for robot localization,
and conditional binary Bayes filters for estimating the
dynamic state of the environment. Experimental results
illustrate that our algorithm is highly effective in estimat-
ing the status of doors, and outperforms a state-of-the-art
localizer in dynamic environments.

1 Introduction

In the past decade, mobile robot localization and mapping
has received substantial interest in AI and robotics [1,
12]. The localization problem concerns itself with esti-
mating the pose of a robot relative to a fixed map [9, 11],
whereas the mapping addresses the problem of learning a
map from sensor data [4, 13, 16].

A striking characteristic of the rich literature on this topic
is that virtually all published work assumes that the envi-
ronment is static. This is in contrast to most robotic en-
vironments, which usually change over time. For exam-
ple, most office environments possess doors, chairs, and
other items whose location or state changes over time. A
worthwhile research goal, thus, is to extend existing tech-
niques by algorithms that can perform localization and
mapping functions in dynamic environments. Of course,
the recognition that natural environments are dynamic is
not new. For example, Fox et al. [8] have developed a
localization algorithm that is robust to the presence of
people in the environment, as demonstrated in a crowded
museum experiment [2]. However, such algorithms still
assume a static map, which is never revised in accordance
to sensor evidence. Instead, the paper is an example of a
more common methodology of treating dynamic effects.

In mobile robotics, dynamic effects are usually regarded
as noise and filtered out [7].

This paper addresses a specific dynamic environment
problem: Estimating the state of a set binary state vari-
ables (e.g., doors, or grid cells in an occupancy grid map)
in an environment that changes. The difficulty of this
problem arises from the fact that localizing a robot in
such environment is generally difficult. From an esti-
mation point of view, there is interaction between the
problem of estimating the robot’s location and the state
of the environment. For example, if a robot encounters
an obstacles in an area that previously corresponded to
an open door, there exist two quite complementary ways
to explain such measurements: Either the door status has
changed, or the robot is not where it believes to be (a less
plausible explanation would be that the observation is the
effect of sensor noise). As this example illustrates, the
problem of localization and environment state estimation
cannot be decoupled.

This paper proposes an efficient algorithm for localizing
a robot in an environment with discrete states, while si-
multaneously estimating the state of the environment. We
show that under the appropriate formulation, the estima-
tion problem can be factored into a problem reminiscent
(but not identical) to conventional mobile robot localiza-
tion, and a number of conditional Bayes filters for esti-
mating the environment’s state. The specific algorithm
extends the work by Murphy [15] on state estimation in
Bayesian networks. Like Murphy, our approach employs
a particle filter for estimating the robot’s pose. The dis-
crete environment state variables are estimated via dis-
crete Bayesian filters (similar in nature to the standard
occupancy grid algorithm [14]). However, those Bayes
filters are conditioned on the robot’s path estimate, hence
are attached to individual particles. The resulting algo-
rithm scales linear in the number of state variables in the
environment, and linear in the number of particles. This
is significantly more efficient than existing existing map-
ping algorithms that combine localization and map esti-
mation [4, 13], which scale quadratically in the number
of environment state variables (and typically involve only
continuous state variables).



Experimental results summarized in this paper illustrate
that our algorithm is highly effective in estimating the
state of doors that change dynamically in the experimen-
tal setting. It also outperforms an existing state-of-the-art
localization algorithm that assumes a static world. The
environmental testbed includes a physical robot operating
in an office building, and a high-fidelity robot simulator
for quantitative evaluation.

2 The Concurrent Localization and Environ-
ment State Estimation Problem

The algorithm presented in this paper assumes that the en-
vironment possessesK binary features that may change
dynamically (and independently of each other) over time.
Each underlying state variable will be denotedyk, wherek = : : : ;K. The state of the variableyk at timet will be
denotedyk;t. Similarly, the robot pose at timet (a three-
dimensional continuous variable comprising the coordi-
nates and heading direction of the robot) will be denotedxt. For brevity, we will write:yt = fy1;t; : : : ; yK;tg (1)

for the set of allK state variables at timet, and will use
the superscriptt to refer to a set of quantities from time 0
to timet:xt = x0; : : : ; xt (2)

As usual, we assume the environment is Markov, that is,xt andyt are the complete state of the environment.

To estimate the robot’s posext and the discrete state vari-
ablesyt, the robot processes two types of information:
Sensor measurements (e.g., range scans) and motion con-
trols. The sequence of sensor measurements will be de-
notedzt = z0; : : : ; zt (3)

and the sequence of controlut = u1; : : : ; ut (4)

which we assume (without loss of generality) to arrive
in alternation. In our implementation, the controls are
velocity commands to a mobile robot, and the measure-
ments are obtained by laser range finders.

In addition, the dynamics of the robot and the environ-
ment are known—a common feature of localization and
mapping algorithms. The dynamics are specified by the
following conditional probabilitiesp(xtjut; xt�1) (5)p(yk;tjyk;t�1) (6)

which specify the effect of controlsut on the robot’s posex, and the temporal behavior of the the discrete environ-
ment variablesy, respectively. Notice that we assume that
controls do not affect the environment state—however,
this is not a principle restriction of our approach.

Finally, the robot is given inverse sensor models that en-
ables it to relate sensor measurements to the state vari-
ables:

p(xt; ytjzt) (7)

One of the key assumptions underlying our work is that
knowledge of the robot’s posext renders the discrete
state variablesyk conditionally independent, fork =1; : : : ;K. Put differently, if some oracle informed us of
the correct posext, we could decompose the sensor data
in ways that we can independently infer the individual
discrete variablesyk:p(ytjxt; zt) = Yk p(yk;tjxt; zt) (8)

This important assumption is the assumption in the door
state tracking application that originally motivated this
research. It is also a common assumption underlying the
vast field of occupancy grid mapping [7, 14], where it
makes it possible to update grid cells independently of
each other. However, situations exist where this assump-
tion is violated—those will be outside the scope of this
paper.

We are now ready to formulate the basic problem ad-
dressed in this paper. The problem of estimating the en-
vironment stateyt and the robot posext is the problem
of estimating the joint posteriorp(yt; xtjzt; ut) (9)

Unfortunately, the “size” of the posterior state space
scales exponentially in the number of state variablesK.
Furthermore, since the robot’s pose is not known, the
state variable estimates depend on each other. This sug-
gest that the problem of calculating (9) requires time ex-
ponential inK—which is indeed the case for the full
Bayesian solution to this problem.

3 Factoring The Posterior

The key idea for devising an efficient algorithm for esti-
mating all state variables is to represent the posterior in
a factored form—an idea closely related to Rao Black-
wellized filters, as presented in [6]. Unfortunately, the
posterior (9) cannot easily be factored (see, for example,
the discussion in [4]). Therefore, our approach estimates
a different but related posterior, which is the joint pos-
terior over the environment state and robot pathsxt (not
just posesxt):p(yt; xtjzt; ut) (10)

While such an estimation seems wasteful—after all, the
space of robot paths is much larger than that of momen-
tary robot poses—it allows us to arrive at a factored rep-
resentation:p(yt; xtjzt; ut) = p(xtjzt; ut)Yk p(yk;tjxt; zt; ut) (11)

As shown further below, both types factors,p(xtjzt; ut)
and p(yk;tjxt; zt; ut), can be approximated highly effi-
ciently.



The correctness of the factorization (11) is easily estab-
lished. We notice that Bayes rule implies:p(yt; xtjzt; ut) =� p(ztjyt; xt; zt�1; ut)p(yt; xtjzt�1; ut) (12)

Here � is a normalization constant. Exploiting the
Markov property, we can transform this as follows:= � p(ztjxt; yt) p(xt; ytjzt�1; ut) (13)

We can further decompose the last factor:p(yt; xtjzt�1; ut)= p(ytjxt; zt�1; ut) p(xtjzt�1; ut) (14)

wherep(ytjxt; zt�1; ut) (15)=Xyt�1 p(ytjxt; yt�1; zt�1; ut) p(yt�1jxt; zt�1; ut)=Xyt�1 p(ytjyt�1) p(yt�1jxt�1; zt�1; ut�1)=Xyt�1Yk p(yk;tjyk;t�1) p(yk;t�1jxt�1; zt�1; ut�1)=Yk 1Xyk;t�1=0 p(yk;tjyk;t�1) p(yk;t�1jxt�1; zt�1; ut�1)
The factorization (product) in (15) is simply a conse-
quence of the assumption that the different environment
state variables change independently of each other, with
probability p(yk;tjyk;t�1). The derivation also exploits
the Markovness of the environment.

The remaining factor in the right-hand side of (14) is cal-
culated as follows:p(xtjzt�1; ut)=p(xtjxt�1; zt�1; ut) p(xt�1jzt�1; ut)=p(xtjxt�1; ut) p(xt�1jzt�1; ut�1) (16)

Here the second transformation exploits the Markov
property.

Finally, the termp(ztjxt; yt) in (13) is obtained as fol-
lows:p(ztjxt; yt) = p(xt; ytjzt) p(zt)p(yt; xt) (17)

We can safely assume that in the absence of any data,
all state variables are equally likely. Furthermore,p(z)
is constant relative to our posterior estimation problem.
Hence we can subsume several terms in (17) into a con-
stant factor�0 and obtain:p(ztjxt; yt) = �0 p(xt; ytjzt)= �0 p(xtjzt) p(ytjxt; zt)= �0 p(xtjzt)Yk p(yk;tjxt; zt) (18)

The last transformation exploited (8).

Putting everything together—Equations(15), (16), (18)
back into (14) and then (13)—we obtain the desired fac-
tored form (11):p(yt; xtjzt; ut) = p(xtjzt; ut)Yk p(yk;tjxt; zt; ut) (19)

withp(xtjzt; ut) =�00p(xtjzt) p(xtjxt�1; ut) p(xt�1jzt�1; ut�1) (20)

andp(yk;tjxt; zt; ut)=�000p(yk;tjxt; zt) Xyk;t�1 p(yk;tjyk;t�1)p(yk;t�1jxt�1; zt�1; ut�1) (21)

The two rightmost terms in (20) and (21), respectively,
constitute the estimate at timet�1, which we can assume
to be factored by induction. All other terms are part of the
dynamics and measurement models of the robot.

4 Exact Bayes Filtering for the Binary Environ-
ment Variables

One of the nice features of our factored representation is
that the conditional posterior over the discrete variablesp(yk;tjxt; zt; ut) can be calculated in closed form. Since
eachyk;t is a binary variable inf0; 1g, the posterior is a
single numerical probability defined as�k;t:�k;t = p(yk;t = 1jxt; zt; ut) (22)

This definition enables us to write (21) as follows—here
with the normalizer spelled out:�k;t = p(yk;t = 1jxt; zt) p(ztjxt)p(yk;t = 1) p(ztjxt; zt�1; ut) �+k;t (23)

wherep(yk;t) is a prior on the state variableyk;t, and�+k;t
is defined as follows:�+k;t = p(yk;t = 1jyk;t�1 = 1)�k;t�1+p(yk;t = 1jyk;t�1 = 0)[1��k;t�1℄ (24)

The denominatorp(ztjxt; zt�1; ut) can be eliminated an-
alytically since (23) is easily posed for the opposite event,yk;t = 0. The probability of this event is1� �k;t:1��k;t = p(yk;t = 0jxt; zt) p(ztjxt)p(yk;t = 0) p(ztjxt; zt�1; ut) ��k;t (25)

with��k;t = p(yk;t = 0jyk;t�1 = 1)�k;t�1+p(yk;t = 0jyk;t�1 = 0)(1��k;t�1) (26)

Dividing (23) by (25) gives us the following quotient,
commonly referred to asodds ratio:�k;t1��k;t = p(yk;t = 1jxt; zt)1�p(yk;t = 1jxt; zt) 1�p(yk;t = 1)p(yk;t = 1) �+k;t��k;t (27)

which is easily calculated from the discrete state transi-
tion probabilityp(yk;tjyk;t�1) and the previous estimate�k;t�1. The desired probability�k;t is easily recovered
from the quotient in (27) by virtue of the following equal-
ity: �k;t = 1� (1 + �k;t1��k;t )�1 (28)

Thus, albeit somewhat complex mathematically, the in-
dividual posteriors over the binary state variables can be
calculated exactly in closed form.



5 Particle Filtering for the Continuous Vari-
ables

Unfortunately, the continuous posteriorp(xtjzt; ut) over
robot paths in (20) cannot be computed exactly, since
robot motion equations are highly non-linear. Our ap-
proach, thus, approximatesp(xtjzt; ut) using particle fil-
ters. Particle filters are Monte Carlo approximation that
have been extremely popular in recent years [5, 10]. They
are usually applied for estimating posteriors over states—
but they can equally be thought of sampling over entire
state trajectories. This, and their ability to handle non-
linear dynamics, makes them ideally suited for the esti-
mation of the posteriorp(xtjzt; ut).
Particle filters incrementally generate particles in state
space. Since in our formulation, the posterior of the dis-
crete variables is conditioned on the continuous variables,
each particle is of the form:Dxt[n℄; �[n℄1;t ; �[n℄2;t ; : : : ; �[n℄K;tE (29)

The total number of particles will be denoted byN , and
the set of particles at timet will be denotedYt. Par-
ticles in Yt are asymptotically distributed according top(xtjzt; ut) for N �! 1.

This is achieved by the following sampling procedure. By
assumption, the(t � 1)th particle setYt�1 is distributed
according top(xt�1jzt�1; ut�1). Thus, if we draw a par-
ticle at random we obtainhx[n℄t�1; �[n℄1;t�1; : : : ; �[n℄K;t�1i � p(xt�1jzt�1; ut�1) (30)

where the superscript[n℄ indicates that the lefthand side
is a particle (then-th ofN particles). Furthermore, if we
use this particle to drawx[n℄t � p(xtjx[n℄t�1; ut) (31)

this particle is distributed according top(xtjxt�1; ut) p(xt�1jzt�1; ut�1) (32)

To account for the mismatch between this so-calledpro-
posal distributionand the target distributionp(xtjzt; ut),
particles are now resampled. In particular, the (non-
normalized)importance weightis given by the quotient
of the target posterior distribution and the proposal distri-
bution:w[n℄t = p(x[n℄t jzt; ut)p(x[n℄t jxt�1; ut) p(xt�1jzt�1; ut�1) (33)= [:::℄= p(ztjx[n℄t ) KYk=18<:Xyk;t p(yk;tjx[n℄t ; zt)p(yk;t) �[n℄+k;t 9=;
The derivation of this equation is mostly analogous to our
derivation of the factored posterior. The importance fac-
tor w[n℄t is used to resample particles, resulting in a sam-
ple that converges to the posteriorp(xtjzt; ut) as the sam-
ple sizeN approaches infinity.
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Figure 1: Experimental Results

6 Experimental Results

Systematic experimental results were obtained in the do-
main of robot localization in dynamic environments. The
goal of our experiments was to establish evidence that
the algorithm can effectively localize mobile robots in
environments where doors change their status in unpre-
dictable ways. Furthermore, we were interested in eval-
uating the algorithm’s ability to estimate the state of
the various doors. Comparing the results of localiza-
tion using a static world particle filter localizer (Monte
Carlo Localization [3]), a particle filter with door posi-
tion knowledge but no belief state maintenance for the
doors, and our hybrid filter algorithm, we find that our
filter gives the best results in dynamic environments with
doors.

Experiments were carried out using an RWI Pioneer 1
robot, equipped with a laser range finder. The robot nav-
igated within the region mapped in Fig. 1. Starting in the
lefthand corridor, the robot moved to the righthand corri-
dor, then returned to its point of origin. All doors were
closed in the robot’s first pass and were open in the return
pass.

In Fig. 1, the color of line segments in the door loca-
tions indicate the dominant belief about the state of doors.
Black indicates> 65% closed likelihood, grey indicates
within � 15% of 50% open likelihood, and blank indi-
cates> 65% open likelihood.

Ambiguity in the initial data resulted in convergence on
two locations(Fig. 1a). The dominant belief was that door
2 (from the left) was closed. The other doors were unob-
served and had the default 50% open likelihood.

In Fig. 1b, the robot has correctly localized and has ob-
served doors 2, 3, and 6 to be closed. In Fig. 1c, the robot
has correctly observed that doors 2 through 6 are closed.
The doors were subsequently opened, and Fig. 1d shows
that the robot has correctly updated its belief of the door
state as it returned to the lefthand corridor.



Figure 2: Simulation

In order to more rigorously evaluate the effectiveness of
door belief maintenance, we used a simulation to gen-
erate a scenario with more challenging ambiguities. In
the simulation, we presented the robot with two nearly
identical positions. Fig. 2 depicts the simulated environ-
ment, where the robot began in the lower right corner and
followed a path through positions 1a to 4a. Closed door
locations are marked with black lines. Since doors D2
and D3 were closed, the sensor data showed an unbroken
wall, creating an ambiguity between the true path and the
path through 1b to 4b. The robot’s environmental map
indicated that all doors were open.

In this environment, the hybrid algorithm was effec-
tive in localizing and estimating the door states. Fig. 3
shows the localization sequence using the hybrid algo-
rithm. The particle filter initially maintained two con-
jectures (Fig. 3a). The door colors indicate the domi-
nant belief as the robot moves through the corridor. In
Fig. 3d, the robot has correctly localized upon observa-
tion of open doors D4 and D6.

These results were compared with results from a static
world particle filter localizer (Monte Carlo Localiza-
tion [3]) and a particle filter with door position knowl-
edge but no belief maintenance for the doors. The lat-
ter is straightforward extension of MCL that does take
door uncertainty in account is to assume 50% chance that
the door is open,independentlyfor each sensor measure-
ment. This approach is very similar to MCL, and equiv-
alent to our filter under the assumptions that door states
are entirely random (no persistence).

When faced with the simulation environment, the static
world particle filter localizer also initially converged
upon two conjectures at 1a and 1b (Fig. 2). The parti-
cle filter used the open state of door 2 in its environment
map as evidence that the righthand conjecture was less
probable. Consequently, the correct conjecture was elim-
inated by the time the robot reached position 2a (Fig. 2),
causing localization to fail.

a b

c d
Figure 3: Hybrid Filter Performance

The algorithm with door position knowledge but no belief
maintenance failed similarly to the static world particle
filter localizer. The 50% consideration that door 2 was
closed improved the score of the particles at 2a (Fig. 2).
However, they still scored lower than the particles at 2b
(Fig. 2), which saw a solid wall instead of a door that had
a 50% chance of being open.

The simulation clearly demonstrated a scenario in which
the hybrid algorithm succeeded while a particle filter
without door state considerations or one without belief
updating failed.

The histogram in Fig. 4 shows the progression of belief
about the state of door 1 that corresponds to the simula-
tion sequence using the hybrid algorithm. The horizon-
tal axis of each graph partitions the possible probability
of door 1 being open into 0.01 unit intervals. The ver-
tical measurement for each interval shows the combined
weight of the particles that have a belief for door 1 within
that interval. This provides an aggregate view of the set
of beliefs for a particular door at a particular timestep.

Fig. 4a (t = 0 sec) shows the initial belief, where all parti-
cles have a 0.5 probability that door 1 is open. Fig. 4b (t
= 25 sec) shows the belief distribution after about 30% of
the particles have had some observations of door 1 as part
of the righthand conjecture. The other 70% of the parti-
cles are in the lefthand conjecture and have not made an
observation of door 1. As a result, the figure shows a
smaller spike around 0.5 probability and a small distribu-
tion of beliefs gradually increasing towards 1.

In Fig. 4c (t = 60 sec), nearly all the particles in the right-
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Figure 4: Histogram of the Belief State of Door 1

hand conjecture have a belief near 1. About 50% of the
particles remain in the lefthand conjecture and still main-
tain a belief around 0.5 probability.

Finally, Fig. 4d (t = 220 sec) shows a timestep where the
particles have converged to the correct location, and the
robot has not observed door 1 for some time. The belief is
near 0.8. As time progresses without more observations
of door 1, the belief degrades towards 0.5, reflecting the
growing uncertainty of that door’s state.

7 Conclusion

This paper proposed an algorithm for mobile robot local-
ization in environments with dynamic binary states. In
its most simple formulation, the localization problem in
such dynamic environment requires computation expo-
nential in the number of state variables. Our approach
exploited a natural conditional independence in the do-
main, to arrive at a factored posterior. This posterior was
computed via a combination of particle filters and binary
Bayes filters, where binary Bayes filters were attached to
the particle filters. The resulting algorithm is linear in
the number of environment variables. We recently de-
veloped an efficient data structure that makes it feasible
to compute the posterior in logarithmic time; however, at
the time of submission, this algorithm was not fully im-
plemented, and hence is not included in this paper.

Experiments demonstrated that the hybrid filter algorithm
successfully localizes robots in situations in which the
original particle filter localizer failed due to inconsisten-
cies between the robot map and the state of the world.
Our experiments also illustrate that the explicit estimation
of the environment state improves the overall localization
accuracy

Future work includes the extension to multi-robot local-
ization problems and the implementation of more effi-

cient data structures for logarithmic update time.
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