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Abstract

VBR compressed video is known to exhibit significant, multiple-tiscale rate variability. A number of
researchers have considered transmitting stored video from a server enaugding smoothing algorithms to
reduce this rate variability. These algorithms exploit client buffgicapabilities and determine a “smooth” rate
transmission schedule, while ensuring that a client buffer neither owerfhor underflows.

In this paper, we investigate how video smoothing impacts the &tatishultiplexing gains available with
such traffic and show that a significant amount of statistical multiptpgiains can still be achieved. We then
examine the implication of these results on network resource managenderglaadmission control when trans-
mitting smoothed stored video using variable-bit-rate (VBR) servith statistical Quality-of-Service (QoS)
guaranteesSpecifically, we present a call admission control scheme based on a Chemodfimethod that uses
a simple, novel traffic model requiring only a few parameters. This schmédes an easy and flexible mech-
anism for supporting multiple VBR service classes with different @afiiirements. We evaluate the efficacy of
the call admission control scheme over a set of MPEG-1 coded video traces.

1 Introduction

Support for Quality-of-Service (QoS) guarantees for téak transport of stored video over high-speed networks
is crucial to the success of many distributed digital muttitia applications, including video-on-demand server
systems, digital libraries, distance learning, and irtve virtual environments. Video, which is typically séorand
transmitted in compressed format, can exhibit significate wariability, often spanning multiple time scales and in
some cases demonstratisglf-similarbehavior [7]. The highly bursty nature of VBR-compresseamhstant-quality
video makes network call admission control and resourceagrement a particularly difficult and complicated task.
Hence techniques for reducing the burstiness (rate viéitighof such video are of significant interest.

*This work was supported by NSF under grant NCR-9206908 arndiRpA under ESD/AVS contract F-19628-92-C-0089. The awthor
can be contacted grzhzhang,kurose,salehi,towsje@cs.umass.edu.



A number of researchers have considered using video snmgp#igorithms to reduce the variability in trans-
mitting stored video from a server to a client across a higées network [6, 17, 18, 21, 22, 27]. These algorithms
exploit client buffering capabilities to determine a “sntigrate transmission schedule, while ensuring that trentli
buffer neither overflows nor underflows. Such techniquesamdmeve significant reduction in rate variability. For
example, over a set of MPEG-1 coded video traces, the snmgpthchnique in [27] is shown to reduce the peak and
standard deviation of the transmitted bit rate by approxityar 0%-85%, when smoothed into a 1 MB client buffer.
These results demonstrate that video smoothing is a powethnique that will likely be deployed for real-time
transport of VBR-compressed stored video.

The objective of this paper is to study the impact of video sthimg on network resource control and man-
agement. Specifically, we investigate the suitability aistant-bit-rate (CBR) and variable-bit-rate (VBR) netiwvor
service models for real-time transport of smoothed videannATM environment, and how such an application
can be supported. CBR service, introduced as an emulatioimanfit-switched networks, provides the abstraction
of a fixed-bandwidth pipe to each network user. In contrag@R\service exploits the cell-switching nature of the
underlying infrastructure and allows statistical muktixihg of traffic streams within a service class, thus engblin
dynamic bandwidth sharing among the streams. Under CBRcgemnetwork resource control and management are
very simple. By requiring users to specify only their peate reequirementhard, deterministiqguarantees can be
supported with peak rate allocation. Under this schemewasession is admitted into the network if and only if
the sum of the peak rates of the on-going sessions and theassios is less than the channel capacity allocated for
CBR services at all network switches along the route of the session. Thus for constant-bit-rate traffic such as
uncompressed audio and video streams, CBR service is thmhahoice of service. On the other hand, for bursty
traffic such as constant-quality VBR-compressed video, G&fice can result in low network utilization as a result
of the peak rate allocation. VBR service offers the podsjbdf improving network utilization by exploiting the
potential statistical multiplexing gain offered by the siyrtraffic. In order for VBR service to be a viable alternativ
to CBR service, however, it must employ relatively simptust resource control and management mechanisms so
that the complexity and cost will not offset the utilizatigain.

By applying video smoothing technigues to real-time vidamsmission, the peak rate and rate variability of the
smoothed video stream can be significantly reduced, thusowirg the network utilization unde€BRservice [8,
22, 27]. However, a completely constant-bit-rate videeatn may require an extremely large client buffer and long
start-up latency [18]. With relatively small client buffe(say, in the range of 64 KB to 1 MB), smoothed video
streams continue to exhibit long-term, slow-time rate algitity. As a consequencéhere is still an opportunity to
exploit statistical multiplexing gainghus offering the possibility of reducing the bandwidtlgu&ed to support a
video stream at a given QoS level and improving networkaattlon.

In the first part of this paper, we evaluate the potentiaisgtteal multiplexing gains of smoothed video streams

under VBR service through a simulation-based empiricalystand establish the advantage of VBR service over
CBR service in supporting real-time transport of storeckold We investigate the effect of correlated video streams

'Note that in the paper, since we are primarily interestecoimgaring VBR and CBR network services for real-time videmsport of
VBR codedvideo streamsstatistical multiplexing gains defined as the percentage of reduction in bandwidth requinde’VBR service



on statistical multiplexing gains, and demonstrate thalrfeethe network to support multiple QoS service levels
with varying robustnessséeSection 3.3 for the definition abbustness Throughout the papelioss rateis used as
the QoS parameter of network services, although other pedoce metrics (e.g., delay or delay jitter) could be also
used as well.

In the second part of the paper, we present a call admissiottot@cheme with a simple, novel traffic model
for VBR service that can effectively realize the potentiatistical multiplexing gains and is capable of support-
ing multiple QoS service levels. The call admission consdieme is based on the well-known Chernoff-bound
method [5, 8, 9, 23]. Our contribution lies in the traffic mbdeed in the scheme. We propose a parsimonious
bounding model approach that uses only a few generic paeastet characterize the marginal distribution of video
streams. Specifically, we introduce a new five-parametéidraodel to capture the marginal distribution (in partic-
ular, its tail) of an arbitrary video stream, either smoatioe unsmoothed. The bounding properties of this model are
established. The parameters can be easily obtained frostdted video. We show that the Chernoff bound method
coupled with this traffic model provides an effective andustbtechnique for estimating the potential statistical
multiplexing gain and predicting the aggregate bandwidtbded to satisfy a given QoS requirement. Moreover, by
appropriately setting some of the parameters in the traftideh the network can easily control the performance of
the proposed call admission control scheme, thereby prayid flexible mechanism to support multiple levels of
VBR service classes with different QoS requirements.

The remainder of the paper is organized as follows. In Se@jave examine the impact of video smoothing on
the statistical characteristics of video traces. In SacBpthe impact of smoothing on statistical multiplexingrggai
is investigated. We study call admission control issue¥/fR service with statistical QoS guarantees in Section 4.
Related work is discussed in Section 5 and the paper is adedlin Section 6.

2 Video Smoothing and itsI mpact on Statistical Char acteristicsof Smoothed Video

Many multimedia applications transmit stored video stredam a server to a client across a high-speed network.
For each stream, the server retrieves data from its videgaggosystem and transfers it onto the high-speed network
according to @ransmission scheduleThe client decodes and periodically displays the dataceives from the
server. Data arriving ahead of its playback time is storealdtient buffer. In order to ensure continuous playback at
the client, the server must transmit the video stream in an@athat ensures that the client buffer neither underflows
nor overflows.

Various video smoothing algorithms have been developed 16,18, 21, 22, 27] that exploit client buffering
capabilities to reduce the rate variability existing in VBBmpressed video, while ensuring that the client buffer
neither overflows nor underflows. The issue of minimizingfdufequirements for stored video streams transmitted

over that undeCBR servicavhen transmitting the same set of VBR coded video streanisapinparable level of QoS éeSection 3.3 for
a precise definition). This should not be confused with agotefinition of statistical multiplexing gain, i.e., thevatitage of statistically
multiplexedVBR codedrideo over the use dEBR codedsideo. This definition has also been frequently used in tieedture, in particular,
in the study of video coding techniquese e.g., [22], where the relative merits of VBR coded videord®BR coded video are studied.
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Figure 1: Optimal smoothing of a 2-hour MPEG-1 encodin&tafr Wars

in a CBR or piece-wise CBR manner is studied in [18, 17]. Thia@ns in [6] examine the issue of minimizing
the number ofate changesn a server transmission schedule. In [21, 22], video smingthsing client decoder
buffer together with a startup delay is studied in an on-iiiteo conferencing setting, and the shortest Euclidean
distance algorithm of [13] is used to produce smoothed sdraasmission schedules under the assumption that
the frame sizes of the video conference trace are knavpmiori. In [27], a smoothing algorithm is presented
that achieves the maximal reduction in rate variability $tored video, producing the “smoothest” possible server
transmission schedule. The intuitive notion of “smootlsiiés formalized using the concept ofajorization[16],

and the optimality of the smoothing algorithm is formallytasished. Among other things, the optimal smoothing
algorithm in [27] produces a transmission schedule thata#is minimal peak rate and variance for a given client
buffer size. Because it optimally reduces rate variabiliteg use this algorithm as the video smoothing technique
throughout the paper.

Figure 1 visually demonstrates the effect of video smogtliiy plotting the transmission sizes over a two-hour
MPEG-1 encoding o$tar Ward7], where both the unsmoothed transmission schedule (@ghss the smoothed
transmission schedules for client buffer sizes of 256 KBaflt) 1 MB (c) are shown. The transmission size is defined
as the number of bits sent by the server per frame unit of tapproximately 42 ms, given the 24 frames/s frame rate
for the Star Warsencoding). In the rest of the paper, we will refer to the srhedttransmission schedule of a video
trace as themoothed tracelt is a sequence of transmission sizes produced by the apgimoothing algorithm of
[27]. Note that implicit in our study of video smoothing tedtues is the assumption that the server transmits ATM
cells within a frame (or a transmission size) periodicakyng the intra-frameleterministic smoothinmethod [28].
Under this assumption, a frame unit of time is the most nhthaice of time reference. In the latter part of the
paper we will see that the marginal distribution of videmsmission rates is the only information required by our
call admission control scheme, any smaller time unit, salf,&aframe unit, will not change the description of the
marginal distribution (only the scale is changed), whilg Emger time unit may alter this description, resulting in a
“coarser” description.

Figure 2 shows the corresponding histograms of the unsradathd smoothed video traces of Figure 1, plotted
with 100 bins (note the different scales of the axes in Fiq)reThese figures indicate that smoothing significantly
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Figure 3: Impact of the Optimal Smoothing on Autocorrelatitructures ofStar Wars

reduces the range of transmission sizes — from 0-200 Kb perdrunit of time in the unsmoothed schedule, to
5-30 Kb per frame unit of time with a 256 KB client buffer, am@-24 Kb per frame unit of time in the case of 1

MB client buffer. Note that the 1 MB client buffer smoothedde (Figure 1(c)) contains a relatively small number
of long, constant rate segments. Furthermore, note thatigtegram of a smoothed trace differs significantly in
appearance from that of the unsmoothed trace. In partighiatail distribution of these histograms have very differ

ent forms: the long, heavy “tail” of the unsmooth8thr Warstrace (Figure 2(a)) is transformed into disconnected,
conspicuously outstanding “spikes” after smoothing infoMB client buffer (Figure 2(c)).

These drastically altered marginal distributions of srhedtvideo streams have important consequences for
traffic modeling. For example, the traffic modeling techmgpresented in [7, 12, 24] that characterize the “heavy-
tailed” marginal distributions are not applicable to theostied video traces. Neither is the DAR(1) traffic model in
[5] which assumes that the marginal distribution can be@pprated by a nhegative geometrical distribution. Clearly,
different techniques are needed for modeling smoothedovideees. In Section 4, we present a simple technigue
for characterizing the marginal distribution that is applile for both smoothed and unsmoothed video streams. The
technique is developed for the purpose of call admissiotrabn

The autocorrelation functions of the unsmoothed and snealotfideo traces are shown in Figure 3. Due to the



MPEG encoding scheme, the unsmoothed trace demonstrairg periodic correlation. In Figures 3 (b) and (c),
this periodicity has been removed by video smoothing. H@nethe slowly decaying correlations at large time
lags indicate that the traces are still highly correlatetiisTs because the smoothed video traces consist of many
relatively long CBR segments. In the frequency domain, thegr spectrums of the video traces (figures of which
are not included here due to space limitations) indicaté tthe variability that still exists is due mostly to slow-
time scale variations, while the fast-time scale variapitias essentially been removed. This observation can also
be visually verified from Figure 1, where we see that the simetvideo streams consist of relatively long CBR
segments.

The reduction or removal of fast-time scale rate variapitias implications on network resource management,
especially buffer allocation within the network. The studyf10, 14] has shown that buffering is only effective in
reducing losses due to variability in the high frequency domand is not effective for handling variability in the
low frequency domain. To accommodate low-frequency vditgbsufficient bandwidtimust be allocated in order
to maintain the targeted QoS guarantee. This is partigutare in the case of smoothed video streams: the stringent
delay requirement of real-time video transport means tmatnetwork buffer allocated for the video streams must
be relatively small. Therefore when the streams are higbtyetated, insufficient bandwidth at one point in time is
likely to lead to consecutive losses over a relatively loagqga of time, thus greatly affecting the client’s QoS. Tdes
observations have been confirmed by our experiments witltodmad video streams. Consequently, in supporting
the real-time transport of smoothed video streams with Qa&antees, network bandwidth allocation becomes
especially critical. At the same time, the amount of buffeaice needed within the network can be greatly reduced
(e.g., to the amount needed in a network switch for tempgratoring data to be forwarded), since buffering is
only effective in reducing losses due to fast-time scale vatiability, of which there is little for smoothed video
streams. In general, the optimal buffer/bandwidth trafielepends on the characteristics of source traffic and is an
interesting subject worth further studgee[15] for results along this line in the context of leaky-batkegulated
sources).

Two advantages are realized with minimal buffer allocafiothe network. First, queueing delay jitter within
the network is greatly reduced, implying that less clierffdnspace is needed to accommodate it. From the client’s
perspective, this also means reduced latency in playbastorsl, minimal buffering in the network limits the effect
of the autocorrelation structure of the user’s traffic on ¢verall average loss rate [26]. Hence, the difficult task
of characterizing the correlation structure of the useffitras much less important. For these reasons, we will
assume that the network employs very little buffering inédly for real-time video transport, and in fact, we model
a network switch as a bufferless multiplexer in the remairafethe paper. Under such a model, only marginal
distribution information (e.qg., Figure 2) is needed infiagpecification.

3 Statistical Multiplexing of Smoothed Video Streams

As shown in the previous section, slow-time scale varigbdiill exists in smoothed video streams, particularly
with relatively small client buffers. In this section, we pinically determine the amount of statistical multiplegin



Name of Beauty | CNN | Jurassic| MTV | Princess| Silence of| Soccer| Star| Termi- | Wizard
Video & Beast | News Park | News Bride | the Lambs Wars | nator| ofOz
Mean Rate 40.0| 40.0 13.1| 24.6 40.0 7.3 27.1| 15.6 10.9 41.2
Peak Rate 251.7| 246.6 119.6| 229.2 243.6 134.2| 187.2| 185.3 79.6| 343.1

Table 1: Statistics of the 10 MPEG-1 Coded Video Traces (ifFkdime)

gain that can be realized when smoothed video streams aregaged at a network switch or router. An important
assumption underlying most analyses of statistical makipg gain is that traffic from different sources are inde-
pendent of each other. We first evaluate the potential statisnultiplexing gains of smoothed video streams under
this independent source assumption, and then investigateffect of correlated video streams. Finally, we discuss
the implication of this statistical multiplexing gain ontwerk service models and QoS guarantees.

3.1 Independent Video Streams

To investigate the statistical multiplexing gain, we usénapde simulation model. We consider a bufferless mul-
tiplexer withn independent video streams. The QoS requirement in our stutihe loss rate encountered by the
video streams at the multiplexer, which is calculated asdtie of the total amount of loss over the total amount of
video transmitted. For a given QoS requirement (say a ldssafal0—%), we perform 500 independent simulation
runs to empirically obtain the minimum bandwidth neededatiisfy the given QoS requirement. For each run, we
compute the minimum bandwidth required to support the givetwork load without violating the specified QoS
requirement. The maximum value among all runs is used asdicaiion of bandwidth needed to achieve the target
level QoS.

In simulating independent video streams, we assume that thideo streams arriving at the multiplexer are
randomly displaced from each other. In other words, for eagdbo stream, the starting frame is equally likely to be
any one of the video frames, with appropriate “wrap-arouttdEnsure that the video streams are of the same length.

To quantify the statistical multiplexing gain, we use thenfala (1 — r*/7) x 100 as its formal definition, where
r* is the aggregate bandwidth required to satisfy a given Qq@irement (say, no loss) for all video streams in the
simulation and’ is the peak rate of the aggregate load (which is the sum ofe¢hk mate of the individual streams).
Hence, the statistical multiplexing gain thus defined regnés the fractional reduction in the aggregate bandwidth
requirement needed in the simulation in comparison to patakallocation. It thus quantifies the potential utilizatio
improvement that can be realized by VBR service over CBRisemith peak rate allocation.

Figure 4 shows the statistical multiplexing gain as a furctif number of sources for smoothed video streams
with various client buffer sizes, as well as for the unsmedtkideo streams. In case (a), all sources are homo-
geneous, and are generated from the s&tae Warstrace. Although we us&tar Warsin this (and all other)
homogeneous-source experiments, the results hold guedlitafor all of the video traces in our test set. In case (b),

2 Another set of independent runs are performed to test thestabss of the aggregate bandwidth value. For stringestréiss such as
107° or 10~ ¢ (the latter loss rate essentially yields a lossless trassion). The maximum bandwidth obtained from the first setOff &ins
is almost always sufficient to satisfy the given QoS in the@sdcset of 500 runs.
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sources are generated from 10 different video traces (ffrezik/mean rates are listed in Table 1). The number of
sources from each type of video are increased uniformly esitimber of sources increases. Hence an aggregation
of 100 sources consists of 10 sources from each type. The @p#rement for this example is that no loss oc-
curs at the multiplexer during the entire transmission efalggregated video streams. The figure indicates that for
unsmoothed video streamspatential statistical multiplexing gain of 70%-80% is realizable, ilgifor smoothed
streams with various client buffer sizes, a potential statl multiplexing gain of 10%-60% is realizable. Thus,
there are still significant statistical multiplexing gaits be exploited by VBR service when individual streams are

smoothed, especially when client buffers are relativelgilsm
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Figure 5(a) shows the effect of statistical multiplexing tbe per-stream bandwidth requirement (normalized
by the mean rate) to achieve lossless transport when albstteams are homogeneo8tar Warstraces, either
unsmoothed or smoothed. To emphasize the potential &tatistultiplexing gains after smoothing, the same curves
for the smoothed video streams in Figure 5(a) are reprodirc&dgure 5(b) alone (with a different y-axis scale).
Note that since the mean rate for both smoothed video streamhsinsmoothed video streams are the same, the
normalized bandwidth required when there is a single sosihosvs the impact of video smoothing on bandwidth
reduction. This illustrates that video smoothing can aahisignificant network utilization improvement under
CBR service. However, the network utilization can be furtimproved if VBR service is used, as these figures
demonstrate that statistical multiplexing gains can $icgmtly reduce the bandwidth required to support a given
QoS level. For example, consider an OC-3 link which has a Watitl of approximately 155 Mb/s. Suppose we
have a client buffer of size 256 KB. Given the software MPEGdedStar Warsvideo trace (which has an average
rate of roughly 0.73 Mb/s), about 185 smooti®#tdr Warsstreams can be supported with no loss under CBR service
using peak rate allocation. Under VBR service, our simafatesults show thatn additional119 Star Warsstreams
can be supported without experiencing any loss. This yiefutstential67% utilization gain. However, this potential
utilization gain is by no means guaranteed due to the nafisgtistical multiplexing. Traffic arrival patterns play a
critical role in determining the realizable statistical ltijplexing gain.

3.2 Corrdated Video Streams

The assumption that video start times are independent bf@her may sometimes be violated in practice. For ex-
ample, in a video-on-demand system, many users may startinwgtvideos within a short time span, thus producing
correlated video streams. We next investigate the impacbo€lated video streams on the statistical multiplexing
gain.

To investigate this question, we consider scenarios in kivhitvideo streams are constrained to begin within a
short interval of time, say of length. minutes. Within this time interval, start times are unifdyirindependently
and identically distributed. In our simulation, this capends to randomly choosing the start of a video stream from
the firstA minutes of the video trace.

Figure 6 illustrates the aggregation of 10 and 82fr Warssources (smoothed with 1 MB client buffers) under
various arrival patterns, where the aggregate instantemeandwidth requirement per frame time unit is plotted
over the entire duration of the video. The solid line depetsample path of the aggregate video stream where
each individual source arrives at the multiplexedependentlywhile the two dotted lines depict sample paths of
aggregation of video streams when all sources arrive withiinuteor 10 minutesrespectively. From the figure,
we note that when all sources are homogeneous, the aggetgsam under correlated video streams is remarkably
burstier and has a considerably larger peak rate than undepéendent video streams.

Figure 7 illustrates the aggregation of 10 and 100 souroes 10 different video traces (all smoothed with 1 MB
client buffers) under the same arrival patterns. In casel@yources from 10 different video traces are aggregated.
In this case, due to the heterogeneous mix of sources, thdittlé observable difference in the behavior of the
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Figure 8: Statistical Multiplexing gain under Correlatedi®b Streams: Smoothed Video Streams, No Loss

correlated and independent video streams. The effect bexamre visible when the number of video sources from
the same video traces increases, as shown in case (b), wtated af 100 sources, 10 from each video trace, are
aggregated. The maximum aggregate bandwidth requiremehéil minute correlated stream case is considerably
larger than that in the independent stream case (compareetieof the fine dotted line and that of the solid line).
However, the difference between the two cases is less @igiatomparison with the homogeneous case consisting
only of Star Warsstreams.

The impact of correlated video streams on statistical pleiting gain is shown in Figure 8 where video streams
are smoothed into a 1 MB client buffer. Clearly, correlatédbo streams have an enormous impact on aggregation
of homogeneous sources, leaving almost no statisticalipteding gains to be exploited. On the other hand, there
is much less severe impact when heterogeneous streamsgaegatgd. In this case, the heterogeneity of the video
streams helps alleviate the adverse impact of correlatiothe statistical multiplexing gain.

3.3 Statistical Multiplexing and its Implications on Network Service Models and QoS Guar antees

We have seen that VBR service can significantly improve netwitilization by exploiting the potential statistical
multiplexing gains available with inherently bursty netWdraffic. However, we have also seen that the potential
statistical multiplexing gain can be diminished by cortethvideo streams. This observation illustrates an impbrta
dimension of network service models — the robustness of artwervices with QoS guarantees. For a network
service model that aims to provide VBR service wathtistical QoS guarantees by explicitly exploiting statistical
multiplexing gain, the ternstatistical takes on two meanings: one at the call level, the other atehece level.

At the call level,statistical QoS guarantees means that QoS fluctuations may occur so dahgyaremain within
the tolerance level specified by the user (e.g., a cell lagsaat mostl0—%), during the call. This is in contrast
to deterministicQoS guarantees, where the QoS (e.g., no cell loss) is hardrgead throughout the duration of
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the call. At the service levektatistical servicepermits the network to fail to provide the promised callde@oS
guarantee (referred to asrvice failurein the rest of the paper), for example, in ttaee event that the users produce
correlated traffic.Robustnessf a network service is then represented by the likelihoad #promisedcall-level
QoS guarantee would fail, i.e., the probability of serviadgufre. This is in contrast tguaranteed servicavhere as
long as the user complies with its traffic specification, teevork promises to deliver the QoS it has guaranteed to
the user. In order to ensure user compliance, traffic spatiific for guaranteed services must be enforceable and
traffic policing and reshaping may be needed within the nekwo

From the network’s perspective, in order to provide for these needs of users, a range of service classes with
different levels of service robustness should be provid®ddoing so, the network can exploit, to various degrees,
potential statistical multiplexing gains and thus incezastwork utilization while still maintaining the targetllea
level QoS guarantee. In other words, the amount of bandwatltitated to a given video stream would differ
for services with the same target call-level QoS guarantgenfith varying robustness, depending on how much
potential statistical multiplexing gains are to be realiz&ince the extent of statistical multiplexing gains theat c
be realized depends on the user behaviors, which are almpstsiible to predict and characterize, the robustness
of a network service is difficult to quantify mathematicalpespite this difficulty, the robustness of a service may
still be empirically verified or tested by the network seevjarovider. Now the fundamental question is: How can we
design an effective call admission control scheme thatigesva flexible mechanism to support a range of network
services with varying robustness? In the next section, e #asystematic approach to address this problem. In
particular, we propose @aniform call admission control scheme that has the flexibility ofvyiiing multiple levels
of QoS services with varying robustness.

As an aside, we point out that in addition to providing mudifevels of QoS services with varying robust-
ness through call admission control, other provisions maynlade by either the network or by users to ensure the
promised call-level QoS guarantees can be successfully Fatexample, in a video-on-demand system, batch-
ing [4] of video requests fohot videosthat arrive within a short period of time, or playback of hadeos at fixed
intervals, can be used to alleviate the impact of correlaigelo streams.

4 Call Admission Control for Smoothed Video

In the previous section, we demonstrated the potentiagtal multiplexing gains available for both smoothed and
unsmoothed video streams, and argued for the need to pravatee of QoS guarantee service classes with varying
degrees of service robustness. In order to effectivelyizedahe potential statistical multiplexing gains, relativ
simple, robust call admission control mechanisms shoukehiygloyed so that the complexity and cost will not offset
the utilization gain. In this section we first describe a @lodrbound-based call admission control algorithm and
then study methods for characterizing the sources’ margiis&ibution. In particular, we present a simple, novel
three-state traffic model with only five parameters that careasily obtained from the stored video. Using this
simple traffic model, we devise a uniform call admission corécheme based on the Chernoff bound method, and
show that it provides an effective and flexible mechanismuggpsert multiple levels of VBR service classes with
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different QoS requirements.

4.1 Chernoff-Bound-Based Call Admission Control

Consider a bufferless multiplexer where the channel cép&ci. Suppose there atetypes of sources, and there
are J; sources of type, 1 < i < I. Atany timet = 0, 1,.. ., the amount of traffic arriving from sourcgeof typei
is a;;(t). For each type, we assume that;;(¢) has a stationary distribution given byfg-state random variable;

which takes the valueé” < réi) <...< rf,? In particular,P{a;; = 7",(:)} = p,(f). In other words, with probability
pé“, a;j is in statek, and while in this state, the source generad,@samount of traffic. Hence the total amount

of traffic at a random time ia = S/, Zj;l a;j. Given thata;; are all independent, the loss probability at the
multiplexer can be estimated by the following well-kno@hernoff Bound3, 5] approximation:

I J;
P?”{a 2 C} = PT‘{Z Z(J,Z] 2 C} ~ eiA*(C) (1)

i=1j=1
where A* (1) = supyso{0u — AO)}, A(0) = 1, Jilog My(6) and M; (6) = S plefmi” is the moment
generating function of;;;.

As ¢ — oo with J;/c = O(1), 1 < i < I, the Chernoff Bound (1) can be further refined [20, 2, 1, 5,\8] b
adding a prefactor:

]_ *
Pria>ctm ——— e M (2)
0*\/2w A" (6*)
wheref* is the solution to\’'(#) = c¢. HereA’(#) andA” (#) are the first and second derivatives/\df).

The Chernoff bound can be used to estimate the aggregatevioihd* that is needed to satisfy a given loss
probability bound\ at the multiplexer, i.e.Pr{a > ¢*} < X. From (2), we have that the estimated bandwititins
given by the following expression:

= Mi(o")

* ; )
c 7;]ZMZ‘(9*) 3)
wheref* is the solution to the following equation:
! 1 n 1
logA = A(f) — OA'(0) — logh — 3 log A" () — 3 log(2m). 4

As the peak rate of the aggregate stream is 3"/, qu(,? the statistical multiplexing gain estimated using the
Chernoff bound method i@ — ¢*/#) * 100.

A generic call admission control algorithm based on the @b#hound operates as follows. Suppose a new
call of source typé arrives. It is accepted if the new aggregate bandwidth eséini, computed using (3) with,
replaced byJ; + 1, is less tham, the channel capacity of the multiplexer.

13



The cost of the call admission algorithm lies mainly in thenpoitation of the marginal moment generating
function M;(6) for each source and the solution to the nonlinear equatipnifdour experience, the latter can be
solved very fast using the standard Newton-Bisection ntketiiche major cost is associated with the computation
of M;(#) and its first and second derivatives used in (3) and (4). Theima moment generating function is

computed from source marginal distribution informati{im?,rff}),l <k < K;},1<1i<1,provided by the user
and maintained by the network. Clearly, the computationat s a function of the number of states used to describe
the source marginal distribution.

In applying the above call admission algorithm to storedewidone important issue is the manner in which the
source’s marginal distribution is specified. At first glanttés may not seem to be a difficult issue. For stored video,
it appears that the server can easily obtain the marginaitditon information from a video trace and simply supply
it to the network. However, from the perspective of the nekwithis approach may not be feasible in practice, since
maintaining distribution information for hundreds or tisamds of traffic streams can be formidable. Therefore, a
key issue is how to characterize the marginal distributiba smoothed or unsmoothed video trace in a manner that
permits it to provide sufficient information for the netwdikexploit statistical multiplexing gains, while at the sam
time minimizing the amount of information and the procegsinsts associated with this information. This question
is particularly challenging, as we have shown that videoathing drastically alters the marginal distribution of
video traces.

The focus of the remainder of the paper is thus on the margiistdibution characterization. In Section 4.2,
we look at a standard method for characterizing the margiissibution — the histogram method [29]. Under this
method, by increasing the number of bins used to describkisiegram, a more accurate bandwidth estimation can
be obtained using the Chernoff-bound method. However biter performance is achieved by incurring greater
network overhead. Furthermore, to provide multiple QoSranie services with varying robustness, a variable
number of user specifiable parameters needs to be suppaortkd tall admission control and traffic specification
schemes, adding more complexity to the network control aadagement mechanism. To overcome these problems,
in Section 4.3, a different approach for characterizingrttazginal distribution is proposed. Instead of requiring th
user to specify the marginal distribution directly, as ie ttase of the histogram method, the network only requests
the user to specify a few generic parameters of the distabusuch as the peak and mean rates) and constructs a
distribution that matches these parameters. We presemipdesinovel five-parameter traffic model and show that by
appropriately choosing parameter values, the five-pammntetffic model demonstrates comparable (if not superior)
performance to the histogram method. The five-parameteehmdsents a uniform traffic specification for stored
video to the call admission control scheme without incugréxtra overhead and complexity, thereby providing a
flexible mechanism to support multiple levels of QoS sewiéh varying robustness.

4.2 Characterization of Marginal Distribution Using Histograms

The histogram method is a standard method for providing @etis representation of a source marginal distribution.
In this section, we evaluate the Chernoff-bound-basedadafiission control algorithm using the histogram method.
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Figure 9: Chernoff Bound Estimation with Histogram: Unsrisal Streams, Loss Raté—6

The marginal distribution of a video trace can be charanteriusing ak -bin histogram as follows. Let be
the peak rate of the given trace. We divide the ra(ige| into K equal intervals of widthy = % (i.e., bins for
histogram). The empirical marginal distribution is thedl@ected by counting the number of transmission sizes that
fall into each of theK bins. In other words, the marginal distribution is desality a K -state random variabl&

with a distribution specified by a set & (py,r,) pairs. Forl < k < K, the probability thatl” is in statek is
_ \{i:(kfl)*1;)\7<1)i§k*w}\

Dk where| - | denotes the cardinality of a set,denotes the transmission size at frame time

i, N is the length of the video, ang. = & = w is the amount of traffic generated in this state

We evaluate the performance of the Chernoff-bound-bastddaission control algorithm using histogram
characterizations of source marginal distributions akWed. For a given loss rate, we compare the bandwidth
estimated by the Chernoff bound method using equation (8) thiat obtained from simulation. The simulation
set-up is the same as in Section 3.

The results are shown in Figure 9 for the unsmoothed videasts, and in Figure 10 for the smoothed video
streams (with 512 KB client buffers). In both figures, sosritecase (a) are homogeneous (generated frorStiue
Warstrace), whereas sources in case (b) are generated fromféfedifvideo traces with an equal number of sources
of each type. In all cases, we see that as the number of bidsaskescribe the marginal distributions increases, the
bandwidth requirements estimated by the Chernoff boundhateapproach the simulation results. This is because
with more bins, the marginal distributions of the video #a@re more accurately characterized.

In Figure 11, the ratios of the aggregate bandwidth estichbtethe Chernoff bound to the aggregate mean
rate are shown for unsmoothed and smoothed video streanis &2 KB client buffers), along with the peak rate

#Choosingr;, this way results in a histogram that generally has a largearmiban the original video trace but the same peak rate.
can also be chosen as the mean of all transmission sizes kn Bihis results in a histogram that has the same mean as thieabrime, but
generally with a smaller peak rate.
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allocation and the simulation result. The figure indicatew Imuch statistical multiplexing gain can be realized

when the Chernoff-bound based call admission control sehisnemployed in combination with the histogram
method with various number of bins.
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A K-bin histogram requires the specificationff- 1 parameters by a source: the peak ratend the probabili-

ties of theK bins,p, ...

, pi . By appropriate choice dk, the network can define different levels of service classes

with varying degrees of robustness of QoS guarantees. Fongbe, by choosing( = 3, the network makes a
rather conservative assumption about user behavior, mstef its allocation of bandwidth to provide the requested

service to the users. By choosilg = 5, or K = 10, or larger, the network makes increasingly optimistic and
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aggressive assumptions about user behavior (Figures 9@ndHerefore, greater statistical multiplexing gains can
be realized, but with the risk of increasing the likelihoddservice failure. Larger values df also result in more
overhead and complexity for the network to maintain state@arform call admission control, counter-balancing the
benefits resulting from higher network utilization. To soppmultiple levels of QoS services with varying robust-
ness, the network has to support a call admission controharésm with a traffic specification scheme that requires
a different number of bins to be provided by the user for eathice level, therefore adding more complexity in the
network resource management.

4.3 Parsimonious Bounding Modelsfor Marginal Distribution Characterization

In this section we take a very different approach to the mnobbf characterizing the source marginal distribution
for the purpose of call admission control. The key idea betire approach is to have the network construct an
approximation to the user’s marginal distribution, fromerywsmall number of parameters provided by the user.
Thus we consider the following problem: given a user traffiedfication described by a set of parameters such as
the mean and peak rates of a source, how should the netwoskrgcina marginal distribution that matches the given
user parameters? Clearly there are many possible distitsutTraffic models that maleepriori assumptions about
the user marginal distribution, e.g., that it can be capting a Gamma or Lognormal or Pareto distribution, have
limited applicability for stored video, given our results $ection 2. Since the network does not have knowledge
about the user’s marginal distribution beyond the specifieel parameters, what assumption should the network
make in order to satisfy its QoS? In answering this questiod take a bounding approach and assume that the
network should make theost conservativassumption so as to account for the “worst-case” margirstidution

that a user may have. This leads to the construction of a malrdistribution such that the bandwidth estimated
using the Chernoff bound method with this distribution giieanupperbound on the bandwidth estimate that would
result from usingany marginal distribution matching the given set of user-siiegiparameters.

To address this problem, we turn to the theory of stochastlerlng. Given two random variable¥ andY
with respective distributiong” and G, we say X is smaller thanY” underincreasing convex orderingdenoted
X <jep Y O F <0 G), orinformally, X is stochastically less variablthanY’, if E[h(X)] < E[h(Y)] for all
increasing, convex functions. It can be shownsge e.g., p.271 of [25]) that ifX andY are nonnegative such
that E[X]| = E[Y], thenX <., Y if and only if E[h(X)] < E[h(Y)] for all convexh. This ordering is called
variability orderingin [25]. Intuitively X <,., Y means thafX is less variable thal” in the sense that™ gives
more weight to the extreme values. In particular, we have thar(X) < Var(Y) and || X ||« < [|Y|lcc Where
| - |loo is the essential supremum of a random variable, defingdds, = inf{z : Pr{X > z} = 0}*.

With this notion of stochastic variability, the followingpéorem provides a basis for constructing a worst-case

distribution. Informally, the theorem states that amorigaidom variables that have the same user-specified pa-
rameters, the random variable that has the worst-casébdistn is the one that istochastically most variable

*Intuitively, the essential supremum of a random variabthés'peak”, or maximal value ak . If X denotes a bounded stationary random
arrival rate process, thghX ||« is the peak rate of the process.
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Theorem 1 Consider a bufferless multiplexer with channel capaeitfor 1 < i < 1,1 < j < J;, leta;; denote

a random variable with the stationary marginal distributiof source; of type:, and leta;; be a corresponding
random variable representing the marginal distributionosbn by the network which matches the user specified
parameters. In particular, we assume thiglu; ;] = F[a;;], i.e., the mean of the marginal distribution specified by the
user is matched by the random variable chosen by the netwafines = Zf:1 Zj;l a;j,anda = Zf:1 Zj;l Q.
Then, a sufficient condition for the network to provide anargmund on the loss probability a user may experience,
i.e.,Pr{a > c} < Pr{a > c}, as estimated by the Chernoff bodr(d), is thata;; <;c, a;; for all i andj.

Proof: From (1), it suffices to show that 2*(©) < ¢=A"(9), or A*(¢) < A*(c). From the definition oft* (c), this is
equivalent to
sup{fc — A(0)} < sup{fc — A(0)}. (5)
9>0 9>0

Clearly, (5) holds ifA(8) < A(#) for all § > 0.
Recall thatA (6) = Y7, Z.‘j]i:] log M;;(6) and M;;(0) = E[e?®i]. Sincee’X is a convex function inX and

aij <icw G;;, We have that\ (9) < A(6) for all § > 0. .

431 SimpleParsimonious Models

Based on Theorem 1, we now construct two simple bounding leeddch require only a small number of param-
eters (i.e.parsimoniousnodels). Moreover, these parameters are easy to computeafradeo trace.

Perhaps the simplest way to characterize the marginaltditon of a video is to use a model with only two
parameters: the peak rate,and the mean rate;. Among all random variables with the same mean and peak rate,
the moststochastically variableone, denotedX, takes two values:X = 0 with probability 1 — = and X = 7

with probability . X has the marginal distribution of a two-state on-off modeassumes two extreme behaviors

of a source, either transmitting at peak rate with probgbit./#, or not transmitting. Thus intuitivelyX has the
“burstiest” behavior. This fact is stated formally in Theor 2 (for a similar result, see [19]).

As we shall see, the two-state model based only on the megpeakdates of a source results in a rather conser-
vative bandwidth estimate by the Chernoff bound methodhénfollowing, we thus present a simple “three-state”,
five-parameter model to characterize the marginal didiobuof a video: in addition to the two parameters repre-
senting the meam and the peak of the marginal distribution, we introduce three more pagters to characterize
the “tail” of the marginal distribution. LeX be the random variable that has the empirical marginalidigton of
a video trace. The three new parametérg, andm, are defined by the following relations.

Pr{X > 7} = pandE[X|X > 7] = . 6)

5Since the exponential term in (2) is the dominant term whemilmber of sources are large, we ignore the prefactor teem \ie use
(1) instead) in this argument.
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Intuitively, 7 defines the rate at which the tail stargsis the probability that a transmission unit comes from the
tail, andm specifies how “heavy” the tail is (whilé is the “tip” of the tail, andm the center of the mass). The
relationship of these parameters is represented visualigure 12. The three parameters can be easily computed
from a video trace.

Given these parameters, the discrete random variable hetlvorst-case distributiony , is defined as follows.
ForO0 <p <1,

with probability (1 — 27)g;
— 1 with probability 7 g;
with probability (1 — 2=L);;

with probability =L

T

= O

S
I

(7)

1l

=

whereg=1-p=Pr{X <r7}andm’' = E[X|X <7]. Asm = E[X] = E[X|X < 7|Pr{X <7} + E[X|X >
FIPr{X > 7} = m'q+mp, m' = "L, We refer toX as a “three-state variable” sin¢e— 1 and# can be
essentially treated as a single stateXofn practicé.

In the caseg = 0 or p = 1, the three-state model degenerates into the two-statelesieribed earlier.

Itis easy to check tha[X] = m, || X ||ec = 7, Pr{X >} = pandE[X|X > X| = . Theorem 2 states that
this 3-state model has timeost stochastically variablsarginal distribution among all discrete random variabtes
with the matching parameters.

Theorem 2
(1) If X is an arbitrary nonnegative random variable such ti&¢X) = m and | X || = 7, and X is defined by

Pr{X =0} =1 m/i andPr{X = #} = m/r, thenX <., X.

SIn practice, is generally very large. Hence the difference between1 and7 is negligible. The separation of the two in the definition
of X is purely due to a technical reason.

19



: : : : : ; : :
Peak Rate —— 8e+06 | Peak Rate/ *
5e+06 | 2-State Chern. Bd -+--

3-State Cheyn. Bd: p~=0.25 ------ * 7e+06 |
3-State Chlern. Bd: p~=0.5 ---- &
L 5-Bin Chern. Bd -x T i I
4e+06 0-Bin Chern. Bd & P 6e+06 | 10-Blns(_3 %rlr;.tigg .
Simulation —-— 7 X .7 7 g

5e+06
3e+06

4e+06 |

2e+06 3e+06 |

2e+06
1e+06

Aggregate Bandwidth (bits per frame unit)
Aggregate Bandwidth (bits per frame unit)

1le+06 |

L L L L L L L L
20 40 60 80 100 20 40 60 80 100

No. of Sources No. of Sources
(a) Star Wars (b) 10differentvideos

Figure 13: Comparison of Marginal Distribution Models: Wmsothed Streams, Loss Rat@©

(2) If X is an arbitrary nonnegative discrete random variable suttt#[X| = m,|| X ||oc =7, Pr{X > 7} =p
and E[X|X > 7] = m, and X is defined as in (7), theW <;., X.

The proof of the theorem can be found in Appendix A.

4.3.2 Evaluation

We now examine the performance of the two-state and thede-gtodels as the parameteis varied. Figure 13
shows the performance for unsmoothed video streams, andeFlg for smoothed video streams with 512 KB client
buffers. For comparison, the performances of the histogrased method with 5 and 10 bins are also shown in the
figures. Forp = 0.5, the bandwidth estimated by the Chernoff bound method isecto the bandwidth seen by
the simulation. A varies from 0.5 to 0.05 in both figures, the bandwidth estidatsing the three-state model
approaches the bandwidth estimated using the two-statelm®iilar results are obtained by varyindgrom m to

7 instead of varying. Due to space limitation, these results are not shown here.

In contrast to the histogram based method, the three-siadelnan provide comparable, if not better, bandwidth
estimates with an appropriate choicepofThis is achieved without requiring as many parameters esigtogram-
based method. Therefore, without any extra overhead, tee-$tate model is able to provide bandwidth estimates
that range from fairly optimistic (say, by choosipg= 0.5) to rather conservative (say,= 0.05). This property
of the three-state model can be employed by the network toal€ffferent levels of service classes. For example,
the network can define three different levels of servicestmyosings = 0.5, p = 0.25 andp = 0.05. The user
can choose the appropriate service class depending onv#efeservice robustness required. Since the parameters
needed for the traffic specification are fixed and identicalalb service classes, the Chernoff-bound-based call
admission algorithm has the same implementation.
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An additional example is shown in Figure 15, where a morerdaenix of video streams is considered. In this
example, eight of the ten video traces are smoothed usindBl&ient buffers, whereas one trac8tar War$ is
smoothed using a 1 MB client buffer, and another tratzérd of O} is smoothed using a 256 KB client buffer.
Furthermore, the number of sources of each video type ingkdgnple are not evenly distributed. For eight of
the video traces (other theBtar Warsand Wizard of O, the number of sources of each type increases gradually
from 1 to 5, while the number ddtar Warssources increases from 1 to 40 and the numb&¥iaard of Ozsources
increases from 1 to 20. Figure 15(a) presents the resulthéoscenario where all video streams arrive at a network
nodeindependently In Figure 15(b), we consider a scenario withrrelatedvideo streams to illustrate the need
to provide different service levels to account for possitierelated user behaviors. In this scenario, $ier Wars
sources all arrive within a period of 10 minutes, and Wieard of Ozsources within a period of 1 minute. We see
that the correlated video streams significantly increaseatitual aggregate bandwidth needed to satisfy the desired
QoS service level of loss rate d9 5. Usingp = 0.25 andp = 0.5 for bandwidth estimation in the Chernoff bound
methodunderestimateshe bandwidth requirement under such correlated videastse thus leading to service
failures. The histogram method with 5 bins provides a badtwestimation that is barely sufficient. On the other
hand, the bandwidth estimated usjing- 0.05 or by the two-state model is sufficient to accommodate theetaded
video streams with the target QoS guarantee, while stilizieg 10%-15% statistical multiplexing gain.

Clearly there is a tradeoff between the robustness of a mktsesvice and the amount of statistical multiplexing
gain realized. The three-state model provides a simple aribfé mechanism to balance these two concerns. Using
this model, we can fix the call-level QoS guarantee while wgnthe robustness of the service by setting some
parameters of the model, the values of which may be detethiigextensive testing to assess the trade-off between
the service robustness and the realization of statistiedtiplexing gain. For example, for a given loss rate, by
choosingp = 0.05, p = 0.25 andp = 0.5, the network can provide three levels of QoS service classaade off
robustness and realization of statistical multiplexingg#n various degrees. These differential network ses/gzn
be implemented in combination with a network pricing schehat reflects the per-connection bandwidth allocation
made by the network for these services: the more robustcge(eig., the service with= 0.05) could charge more
for setting up a connection than the less robust one (e g.séhvice withp = 0.5). In any case, the appropriate
choice of the parameters used in the three-state model alegcal role in determining the robustness of the QoS
services provided by the network.

The following high-level guidelines summarize the call agsion control procedure based on the three-state
model.

o User:
1) Chooses the desired loss rate guarantaad appropriate level of QoS service (represented)by
2) Provides the additional four traffic parametets, ¢, n andr) describing the marginal distribution of the
new video stream.

e Network: At each node along the route to be traversed by the videonstree network
1) Computes the worst-case distribution matching the userpeters using formula (7);
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2) Estimates the bandwidth required to support the targstdate\ (using equations (3) and (4));

3) Rejects the user connection set-up request if the alaitemdwidth at the node ot sufficient to support
the new video stream, else proceeds to the next node on tke ifdhere is any, accepting the new video
stream if the current node is the last one.

In the above description, we have used the marginal disinibwf a video stream at the network edge to approximate
the distribution at a node within the network. Because ofiiserete-time bufferless model used in our approach, we
expect this approximation to be conservative, as lossegriiieg at the upstream nodes would in effect “re-shape”
the marginal distribution so that losses are reduced at thanstream nodes. However, a study of the end-to-end
behavior of the system is needed to verify this conjecture.

5 Related Work

There is a vast volume of literature on issues related téstitatl multiplexing and call admission control. We will
discuss some of the recent work that is most relevant to odk.wo

The Chernoff bound is a well-known method that has been egpb call admission control with statistical
QoS [9, 5, 8, 31]. In [5], a combination of effective bandwisltand the Chernoff bound (called tR#ernoff-
Dominant Eigenvaluenethod) is proposed for call admission control at a netwoukigiexer with shared buffers.
The method is evaluated using video-conferencing tracgmrsimonious DAR(1) model is employed to specify the
source traffic. However, the parsimonious DAR(1) modekretin the fact that the marginal distribution of the video
conferencing traces can be approximated by a negative gaoahelistribution. Our experience shows that DAR(1)
is not appropriate for both smoothed and unsmoothed MPEGmssed video streams because of the long-range
dependence exhibited by the traces. A histogram-baseaadamiission control scheme is proposed in [29], and the
loss probability of the aggregate traffic at a network switkltomputed using convolution, incurring formidable
computational costs when the number of sources is larg2) fhe issue of statistical multiplexing gain is briefly
studied using a simple two-parameter model and a call aibnisentrol scheme that uses the binomial distribution
to estimate loss probability. When the number of sourcearigel the computation of the binomial distribution
becomes very cumbersome. In this case, the Chernoff bouvitless a very good estimate.

Recently, several new network services have been propokith nely on the implicit exploitation of statistical
multiplexing gain by adding a renegotiation feature to CBRviee [8], and to VBR service with deterministic
QoS guarantees [30]. In [8], the entire rate change profile @negotiated CBR (RCBR) stream is characterized
by a Markovian model and the Chernoff bound method is useddthadmission control to limit the probability of
service failure. From the call admission control perspegtive can treat an RCBR stream as a VBR stream. When a
very small service failure probability is desired, our esipece shows that the Chernoff-bound-based call admission
control algorithm usually provides a bandwidth estimatibat is sufficiently conservative that no renegotiation is
actually needed on a per-stream basis to provide the taegeice level. Hence, VBR service may be likewise
employed for such video streams without requiring any explenegotiation.
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Several methods have been used in characterizing the “Ha#deg” marginal distribution of unsmoothed video
traces ¢ee e.g., [7, 12, 24]), where a known distribution, such as Gaiareto, or Lognormal, is used to approx-
imate the marginal distribution in order to obtain a parsioos characterization. As we have seen, these methods
are not applicable to the characterization of the margiistfibution of smoothediideo streams.

6 Conclusion

In this paper, we have studied the problem of real-time pari®f stored video using variable-bit-rate (VBR) service
with statistical QoS guarantees. In particular, we have investigated thadingf video smoothing on statistical
multiplexing gains and its implication in network resounte@nagement and call admission control. We started
by investigating the issue of statistical multiplexing givhen streams are smoothed and showed how statistical
multiplexing gains can be exploited to improve networkizgtion. We then looked at the issues of call admission
control to support VBR service with statistical QoS guaeaist We presented a call admission control scheme based
on the Chernoff-bound method that uses a simple five-pasameidel for traffic specification. The scheme provides
an effective and flexible mechanism to support differentlewf QoS services with statistical QoS guarantees. We
evaluated the efficacy of the scheme over a set of MPEG-1 ocdded traces.

In summary, our work supports the contention that by exghliexploiting statistical multiplexing gain, VBR
service with statistical QoS guarantees can provide a eialiernative to CBR service with deterministic QoS
guarantees in supporting real-time transport for storeé@i Although our results are established solely through
evaluation using a set of MPEG-1 coded video traces, wevedliet they will also hold qualitatively for other VBR
coded video streams.

Our work is only an initial study of the problem of real-tinransport of stored video; there are still many aspects
of the problem that must be investigated such as the impa¢C#t functionality on network service and network
resource control and management. In terms of call admis=iatrol, our scheme needs to be further validated in a
more complex and dynamic environment. Extending the schierimeorporate certain measurement-based features
is another interesting topic of future research. Carefal@tion of the computational cost of our call admission
control scheme in a “real” environment, along with those thfeo methods proposed in the literature, is also an
important research subject.
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A Appendix

In this appendix, we prove Theorem 2. Before we prove therdmpwe first state an important property of the
increasing convex ordering, and then establish a usefuhigmsing this fact.

Lemma3 Let X andY be two nonnegative random variables with the cumulativ&idigions F' and G respec-
tively. ThenX <;., Y if and only if for anya > 0,

/OO F(z)dx < /oo G(r)dx. (8)
whereF(z) =1 — F(z) andG(z) = 1 — G(z).
For a proof, see Proposition 8.5.1 of [25].
Lemma4 LetY; and Z;, i = 1,2, be two pairs of nonnegative random variables such tat<,., Y, and

Zh <iex Z9. Define two new random variables;,: = 1,2, as follows:

Y, — Y;, with probability p,
'\ Z;, with probabilityl —p

where0 < p < 1. ThenX; <;e; Xo.

Proof: Fori = 1,2, letF;, G; andH; be the cumulative distributions &f, 7Z; and X; respectively. By the definition
of X;, it is clear that for anys > 0, H;(a) = pFi(a) + (1 — p)G;(a). Then from Lemma 3, it is easy to see that
Y1 <ier Yo andZy <., Zo implies thatX; <;., Xs. n

Proof of Theorem 2:
(1) Let F and@ denote the cumulative distributions &fand X . Note that((z) = Zfor0 <z <7andG(z) =1
whenz > 7. From Lemma 3, it suffices to show that for amy> 0, (8) holds.

Definea = inf{a : F'(a) > 1 - 2}. Foranya > o, if # >z > a, thenF(z) > 1 - % = G(r), and forz > 7,
F(z) = G(z) = 1. Hence for any: > a, F(z) < G(z). Therefore,

/OOF(:v)d:v—/fF(:v)d:v</f G(:r)d:r:/oo G(z)da.
Forany0 <a < a,if 0 <z <a,thenF(z) <1 —p= G(z). Thusfy F(z)dz < [ G(x)dz. Therefore,
/ F(zx dfr—/ F(x /F dfr—mf/a(lfF( 1)) dx
= —a+/F d:v<m—a+/ G(x d:r—/ G(z

where in the above we have used the fact tfjatF' (z) = [;° G(z) = m.
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(2) LetY be a discrete random variable with the distributiBn{Y = z} = Pr{X = z|X > 7}. Then
E[Y] = m and|Y |l = 7. LetY be a random variable with the distributidfr{Y = 7} = 1 — =L and

T—m
Pr{Y = #} = =T ThenE[Y] = m and||Y ||, = 7. From (1), we see thdf — 7 <;., ¥ — 7, thusY <, Y.

Similarly, let Z be a discrete random variable with the distributiBn{Z = z} = Pr{X = z|X < 7}. Then
E[Z] = E[X|X < 7] = ' and||Z|« < 7. LetZ be arandom variable with the distributidtr{Z = 0} = 1— 2

- r—1

andPr{Z =7 -1} = 2. ThenE[Z] = 7/ and||Y || = 7 — 1. Using the same argument as in (1), we can prove
thatZ <., Z.

As, foranyz > 0, Pr{X =z} = Pr{X = z|X > 7}Pr{X > 7} + Pr{X = z|X < 7}Pr{X <7} =
Pr{Y = 2}p+ Pr{Z = 2}(1 — p), andPr{X = 2z} = Pr{Y = z}p + Pr{Z = z}(1 — p), from Lemma 4, we
have thatX <;., X. .
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