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Abstract

VBR compressed video is known to exhibit significant, multiple-time-scale rate variability. A number of
researchers have considered transmitting stored video from a server to a client using smoothing algorithms to
reduce this rate variability. These algorithms exploit client buffering capabilities and determine a “smooth” rate
transmission schedule, while ensuring that a client buffer neither overflows nor underflows.

In this paper, we investigate how video smoothing impacts the statistical multiplexing gains available with
such traffic and show that a significant amount of statistical multiplexing gains can still be achieved. We then
examine the implication of these results on network resource management and call admission control when trans-
mitting smoothed stored video using variable-bit-rate (VBR) servicewith statistical Quality-of-Service (QoS)
guarantees. Specifically, we present a call admission control scheme based on a Chernoff bound method that uses
a simple, novel traffic model requiring only a few parameters. This schemeprovides an easy and flexible mech-
anism for supporting multiple VBR service classes with different QoSrequirements. We evaluate the efficacy of
the call admission control scheme over a set of MPEG-1 coded video traces.

1 Introduction

Support for Quality-of-Service (QoS) guarantees for real-time transport of stored video over high-speed networks

is crucial to the success of many distributed digital multimedia applications, including video-on-demand server

systems, digital libraries, distance learning, and interactive virtual environments. Video, which is typically stored and

transmitted in compressed format, can exhibit significant rate variability, often spanning multiple time scales and in

some cases demonstratingself-similarbehavior [7]. The highly bursty nature of VBR-compressed, constant-quality

video makes network call admission control and resource management a particularly difficult and complicated task.

Hence techniques for reducing the burstiness (rate variability) of such video are of significant interest.�This work was supported by NSF under grant NCR-9206908 and byARPA under ESD/AVS contract F-19628-92-C-0089. The authors
can be contacted atfzhzhang,kurose,salehi,towsleyg@cs.umass.edu.
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A number of researchers have considered using video smoothing algorithms to reduce the variability in trans-

mitting stored video from a server to a client across a high-speed network [6, 17, 18, 21, 22, 27]. These algorithms

exploit client buffering capabilities to determine a “smooth” rate transmission schedule, while ensuring that the client

buffer neither overflows nor underflows. Such techniques canachieve significant reduction in rate variability. For

example, over a set of MPEG-1 coded video traces, the smoothing technique in [27] is shown to reduce the peak and

standard deviation of the transmitted bit rate by approximately 70%-85%, when smoothed into a 1 MB client buffer.

These results demonstrate that video smoothing is a powerful technique that will likely be deployed for real-time

transport of VBR-compressed stored video.

The objective of this paper is to study the impact of video smoothing on network resource control and man-

agement. Specifically, we investigate the suitability of constant-bit-rate (CBR) and variable-bit-rate (VBR) network

service models for real-time transport of smoothed video inan ATM environment, and how such an application

can be supported. CBR service, introduced as an emulation ofcircuit-switched networks, provides the abstraction

of a fixed-bandwidth pipe to each network user. In contrast, VBR service exploits the cell-switching nature of the

underlying infrastructure and allows statistical multiplexing of traffic streams within a service class, thus enabling

dynamic bandwidth sharing among the streams. Under CBR service, network resource control and management are

very simple. By requiring users to specify only their peak rate requirement,hard, deterministicguarantees can be

supported with peak rate allocation. Under this scheme, a new session is admitted into the network if and only if

the sum of the peak rates of the on-going sessions and the new session is less than the channel capacity allocated for

CBR services at all network switches along the route of the new session. Thus for constant-bit-rate traffic such as

uncompressed audio and video streams, CBR service is the natural choice of service. On the other hand, for bursty

traffic such as constant-quality VBR-compressed video, CBRservice can result in low network utilization as a result

of the peak rate allocation. VBR service offers the possibility of improving network utilization by exploiting the

potential statistical multiplexing gain offered by the bursty traffic. In order for VBR service to be a viable alternative

to CBR service, however, it must employ relatively simple, robust resource control and management mechanisms so

that the complexity and cost will not offset the utilizationgain.

By applying video smoothing techniques to real-time video transmission, the peak rate and rate variability of the

smoothed video stream can be significantly reduced, thus improving the network utilization underCBRservice [8,

22, 27]. However, a completely constant-bit-rate video stream may require an extremely large client buffer and long

start-up latency [18]. With relatively small client buffers (say, in the range of 64 KB to 1 MB), smoothed video

streams continue to exhibit long-term, slow-time rate variability. As a consequence,there is still an opportunity to

exploit statistical multiplexing gains, thus offering the possibility of reducing the bandwidth required to support a

video stream at a given QoS level and improving network utilization.

In the first part of this paper, we evaluate the potential statistical multiplexing gains of smoothed video streams

under VBR service through a simulation-based empirical study, and establish the advantage of VBR service over

CBR service in supporting real-time transport of stored video1. We investigate the effect of correlated video streams1Note that in the paper, since we are primarily interested in comparing VBR and CBR network services for real-time video transport of
VBR codedvideo streams,statistical multiplexing gainis defined as the percentage of reduction in bandwidth required underVBR service

2



on statistical multiplexing gains, and demonstrate the need for the network to support multiple QoS service levels

with varying robustness (seeSection 3.3 for the definition ofrobustness). Throughout the paper,loss rateis used as

the QoS parameter of network services, although other performance metrics (e.g., delay or delay jitter) could be also

used as well.

In the second part of the paper, we present a call admission control scheme with a simple, novel traffic model

for VBR service that can effectively realize the potential statistical multiplexing gains and is capable of support-

ing multiple QoS service levels. The call admission controlscheme is based on the well-known Chernoff-bound

method [5, 8, 9, 23]. Our contribution lies in the traffic model used in the scheme. We propose a parsimonious

bounding model approach that uses only a few generic parameters to characterize the marginal distribution of video

streams. Specifically, we introduce a new five-parameter traffic model to capture the marginal distribution (in partic-

ular, its tail) of an arbitrary video stream, either smoothed or unsmoothed. The bounding properties of this model are

established. The parameters can be easily obtained from thestored video. We show that the Chernoff bound method

coupled with this traffic model provides an effective and robust technique for estimating the potential statistical

multiplexing gain and predicting the aggregate bandwidth needed to satisfy a given QoS requirement. Moreover, by

appropriately setting some of the parameters in the traffic model, the network can easily control the performance of

the proposed call admission control scheme, thereby providing a flexible mechanism to support multiple levels of

VBR service classes with different QoS requirements.

The remainder of the paper is organized as follows. In Section 2, we examine the impact of video smoothing on

the statistical characteristics of video traces. In Section 3, the impact of smoothing on statistical multiplexing gains

is investigated. We study call admission control issues forVBR service with statistical QoS guarantees in Section 4.

Related work is discussed in Section 5 and the paper is concluded in Section 6.

2 Video Smoothing and its Impact on Statistical Characteristics of Smoothed Video

Many multimedia applications transmit stored video streams from a server to a client across a high-speed network.

For each stream, the server retrieves data from its video storage system and transfers it onto the high-speed network

according to atransmission schedule. The client decodes and periodically displays the data it receives from the

server. Data arriving ahead of its playback time is stored ina client buffer. In order to ensure continuous playback at

the client, the server must transmit the video stream in a manner that ensures that the client buffer neither underflows

nor overflows.

Various video smoothing algorithms have been developed [6,17, 18, 21, 22, 27] that exploit client buffering

capabilities to reduce the rate variability existing in VBRcompressed video, while ensuring that the client buffer

neither overflows nor underflows. The issue of minimizing buffer requirements for stored video streams transmitted

over that underCBR servicewhen transmitting the same set of VBR coded video streams with comparable level of QoS (seeSection 3.3 for
a precise definition). This should not be confused with another definition of statistical multiplexing gain, i.e., the advantage of statistically
multiplexedVBR codedvideo over the use ofCBR codedvideo. This definition has also been frequently used in the literature, in particular,
in the study of video coding techniques,see, e.g., [22], where the relative merits of VBR coded video over CBR coded video are studied.
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(b) Smoothed: 256KB
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(c) Smoothed: 1MB

Figure 1: Optimal smoothing of a 2-hour MPEG-1 encoding ofStar Wars.

in a CBR or piece-wise CBR manner is studied in [18, 17]. The authors in [6] examine the issue of minimizing

the number ofrate changesin a server transmission schedule. In [21, 22], video smoothing using client decoder

buffer together with a startup delay is studied in an on-linevideo conferencing setting, and the shortest Euclidean

distance algorithm of [13] is used to produce smoothed server transmission schedules under the assumption that

the frame sizes of the video conference trace are knowna priori. In [27], a smoothing algorithm is presented

that achieves the maximal reduction in rate variability forstored video, producing the “smoothest” possible server

transmission schedule. The intuitive notion of “smoothness” is formalized using the concept ofmajorization[16],

and the optimality of the smoothing algorithm is formally established. Among other things, the optimal smoothing

algorithm in [27] produces a transmission schedule that hasboth minimal peak rate and variance for a given client

buffer size. Because it optimally reduces rate variability, we use this algorithm as the video smoothing technique

throughout the paper.

Figure 1 visually demonstrates the effect of video smoothing by plotting the transmission sizes over a two-hour

MPEG-1 encoding ofStar Wars[7], where both the unsmoothed transmission schedule (a) aswell as the smoothed

transmission schedules for client buffer sizes of 256 KB (b)and 1 MB (c) are shown. The transmission size is defined

as the number of bits sent by the server per frame unit of time (approximately 42 ms, given the 24 frames/s frame rate

for theStar Warsencoding). In the rest of the paper, we will refer to the smoothed transmission schedule of a video

trace as thesmoothed trace. It is a sequence of transmission sizes produced by the optimal smoothing algorithm of

[27]. Note that implicit in our study of video smoothing techniques is the assumption that the server transmits ATM

cells within a frame (or a transmission size) periodically using the intra-framedeterministic smoothingmethod [28].

Under this assumption, a frame unit of time is the most natural choice of time reference. In the latter part of the

paper we will see that the marginal distribution of video transmission rates is the only information required by our

call admission control scheme, any smaller time unit, say, half a frame unit, will not change the description of the

marginal distribution (only the scale is changed), while any larger time unit may alter this description, resulting in a

“coarser” description.

Figure 2 shows the corresponding histograms of the unsmoothed and smoothed video traces of Figure 1, plotted

with 100 bins (note the different scales of the axes in Figure2). These figures indicate that smoothing significantly
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Figure 2: Impact of the Optimal Smoothing on the Marginal Distributions ofStar Wars
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Figure 3: Impact of the Optimal Smoothing on Autocorrelation Structures ofStar Wars

reduces the range of transmission sizes – from 0-200 Kb per frame unit of time in the unsmoothed schedule, to

5-30 Kb per frame unit of time with a 256 KB client buffer, and to 6-24 Kb per frame unit of time in the case of 1

MB client buffer. Note that the 1 MB client buffer smoothed trace (Figure 1(c)) contains a relatively small number

of long, constant rate segments. Furthermore, note that thehistogram of a smoothed trace differs significantly in

appearance from that of the unsmoothed trace. In particular, the tail distribution of these histograms have very differ-

ent forms: the long, heavy “tail” of the unsmoothedStar Warstrace (Figure 2(a)) is transformed into disconnected,

conspicuously outstanding “spikes” after smoothing into a1 MB client buffer (Figure 2(c)).

These drastically altered marginal distributions of smoothed video streams have important consequences for

traffic modeling. For example, the traffic modeling techniques presented in [7, 12, 24] that characterize the “heavy-

tailed” marginal distributions are not applicable to the smoothed video traces. Neither is the DAR(1) traffic model in

[5] which assumes that the marginal distribution can be approximated by a negative geometrical distribution. Clearly,

different techniques are needed for modeling smoothed video traces. In Section 4, we present a simple technique

for characterizing the marginal distribution that is applicable for both smoothed and unsmoothed video streams. The

technique is developed for the purpose of call admission control.

The autocorrelation functions of the unsmoothed and smoothed video traces are shown in Figure 3. Due to the
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MPEG encoding scheme, the unsmoothed trace demonstrates strong periodic correlation. In Figures 3 (b) and (c),

this periodicity has been removed by video smoothing. However, the slowly decaying correlations at large time

lags indicate that the traces are still highly correlated. This is because the smoothed video traces consist of many

relatively long CBR segments. In the frequency domain, the power spectrums of the video traces (figures of which

are not included here due to space limitations) indicate that the variability that still exists is due mostly to slow-

time scale variations, while the fast-time scale variability has essentially been removed. This observation can also

be visually verified from Figure 1, where we see that the smoothed video streams consist of relatively long CBR

segments.

The reduction or removal of fast-time scale rate variability has implications on network resource management,

especially buffer allocation within the network. The studyin [10, 14] has shown that buffering is only effective in

reducing losses due to variability in the high frequency domain, and is not effective for handling variability in the

low frequency domain. To accommodate low-frequency variability, sufficient bandwidthmust be allocated in order

to maintain the targeted QoS guarantee. This is particularly true in the case of smoothed video streams: the stringent

delay requirement of real-time video transport means that the network buffer allocated for the video streams must

be relatively small. Therefore when the streams are highly correlated, insufficient bandwidth at one point in time is

likely to lead to consecutive losses over a relatively long period of time, thus greatly affecting the client’s QoS. These

observations have been confirmed by our experiments with smoothed video streams. Consequently, in supporting

the real-time transport of smoothed video streams with QoS guarantees, network bandwidth allocation becomes

especially critical. At the same time, the amount of buffer space needed within the network can be greatly reduced

(e.g., to the amount needed in a network switch for temporarily storing data to be forwarded), since buffering is

only effective in reducing losses due to fast-time scale rate variability, of which there is little for smoothed video

streams. In general, the optimal buffer/bandwidth trade-off depends on the characteristics of source traffic and is an

interesting subject worth further study (see[15] for results along this line in the context of leaky-bucket regulated

sources).

Two advantages are realized with minimal buffer allocationin the network. First, queueing delay jitter within

the network is greatly reduced, implying that less client buffer space is needed to accommodate it. From the client’s

perspective, this also means reduced latency in playback. Second, minimal buffering in the network limits the effect

of the autocorrelation structure of the user’s traffic on theoverall average loss rate [26]. Hence, the difficult task

of characterizing the correlation structure of the user traffic is much less important. For these reasons, we will

assume that the network employs very little buffering internally for real-time video transport, and in fact, we model

a network switch as a bufferless multiplexer in the remainder of the paper. Under such a model, only marginal

distribution information (e.g., Figure 2) is needed in traffic specification.

3 Statistical Multiplexing of Smoothed Video Streams

As shown in the previous section, slow-time scale variability still exists in smoothed video streams, particularly

with relatively small client buffers. In this section, we empirically determine the amount of statistical multiplexing
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Name of Beauty CNN Jurassic MTV Princess Silence of Soccer Star Termi- Wizard
Video & Beast News Park News Bride the Lambs Wars nator of Oz

Mean Rate 40.0 40.0 13.1 24.6 40.0 7.3 27.1 15.6 10.9 41.2
Peak Rate 251.7 246.6 119.6 229.2 243.6 134.2 187.2 185.3 79.6 343.1

Table 1: Statistics of the 10 MPEG-1 Coded Video Traces (in Kb/Frame)

gain that can be realized when smoothed video streams are aggregated at a network switch or router. An important

assumption underlying most analyses of statistical multiplexing gain is that traffic from different sources are inde-

pendent of each other. We first evaluate the potential statistical multiplexing gains of smoothed video streams under

this independent source assumption, and then investigate the effect of correlated video streams. Finally, we discuss

the implication of this statistical multiplexing gain on network service models and QoS guarantees.

3.1 Independent Video Streams

To investigate the statistical multiplexing gain, we use a simple simulation model. We consider a bufferless mul-

tiplexer withn independent video streams. The QoS requirement in our studyis the loss rate encountered by the

video streams at the multiplexer, which is calculated as theratio of the total amount of loss over the total amount of

video transmitted. For a given QoS requirement (say a loss rate of 10�6), we perform 500 independent simulation

runs to empirically obtain the minimum bandwidth needed to satisfy the given QoS requirement. For each run, we

compute the minimum bandwidth required to support the givennetwork load without violating the specified QoS

requirement. The maximum value among all runs is used as an indication of bandwidth needed to achieve the target

level QoS2.
In simulating independent video streams, we assume that then video streams arriving at the multiplexer are

randomly displaced from each other. In other words, for eachvideo stream, the starting frame is equally likely to be

any one of the video frames, with appropriate “wrap-around”to ensure that the video streams are of the same length.

To quantify the statistical multiplexing gain, we use the formula(1� r�=r̂) � 100 as its formal definition, wherer� is the aggregate bandwidth required to satisfy a given QoS requirement (say, no loss) for all video streams in the

simulation and̂r is the peak rate of the aggregate load (which is the sum of the peak rate of the individual streams).

Hence, the statistical multiplexing gain thus defined represents the fractional reduction in the aggregate bandwidth

requirement needed in the simulation in comparison to peak rate allocation. It thus quantifies the potential utilization

improvement that can be realized by VBR service over CBR service with peak rate allocation.

Figure 4 shows the statistical multiplexing gain as a function of number of sources for smoothed video streams

with various client buffer sizes, as well as for the unsmoothed video streams. In case (a), all sources are homo-

geneous, and are generated from the sameStar Warstrace. Although we useStar Warsin this (and all other)

homogeneous-source experiments, the results hold qualitatively for all of the video traces in our test set. In case (b),2Another set of independent runs are performed to test the robustness of the aggregate bandwidth value. For stringent loss rates such as10�5 or 10�6 (the latter loss rate essentially yields a lossless transmission). The maximum bandwidth obtained from the first set of 500 runs
is almost always sufficient to satisfy the given QoS in the second set of 500 runs.
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Figure 4: Statistical Multiplexing gain: Unsmoothed and Smoothed Streams, No Loss

sources are generated from 10 different video traces (theirpeak/mean rates are listed in Table 1). The number of

sources from each type of video are increased uniformly as the number of sources increases. Hence an aggregation

of 100 sources consists of 10 sources from each type. The QoS requirement for this example is that no loss oc-

curs at the multiplexer during the entire transmission of the aggregated video streams. The figure indicates that for

unsmoothed video streams, apotentialstatistical multiplexing gain of 70%-80% is realizable, while for smoothed

streams with various client buffer sizes, a potential statistical multiplexing gain of 10%-60% is realizable. Thus,

there are still significant statistical multiplexing gainsto be exploited by VBR service when individual streams are

smoothed, especially when client buffers are relatively small.
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Figure 5(a) shows the effect of statistical multiplexing onthe per-stream bandwidth requirement (normalized

by the mean rate) to achieve lossless transport when all video streams are homogeneousStar Warstraces, either

unsmoothed or smoothed. To emphasize the potential statistical multiplexing gains after smoothing, the same curves

for the smoothed video streams in Figure 5(a) are reproducedin Figure 5(b) alone (with a different y-axis scale).

Note that since the mean rate for both smoothed video streamsand unsmoothed video streams are the same, the

normalized bandwidth required when there is a single sourceshows the impact of video smoothing on bandwidth

reduction. This illustrates that video smoothing can achieve significant network utilization improvement under

CBR service. However, the network utilization can be further improved if VBR service is used, as these figures

demonstrate that statistical multiplexing gains can significantly reduce the bandwidth required to support a given

QoS level. For example, consider an OC-3 link which has a bandwidth of approximately 155 Mb/s. Suppose we

have a client buffer of size 256 KB. Given the software MPEG-1codedStar Warsvideo trace (which has an average

rate of roughly 0.73 Mb/s), about 185 smoothedStar Warsstreams can be supported with no loss under CBR service

using peak rate allocation. Under VBR service, our simulation results show thatan additional119Star Warsstreams

can be supported without experiencing any loss. This yieldsapotential67% utilization gain. However, this potential

utilization gain is by no means guaranteed due to the nature of statistical multiplexing. Traffic arrival patterns play a

critical role in determining the realizable statistical multiplexing gain.

3.2 Correlated Video Streams

The assumption that video start times are independent of each other may sometimes be violated in practice. For ex-

ample, in a video-on-demand system, many users may start watching videos within a short time span, thus producing

correlated video streams. We next investigate the impact ofcorrelated video streams on the statistical multiplexing

gain.

To investigate this question, we consider scenarios in which all video streams are constrained to begin within a

short interval of time, say of length� minutes. Within this time interval, start times are uniformly, independently

and identically distributed. In our simulation, this corresponds to randomly choosing the start of a video stream from

the first� minutes of the video trace.

Figure 6 illustrates the aggregation of 10 and 100Star Warssources (smoothed with 1 MB client buffers) under

various arrival patterns, where the aggregate instantaneous bandwidth requirement per frame time unit is plotted

over the entire duration of the video. The solid line depictsa sample path of the aggregate video stream where

each individual source arrives at the multiplexerindependently, while the two dotted lines depict sample paths of

aggregation of video streams when all sources arrive within1 minuteor 10 minutesrespectively. From the figure,

we note that when all sources are homogeneous, the aggregatestream under correlated video streams is remarkably

burstier and has a considerably larger peak rate than under independent video streams.

Figure 7 illustrates the aggregation of 10 and 100 sources from 10 different video traces (all smoothed with 1 MB

client buffers) under the same arrival patterns. In case (a), 10 sources from 10 different video traces are aggregated.

In this case, due to the heterogeneous mix of sources, there is little observable difference in the behavior of the
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Figure 6: Aggregate Smoothed (1MB) Homogeneous Video Streams under Various Arrival Patterns
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Figure 7: Aggregate Smoothed (1MB) Heterogeneous Video Streams under Various Arrival Patterns
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Figure 8: Statistical Multiplexing gain under Correlated Video Streams: Smoothed Video Streams, No Loss

correlated and independent video streams. The effect becomes more visible when the number of video sources from

the same video traces increases, as shown in case (b), where atotal of 100 sources, 10 from each video trace, are

aggregated. The maximum aggregate bandwidth requirement in the 1 minute correlated stream case is considerably

larger than that in the independent stream case (compare thepeak of the fine dotted line and that of the solid line).

However, the difference between the two cases is less visible in comparison with the homogeneous case consisting

only of Star Warsstreams.

The impact of correlated video streams on statistical multiplexing gain is shown in Figure 8 where video streams

are smoothed into a 1 MB client buffer. Clearly, correlated video streams have an enormous impact on aggregation

of homogeneous sources, leaving almost no statistical multiplexing gains to be exploited. On the other hand, there

is much less severe impact when heterogeneous streams are aggregated. In this case, the heterogeneity of the video

streams helps alleviate the adverse impact of correlation on the statistical multiplexing gain.

3.3 Statistical Multiplexing and its Implications on Network Service Models and QoS Guarantees

We have seen that VBR service can significantly improve network utilization by exploiting the potential statistical

multiplexing gains available with inherently bursty network traffic. However, we have also seen that the potential

statistical multiplexing gain can be diminished by correlated video streams. This observation illustrates an important

dimension of network service models — the robustness of network services with QoS guarantees. For a network

service model that aims to provide VBR service withstatisticalQoS guarantees by explicitly exploiting statistical

multiplexing gain, the termstatistical takes on two meanings: one at the call level, the other at the service level.

At the call level,statisticalQoS guarantees means that QoS fluctuations may occur so long as they remain within

the tolerance level specified by the user (e.g., a cell loss rate of at most10�6), during the call. This is in contrast

to deterministicQoS guarantees, where the QoS (e.g., no cell loss) is hard guaranteed throughout the duration of
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the call. At the service level,statistical servicepermits the network to fail to provide the promised call-level QoS

guarantee (referred to asservice failurein the rest of the paper), for example, in therare event that the users produce

correlated traffic.Robustnessof a network service is then represented by the likelihood that apromisedcall-level

QoS guarantee would fail, i.e., the probability of service failure. This is in contrast toguaranteed service, where as

long as the user complies with its traffic specification, the network promises to deliver the QoS it has guaranteed to

the user. In order to ensure user compliance, traffic specification for guaranteed services must be enforceable and

traffic policing and reshaping may be needed within the network.

From the network’s perspective, in order to provide for the diverse needs of users, a range of service classes with

different levels of service robustness should be provided.By doing so, the network can exploit, to various degrees,

potential statistical multiplexing gains and thus increase network utilization while still maintaining the target call-

level QoS guarantee. In other words, the amount of bandwidthallocated to a given video stream would differ

for services with the same target call-level QoS guarantee but with varying robustness, depending on how much

potential statistical multiplexing gains are to be realized. Since the extent of statistical multiplexing gains that can

be realized depends on the user behaviors, which are almost impossible to predict and characterize, the robustness

of a network service is difficult to quantify mathematically. Despite this difficulty, the robustness of a service may

still be empirically verified or tested by the network service provider. Now the fundamental question is: How can we

design an effective call admission control scheme that provides a flexible mechanism to support a range of network

services with varying robustness? In the next section, we take a systematic approach to address this problem. In

particular, we propose auniform call admission control scheme that has the flexibility of providing multiple levels

of QoS services with varying robustness.

As an aside, we point out that in addition to providing multiple levels of QoS services with varying robust-

ness through call admission control, other provisions may be made by either the network or by users to ensure the

promised call-level QoS guarantees can be successfully met. For example, in a video-on-demand system, batch-

ing [4] of video requests forhot videosthat arrive within a short period of time, or playback of hot videos at fixed

intervals, can be used to alleviate the impact of correlatedvideo streams.

4 Call Admission Control for Smoothed Video

In the previous section, we demonstrated the potential statistical multiplexing gains available for both smoothed and

unsmoothed video streams, and argued for the need to providea range of QoS guarantee service classes with varying

degrees of service robustness. In order to effectively realize the potential statistical multiplexing gains, relatively

simple, robust call admission control mechanisms should beemployed so that the complexity and cost will not offset

the utilization gain. In this section we first describe a Chernoff-bound-based call admission control algorithm and

then study methods for characterizing the sources’ marginal distribution. In particular, we present a simple, novel

three-state traffic model with only five parameters that can be easily obtained from the stored video. Using this

simple traffic model, we devise a uniform call admission control scheme based on the Chernoff bound method, and

show that it provides an effective and flexible mechanism to support multiple levels of VBR service classes with
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different QoS requirements.

4.1 Chernoff-Bound-Based Call Admission Control

Consider a bufferless multiplexer where the channel capacity is c. Suppose there areI types of sources, and there

areJi sources of typei, 1 � i � I. At any timet = 0; 1; : : :, the amount of traffic arriving from sourcej of type i
is aij(t). For each typei, we assume thataij(t) has a stationary distribution given by aKi-state random variableai
which takes the valuesr(i)1 � r(i)2 � : : : � r(i)Ki . In particular,Pfaij = r(i)k g = p(i)k . In other words, with probabilityp(i)k , aij is in statek, and while in this state, the source generatesr(i)k amount of traffic. Hence the total amount

of traffic at a random time isa = PIi=1PJij=1 aij. Given thataij are all independent, the loss probability at the

multiplexer can be estimated by the following well-knownChernoff Bound[3, 5] approximation:Prfa � cg = Prf IXi=1 JiXj=1aij � cg � e���(c) (1)

where��(�) = sup��0f�� � �(�)g, �(�) = PIi=1 Ji logMi(�) andMi(�) = PKik=1 p(i)k e�r(i)k is the moment

generating function ofaij.
As c ! 1 with Ji=c = O(1), 1 � i � I, the Chernoff Bound (1) can be further refined [20, 2, 1, 5, 8] by

adding a prefactor: Prfa � cg � 1��q2��00(��)e���(c) (2)

where�� is the solution to�0(�) = c. Here�0(�) and�00(�) are the first and second derivatives of�(�).
The Chernoff bound can be used to estimate the aggregate bandwidth c� that is needed to satisfy a given loss

probability bound� at the multiplexer, i.e.,Prfa � c�g � �. From (2), we have that the estimated bandwidthc� is

given by the following expression: c� = IXi=1 JiM 0i(��)Mi(��) (3)

where�� is the solution to the following equation:log � = �(�)� ��0(�)� log � � 12 log �00(�)� 12 log(2�): (4)

As the peak rate of the aggregate stream isr̂ = PIi=1 Jir(i)Ki , the statistical multiplexing gain estimated using the

Chernoff bound method is(1� c�=r̂) � 100.

A generic call admission control algorithm based on the Chernoff bound operates as follows. Suppose a new

call of source typel arrives. It is accepted if the new aggregate bandwidth estimatec�, computed using (3) withJl
replaced byJl + 1, is less thanc, the channel capacity of the multiplexer.
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The cost of the call admission algorithm lies mainly in the computation of the marginal moment generating

functionMi(�) for each source and the solution to the nonlinear equation (4). In our experience, the latter can be

solved very fast using the standard Newton-Bisection method. The major cost is associated with the computation

of Mi(�) and its first and second derivatives used in (3) and (4). The marginal moment generating function is

computed from source marginal distribution informationf(p(i)k ; r(i)k ); 1 � k � Kig, 1 � i � I, provided by the user

and maintained by the network. Clearly, the computational cost is a function of the number of states used to describe

the source marginal distribution.

In applying the above call admission algorithm to stored video, one important issue is the manner in which the

source’s marginal distribution is specified. At first glance, this may not seem to be a difficult issue. For stored video,

it appears that the server can easily obtain the marginal distribution information from a video trace and simply supply

it to the network. However, from the perspective of the network, this approach may not be feasible in practice, since

maintaining distribution information for hundreds or thousands of traffic streams can be formidable. Therefore, a

key issue is how to characterize the marginal distribution of a smoothed or unsmoothed video trace in a manner that

permits it to provide sufficient information for the networkto exploit statistical multiplexing gains, while at the same

time minimizing the amount of information and the processing costs associated with this information. This question

is particularly challenging, as we have shown that video smoothing drastically alters the marginal distribution of

video traces.

The focus of the remainder of the paper is thus on the marginaldistribution characterization. In Section 4.2,

we look at a standard method for characterizing the marginaldistribution — the histogram method [29]. Under this

method, by increasing the number of bins used to describe thehistogram, a more accurate bandwidth estimation can

be obtained using the Chernoff-bound method. However, thisbetter performance is achieved by incurring greater

network overhead. Furthermore, to provide multiple QoS guarantee services with varying robustness, a variable

number of user specifiable parameters needs to be supported in the call admission control and traffic specification

schemes, adding more complexity to the network control and management mechanism. To overcome these problems,

in Section 4.3, a different approach for characterizing themarginal distribution is proposed. Instead of requiring the

user to specify the marginal distribution directly, as in the case of the histogram method, the network only requests

the user to specify a few generic parameters of the distribution (such as the peak and mean rates) and constructs a

distribution that matches these parameters. We present a simple, novel five-parameter traffic model and show that by

appropriately choosing parameter values, the five-parameter traffic model demonstrates comparable (if not superior)

performance to the histogram method. The five-parameter model presents a uniform traffic specification for stored

video to the call admission control scheme without incurring extra overhead and complexity, thereby providing a

flexible mechanism to support multiple levels of QoS services with varying robustness.

4.2 Characterization of Marginal Distribution Using Histograms

The histogram method is a standard method for providing a discrete representation of a source marginal distribution.

In this section, we evaluate the Chernoff-bound-based calladmission control algorithm using the histogram method.
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Figure 9: Chernoff Bound Estimation with Histogram: Unsmoothed Streams, Loss Rate10�6
The marginal distribution of a video trace can be characterized using aK-bin histogram as follows. Let̂r be

the peak rate of the given trace. We divide the range(0; r̂] into K equal intervals of widthw = r̂K (i.e., bins for

histogram). The empirical marginal distribution is then collected by counting the number of transmission sizes that

fall into each of theK bins. In other words, the marginal distribution is described by aK-state random variableV
with a distribution specified by a set ofK (pk; rk) pairs. For1 � k � K, the probability thatV is in statek ispk = jfi:(k�1)�w<vi�k�wgjN wherej � j denotes the cardinality of a set,vi denotes the transmission size at frame timei, N is the length of the video, andrk = k � w is the amount of traffic generated in this state3.

We evaluate the performance of the Chernoff-bound-based call admission control algorithm using histogram

characterizations of source marginal distributions as follows. For a given loss rate, we compare the bandwidth

estimated by the Chernoff bound method using equation (3) with that obtained from simulation. The simulation

set-up is the same as in Section 3.

The results are shown in Figure 9 for the unsmoothed video streams, and in Figure 10 for the smoothed video

streams (with 512 KB client buffers). In both figures, sources in case (a) are homogeneous (generated from theStar

Warstrace), whereas sources in case (b) are generated from 10 different video traces with an equal number of sources

of each type. In all cases, we see that as the number of bins used to describe the marginal distributions increases, the

bandwidth requirements estimated by the Chernoff bound method approach the simulation results. This is because

with more bins, the marginal distributions of the video traces are more accurately characterized.

In Figure 11, the ratios of the aggregate bandwidth estimated by the Chernoff bound to the aggregate mean

rate are shown for unsmoothed and smoothed video streams (with 512 KB client buffers), along with the peak rate3Choosingrk this way results in a histogram that generally has a larger mean than the original video trace but the same peak rate.rk
can also be chosen as the mean of all transmission sizes in bink. This results in a histogram that has the same mean as the original one, but
generally with a smaller peak rate.
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Figure 10: Chernoff Bound Estimation with Histogram: 512 KBSmoothed Streams, Loss Rate10�6
allocation and the simulation result. The figure indicates how much statistical multiplexing gain can be realized

when the Chernoff-bound based call admission control scheme is employed in combination with the histogram

method with various number of bins.
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Figure 11: Comparison of Chernoff Bound Estimation for the Unsmoothed and Smoothed Streams: Loss Rate10�6
A K-bin histogram requires the specification ofK+1 parameters by a source: the peak rater̂, and the probabili-

ties of theK bins,p1; : : : ; pK . By appropriate choice ofK, the network can define different levels of service classes

with varying degrees of robustness of QoS guarantees. For example, by choosingK = 3, the network makes a

rather conservative assumption about user behavior, in terms of its allocation of bandwidth to provide the requested

service to the users. By choosingK = 5, or K = 10, or larger, the network makes increasingly optimistic and
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aggressive assumptions about user behavior (Figures 9 and 10). Therefore, greater statistical multiplexing gains can

be realized, but with the risk of increasing the likelihood of service failure. Larger values ofK also result in more

overhead and complexity for the network to maintain state and perform call admission control, counter-balancing the

benefits resulting from higher network utilization. To support multiple levels of QoS services with varying robust-

ness, the network has to support a call admission control mechanism with a traffic specification scheme that requires

a different number of bins to be provided by the user for each service level, therefore adding more complexity in the

network resource management.

4.3 Parsimonious Bounding Models for Marginal Distribution Characterization

In this section we take a very different approach to the problem of characterizing the source marginal distribution

for the purpose of call admission control. The key idea behind the approach is to have the network construct an

approximation to the user’s marginal distribution, from a very small number of parameters provided by the user.

Thus we consider the following problem: given a user traffic specification described by a set of parameters such as

the mean and peak rates of a source, how should the network construct a marginal distribution that matches the given

user parameters? Clearly there are many possible distributions. Traffic models that makea priori assumptions about

the user marginal distribution, e.g., that it can be captured by a Gamma or Lognormal or Pareto distribution, have

limited applicability for stored video, given our results in Section 2. Since the network does not have knowledge

about the user’s marginal distribution beyond the specifieduser parameters, what assumption should the network

make in order to satisfy its QoS? In answering this question,we take a bounding approach and assume that the

network should make themost conservativeassumption so as to account for the “worst-case” marginal distribution

that a user may have. This leads to the construction of a marginal distribution such that the bandwidth estimated

using the Chernoff bound method with this distribution yields anupperbound on the bandwidth estimate that would

result from usinganymarginal distribution matching the given set of user-specified parameters.

To address this problem, we turn to the theory of stochastic ordering. Given two random variablesX andY
with respective distributionsF andG, we sayX is smaller thanY under increasing convex ordering(denotedX �icx Y or F �icx G), or informally, X is stochastically less variablethanY , if E[h(X)] � E[h(Y )] for all

increasing, convex functionsh. It can be shown (see, e.g., p.271 of [25]) that ifX andY are nonnegative such

thatE[X] = E[Y ], thenX �icx Y if and only if E[h(X)] � E[h(Y )] for all convexh. This ordering is called

variability ordering in [25]. Intuitively X �icx Y means thatX is less variable thanY in the sense thatY gives

more weight to the extreme values. In particular, we have that V ar(X) � V ar(Y ) andkXk1 � kY k1 wherek � k1 is the essential supremum of a random variable, defined askXk1 = inffx : PrfX > xg = 0g4.
With this notion of stochastic variability, the following theorem provides a basis for constructing a worst-case

distribution. Informally, the theorem states that among all random variables that have the same user-specified pa-

rameters, the random variable that has the worst-case distribution is the one that isstochastically most variable.4Intuitively, the essential supremum of a random variable isthe “peak”, or maximal value ofX. If X denotes a bounded stationary random
arrival rate process, thenkXk1 is the peak rate of the process.
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Theorem 1 Consider a bufferless multiplexer with channel capacityc. For 1 � i � I, 1 � j � Ji, let aij denote

a random variable with the stationary marginal distribution of sourcej of typei, and letâij be a corresponding

random variable representing the marginal distribution chosen by the network which matches the user specified

parameters. In particular, we assume thatE[aij ] = E[âij ], i.e., the mean of the marginal distribution specified by the

user is matched by the random variable chosen by the network.Definea =PIi=1PJij=1 aij , andâ =PIi=1PJij=1 âij.
Then, a sufficient condition for the network to provide an upper bound on the loss probability a user may experience,

i.e.,Prfa � cg � Prfâ � cg, as estimated by the Chernoff bound5 (1), is thataij �icx âij for all i andj.
Proof: From (1), it suffices to show thate���(c) � e��̂�(c), or �̂�(c) � ��(c). From the definition of��(c), this is

equivalent to sup��0f�c� �̂(�)g � sup��0f�c� �(�)g: (5)

Clearly, (5) holds if�(�) � �̂(�) for all � � 0.

Recall that�(�) = PIi=1PJij=1 logMij(�) andMij(�) = E[e�aij ]. Sincee�X is a convex function inX andaij �icx âij , we have that�(�) � �̂(�) for all � � 0.

4.3.1 Simple Parsimonious Models

Based on Theorem 1, we now construct two simple bounding models which require only a small number of param-

eters (i.e.,parsimoniousmodels). Moreover, these parameters are easy to compute from a video trace.

Perhaps the simplest way to characterize the marginal distribution of a video is to use a model with only two

parameters: the peak rate,r̂, and the mean rate,m. Among all random variables with the same mean and peak rate,

the moststochastically variableone, denotedX̂ , takes two values:X̂ = 0 with probability 1 � m̂r and X̂ = r̂
with probability m̂r . X̂ has the marginal distribution of a two-state on-off model: it assumes two extreme behaviors

of a source, either transmitting at peak rate with probability m=r̂, or not transmitting. Thus intuitively,̂X has the

“burstiest” behavior. This fact is stated formally in Theorem 2 (for a similar result, see [19]).

As we shall see, the two-state model based only on the mean andpeak rates of a source results in a rather conser-

vative bandwidth estimate by the Chernoff bound method. In the following, we thus present a simple “three-state”,

five-parameter model to characterize the marginal distribution of a video: in addition to the two parameters repre-

senting the meanm and the peak̂r of the marginal distribution, we introduce three more parameters to characterize

the “tail” of the marginal distribution. LetX be the random variable that has the empirical marginal distribution of

a video trace. The three new parameters,~r, ~p and ~m, are defined by the following relations.PrfX � ~rg = ~p andE[XjX � ~r] = ~m: (6)5Since the exponential term in (2) is the dominant term when the number of sources are large, we ignore the prefactor term (i.e., we use
(1) instead) in this argument.
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Figure 12: Illustration of the Parameters of the Three-State Model

Intuitively, ~r defines the rate at which the tail starts,~p is the probability that a transmission unit comes from the

tail, and ~m specifies how “heavy” the tail is (whilêr is the “tip” of the tail, andm the center of the mass). The

relationship of these parameters is represented visually in Figure 12. The three parameters can be easily computed

from a video trace.

Given these parameters, the discrete random variable with the worst-case distribution,̂X, is defined as follows.

For0 < ~p < 1, X̂ = 8>>><>>>: 0 with probability (1� ~m0~r�1 )~q;~r � 1 with probability ~m0~r�1 ~q;~r with probability (1� ~m�~rr̂�~r )~p;r̂ with probability ~m�~rr̂�~r ~p (7)

where~q = 1� ~p = PrfX < ~rg and ~m0 = E[XjX < ~r]. Asm = E[X] = E[XjX < ~r]PrfX < ~rg+E[XjX �~r]PrfX � ~rg = ~m0~q + ~m~p, ~m0 = m� ~m~p~q . We refer toX̂ as a “three-state variable” since~r � 1 and ~r can be

essentially treated as a single state ofX̂ in practice6.

In the cases~p = 0 or ~p = 1, the three-state model degenerates into the two-state model described earlier.

It is easy to check thatE[X̂ ] = m, kX̂k1 = r̂, PrfX̂ � ~rg = ~p andE[X̂ jX̂ � ~X] = ~m. Theorem 2 states that

this 3-state model has themost stochastically variablemarginal distribution among all discrete random variablesX
with the matching parameters.

Theorem 2

(1) If X is an arbitrary nonnegative random variable such thatE(X) = m andkXk1 = r̂, andX̂ is defined byPrfX̂ = 0g = 1�m=r̂ andPrfX̂ = r̂g = m=r̂, thenX �icx X̂ .6In practice,̂r is generally very large. Hence the difference between~r � 1 and~r is negligible. The separation of the two in the definition
of X̂ is purely due to a technical reason.
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Figure 13: Comparison of Marginal Distribution Models: Unsmoothed Streams, Loss Rate10�6
(2) If X is an arbitrary nonnegative discrete random variable such thatE[X] = m,kXk1 = r̂, PrfX � ~rg = ~p
andE[XjX � ~r] = ~m, andX̂ is defined as in (7), thenX �icx X̂ .

The proof of the theorem can be found in Appendix A.

4.3.2 Evaluation

We now examine the performance of the two-state and three-state models as the parameter~p is varied. Figure 13

shows the performance for unsmoothed video streams, and Figure 14 for smoothed video streams with 512 KB client

buffers. For comparison, the performances of the histogram-based method with 5 and 10 bins are also shown in the

figures. For~p = 0:5, the bandwidth estimated by the Chernoff bound method is close to the bandwidth seen by

the simulation. As~p varies from 0.5 to 0.05 in both figures, the bandwidth estimated using the three-state model

approaches the bandwidth estimated using the two-state model. Similar results are obtained by varying~r from m tor̂ instead of varying~p. Due to space limitation, these results are not shown here.

In contrast to the histogram based method, the three-state model can provide comparable, if not better, bandwidth

estimates with an appropriate choice of~p. This is achieved without requiring as many parameters as the histogram-

based method. Therefore, without any extra overhead, the three-state model is able to provide bandwidth estimates

that range from fairly optimistic (say, by choosing~p = 0:5) to rather conservative (say,~p = 0:05). This property

of the three-state model can be employed by the network to define different levels of service classes. For example,

the network can define three different levels of services by choosing~p = 0:5, ~p = 0:25 and ~p = 0:05. The user

can choose the appropriate service class depending on the level of service robustness required. Since the parameters

needed for the traffic specification are fixed and identical for all service classes, the Chernoff-bound-based call

admission algorithm has the same implementation.
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Figure 14: Comparison of Marginal Distribution Models: Smoothed Streams, Loss Rate10�6
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Figure 15: Comparison of Marginal Distribution Models: Mixed Smoothed Streams: Loss Rate10�6
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An additional example is shown in Figure 15, where a more diverse mix of video streams is considered. In this

example, eight of the ten video traces are smoothed using 512KB client buffers, whereas one trace (Star Wars) is

smoothed using a 1 MB client buffer, and another trace (Wizard of Oz) is smoothed using a 256 KB client buffer.

Furthermore, the number of sources of each video type in thisexample are not evenly distributed. For eight of

the video traces (other thanStar WarsandWizard of Oz), the number of sources of each type increases gradually

from 1 to 5, while the number ofStar Warssources increases from 1 to 40 and the number ofWizard of Ozsources

increases from 1 to 20. Figure 15(a) presents the results forthe scenario where all video streams arrive at a network

nodeindependently. In Figure 15(b), we consider a scenario withcorrelatedvideo streams to illustrate the need

to provide different service levels to account for possiblecorrelated user behaviors. In this scenario, theStar Wars

sources all arrive within a period of 10 minutes, and theWizard of Ozsources within a period of 1 minute. We see

that the correlated video streams significantly increase the actual aggregate bandwidth needed to satisfy the desired

QoS service level of loss rate of10�6. Using ~p = 0:25 and~p = 0:5 for bandwidth estimation in the Chernoff bound

methodunderestimatesthe bandwidth requirement under such correlated video streams, thus leading to service

failures. The histogram method with 5 bins provides a bandwidth estimation that is barely sufficient. On the other

hand, the bandwidth estimated using~p = 0:05 or by the two-state model is sufficient to accommodate the correlated

video streams with the target QoS guarantee, while still realizing 10%-15% statistical multiplexing gain.

Clearly there is a tradeoff between the robustness of a network service and the amount of statistical multiplexing

gain realized. The three-state model provides a simple and flexible mechanism to balance these two concerns. Using

this model, we can fix the call-level QoS guarantee while varying the robustness of the service by setting some

parameters of the model, the values of which may be determined by extensive testing to assess the trade-off between

the service robustness and the realization of statistical multiplexing gain. For example, for a given loss rate, by

choosing~p = 0:05, ~p = 0:25 and~p = 0:5, the network can provide three levels of QoS service classesto trade off

robustness and realization of statistical multiplexing gains in various degrees. These differential network services can

be implemented in combination with a network pricing schemethat reflects the per-connection bandwidth allocation

made by the network for these services: the more robust service (e.g., the service with~p = 0:05) could charge more

for setting up a connection than the less robust one (e.g., the service with~p = 0:5). In any case, the appropriate

choice of the parameters used in the three-state model playsa critical role in determining the robustness of the QoS

services provided by the network.

The following high-level guidelines summarize the call admission control procedure based on the three-state

model.� User:

1) Chooses the desired loss rate guarantee� and appropriate level of QoS service (represented by~p);

2) Provides the additional four traffic parameters (m, r̂, ~m and~r) describing the marginal distribution of the

new video stream.� Network: At each node along the route to be traversed by the video stream, the network

1) Computes the worst-case distribution matching the user parameters using formula (7);
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2) Estimates the bandwidth required to support the target loss rate� (using equations (3) and (4));

3) Rejects the user connection set-up request if the available bandwidth at the node isnot sufficient to support

the new video stream, else proceeds to the next node on the route if there is any, accepting the new video

stream if the current node is the last one.

In the above description, we have used the marginal distribution of a video stream at the network edge to approximate

the distribution at a node within the network. Because of thediscrete-time bufferless model used in our approach, we

expect this approximation to be conservative, as losses occurring at the upstream nodes would in effect “re-shape”

the marginal distribution so that losses are reduced at the downstream nodes. However, a study of the end-to-end

behavior of the system is needed to verify this conjecture.

5 Related Work

There is a vast volume of literature on issues related to statistical multiplexing and call admission control. We will

discuss some of the recent work that is most relevant to our work.

The Chernoff bound is a well-known method that has been applied to call admission control with statistical

QoS [9, 5, 8, 31]. In [5], a combination of effective bandwidths and the Chernoff bound (called theChernoff-

Dominant Eigenvaluemethod) is proposed for call admission control at a network multiplexer with shared buffers.

The method is evaluated using video-conferencing traces. Aparsimonious DAR(1) model is employed to specify the

source traffic. However, the parsimonious DAR(1) model relies on the fact that the marginal distribution of the video

conferencing traces can be approximated by a negative geometrical distribution. Our experience shows that DAR(1)

is not appropriate for both smoothed and unsmoothed MPEG compressed video streams because of the long-range

dependence exhibited by the traces. A histogram-based calladmission control scheme is proposed in [29], and the

loss probability of the aggregate traffic at a network switchis computed using convolution, incurring formidable

computational costs when the number of sources is large. In [22], the issue of statistical multiplexing gain is briefly

studied using a simple two-parameter model and a call admission control scheme that uses the binomial distribution

to estimate loss probability. When the number of sources is large, the computation of the binomial distribution

becomes very cumbersome. In this case, the Chernoff bound provides a very good estimate.

Recently, several new network services have been proposed which rely on the implicit exploitation of statistical

multiplexing gain by adding a renegotiation feature to CBR service [8], and to VBR service with deterministic

QoS guarantees [30]. In [8], the entire rate change profile ofa renegotiated CBR (RCBR) stream is characterized

by a Markovian model and the Chernoff bound method is used forcall admission control to limit the probability of

service failure. From the call admission control perspective, we can treat an RCBR stream as a VBR stream. When a

very small service failure probability is desired, our experience shows that the Chernoff-bound-based call admission

control algorithm usually provides a bandwidth estimationthat is sufficiently conservative that no renegotiation is

actually needed on a per-stream basis to provide the target service level. Hence, VBR service may be likewise

employed for such video streams without requiring any explicit renegotiation.
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Several methods have been used in characterizing the “heavy-tailed” marginal distribution of unsmoothed video

traces (see, e.g., [7, 12, 24]), where a known distribution, such as Gamma, Pareto, or Lognormal, is used to approx-

imate the marginal distribution in order to obtain a parsimonious characterization. As we have seen, these methods

are not applicable to the characterization of the marginal distribution ofsmoothedvideo streams.

6 Conclusion

In this paper, we have studied the problem of real-time transport of stored video using variable-bit-rate (VBR) service

with statistical QoS guarantees. In particular, we have investigated the impact of video smoothing on statistical

multiplexing gains and its implication in network resourcemanagement and call admission control. We started

by investigating the issue of statistical multiplexing gains when streams are smoothed and showed how statistical

multiplexing gains can be exploited to improve network utilization. We then looked at the issues of call admission

control to support VBR service with statistical QoS guarantees. We presented a call admission control scheme based

on the Chernoff-bound method that uses a simple five-parameter model for traffic specification. The scheme provides

an effective and flexible mechanism to support different levels of QoS services with statistical QoS guarantees. We

evaluated the efficacy of the scheme over a set of MPEG-1 codedvideo traces.

In summary, our work supports the contention that by explicitly exploiting statistical multiplexing gain, VBR

service with statistical QoS guarantees can provide a viable alternative to CBR service with deterministic QoS

guarantees in supporting real-time transport for stored video. Although our results are established solely through

evaluation using a set of MPEG-1 coded video traces, we believe that they will also hold qualitatively for other VBR

coded video streams.

Our work is only an initial study of the problem of real-time transport of stored video; there are still many aspects

of the problem that must be investigated such as the impact ofVCR functionality on network service and network

resource control and management. In terms of call admissioncontrol, our scheme needs to be further validated in a

more complex and dynamic environment. Extending the schemeto incorporate certain measurement-based features

is another interesting topic of future research. Careful evaluation of the computational cost of our call admission

control scheme in a “real” environment, along with those of other methods proposed in the literature, is also an

important research subject.
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A Appendix

In this appendix, we prove Theorem 2. Before we prove the theorem, we first state an important property of the

increasing convex ordering, and then establish a useful lemma using this fact.

Lemma 3 LetX andY be two nonnegative random variables with the cumulative distributionsF andG respec-

tively. ThenX �icx Y if and only if for anya � 0,Z 1a �F (x)dx � Z 1a �G(x)dx: (8)

where �F (x) = 1� F (x) and �G(x) = 1�G(x).
For a proof, see Proposition 8.5.1 of [25].

Lemma 4 Let Yi and Zi, i = 1; 2, be two pairs of nonnegative random variables such thatY1 �icx Y2 andZ1 �icx Z2. Define two new random variablesXi; i = 1; 2, as follows:Xi = ( Yi; with probabilityp,Zi; with probability1� p
where0 � p � 1. ThenX1 �icx X2.
Proof: Fori = 1; 2, letFi,Gi andHi be the cumulative distributions ofYi,Zi andXi respectively. By the definition

of Xi, it is clear that for anya � 0, Hi(a) = pFi(a) + (1 � p)Gi(a). Then from Lemma 3, it is easy to see thatY1 �icx Y2 andZ1 �icx Z2 implies thatX1 �icx X2.
Proof of Theorem 2:
(1) LetF andG denote the cumulative distributions ofX andX̂. Note thatG(x) = m̂r for 0 � x < r̂ andG(x) = 1
whenx � r̂. From Lemma 3, it suffices to show that for anya � 0, (8) holds.

Define� = inffa : F (a) � 1� m̂r g. For anya � �, if r̂ > x � a, thenF (x) � 1� m̂r = G(x), and forx � r̂,F (x) = G(x) = 1. Hence for anyx � a, �F (x) � �G(x). Therefore,Z 1a �F (x)dx = Z r̂a �F (x)dx � Z r̂a �G(x)dx = Z 1a �G(x)dx:
For any0 � a < �, if 0 � x � a, thenF (x) < 1� p = G(x). Thus

R a0 F (x)dx � R a0 G(x)dx: Therefore,Z 1a �F (x)dx = Z 10 �F (x)� Z a0 �F (x)dx = m� Z a0 (1� F (x))dx= m� a+ Z a0 F (x)dx � m� a+ Z a0 G(x)dx = Z 1a �G(x)dx
where in the above we have used the fact that

R10 �F (x) = R10 �G(x) = m.
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(2) Let Y be a discrete random variable with the distributionPrfY = xg = PrfX = xjX � ~rg. ThenE[Y ] = ~m and kY k1 = r̂. Let Ŷ be a random variable with the distributionPrfŶ = ~rg = 1 � ~m�~rr̂� ~m andPrfŶ = r̂g = ~m�~rr̂�~r . ThenE[Ŷ ] = ~m andkŶ k1 = r̂. From (1), we see thatY � ~r �icx Ŷ � ~r, thusY �icx Ŷ .

Similarly, let Z be a discrete random variable with the distributionPrfZ = xg = PrfX = xjX < ~rg. ThenE[Z] = E[XjX < ~r] = ~m0 andkZk1 < ~r. Let Ẑ be a random variable with the distributionPrfẐ = 0g = 1� ~m0~r�1
andPrfẐ = ~r� 1g = ~m0~r�1 . ThenE[Ẑ] = ~m0 andkŶ k1 = ~r� 1. Using the same argument as in (1), we can prove

thatZ �icx Ẑ.

As, for anyx � 0, PrfX = xg = PrfX = xjX � ~rgPrfX � ~rg + PrfX = xjX < ~rgPrfX < ~rg =PrfY = xg~p+ PrfZ = xg(1 � ~p), andPrfX̂ = xg = PrfŶ = xg~p+ PrfẐ = xg(1 � ~p), from Lemma 4, we

have thatX �icx X̂ .
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