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Evolutionary Optimization of Radial Basis Function
Classifiers for Data Mining Applications

Oliver Buchtala, Manuel Klimek, and Bernhard Sick, Member, IEEE

Abstract—In many data mining applications that address clas-
sification problems, feature and model selection are considered as
key tasks. That is, appropriate input features of the classifier must
be selected from a given (and often large) set of possible features
and structure parameters of the classifier must be adapted with
respect to these features and a given data set. This paper de-
scribes an evolutionary algorithm (EA) that performs feature and
model selection simultaneously for radial basis function (RBF)
classifiers. In order to reduce the optimization effort, various
techniques are integrated that accelerate and improve the EA
significantly: hybrid training of RBF networks, lazy evaluation,
consideration of soft constraints by means of penalty terms, and
temperature-based adaptive control of the EA. The feasibility and
the benefits of the approach are demonstrated by means of four
data mining problems: intrusion detection in computer networks,
biometric signature verification, customer acquisition with direct
marketing methods, and optimization of chemical production
processes. It is shown that, compared to earlier EA-based RBF
optimization techniques, the runtime is reduced by up to 99%
while error rates are lowered by up to 86%, depending on the
application. The algorithm is independent of specific applications
so that many ideas and solutions can be transferred to other
classifier paradigms.

Index Terms—Data mining, evolutionary algorithm (EA), fea-
ture selection, model selection, radial basis function (RBF) net-
work.

I. INTRODUCTION

TWO key tasks must be mastered in many data mining ap-
plications addressing classification problems: The first is

the selection of features (attributes) from a given, possibly large
set of possible features (so-called feature selection). The second
is the optimization of the classifier’s structure with respect to the
features selected (so-called model selection). It is obvious that
the two problems should be addressed simultaneously to achieve
the best classification results.

In this article we start with the following assumptions.

1) Radial basis function networks (RBF, [1]–[4]) are used
for classification. Here, these neural networks are trained
to estimate posterior probabilities of class membership by
means of mixtures of Gaussian basis functions and hyper-
planes. From a structural viewpoint, RBF networks are
closely related to direct kernel methods [5] and support
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vector machines (SVM) with Gaussian kernel functions
[1], [6].

2) Evolutionary algorithms (EA, [7], [8]) are used for ar-
chitecture optimization (combined feature and model se-
lection) of the RBF networks. Here, this class of opti-
mization algorithms is chosen because the search space
is high-dimensional and the objective function is noisy,
deceptive, multimodal, and nondifferentiable.

Evolutionary optimization of RBF architectures is in no way
a new idea, but existing approaches typically suffer from the
problems of a high runtime and a premature convergence in
local minima. Often, these two problems are closely related:
Due to a high runtime smaller populations with lower diver-
sity are evolved and convergence in a local minimum becomes
more likely. Hence, we take over the best from existing ap-
proaches—such as standard encoding schemes for the repre-
sentation of individuals or standard recombination and mutation
operators—and we integrate various techniques that reduce the
runtime of the EA radically. In particular, we use methods for:

1) fast fitness evaluation of individuals (hybrid training of
RBF networks, lazy evaluation);

2) consideration of soft constraints by means of penalty
terms (e.g., to prefer smaller network structures);

3) adaptive control of the evolutionary optimization process
by means of a temperature coefficient.

Due to a significantly reduced runtime and a goal-oriented
search more and fitter solutions can be evaluated within shorter
time. Therefore, it can be expected that better solutions with
higher classification rates can be obtained.

Altogether, an algorithm is introduced that can be utilized
for a wide variety of data mining tasks to obtain and to apply
new, domain-specific knowledge. This approach efficiently
instantiates already known techniques as well as innovative,
novel ideas. Its advantages are outlined by means of four
real-world data mining applications: Intrusion detection in
computer networks, biometric signature verification, customer
acquisition with direct marketing methods, and optimization
of chemical production processes. Compared to some of our
earlier work on EA-based RBF optimization, the runtime is
reduced by up to 99% and the error rates are decreased by up to
86%, depending on the application.

The remainder of this article is structured as follows. First, the
state of the art is analyzed to motivate our work (Section II) and
the RBF networks used are described (Section III). Then, the
EA for architecture optimization is introduced—with a strong
focus on the innovative aspects mentioned above (Section IV).
After that, the advantages of the approach are set out by means
of various application examples (Section V). Finally, the main
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findings are summarized and an outlook on future work is given
(Section VI).

II. STATE OF THE ART

In this section, the state of the art concerning evolutionary
optimization of RBF networks is investigated. The results of this
survey will motivate a new approach.

A. Related Work

This article focuses on “feature selection” and “model selec-
tion” for RBF networks. Potential feature selection algorithms
are described in [9], [10]. In general, filter and wrapper ap-
proaches can be distinguished. The problem of model selec-
tion for neural networks is discussed in [11]–[13] in greater de-
tail. Usually, these techniques are categorized as being either
constructive (growing techniques), destructive (pruning tech-
niques), or hybrid. The subject of data mining and knowledge
discovery with EA is addressed in [14].

The combination of EA and neural networks in general is
investigated in [15] and [16]. Here, we discuss examples of
the combination of EA and RBF networks. Altogether, we in-
vestigated 64 publications ([17]–[80]) where EA or closely re-
lated techniques (genetic algorithms, evolution strategies, or im-
munity-based approaches, for instance) are applied to optimize
RBF networks or closely related paradigms in some respect. Re-
lated paradigms are hyper basis function networks [21], prob-
abilistic neural networks [22], [29], [31], [47], second-order
multilayer perceptrons (MLP) [36], hybrid RBF-MLP networks
[25], [49], Volterra polynomial basis function networks [40],
[52], projection neural networks [57], RBF networks with dy-
namic receptive fields [59], beta basis function neural networks
[65], [66], functional link networks [38], or a neuro-fuzzy con-
troller based on RBF networks [51].

1) The computation of weights (particularly centers and
radii of basis functions and/or output weights) by EA is
suggested in the majority of the publications. The centers
are optimized in [17]–[20], [23], [28]–[33], [37]–[42],
[45], [46], [48]–[55], [57], [58], [62], [63], [65]–[71],
and [73]–[79], for instance. Radii are considered in
[17], [19]–[23], [26]–[28], [30], [32], [38], [45], [46],
[50], [51], [54], [56], [58], [60], [62], [63], [65]–[69],
[71], and [74]–[79], and weights in the output layer in
[18], [19], [51], [56], [57], [60], and [61]. Particular
parameters of basis function types (e.g., shaping pa-
rameters) are optimized in [57], [59], [65], and [66].
Weights that are not optimized by an EA are adjusted
by means of various other techniques such as -means
clustering, nearest neighbor techniques, Learning Vector
Quantization, Cholesky decomposition, singular value
decomposition, orthogonal least squares, quasi-Newton
techniques, Levenberg–Marquardt training, etc.

2) Closely related to the weight determination problem is
the problem of structure or architecture evolution. Archi-
tecture parameters (apart from features, see below) are
optimized in about half of the publications. The number
of centers (hidden neurons) is considered in [17]–[20],
[25], [29]–[31], [33], [40], [42], [45], [46], [50], [52],

[54], [57], [62], [67], [68], [70], [71], [73], [75], and [77],
for instance. Other architecture parameters are the type
of basis functions [57], [58], the training time (epoch
number) [36], and parameters of training algorithms
[26], [27], [36], [63]. Examples of such parameters are
learning rate and momentum or a regularization param-
eter used for training with regularized orthogonal least
squares training.

3) Feature selection for RBF networks by means of EA is
investigated in only five of the publications: [34] and [35]
describe class-dependent feature selection by masking of
features; other examples are [47], [48], and [72].

4) Rule extraction from trained networks is shown in [43].
5) The combination of networks in form of ensembles by

means of EA is conducted in [24], [44], and [64].

In our earlier work, we described an EA-based method for
feature selection which also optimizes the number of hidden
nodes in RBF networks as well as some other architecture pa-
rameters [81]–[83]. This approach has successfully been applied
to two problems in the areas of intrusion detection (ID) in com-
puter networks and direct marketing (DM).

In the following, we will summarize the most important con-
tributions of the mentioned publications.

Individuals in an evolutionary approach are either complete
networks or basis functions (sets or single functions) which con-
stitute a network. The latter idea is investigated in [23] where a
cooperative-competitive evolution of centers and radii is pro-
posed. The approach leads to moderate computation times but
requires a fitness function that promotes competition among
similar centers and cooperation among different centers at the
same time (“niche creation”). Similar methods are introduced
in [28], [67], and [69]. Also, [77] describes an approach that
takes cooperative-competitive evolution into account. The fit-
ness function combines concepts such as cooperation, specia-
tion, and niching. The probability for choosing a reproduction
operator is determined by means of a Mamdani type fuzzy in-
ference system.

Most methodologies use direct encoding schemes (values of
centers and radii, for instance) but there are some articles that
propose indirect encoding techniques, e.g., grammars or func-
tions that generate networks. This alternative solution helps to
reduce the temporal effort. In [63], locations of basis functions
are governed by space-filling curves whose parameters are
evolved. Basis function centers are generated at equidistant
points along this curve. In [42] and [46], a cluster distance
factor is the only parameter to be evolved. This parameter—de-
fined by the maximum distance between an input sample and
a center—allows the number of basis functions to increase
iteratively.

Specialized mutation and crossover operators (operators that
exploit the particular properties of RBF networks) are used in
many approaches. Only [62], however, investigates the applica-
tion of these operators in detail by comparing the effects of var-
ious operators. Examples are the pruning of networks by ranking
basis functions and the increase of the number of basis functions
in poorly modeled regions of the input space. Also, this publi-
cation compares single criterion and multicriteria approaches of
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evolution. Other, important articles on multiobjective optimiza-
tion are [40], [52], and [70].

The integration of advanced learning approaches into the evo-
lution process is mentioned in the following articles: In [22],
the recursive orthogonal least-squares algorithm is applied to
optimize the centers (number and locations). The regularized
orthogonal least-squares algorithm (an efficient forward subset
selection algorithm) is used in [26] and [27]. A regularization
parameter is optimized by the EA.

Finally, [68] should be mentioned as this publication provides
a good overview of related work.

B. Motivation for a New Approach

An assessment of related work in regard to real-world data
mining applications is difficult. Data mining tasks with millions
of patterns and hundreds of features are not uncommon. Most
of the 64 publications (about 70%) utilize very small and often
simple benchmark data sets (e.g., two spirals, trigonometric
functions, polynomials, iris, glass, or sunspot). Real-world data
is considered in 19 publications, e.g., from robotic applications
[19], [24], [44], [64], medical or biometrical applications [39],
[49], power systems modeling and control [46], [47], [61], or
chemical applications [60]. Typically, these publications focus
on one particular application problem. Hence, the universality
of methods does not become clear. Besides that, most of the
publications do not set out the repeatability of results even if
a stochastic optimization algorithm is applied. Repeated runs
are conducted in 12 of the 64 publications only, namely in [17],
[23], [28], [38], [54], [59], [62], [71], [73], [76], [78], and [79].

Altogether, two general drawbacks of many existing ap-
proaches can be noticed.

• Coding (representation) scheme: Often, binary repre-
sentations are used for integer or real parameters. If
reproduction operators such as one-point crossover (re-
combination) or bit switch (mutation) are applied, effects
such as positional bias are usually neglected. For some
of the representation schemes used, the reproduction
operators do not guarantee that the descendants describe
valid solutions and repair mechanisms are needed. On the
other hand, complex and solution-specific representation
schemes and operators are defined in some cases.

• Runtime: The runtime of the optimization process is
mentioned (but not investigated) in only a few publi-
cations. However, a long runtime seems to be a major
problem of many evolutionary approaches. With existing
approaches applied to real-world data mining problems,
the user would have to accept a runtime of up to several
days or he would have to risk a premature convergence in
local minima. The former is definitely not practicable in
many applications. The latter is due to small populations
yielding a loss of diversity.

Whereas the first problem can be avoided using standard tech-
niques for the representation of individuals together with well-
known operators for recombination and mutation, the second
problem can be seen as a substantial challenge. We claim that
the runtime of existing approaches must be reduced by more
than 95% in order to make them applicable to a wide range

Fig. 1. Example of an RBF network.

of practical data mining problems. At the same time, prema-
ture convergence or overfitting to a particular data set must be
avoided, and any solution (point in the search space) must be
within reach. If more different solutions could be investigated
within shorter time, it can also be expected that better solutions
can be achieved. Evolutionary optimization of weights (centers,
radii, and output weights) should not be taken into considera-
tion (cf. [80]) because various fast and efficient training methods
exist, in particular for classification problems (see below).

III. CLASSIFICATION WITH RADIAL BASIS

FUNCTION NETWORKS

Radial basis function (RBF) networks combine a number of
different concepts from approximation theory, clustering, and
neural network theory [1], [2], [11]. A key advantage of RBF
networks for practitioners is the clear and understandable in-
terpretation of the functionality of basis functions. Also, fuzzy
rules may be extracted from RBF networks (cf. [84]) for deploy-
ment in an expert system.

The RBF networks used here may be defined as follows (see
Fig. 1) [13].

1) RBF networks have three layers of nodes: input layer ,
hidden layer , and output layer .

2) Feed-forward connections exist between input and
hidden layers, between input and output layers (shortcut
connections), and between hidden and output layers. Ad-
ditionally, there are connections between a bias node and
each output node. A scalar weight is associated
with the connection between nodes and .

3) The activation of each input node (fanout) is equal
to its external input

where is the th element of the external input vector
(pattern) of the network ( denotes the
number of the pattern).

4) Each hidden node (neuron) determines the Eu-
clidean distance between “its own” weight vector

and the activations of the input
nodes, i.e., the external input vector
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The distance is used as an input of a radial basis
function in order to determine the activation of
node . Here, Gaussian functions are employed

The parameter of node is the radius of the basis func-
tion; the vector is its center.

Any other function which satisfies the conditions
derived from theorems of Schoenberg or Micchelli
described in [2] may also be used as a basis function.
Localized basis functions such as the Gaussian or the
inverse multiquadric are usually preferred.

5) Each output node (neuron) computes its activa-
tion as a weighted sum

The external output vector of the network, , consists

of the activations of output nodes, i.e., .
The activation of a hidden node is high if the current input

vector of the network is “similar” (depending on the value of
the radius) to the center of its basis function. The center of a
basis function can, therefore, be regarded as a prototype of a
hyperspherical cluster in the input space of the network. The
radius of the cluster is given by the value of the radius parameter.

In the literature, some variants of this network structure can
be found, some of which do not contain shortcut connections or
bias neurons.

Parameters (centers, radii, and weights) of the RBF net-
works must be determined by means of a set of training

patterns with a a target vector

and (super-
vised training). For a given input the network is expected
to produce an external output . The least-squares error
(LSE) function will be applied here to assess the difference
between and . Typical training algorithms used to
determine the parameters are either gradient-based techniques
(such as Backpropagation, Resilient Propagation, or Quick-
prop) or clustering techniques in combination with methods for
the solution of linear least-squares problems (e.g., -means and
singular value decomposition). An overview of various training
methods for RBF networks is given in [85]–[87].

For a classification problem with a set of classes , each
class is typically assigned its own output neuron (i.e.,

and ). For training purposes, an
orthogonal representation of classes is used at the output nodes
(1-of- representation). That is, if the external input vector

belongs to class , the elements of the target vector
are for and otherwise.

After training, the actual output of node for a
given input vector is interpreted as the posterior probability

of class membership. That is, the network training
is regarded as a mixture density estimation problem. A winner-
takes-all approach for the final decision about class membership
minimizes the probability of misclassification [11]. That is, for

Fig. 2. Application flow of the evolutionary algorithm.

an external input vector the class predicted by the network
is with

In the following, let and (ip:
interpretation function) be the actual and the predicted class for
an input vector . This class information can be obtained by
means of the definition of the representation of the target vector

and the winner-takes-all approach applied to the external
output vector , respectively.

IV. EVOLUTIONARY OPTIMIZATION OF RBF NETWORKS

In this section, a schematic overview of the EA used for RBF
optimization is given. Then, the applied standard techniques are
sketched and our innovative extensions are described in detail.
From the viewpoint of model and feature selection, this ap-
proach can be characterized as a hybrid wrapper technique.

A. Overview

From an algorithmic perspective, evolution is a stochastic
search strategy that can be used to solve a wide range of op-
timization tasks including architecture optimization of neural
networks [7], [8].

Fig. 2 sets out the application flow of the EA for architec-
ture optimization of RBF networks. A population is a set of in-
dividuals (i.e., a set of solutions) of fixed size. Individuals are
RBF networks. The evolutionary operators for recombination
and mutation work on a representation of the individual, the
so-called genotype. Selection for reproduction or for reinsertion
is based on an individual’s fitness which is evaluated with re-
spect to an objective function. The fitness describes the behavior
of the individual in its environment, the so-called phenotype.

Here, the genotype is an abstract representation of the
network architecture that is subject to optimization and the
phenotype is a trained network. Specific challenges in the case
of architecture optimization arise due to nondeterminism: Pat-
terns for training, validation, and testing are selected randomly,
the order of patterns in the training data set is chosen randomly,
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Fig. 3. Representation scheme and reproduction operators.

the training of networks may start from a random parameter
initialization, etc. As a consequence, different phenotypes may
emerge from the same genotype, and a particular phenotype
may be produced from different genotypes (cf. the competing
conventions problem mentioned in [78]–[80]). For example, the
choice of another data set for training may lead to a different
classification rate, and the same classification rate may be
achieved with two different epoch numbers taken for network
training. That is, a wide range of uncertainties must be met
appropriately.

B. Standard Components of the Evolutionary Algorithm

The development of the new approach was guided by the idea
that well-known evolutionary techniques should be applied as
far as possible. To keep the runtime of the EA short, only the
most important architecture parameters are optimized.

1) Representation of Individuals: Deciding on the represen-
tation of an individual is a pivotal step as the representation in-
teracts highly with the choice of evolutionary operators. Thus,
the representation has a commensurate impact on the success of
an EA [88]. Here, the genotype of an individual is represented
by the following.

1) The feature vector: This vector is a binary vector,
where each bit indicates the presence (“1”) or absence
(“0”) of one of the possible features in the currently se-
lected feature subset.

2) The number of centers: This number (which is equiv-
alent to the number of hidden neurons) is represented
by an integer.

3) The training time: This parameter (represented by a
real, positive scalar) restricts the total runtime available
for the construction and evaluation of one individual.

This “mixed” representation scheme (see Fig. 3) requires the
application of different reproduction operators for the different
parts of the genotype (variables).

The representation that does not encode details of a network
architecture—such as the existence of single connections or the
assignment of a feature to a specific input node—can be seen
as a high-level specification scheme (weak encoding scheme)
[89]–[91]. An overview of various neural network encoding
strategies is provided in [92].

2) Initialization of the Population: The feature vector and
the number of hidden nodes of individuals in the initial popu-
lation are initialized randomly. Values of user-defined param-
eters are taken into account, e.g., the expected number of fea-
tures and centers or standard deviations for these variables. The

training time is identical for all individuals in the initial popula-
tion (user-defined).

3) Evaluation of Individuals (Initial Population or Descen-
dants): Individuals are evaluated by means of a fitness func-
tion. A basis fitness is calculated with respect to the
application problem at hand using a set of validation patterns

with . Here, the sets and
vary in each cycle (see Section IV-C1b).

For classification problems, the classification rate is calcu-
lated assuming an equal a-priori distribution of classes. That
means, the loss of correct classification is zero, whereas the loss
of errors for each class is proportional to the a-priori probability
of that class [93]. Hence, the classification rate of a certain net-
work with respect to a validation set is

In this case, the basis fitness is .
In a sample subset selection problem appropriate input pat-

terns must be selected from a set of input patterns. The real-
valued output of a trained network is evaluated (“scored”) in
order to select input patterns which are highly correlated with
a certain class. Patterns yielding lower scores are assumed to
be more or less “irrelevant” to the application problem. The
threshold for the higher, more interesting percentile of scores is
defined by a so-called cut-off point. The lift factor is then used
to assess the suitability of an individual (network) for an appli-
cation [94], [95]. Here, the lift factor is defined by the quotient
of the response rate of the trained network for a certain class
and the percentage of input patterns associated with this class
in the overall set of samples. The response rate is the rate of
correct classifications which can be achieved using a subset of
input patterns selected with respect to the cut-off point. That is,
for a validation data set , a class , and a cut-off point

we define such that

with . The simplest score func-

tion would be . Here, a score function
that prefers clear decisions is applied

Then, the lift factor of a network is defined by

and the basis fitness is .
4) Selection for Reproduction: Two selection mechanisms

are used here in combination (see Section IV-C3).

• Stochastic universal sampling (SUS) [96] prefers fitter
individuals but also gives a chance to worse individuals.

• With elitist selection, only the fittest individuals are taken.
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This approach effects a suitable compromise between fast con-
vergence (elitist selection) and avoidance of a loss of diversity
(SUS).

A distance-based approach was chosen for pairing, i.e., the
selection of parents for recombination: An assessment measure
reflecting the dissimilarity of two individuals is calculated for
all possible pairs of parents (cf. the diversity control mentioned
in [44]). This measure is defined by the distance (with respect
to the 1-norm) of the feature vectors and the numbers of hidden
neurons. This gives a higher priority to the number of hidden
neurons compared to a single input feature. Then, the two par-
ents with the highest dissimilarity are taken and the method
restarts for the remaining individuals. This approach prevents
inbreeding, i.e., mating of very similar genotypes.

5) Recombination: Recombination produces descendants
of a set of parents by combining genotypes. The two recombina-
tion operators used here are uniform crossover and intermediate
recombination. Different operators are applied to different parts
of the representation (i.e., variables).

Uniform crossover [7], [96] treats each parameter individ-
ually. A descendant inherits the parameter value—with equal
probability—from one of the two parents.

Intermediate recombination [96] (or arithmetical crossover
[8]) produces descendants in the neighborhood of the parents

where the weight is a realization of a random variable with a
uniform distribution in and is a constant,
e.g., [96]. The parameter is used to ensure that the
hypercube marking the subspace that contains the representa-
tions of all possible descendants does not become smaller in
each evolution cycle.

Uniform crossover is used for the feature vector; interme-
diate recombination is applied to the number of centers (with
rounding) and the training time.

6) Mutation: Mutation is a stochastic variation of the geno-
types of individuals.

For the feature vector, mutation means the random change of
a bit (bit switch). The mutation technique used here avoids a
drift toward an identical number of zeros and ones in the feature
vector. Convergence to a certain number of features is driven by
the selection mechanism. If is the set and the number of
possible features, then is the number of features actually
used by an individual and is the number of features
not used. For a binary entry in the feature vector of an
individual the mutation is defined by

for
otherwise

with being the realization of a random variable with a uniform
distribution in [0, 1] and

and

where is a user-defined parameter. The
mutation parameters and are not needed for

and , respectively.

Fig. 4. Training of parameters in RBF networks.

The training time is mutated by adding discrete white noise
with an expectation of zero and a certain standard deviation ,
i.e., . A similar technique is used for the number of
hidden neurons (with rounding). This kind of mutation is known
as creep mutation [23], [45], [50], [78], [79].

7) Selection for Reinsertion: After a reproduction step, the
descendants must be evaluated (see above) and the population
for the next cycle is chosen from all individuals of the current
population (including parents and descendants). We apply the
elitist selection method in order to keep the number of individ-
uals constant at the beginning of each cycle.

8) Stopping Criterion: For the sake of simplicity, a number
of EA cycles must be specified by the user.

C. Innovative Components of the Evolutionary Algorithm

In this section, the innovative extensions to our approach are
described. Their development was guided by the idea that the
runtime of the EA must be reduced significantly, so that it can
be deployed in real-world applications. An additional measure
already described is the use of a high-level representation
scheme—only the most important architecture parameters are
subject to evolutionary optimization.

1) Fast Evaluation: The starting point for runtime reduction
is to decrease the time required to evaluate an individual’s fit-
ness. There is time needed for the training of a network (i.e., to
assign a phenotype to a given genotype). Furthermore, the ap-
plication of methods that prevent overfitting to a specific data
set (such as cross-validation or bootstrapping) also contribute
to the time required for the evaluation.

a) Hybrid RBF training: RBF networks allow the appli-
cation of a specific training concept that consists of several ini-
tialization and iterative weight adaptation steps (Fig. 4). We de-
scribed this concept in detail in [85], [86]. Therefore, only an
overview of the three steps is given here:

1) A clustering algorithm is employed for the initialization
of the centers and the radii of the basis functions. In sub-
stance, this algorithm is a modified -means approach.
The centers of the basis functions correspond to the pro-
totypes of clusters in the input space and the values of
the radii depend on the average Euclidean distance be-
tween the patterns assigned to the cluster and the cluster
centers (cf. definition of empirical variance). The original
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-means algorithm (cf. [97] and [98]) is modified in the
following way.

• A stable initialization of prototypes prior to the first
-means step leads to better results and a deterministic

behavior of this clustering algorithm. In essence, initial
prototypes are chosen with a selection method that aims
at maximizing their average Euclidean distance.

• The restriction that centers of the RBF network must cor-
respond to patterns in the training set guarantees that the
solution of the linear least-squares problem, that has to be
solved in Step 2, exists (see below).

• The clustering may be conducted separately for the pat-
terns of each class which yields a better behavior when
classes are difficult to separate (“class-based clustering”).
Like the original -means, the modified -means is glob-
ally convergent.

2) Once the values of centers and radii are found, the re-
maining parameters—weights of connections between
input and output layers, weights of bias connections,
and weights between hidden and output layers—are
determined in a single step, solving a linear least-squares
problem. The values of these weights are then optimal
(in a least-squares sense) with respect to the selected
values of the centers and radii.

In practice, the pseudo-inverse that defines the solution
of the least-squares problem is not computed explicitly,
but the least-squares problem is solved by means of an ef-
ficient, numerically stable algorithm (cf. [99] and [100])
such as QR decomposition. If Gaussian basis functions
are used (for other permissible functions see [2]) and the
centers are chosen to be a subset of the training data and
distinct, the pseudo-inverse which describes the solution
does exist [2]. These conditions are met here (Step 1);
they are sufficient, but not necessary.

3) Finally, an iterative learning algorithm utilizes the current
state of the network (i.e., the current values of all param-
eters that result from Steps 1 and 2) as a starting point
for further weight optimization. Here, the scaled conju-
gate gradient (SCG) learning algorithm is applied [101].
Basically, SCG is a very fast and efficient combination of
a Conjugate Gradient algorithm and a Model Trust Re-
gion approach (cf. [11] and [102]). Also, any first-order
(such as Backpropagation or Resilient Propagation) or
second-order algorithm (such as conjugate gradient tech-
niques) may be applied.

A similar training concept (three-phase learning) is advocated
in [87]. The training concept offers two vast advantages.

• The overall algorithm converges extremely fast. Typi-
cally, the initialization (Steps 1 and 2) already provides
very good results.

• The training time available for the iterative adaptation
in Step 3 may be adjusted on-line in order to effect a
compromise between coarse and fine tuning of the evolu-
tionary search.

Here, the training time of an individual (as given in its represen-
tation, see Section IV-B1) is interpreted as follows: Steps 1 and
2 are always executed, Step 3 is iterated until the training time
is exceeded.

Fig. 5. Lazy evaluation of individuals.

In the 64 related publications (see Section II), a comparable,
hybrid training scheme cannot be found; the training time is
evolutionary optimized in [36] only.

b) Lazy evaluation: In order to avoid an overfitting of in-
dividuals to a specific data set, appropriate measures must be in-
troduced. Typically (cf. [81]–[83]), different data sets are taken
for network training (training data set ) and fitness determi-
nation (validation data set ). A cross-validation technique is
applied to the training of each individual in each cycle. The al-
ternate optimization of weights and centers with respect to a
least-squares error and architecture parameters with respect to a
fitness function using different data sets prevents overfitting to
a specific data set.

Here, we also apply an -fold cross-validation technique ( is
user-defined), but to keep the runtime of the EA short we spread
the cross-validation onto subsequent cycles of the EA. More
precisely, the sets of training and validation data are changed
in each cycle and the fitness is determined with respect to an-
other cross-validation set (see Fig. 5). Thus, poorly suited indi-
viduals can be eliminated quite early, whereas better individuals
have to survive several cycles. The idea is that an individual al-
ready yielding bad results for one of the data sets will never be
among the best anymore. An additional, independent test data
set must be used to estimate the classification rates that can
be achieved in an actual application.

The definition of an individual and the definition of the basis
fitness can now be stated more precisely. In the case of an -fold
cross-validation as realized by the lazy evaluation concept each
individual of a population consists of:

1) a genotype given by the abstract representation of an in-
dividual (see Section IV-B1);

2) altogether phenotypes for the training sets given by
a complete set of trained network parameters (centers,
radii, and weights);

3) a vector of additional information with
( ) if the individual has already been trained
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on the th training set (i.e., a valid phenotype exists) and
otherwise.

Each valid phenotype is evaluated with respect to another val-
idation set yielding a basis fitness . The overall basis
fitness of an individual is defined by

This approach gives a chance to recently generated individuals
without neglecting older ones.

It is obvious that the speedup factor that can be achieved with
lazy evaluation is at most if compared to a complete -fold
cross-validation in each cycle. The evaluation scheme is “lazy”
in the sense that it takes several EA cycles to identify fitter in-
dividuals.

Most of the 64 related publications (see Section II) do not
apply cross-validation or related techniques such as bootstrap-
ping or hold-out techniques (apart from [54], for instance). Also,
different data sets for training, validation, and testing are only
used in a few publications (cf. [45], [47], [48], [68], [72], [73],
[75], and [80]).

2) Soft Constraints (Side Conditions): It has already been
mentioned that the basis fitness is calculated with re-
spect to classification rates or lift factors. Additional soft con-
straints may be included in the fitness function (cf. Lagrangian
approaches for multicriteria optimization):

1) a penalty factor for the number of features used
(to keep the number of free parameters small);

2) a penalty factor for the number of hidden neurons
used (for the same reason);

3) a penalty factor for the overall training time of an
individual (to control the runtime of the EA);

4) a penalty factor for the classification safety
which is based on the selection function for class mem-
bers used when calculating the lift factor (to give more
importance to networks with clear decisions).

Smaller network structures are easier to interpret, they are less
prone to overfit, and their training is faster which leads to a
shorter overall runtime of the EA. In some cases, the number
of features has to be kept small either because features have
to be computed on-line (computational costs) or because fea-
tures have to be purchased, e.g., from data warehouses (mone-
tary costs). If the training time is punished directly, the runtime
is reduced, too. Since smaller network structures can be trained
faster, we might expect that shorter runtimes lead to smaller net-
work structures. This, however, has not been shown so far.

The overall fitness of an individual fit is calculated by mul-
tiplying the basis fitness with penalty factors for each soft
constraint

The values of the basis fitness are higher for better individ-
uals. Therefore, the functions used to determine a penalty factor
have to be monotonically decreasing with respect to the param-
eter to be punished. In addition, the relative importance of each
penalty factor must be controllable by means of user-defined pa-
rameters.

Fig. 6. Examples for penalty factors.

The penalty factor for the number of features is
modeled in the following way:

where is the number of features in the currently selected
feature subset and is a small, user-defined pa-
rameter.

In the same way, the penalty factor that influences the
number of hidden neurons is defined

where is the number of centers in the individual to be eval-
uated and is again a small, user-defined parameter.
The values of and are selected such that ,

.
The factor for the training time is defined by a

continuously differentiable and monotonically decreasing func-
tion

for

otherwise

with a user-defined parameter . This function
has the properties , ,
and . The latter property also holds for
the linear models ( ,

) but larger values of and are punished less
dramatically (see Fig. 6).

The factor for classification safety is defined in a similar way
[103]. For all factors other penalty models would be applicable,
too. In a particular application only a part of the factors is typi-
cally used.

The most interesting result of the EA is the best individual
(network). This is the individual with the highest fitness among
all individuals in the last generation of the EA that survived as
many cycles as possible (i.e., that have as many valid phenotypes
as possible). This network would be used as the best possible
classifier in an actual application.
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Fig. 7. Selection of parents for reproduction.

In some of the 64 related publications (see Section II) penalty
terms are used, e.g., for the number of centers (e.g., [30], [31],
[36], [56], [58], [65], and [70]), the values of radii (e.g., [30]),
the training time (e.g., [36]), the number of weights (e.g., [45]
and [54]), and the values of weights (e.g., [38] and [56]). The
latter approach is quite similar to weight decay in neural net-
work training [11]. In most publications the influence of penalty
terms can not be weighted, and in none of them this idea is in-
vestigated in detail. Closely related are multicriteria optimiza-
tion approaches where a set of Pareto optimal solutions (non-
dominated solutions) is sought for. Examples can be found in
[18], [40], [48], [52], [54], [62], [70], and [77]. Typical criteria
are mean and maximum classification errors, number of centers,
and number of weights.

3) Temperature Coefficient: The use of a temperature coef-
ficient allows an adaptive control of the evolutionary optimiza-
tion process (coarse tuning versus fine tuning). It depends on the
classification rates of the fittest individual in the current popu-
lation or, alternatively, its lift factor. The coefficient is high for
low classification rates and vice versa. A high value of this co-
efficient allows large steps in the search space in order to ex-
plore new regions. If the value is low, a local search around the
current position in the search space is supported. Thus, a suit-
able compromise between fast search (low runtime) and exhaus-
tive search (low classification error) may be effected. Premature
convergence in local minima can be avoided without sacrificing
runtime efficiency.

The temperature coefficient has a significant influence on the
values of stochastic parameters used by selection and mutation
operators.

Fig. 7 describes the utilization of the temperature coefficient
for the selection of parents for reproduction. With a high tem-
perature coefficient, SUS selects a larger set of parents in order
to give a chance to less optimal individuals.

Here, mutation must accomplish two goals whose importance
is controlled by the temperature coefficient. First, completely
new regions in the search space should be reached. Second,
a local search should be conducted when an optimum is ap-
proached. In this respect, the temperature coefficient has an im-
pact on the probability used for the mutation of the training
method and on the standard deviations of the random variables

Fig. 8. Examples for temperature coefficient functions.

needed to mutate the number of features selected, the number
of centers, and the training time.

To implement these ideas, the following function for temper-
ature calculation was chosen:

for
for

otherwise

with being the classification rate of the currently best indi-
vidual, a positive intensity value, the goal classification
rate, and (with ) the classification rate for which

(“normal” temperature). With the intensity
parameter the temperature function varies smoothly
between and . In the remainder, the
notation is used for , i.e., a fixed
temperature .

Fig. 8 shows the temperature curves for intensities
. A low intensity causes the temperature

to decrease far from the goal classification rate. A high inten-
sity implies that the temperature stays at a high level until the
goal classification rate is nearly reached.

According to the value of the temperature coefficient the EA
must perform a finer or coarser search. One way to achieve this
behavior is varying between SUS and elitist selection for muta-
tion and recombination in the following way:

for
otherwise

where is the number of individuals to be selected for muta-
tion or for recombination, respectively. The resulting values are
rounded to the nearest integer value. Consequently, the number
of individuals selected by SUS is

The mutation of centers is influenced by the temperature in
the following way:
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where hidden is the number of hidden neurons (centers) of the
individual to be mutated and is the
realization of a normally distributed random variable with ex-
pectation 0 and standard deviation . The
value is a user-defined standard deviation for
mutation at normal temperature. Again, the resulting values are
rounded to the nearest integer.

Almost all of the 64 related publications (see Section II) do
not utilize an adaptive control of the evolution process. Excep-
tions are [34] and [35] which employ a dynamic mutation rate
that depends on observations indicating a stagnation of the evo-
lution process.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the properties and advantages
of our approach by means of four real-world application exam-
ples:

• ID: intrusion detection (network-based misuse identifica-
tion) in computer networks;

• SV: signature verification (biometric, behavioral-based
authentication);

• DM: direct marketing campaign (customer relationship
management);

• PO: chemical production optimization (by identification
of optimal working points).

For our purposes here, all four application examples are inter-
esting for various reasons: The former two (ID and SV) came
from research projects, the latter two (DM and PO) arose in
industrial projects. Three examples (ID, SV, and DM) have
already been investigated intensely applying other techniques
and/or earlier versions of our EA-based approach which makes
comparisons possible. The examples possess different numbers
of possible features (up to 137), classes (up to 4), and patterns
(up to approximately 80 000). The optimization criteria are
different: Lift factor in the case of DM, classification rates
otherwise. The auxiliary objectives vary, too: Small number
of features, interpretable network structures, or short time for
modeling. The models obtained by means of the EA would
later be applied either for on-line data processing (ID and
SV) or off-line data analysis (DM and PO). The data have
classes with very different separability properties. Finally, the
innovative extensions described in Section IV-C cannot be
satisfactorily validated by only one single data set. Apart from
the investigations shown here we also carried out experiments
with generic data and data taken from the Proben1 or the UCI
benchmark collections [104], [105].

The final outcome of the EA is the best network as described
in Section IV-C2. Therefore, the classification error rates of this
network (or lift factors in the case of DM) on validation data
used by the EA to determine the individual’s fitness and on in-
dependent test data not taken for any optimization step ( vali,
test, lift vali, lift test) are investigated. test and lift test estimate
the individual’s behavior in an actual application. Additionally,
the number of features, the number of centers (i.e., basis func-
tions), and (in some cases) the training time are given for the
best networks.

Another interesting result is the behavior of the EA for a
given parameterization and data set. Particularly, its runtime, the
overall number of individuals evaluated, the number of different

TABLE I
MOST IMPORTANT PARAMETERS OF THE EA

combinations of input features investigated, and the number of
different center numbers tested are shown here.

The best network obtained by the EA is only useful if the re-
sults of the EA are repeatable. Here, the reliability of the EA is
measured by repeatedly starting the EA with different, randomly
chosen initial populations. Each experiment consists of 50 runs
(repetitions) and average values ( ) as well as empirical stan-
dard deviations ( ) of the criteria mentioned above are shown.
Although the EA has more than 40 parameters, only a few of
them have a relevant impact on the best network. Examples for
less important parameters are initial values of , , and

or lower and upper bounds of the training time. The most
important parameters are summarized in Table I together with
the values utilized in Section V-A.

The experiments have been conducted on 2.8 GHz Intel Pen-
tium IV computers with Linux (Red Hat) operating system and
1-GByte memory.

The remainder of this section is structured as follows: First,
the best results that could be achieved for each of the four ap-
plication examples are described. Next, the benefits of the var-
ious innovative extensions are investigated. Finally, the new ap-
proach is compared to our own, earlier EA-based approach that
has already been published (ID and DM).

A. Application Problems

1) Intrusion Detection—ID: With the rapidly increasing im-
pact of the Internet there is also an emerging need for data and
information security. Various techniques such as authentication
(see the following subsection), data encryption, firewalls, or in-
trusion detection systems (IDS) help to protect against attacks
(cf. [106] and [107]). For more than a decade, the utilization
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TABLE II
INTRUSION DETECTION—OVERALL RESULTS

of soft computing techniques has been investigated for different
kinds of intrusion detection such as misuse detection or anomaly
detection.

The most important evaluations of IDS performed up to now
were supported by the Defense Advanced Research Projects
Agency (DARPA) in 1998 and 1999 [108], [109]. Here, the
data of the first DARPA IDS evaluation is used. RBF networks
are applied to classify a communication as being either a cer-
tain attack or normal behavior (the latter includes other attack
types). The following three attack types are considered: Nmap,
Portsweep, and Satan. A set of 137 possible features (the same
for all attacks) is extracted from the raw tcpdump output pro-
vided by the DARPA. Only protocol information, i.e., TCP and
IP header information, and not the transmitted data are used. Ex-
amples of features actually selected by the EA are the average
number of packets in a connection containing the FIN (finish)
flag (Nmap), the average number of packets in a connection
containing the RST (reset) flag (Portsweep), and the number of
packets sent by the client containing the FIN flag (Satan).

At a more abstract level, the application problem can be spec-
ified as follows: We are given a set of possible features (

) and for each attack type a set of feature
vectors with class labels (

depending on the attack type). Each describes two
classes: Attacks of a certain type that must be detected ( ) and
normal communication behavior or other attacks. Each must
be divided up into training, validation, and test sets. The objec-
tive is to find attack-specific subsets of features and
attack-specific mappings that determine the
class membership for any input vector with re-
spect to a certain attack. Additionally, the feature subset should
be small (i.e., ) because the features have to be com-
puted on-line. For the same reason, the evaluation of should
be fast. Also, should be interpretable, i.e., the network struc-
ture should be small, so that comprehensible rules could be ex-
tracted.

Results are shown in Table II. As mentioned above, and
stand for the average values and the empirical standard

deviations of various criteria. The classification error for un-
known test patterns ( test in %) is very low for these attack
types, which indicates a good generalization ability. Table II
also shows the rates of false alarms (FA) and missing alarms
(MA). The number of features is very low for all attack types.

Fig. 9. Example for the development of classification rates (validation data) in
a population (portsweep detection).

Fig. 10. Example for the development of the feature number in a population
(portsweep detection).

Only between one and seven of the 137 features are actually
needed to detect an attack. The feature subset selected by the
EA is different for each attack type. This outlines the need for
attack-specific modeling. The number of centers is quite low,
too. It is very important from a practical point of view that these
results can be achieved with the same EA parameterization for
each attack type. The runtime of the EA strongly depends on
the size of the subset of used for training. An analysis of
the development of classification rates and number of features
in the population shows that shorter runtimes are possible.
Typically (see Figs. 9 and 10), the EA converges after about
10–20 cycles for this application and parameter setting.

The DARPA data set has been used by many researchers up to
now (see [110]–[112], for instance). It was also the basis for the
KDD Cup 1999 that has been won by an approach based on de-
cision trees with a combination of bagging and boosting (overall
classification error 7.67%) [113]. A direct comparison, however,
would not be fair because many additional attack types had to be
detected etc. Our own work with this data set includes a compar-
ison of various neural and fuzzy classifier paradigms including
an ensemble approach [114], an earlier evolutionary approach
without the innovative extensions introduced here [81], and the
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extraction of understandable rules for intrusion detection from
trained neural networks [115].

2) Signature Verification—SV: Biometric authentication
methods belong to another, very important category of tech-
niques that ensure data and information security. Here, an
example in the field of signature verification is investigated (cf.
[116] and [117]). A person provides her/his signature together
with a personal identification number (PIN) and a verification
system must decide whether the signature corresponds to this
PIN or not. Possible application areas are credit card payment
processes, access control systems (in airports, for instance), or
inspections by police or customs.

The verification approach proposed here is based on a bio-
metric pen that provides three force and acceleration signals
in orthogonal directions [118], [119]. In the following, results
are shown for an approach that computes 93 different features
for each signature. Typical examples are the overall length of
the signature, the pen-up time, the number of strokes, minimum
and maximum values, various parameters of stochastic models
such as skewness and kurtosis, etc. Individual RBF networks
for each person classify a signature as being either genuine or
forged (i.e., the signature of another person). Here, models are
set up for three persons and tested against about 75 other per-
sons.

Again, at a more abstract level, the problem can be stated as
follows: We have a set of possible features ( ) and for
each person a set of feature vectors
with class labels ( ). Each —that must be
divided up into training, validation, and test sets—describes two
classes: Signatures of a certain person ( ) and other signatures.
We are seeking for person-specific subsets of features

and person-specific mappings that determine
the class membership for any input vector . Again,
the feature subset should be small (i.e., ) because the
features have to be computed on-line. For the same reason, the
evaluation of should be fast. Additionally, the time required
for model building should be short because in an actual appli-
cation models need to be built for a large number of persons.

Table III shows experimental results. The error rates for un-
known test data are quite low (FAR and FRR are the false accep-
tance rate and the false rejection rate.). With improved pre-pro-
cessing techniques (signature segmentation, feature extraction,
etc.) we expect to improve these results further. Our main dis-
coveries are the facts that the runtime of the EA is relatively low
for each person, good results can be achieved with the same EA
parameterization for each person, and the number of features
actually needed is relatively low. Table IV outlines the claim
for person-specific modeling (in particular: feature selection).
It sets out the features that are used by at least 75% of the best
networks in the 50 runs. There are a few features that are se-
lected for all persons, such as the length of the signature (N01)
or the pen-up time (N03). There are also some other features that
are needed to distinguish a particular person from other persons
(e.g., spectral features such as RA49).

The same pen has been used in [118] and [120]–[122] for
signature verification but with other data sets and features.
Verification for a group of 40 writers applying conventional
(hard computing) classification algorithms yielded error rates
between 10% and 23% for data collected at subsequent days

TABLE III
SIGNATURE VERIFICATION—OVERALL RESULTS

TABLE IV
IMPORTANCE OF FEATURES—SIGNATURE VERIFICATION.

[118]. With Adaptive Resonance Theory Networks (ART-2)
and a group of ten writers error rates between 5.7% and 17.7%
were achieved in [121] and between 0.0% and 14.3% in [120]
(for the best parameter set). The best and most recent results are
described in [122], where false acceptance rates and false re-
jection rates between 4.5% and 9.5% are mentioned for ART-2
and self-organizing maps (SOMs). Again, the experiments
were conducted with a group of ten writers. Here, models for
three writers were tested against about 75 other writers. For
the best parameter settings in a dynamic approach (time series
classification) we achieved error rates on test data between
1.15% and 4.56% only [123].

3) Customer Relationship Management—DM: The clas-
sical data mining application investigated here arose in the
Sales Department of DaimlerChrysler AG, when a direct
mailing campaign targeting the launch of the new Mercedes
Benz E-Class was planned (cf. [124] and [125]). Promising
addressees had to be selected on the basis of so-called
micro-geographical data, i.e., aggregated information on small
geographical units (micro-cells) such as the size of the city, the
status of the residents with respect to education and income, or
the fluctuation in the micro-geographical unit.

The objective is to set up a model (RBF network) that relates
micro-geographical features describing a micro-cell to an output
variable indicating whether a person receiving a direct mail will
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TABLE V
DIRECT MARKETING—OVERALL RESULTS

buy a Mercedes Benz automobile. Binary output data (“buyer”
or “nonbuyer”) gained from past promotions is available (18 942
samples with 57 features). The trained network would finally be
used to assess all German micro-cells. This evaluation, called
scoring, regards only the micro-cells in the top percentile of
the scores (defined by the so-called cut-off point) as promising
with respect to the target variable. This problem can be seen as
a typical sample subset selection problem (see Section IV-B3).

Again, we describe the task in a slightly more formal way:
We are given a set of possible features ( ) and a set

of feature vectors with class labels
( ). (that must be divided up for training,

validation, and testing) describes purchase decisions in prior
campaigns. The goal is to find a subset of features and
a mapping that estimates the purchase
probability for an input vector describing a micro-cell. The map-
ping must be applied to a set (with ) con-
taining feature vectors of all German micro-cells and a subset

with must be chosen for which the
purchase probability is highest. Again, the feature subset should
be small (i.e., ) because the purchase of the scoring
data is expensive. Also, the evaluation of should be fast, be-
cause must be evaluated for some millions of input vectors.

The results given in Table V show that lift factors (cf. the
definition in Section IV-B3) of about 2.21 can be achieved for
unknown test data. The feature number needed for this result is
low. Table VI sets out the features that are selected in at least
33% of the best networks. The first feature has been selected in
every run; the second and the third are highly correlated (i.e.,
exchangeable). Fig. 11 gives a typical example for the develop-
ment of the lift factor in the population. The best networks with
only one hidden neuron can be evaluated very fast. As a conse-
quence, the scoring of some millions of input vectors could be
conducted within a few hours.

This marketing problem has been investigated in detail in
[126]. There, an evolutionary approach for feature selection was
tested as well as filter techniques using a class separability mea-
sure. The best solution achieved by means of the EA had a lift
factor of 3.45 with respect to validation data, which outper-
formed all previously found solutions by far. However, testing
this solution on another, independent test set revealed that it
has been significantly overfitted (lift factor of 1.95). Other ap-
proaches that have been applied to the same data set utilized
multilayer perceptrons or decision trees. With these techniques,
lift factors of about 1.5–1.8 could be achieved.

4) Optimization of Chemical Production Pro-
cesses—PO: Starting point for the production of integrated

TABLE VI
IMPORTANCE OF FEATURES—DIRECT MARKETING

Fig. 11. Example for the development of lift factors (validation data) in a
population.

circuits are wafers, i.e., thin slices of single crystals of silicon.
The wafer production process (see [127] for some more details)
starts with sand that is reduced to elemental silicon in an
electrothermal reaction. This crude silicon contains roughly
one percent of impurities. The next step in purification of this
silicon is a reaction between silicon and hydrogen chloride to
yield trichlorosilane and hydrogen

Si HCl SiHCl H

By distillation at a relatively low temperature the impurity level
is lowered to less than 1 ppb (part per billion), and the pure
trichlorosilane is converted back into elemental, polycrystalline
silicon. Then, single crystals of silicon are produced from the
melted polycrystalline silicon.

Here, the focus is on improvements of the chemical reac-
tion mentioned above. By-products such as silicon tetrachloride
(SiHCl ) are generated during this process as well. Selectivity
is a measure that describes the proportion of SiHCl . It is usu-
ally desired to be as high as possible, and it depends on three
types of process variables: The composition of the input to the
process (feed), the amount of chemical impurities in the reactor,
and the process conditions. In order to increase selectivity, the
most important of these parameters must be identified. An op-
timal process behavior can then be achieved by varying the sig-
nificant variables.

The process identification problem is modeled as a classifi-
cation problem with four classes describing the degree of se-
lectivity (low, medium, high, and very high) with respect to
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TABLE VII
PROCESS OPTIMIZATION—OVERALL RESULTS

TABLE VIII
PROCESS OPTIMIZATION—CLASSIFICATION RATES ON TEST DATA

the process variables. This degree of selectivity is predicted by
an RBF network. The best network found by the EA is sub-
sequently analyzed to find the optimal working point of the
reactor. The investigations described here were conducted to-
gether with Wacker-Chemie GmbH and Siltronic AG.

Again, we describe the task in a more formal way: We
start with a set of possible features ( ) and a set

of feature vectors with a class
label ( ).

describes the dependencies between process variables and
selectivity classes and must be used for training, validation,
and testing. We search for a subset of features and a
mapping that
predicts the selectivity for a certain process variable setting.

Results for this data set are set out in Table VII. The degree
of selectivity can be predicted with a surprisingly low error rate,
and it can be controlled by only three of the 24 process variables.
Table VIII shows the accuracy of the best networks in a scatter
matrix that sets out the error types in some more detail.

B. Specific Questions

Now, the innovative aspects of our approach will be investi-
gated in greater detail:

• the fast fitness evaluation of individuals;
• the use of soft constraints (side conditions);
• the temperature-based control of the EA.

The data sets described above will be used again, but parameters
are not necessarily chosen such that classification rates or lift
factors are optimal. Instead, values of parameters are selected
such that the effects of our extensions become obvious.

1) Fast Fitness Evaluation: The main objective of hybrid
RBF training and lazy evaluation of individuals is a substantial
reduction in runtime.

a) Hybrid RBF Training: The advantages of the hybrid
training concept that combines modified -means, QR decom-
position (QRD), and SCG (Section IV-C1a) have already been
investigated in detail in [85], [86] but with Backpropagation
(BP) and Resilient Propagation (RPROP, [128]) instead of
SCG. The conclusions drawn there can be transferred to the

TABLE IX
LAZY EVALUATION—INTRUSION DETECTION

slightly modified training concept applied here. Therefore, only
the main findings will be summarized.

In general, it can be expected that any iterative weight adap-
tation algorithm (BP, RPROP, SCG) may yield lower training
errors than the combination of -means and QRD alone. Con-
versely, the latter may be significantly faster than the former.
The question is whether the combination of -means, QRD, and
SCG (or BP/RPROP) effects a suitable compromise between ac-
curacy and speed. For the DM data set it is shown in [86] that
the combination of -means, QRD, and BP yields about 29%
lower training errors than -means + QRD and—to achieve the
same error— it is about 42% faster than BP alone. With an ID
data set similar results are given in [85]: the combination of

-means, QRD, and RPROP yields about 79% lower training er-
rors than -means + QRD and—with a given error threshold—it
is about 28% faster than RPROP alone. In general, an RBF net-
work should be trained in two subsequent steps. The first step
( -means + QRD) reduces the error significantly and with min-
imal temporal effort. The second step (iterative weight adapta-
tion with BP, RPROP, or SCG) usually lowers the error further
but at relatively high temporal expenses. The length of this step
should, therefore, be adapted by the EA.

b) Lazy Evaluation: The following experiment shows
that lazy evaluation of individuals yields a significant reduc-
tion in runtime. Compared to conventional cross-validation
the same classification rates can be achieved and overfitting
does nor occur. Table IX sets out the results for an ID data
set with 5-fold cross validation (ID-P-2 with lazy evaluation,
ID-P-3 with standard cross-validation). It can be noticed that
the runtime is reduced by about 48%. The number of trained
networks is smaller, too. Without lazy evaluation the number
of trained networks is the same in each run of the EA. Similar
observations could be made for the other data sets. In general,
a lot more different solutions (in particular due to different
feature combinations) are investigated within a significantly
shorter amount of time.

2) Soft Constraints: In the following, the influence of soft
constraints (side conditions) on the results of the EA is investi-
gated. It is shown that there are data sets and applications where
these constraints significantly improve results. It should also be
mentioned that there are interdependencies between certain con-
straints (center number versus training time and feature number
versus training time).

a) Feature number soft constraint: The primary objec-
tives of a penalty on the number of features are to reduce costs
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Fig. 12. Feature number soft constraint—signature verification.

(computational or monetary) and to obtain interpretable net-
works. It can be expected that with a severe penalty the number
of features decreases whereas the error rates on validation and
test data increase. Fig. 12 shows this behavior for an SV data set.
Note that the abscissa shows . That is, the degree
of the penalty falls from the left to the right.

It is quite easy to effect a compromise between a low error rate
and a low feature number (and a short runtime, which is highly
correlated). It can also be stated that even with a large number of
features the EA does not overfit with respect to validation data
(cf. Section IV-C1b). With a severe penalty on the number of
features, the number of centers decreases slightly (not shown).

Experiments on other data sets confirm that the effects of an
increasing penalty on the number of features can first be ob-
served when the penalty value approaches about a tenth
of the error rate.

b) Center number soft constraint: The main objectives of
a penalty on the number of centers are comparable to those of a
penalty on the number of features. It can be expected that with
respect to values of the parameter a similar behavior of
the error rates can be observed. Fig. 13 shows this behavior for
the PO data set. A trade-off between low error rate and low
number of centers can easily be attained. The number of features
is approximately the same for all values of .

c) Training time soft constraint: Primary objectives of a
penalty on the training time are to reduce the overall runtime
of the EA and to make the network structures smaller (indirect
penalty of feature and center numbers, cf. [63]). As a conse-
quence, more solutions can be investigated with the same tem-
poral effort. It can be expected that with a severe penalty the
error rates on validation and test data increase but it is not clear
how the number of features and the number of centers are af-
fected.

Fig. 14 shows results of the EA on an ID data set with var-
ious values of . It can be noticed that the training time of
the best networks (the parameter which is optimized by the EA)
is reduced significantly with a severe penalty. As a consequence,
the overall runtime of the EA is reduced, too (from an average
time of 41.34 h to 7.65 h). The error rates increase significantly
but there is definitely no clear trend concerning the number of
features and the number of centers. It can be concluded that a
penalty on training time is not an appropriate measure when the

Fig. 13. Center number soft constraint—process optimization.

Fig. 14. Training time soft constraint—intrusion detection.

network structures should be kept small. In this case, a direct
penalty on the numbers of centers and/or features should be con-
sidered.

d) Classification certainty soft constraint: The evaluation
of the classification certainty constraint is accomplished with
the DM data set. With a high value of the parameter
we expect the EA to prefer networks that have both, a high lift
factor which is closely correlated to the classification rate and a
high value of the safety term which is closely correlated to the
MSE of the network (see Section IV-C2). It turns out that it is
difficult to chose appropriate values for the parameter .
One reason is certainly the fact that the classification error rate
and the MSE of a network are not strongly correlated.

Table X shows the results of two experiments: In experiment
DM-1 (already discussed above), the constraint is used with

; in experiment DM-2, the constraint is switched
off. It can be noticed that the lift factors for validation and test
data are significantly higher with the utilization of the constraint.

3) Temperature Coefficient: The behavior of the tempera-
ture-based control of the EA is illustrated using an SV data set.
The intensities are tested in these ex-
periments. Fig. 15 shows the development of the temperature in
four experiments with intensities .
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TABLE X
CLASSIFICATION CERTAINTY SOFT CONSTRAINT—DIRECT MARKETING

Fig. 15. Examples for the development of temperature values—signature
verification.

Fig. 16. Classification error rates (validation data) in temperature
experiments—signature verification.

It is expected that a low intensity increases the chance of
running into local minima. On the other hand, a high intensity
reduces the efficiency of the evolutionary search, i.e., it takes
more cycles to achieve good classification rates. Fig. 16 sets
out the errors on validation data (plotted for intensities

). The curve for decreases quickest at the
beginning but converges after about 60 epochs (local minima).
On the other hand, the curve for ( ) descends
slowly. A good compromise which outperforms all other exper-
iments after about 130 epochs is attained with . Fig. 17
shows the errors for test data. Intensity yields higher,

lower test errors. Again, the best results can be achieved
with .

Fig. 17. Classification error rates (test data) in temperature
experiments—signature verification.

TABLE XI
OVERALL IMPROVEMENTS—DIRECT MARKETING

C. Overall Improvements

Finally, the improvements to classification rate (or lift factor)
and runtime of the new approach are outlined by means of a
comparison to own, earlier approaches. Results achieved with
earlier approaches for evolutionary optimization of RBF net-
works exist for the DM and the ID data sets [81]–[83]. A di-
rect comparison does not make sense because previous results
were obtained by another implementation running on slower
computers, and—due to a high runtime—repetitions of exper-
iments were not carried out. Therefore, we intend to imitate the
old approaches with our new implementation using appropriate
parameterizations which are as close as possible to the old ap-
proaches. In particular, almost all of the innovative extensions
investigated above are not used and Backpropagation (DM data
set) or RPROP (ID data set) are applied instead of SCG.

For the DM data set (Table XI, old approach DM-3, new ap-
proach DM-1) it can be stated that results for test data can be im-
proved (lift factor is 22.8% higher) while the runtime is reduced
significantly (by 95.3%). The network structures are smaller,
and more than twice as many different solutions are investigated
in less than 5% of the time needed before.

For an ID data set, the improvements are even more impres-
sive. Table XII shows the results for the new (ID-P-1) and the
old approach (ID-P-4). Runtime is reduced by about 99.1%. At
the same time, the test error is decreased by about 86.0%. Again,
the number of trained networks is lower but a lot more different



944 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 5, OCTOBER 2005

TABLE XII
OVERALL IMPROVEMENTS—INTRUSION DETECTION

solutions are investigated in less than 1% of the time used pre-
viously.

VI. CONCLUSION

The main objective of our work described in this article was
to make evolutionary optimization of RBF network architec-
tures (feature and model selection) applicable to a wide range
of data mining problems (in particular, classification problems).
Therefore, the overall runtime of the EA had to be reduced sub-
stantially. We decided to optimize the most important architec-
ture parameters only and to use standard techniques for repre-
sentation, selection, and reproduction. Each genotype produced
during evolution describes a valid solution of the optimization
problem and each solution can be reached from any other point
in the search space. Runtime reduction as well as improvements
to classification rates or lift factors are achieved by a combina-
tion of various techniques, in particular fast fitness evaluation
(hybrid training, lazy evaluation), integration of soft constraints
(side conditions), and temperature-based control of the EA (to
perform the trade-off between fine tuning and coarse tuning of
the optimization process). With side conditions, smaller net-
works can be preferred which increases the interpretability of
the solutions found and helps to reduce costs (computational
and monetary). In practice, not all side conditions are needed
for every application.

The benefits and properties of this approach were set out by
means of four real-world data mining examples. It is essential
to note that a large number of additional experiments were car-
ried out. So far, problems with up to approximately 350 features,
approximately 80 000 samples, and/or 19 classes were investi-
gated. The most recent project deals with defect classification
of silicon wafers. A comparison of the evolutionary approach to
filter-based feature selection mechanisms and heuristic model
selection techniques was beyond the scope of this article but
will certainly be done in the future.

At the moment, the application of the EA requires some ex-
perience to achieve good results, i.e., the best parameter settings
have to be found manually. On the other hand, the EA is quite
robust against variations of parameter values. For example, we
could use the same parameter settings for all intrusion and sig-
nature data sets. In the future, we will adapt parameters of the
EA automatically. Additional ideas are as follows.

1) Evaluation of individuals: In order to cope with huge data
sets, training, validation, and test sets will be chosen dy-
namically from an overall data set.

2) Soft constraints (side conditions): Other penalty models
will be investigated (e.g., exponential functions) and
new constraints will be introduced (e.g., constraints
concerning individual costs for each feature).

3) Temperature-based control: A mechanism will be devel-
oped that detects and considers stagnation of the evolu-
tionary optimization.

We also have to evaluate three techniques which are already
implemented but not investigated here:

1) the initialization of the population by means of a com-
plete search in a subspace of the solution space (e.g., any
combination with up to a given number of input features
is tested);

2) the construction of features (e.g., by means of principal
component analysis);

3) the application of a Lamarckian training approach (cf.
[80]), i.e., the initialization of centers and radii of descen-
dants with values inherited from parents (if feature vector
and number of centers are identical).

We also intend to investigate the automation of feature and
model selection for support vector machines.
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