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Shape from Defocus via Diffusion
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Abstract— Defocus can be modeled as a diffusion process and
represented mathematically using the heat equation, where image
blur corresponds to the diffusion of heat. This analogy can
be extended to non-planar scenes by allowing a space-varying
diffusion coefficient. The inverse problem of reconstructing 3-
D structure from blurred images corresponds to an “inverse
diffusion” that is notoriously ill-posed. We show how to bypass
this problem by using the notion of relative blur. Given two
images, within each neighborhood, the amount of diffusion
necessary to transform the sharper image into the blurrier one
depends on the depth of the scene. This can be used to devise a
global algorithm to estimate the depth profile of the scene without
recovering the deblurred image, using only forward diffusion.

Index Terms— Shape, Reconstruction, Depth cues, Gradient
methods, Iterative methods, Partial differential equations, Inverse
problems, Sharpening and Deblurring.

I. INTRODUCTION

WHEN imaging a scene through a lens, objects at differ-

ent depths are blurred by different amounts. Indeed, if

one knew the shape of the objects then one could predict the

exact amount of blur in images. In shape from defocus (SFD)

however, one is interested in the inverse problem: Given one

or more blurred images, can we reconstruct the shape, or the

depth profile, of the scene that generated them?

The answer to this question depends on the scene, and the

conditions that allow unique reconstruction are discussed in

[1]. Intuitively, the image of a scene depends on its shape,

that for the case of a static camera can be represented as the

depth map along the projection rays, and on its radiance, or

less formally the appearance of the surfaces, determined by

their material and illumination. If the scene is black, or the

light is off, there is not much we can say about its shape.

However, anyone who has played with an auto-focus camera

could guess that by bringing different portions of the scene

into focus and reading off the lens setting we ought to be able

to say at least something about the depth of the scene.

Accordingly, many algorithms to reconstruct shape from

defocus are based on the idea of measuring the “amount of

blur” at each location of at least two images obtained with

different focus settings. Because blur is not a point property of

the image, this approach requires the user to define the spatial

regions (windows) where blur is to be computed. Naturally

there is a tradeoff between having a window that is as large
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as possible, to average out noise, but as small as possible

to guarantee that within that window the scene portrayed

has constant depth. These local algorithms usually result in

artifacts in the reconstruction [2], [3].

Global algorithms for SFD work simultaneously on the

entire image, but at the cost of allowing both the radiance and

the shape to be (infinite-dimensional) functions of the spatial

location. Because details of both the radiance and the shape

are lost in the image formation process, formalizing SFD as

an optimal inference problem results in an ill-posed inverse

problem. This problem is typically addressed by means of

regularization, i.e., by introducing well-posed approximations

of the original ill-posed problem. For instance, one could

search, among all possible shapes, for the smoothest one.

While assuming that the surfaces in space are (at least piece-

wise) smooth is somewhat reasonable, assuming the same of

the scene radiance is not reasonable. In general, radiances are

not smooth and characterized instead by sharp edges, spikes,

and very complex and high-frequency patterns. Hence, a more

elaborate regularization is required for the radiance.

The approach we propose is novel in several ways, and

achieves optimality without resorting to deblurring (backward

diffusion), and without imposing overly restrictive assump-

tions on the radiance of the scene. The key concept is that

of relative blur: It allows us to eliminate radiance from the

image-formation equations, and be left with only depth as the

unknown [4]. While one can think of an image as a diffusion

of the radiance of the scene, and therefore reconstructing the

scene is an inverse diffusion, we think of two or more images

as being diffused versions of each other; by appropriately

choosing the reference image at each spatial location, such

a diffusion is always in the forward direction, and the amount

of diffusion depends on the depth of the scene at that loca-

tion. Such a diffusion is independent of the radiance of the

underlying scene, which relieves us from the need of making

explicit assumptions about its regularity.

In the next sections we make use of the tools of calculus of

variations [5]. The reader who is not familiar with this subject

may find Appendix B of [6] useful, in that it contains only

the notions essential to optimal SFD.

II. PREVIOUS WORK

The problem of shape from defocus has been addressed

in a variety of contexts: Earlier approaches adopted Markov

random fields to model both shape and appearance [7]–[9].

This approach has been shown to be effective for surface

reconstruction from defocused images, but at the price of a

high computational cost. Among deterministic approaches we

distinguish between those that maintain a spatial representation

of the imaging model [2], [10]–[19] and those that operate in
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the frequency domain [20]–[23]. Most of these approaches

allow one to easily eliminate undesired unknowns (the ap-

pearance, or “radiance”). However, the techniques that are

typically employed are local and therefore introduce artifacts

in the solution, such as edge bleeding and windowing [2], [3].

Another way to classify approaches to shape from defocus

is based on simplifications of the image formation model. For

example, some assume that the scene contains “sharp edges,”

i.e., discontinuities in the scene radiance [15], [24]–[27], others

that the radiance can be locally approximated by cubic polyno-

mials [28], or that it can be controlled by using structured light

[14], [29], [30]. A more common simplification of the image

formation model is the so-called equifocal assumption, which

consists in assuming that the surface of the scene can be locally

approximated by a plane parallel to the image plane [15], [25],

[28], [31]–[33]. One advantage of such an assumption is that

it allows one to avoid reconstructing the appearance of the

scene while recovering its geometry. However, it also fails

to properly capture a large class of surfaces (non-equifocal

surfaces), and does not allow enforcing global regularity on

the estimate. Approaches like [7], that do not make this

assumption, yield accurate estimates of geometry, but are

computationally challenging because they require estimating

the radiance of the scene along with geometry.

In this paper, we present a novel algorithm to optimally

recover shape from two defocused images that is computa-

tionally efficient. We build on the fact that defocus can be

modeled by a diffusion process, which in turn can be modeled

by a partial differential equation, the heat equation [34], and on

the notion of relative diffusion (see section IV) that allows us

to avoid estimating the radiance without introducing artifacts

in the process.

The literature on diffusion is quite substantial and, there-

fore, this work relates to a large number of other works. In

particular, we highlight connections to the extensive literature

in image processing, for instance [35]–[39] and references

therein.

III. MODELING DEFOCUS AS A DIFFUSION PROCESS

Consider capturing images of a scene that is static with

respect to the camera. If the camera is equipped with a

finite aperture lens, the captured images will be subject to a

distortion commonly known as defocus. Defocus is typically

studied via a convolutional image formation model [6], which

we briefly review in subsection III-A. However, defocus can

also be modeled via partial differential equations. In particular,

in the specific case of a scene made of a plane parallel to the

image plane, the convolutional model is equivalent to the heat

equation (subsection III-B). Since the case of a plane has a

rather limited scope, in subsection III-C we generalize the heat

equation to handle the case of a scene with a generic (smooth)

surface.

A. A Convolutional Model for Defocus

As mentioned above, in this section we will briefly review

a convolutional model for defocus. In particular, we will see

that in the simple case of uniform blurring, which occurs

whenever we are imaging a plane parallel to the image plane,

the convolutional model results to be shift-invariant.

Consider a scene with a smooth Lambertian1 surface. We

take images of the scene from the same point of view and

assume that scene and illumination are static with respect to

the camera . Under these conditions we can represent the

surface of the scene with a depth map s : R
2 �→ [0,∞),

and the radiance2 on s with a function r : R
2 �→ [0,∞). If we

use a real aperture camera, the irradiance (or image intensity)

I measured on the image plane with focus setting v of the

optics (the distance between the plane containing the lens and

the image plane [6]) is a function I : R
2 �→ [0,∞) that can

be approximated via the following equation:

I(y) =
∫

R2
h(y,x, b)r(x)dx ∀y ∈ Ω ⊂ R

2 (1)

where h : Ω × R
2 × [0,∞) �→ [0,∞) is called point spread

function (PSF). When y /∈ Ω ⊂ R
2 we assume that I(y) = 0.

The point spread function depends on the blurring radius b
which in turn depends on the focus setting v and the depth

map s. The blurring radius b determines the size of the pattern

generated by a point light source at [x
T

v 1]T s(x) with unit

intensity. By employing geometric optics in our analysis, it is

easy to find that the blurring radius satisfies

b =
Dv

2

∣∣∣∣ 1F − 1
v
− 1

s

∣∣∣∣ (2)

where F is the focal length of the lens and D the radius of

the lens [6].

An important case that we will consider in the next section is

that of a scene made of an equifocal plane, i.e., a plane parallel

to the image plane. In this case the depth map satisfies s(x) =
s, ∀x ∈ R

2, the PSF h is shift-invariant, i.e., h(x,y, b) =
h(x − y, b) and b is a constant. Hence, the image formation

model becomes the following simple convolution

I = h(·, b) ∗ r. (3)

One can argue3 that h can be well approximated with a

Gaussian; such an approximation has been widely used in the

literature of depth from defocus [7]. Hence, in our model we

will let

h(x,y, b) =
1

2πσ2
e−

‖x−y‖2

2σ2 (4)

with standard deviation σ
.= γb for a certain constant γ > 0 to

be determined via a calibration procedure. Notice that when

1A Lambertian surface is characterized by having a bidirectional reflectance
distribution function that is independent of the viewing direction [40].

2In the context of radiometry, the term radiance refers to energy emitted
along a certain direction, per solid angle, per foreshortened area and per time
interval [40]. However, in our case there is little dependency on direction, and
the change in the solid angle is approximately negligible. Hence, a function
of the position on the surface of the scene suffices to describe the variability
of the radiance.

3It has been argued [7], [15], [41] that, when considering diffraction effects,
the PSF of a camera can be approximated by a circularly symmetric 2D
Gaussian. Alternatively, one can also argue that since we are interested in
using the camera as a sensor, we are allowed to modify the optical system. It
can be shown that the PSF can be made approximately Gaussian by placing a
suitable photographic mask in front of the lens. Notice that this operation does
not compromise the shift-invariance of the PSF when imaging an equifocal
plane.
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the depth map s is not an equifocal plane, the variance σ2

depends on the x coordinates, so that h may be not shift-

invariant. More in general, one can approximate the PSF

with other functions, as long as they satisfy the following

normalization property:∫
h(y,x, b)dy = 1 ∀x ∈ R

2 (5)

for any depth map s and focus setting v. The property above

corresponds to having a lossless optical system, i.e., an optical

system such that all the energy entering the lens is transferred

onto the image plane.

B. Equifocal Imaging as Isotropic Diffusion

When the PSF is approximated by a shift-invariant Gaussian

function, the imaging model in eq. (1) can be formulated in

terms of the isotropic heat equation:{
u̇(x, t) = c	u(x, t) c ∈ [0,∞) t ∈ (0,∞)
u(x, 0) = r(x). (6)

The solution u : R
2 × [0,∞) �→ [0,∞) at a time t = τ ,

plays the role of an image I(y) = u(y, τ), ∀y ∈ Ω, captured

with a certain focus setting p that is related to τ . The “dot”

denotes differentiation in time, i.e., u̇
.= ∂u

∂t , and the symbol 	
denotes the Laplacian operator

∑2
i=1

∂2

∂x2
i

with x .= [x1 x2]T .

The parameter c is called the diffusion coefficient and it is

nonnegative. It is also easy to verify that the variance σ is

related to the diffusion coefficient c via

σ2 = 2tc. (7)

Notice that there is a scale factor ambiguity between time t
and diffusion coefficient c. This will be fixed later by setting

t to a prescribed constant.

C. Non-equifocal imaging model

When the depth map s is not an equifocal plane, the

corresponding PSF is in general shift-varying. Hence, the

equivalence with the isotropic heat equation does not hold.

Rather than seeking an approximation for the shift-varying

PSF, we propose a model based on a generalization of the

isotropic heat equation that satisfies property (5). To take into

account the space-varying nature of the non-equifocal case,

we propose using the inhomogeneous diffusion equation4, and

define a space-varying diffusion coefficient5 c ∈ L∞(R2), and

c(x) ≥ 0 ∀x ∈ R
2. The inhomogeneous diffusion equation is

then defined as{
u̇(x, t) = ∇ · (c(x)∇u(x, t)) t ∈ (0,∞)
u(x, 0) = r(x) (9)

4Note that the inhomogeneous diffusion equation is different from the
nonhomogeneous diffusion equation, which is characterized by an additional
forcing term in the heat equation as shown in the example belowj

u̇(x, t) = c�u(x, t) + f(x, t) t ∈ (0,∞)
u(x, 0) = r(x)

(8)

where f(x, t) is the forcing term. The nomenclature inhomogeneous wants
to emphasize that the diffusion coefficient is not homogeneous in space [39].

5L∞(R2) is the space of scalar functions bounded almost everywhere in
R

2.

where the symbol ∇ is the gradient operator
[

∂
∂x1

∂
∂x2

]T
with

x = [x1 x2]T , and the symbol ∇· is the divergence operator∑2
i=1

∂
∂xi

. In our analysis, we consider the so-called weak

solutions of eq. (9), which are obtained by multiplying the

terms of eq. (9) to a space-dependent test function ϕ : R
2 �→

R, and then by integrating the result over R
2. By using Gauss’

theorem (integration by parts, cf. [42]), this yields the weak

formulation

d

dt

∫
u(x, t)ϕ(x) dx+

∫
c(x)∇u(x, t)·∇ϕ(x)dx = 0, (10)

which must hold for a suitable class of test functions ϕ. This

formulation shows that a bounded function c (not necessar-

ily differentiable) is indeed sufficient to guarantee the well-

definedness of the solution. Furthermore, it is easy to see that

the conservation property (5) can be formulated as∫
u(y, t)dy =

∫
u(x, 0)dx. (11)

In other words, the spatial average of u does not change

in time. To see this, let the test function ϕ ≡ 1; then, we

immediately have that

d

dt

∫
u(x, t) dx = 0, (12)

because ∇ϕ ≡ 0. By integrating eq. (12) in time we obtain

the desired conservation property, which we summarize in the

following

Proposition 1: The solution of the following inhomoge-

neous heat equation{
u̇(x, t) = ∇ · (c(x)∇u(x, t)) c : R

2 �→ [0,∞), c ∈ L∞

u(x, 0) = r(x)
(13)

satisfies property (5).

The solution u satisfies also the following dissipation prop-

erties

1
2

d

dt

∫
u(x, t)2dx = −

∫
c(x)‖∇u(x, t)‖2dx ≤ 0 (14)

1
2

d

dt

∫
c(x)‖∇u(x, t)‖2dx = −

∫ (
∂u

∂t
(x, t)

)2

dx ≤ 0, (15)

which imply that the long-time asymptotic limit u∞(x) .=
limt→∞ u(x, t) satisfies c(x)‖∇u∞(x)‖2 = 0, i.e., u∞ needs

to be constant where c is positive.

By assuming that the surface s is smooth, we can relate

again the diffusion coefficient c to the space-varying variance

σ via:

σ2(x) = 2tc(x) (16)

so that it is immediate to see that c encodes the depth map s
of the scene via

c(x) =
γ2b2(x)

2t
=

γ2D2v2

8t

(
1
F

− 1
v
− 1

s(x)

)2

. (17)
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IV. RELATIVE BLUR AND DIFFUSION

In section III-B we modeled the image I(y) via the diffusion

eq. (6) starting from the radiance r(y), which we do not

know. Rather than having to estimate it from two or more

images, in this section we show how to arrive at a model of

the relative blur between two images that does not depend on

the radiance. Suppose we collect two images I1(y) .= I(y, v1)
and I2(y) .= I(y, v2) for two different focus settings v1 and v2

corresponding to blurring parameters σ1 and σ2. Also, to keep

the presentation simple, suppose that σ1 < σ2 (i.e., image I1

is more focused than image I2 at every pixel); we will remove

this assumption later. Then, by substituting the expression of

r in terms of image I1 we can write image I2 as follows:

I2(y) =
∫

1
2πσ2

2

e
− ‖x−y‖2

2σ2
2 r(x)dx

=
∫

1
2π (σ2

2 − σ2
1)

e
− ‖x−y‖2

2(σ2
2−σ2

1)∫
1

2πσ2
1

e
− ‖x̄−x‖2

2σ2
1 r(x̄)dx̄dx

=
∫

1
2πΔσ2

e−
‖x−y‖2

2Δσ2 I1(x)dx

(18)

where Δσ2 .= σ2
2 − σ2

1 and Δσ is called the relative blurring
between image I1 and image I2. Now, I2 in eq. (18) can also

be interpreted as a solution of the heat equation (6), but with

I1, rather than r, as an initial condition: Let t1 and t2 be the

two time instants computed from eq. (7) with a fixed diffusion

coefficient c for blurring parameters σ1 and σ2 respectively;

then, the solution of eq. (6) satisfies u(y, t1) = I1(y) and

u(y, t2) = I2(y), ∀y ∈ Ω, and we can write{
u̇(y, t) = c	u(y, t) c ∈ [0,∞)
u(y, t1) = I1(y) ∀y ∈ Ω.

(19)

If σ1 > σ2, one can simply switch I1 with I2.

Equation (19) models the relative diffusion between image

I1 and image I2. This allows us to eliminate r as an unknown,

and concentrate our resources to recovering only the geometry

of the scene.

For simplicity of notation, rather than using the solution

u(·, t), we can consider the time-shifted version u(·, t − t1)
(or set t1 = 0) so that{

u̇(y, t) = c	u(y, t) c ∈ [0,∞)
u(y, 0) = I1(y) ∀y ∈ Ω (20)

with u(y, Δt) = I2(y), where Δt is defined by the equation

Δσ2 = 2(t2 − t1)c
.= 2Δtc. (21)

One can view the time Δt as the variable encoding the global

amount of defocus, which we set to 1/2 in our implementation,

and the diffusion coefficient c as the variable encoding the

depth map s via

c =
Δσ2

2Δt
=

γ2
(
b2
2 − b2

1

)
2Δt

(22)

where for i = 1, 2

bi =
Dvi

2

∣∣∣∣ 1F − 1
vi

− 1
s

∣∣∣∣ . (23)

This discussion holds as long as the PSF is shift-invariant.

As we have seen in Section III, this corresponds to the

entire image being blurred uniformly, or “isotropically,” at all

locations, which occurs only if the scene is flat and parallel to

the image plane (i.e., it is equifocal). Naturally, such scenes

are rather uninteresting; therefore, to handle non-flat scenes,

we need to extend the diffusion analogy to equations that allow

for a space-varying blur.

V. EXTENSION TO SPACE-VARYING RELATIVE DIFFUSION

As we have seen in Section III-C, when the surface s
is not an equifocal plane, the corresponding PSF is shift-

varying and we cannot use the homogeneous heat equation

to model defocused images. Therefore, we have introduced

the inhomogeneous diffusion equation (8) by allowing the

coefficient c to vary spatially as a function of the location

on the image. Similarly, in the context of relative diffusion,

we can extend eq. (20) to⎧⎨
⎩

u̇(y, t) = ∇ · (c(y)∇u(y, t)) t ∈ (0,∞)
u(y, 0) = I1(y) ∀y ∈ Ω
c(y)∇u(y, t) · n(y) = 0 ∀y ∈ ∂Ω

(24)

where u(y, Δt) = I2(y), ∀y ∈ Ω, and n is the unit vector

normal to the boundary ∂Ω. Notice that a third constraint has

been introduced in eq. (24). This term is necessary to define

the solution uniquely, because the model is now restricted to a

domain Ω. In general, c or ∇u(y, t) ·n(y) may not be null at

∂Ω. However, in the next section we define the above equation

on a set Ω such that c(y) = 0 for y ∈ ∂Ω, so that the condition

is satisfied by construction.

Recall that in Section III-C we required the diffusion

coefficient c to be a smooth function c : Ω �→ R that satisfies

a number of properties in order to guarantee that energy is

conserved in the imaging process (5). We still assume that I1

is more focused than I2, i.e. σ1 < σ2, for simplicity.

Remark 1: There are other space-varying models that one

could use in place of (24), for instance the oriented-

Laplacian [43]. Each has its own advantages, but none is

exactly equivalent to the space-varying convolutional model

in eq. (1) or to more accurate models derived from diffraction

theory [44]. Furthermore, the point spread function of real

optical systems can deviate substantially from the simple

models that we describe here due to various sources of

aberration. Hence, the use of one model or another may be

decided based on precise knowledge of the imaging device or

the specific application at hand or on computational resources.

In this manuscript, for the sake of clarity and simplicity, we

will focus only on model (24) as a prototype.

VI. ENFORCING FORWARD DIFFUSION

In the derivation of eq. (24) we made the assumption that

I1 is more focused than I2. This assumption is necessary

in order to guarantee that c(y) ≥ 0, ∀y ∈ Ω, and hence

that (24) involves only numerically stable and well-behaved

forward diffusion, and not backward diffusion. However, as

illustrated in Figure 1, this assumption is in general not valid.

The woman in the foreground of image I1 (left) is more
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Fig. 1

TWO DEFOCUSED IMAGES I1 AND I2 . THE WOMAN IN THE FOREGROUND

OF THE IMAGE ON THE LEFT (I1) IS SHARPER THAN THE CORRESPONDING

WOMAN IN THE IMAGE ON THE RIGHT (I2). AT THE SAME TIME, THE

BACKGROUND OF THE IMAGE ON THE RIGHT IS SHARPER THAN THE

CORRESPONDING BACKGROUND OF THE IMAGE ON THE LEFT.

focused than the corresponding woman in image I2 (right).

On the other hand, the background is more focused in image

I2. As a consequence, the relative blurring Δσ between I1 and

I2, as well as the corresponding diffusion coefficient c, may

be either positive or negative, depending on which location

of the image domain Ω they are evaluated at. In this case,

model (24) involves both backward diffusion and forward

diffusion. Backward diffusion is numerically unstable and has

the undesirable effect of amplifying high-frequency content as

time increases.

A simple way to avoid backward diffusion in the imaging

model (24) is to explicitly define the solution u only on the

set of points where the diffusion coefficient is positive

Ω+
.= {y ∈ R

2 | c(y) > 0} (25)

and u(y, Δt) = I2(y), ∀y ∈ Ω+. On the remaining portion

Ω−
.= {y ∈ R

2 | c(y) ≤ 0} (26)

the diffusion coefficient c is negative6 and I2 is sharper than

I1. Hence, on Ω− we can employ the following model, that

simply switches I1 and I2⎧⎨
⎩

u̇(y, t) = ∇ · (−c(y)∇u(y, t)) t ∈ (0,∞)
u(y, 0) = I2(y) ∀y ∈ Ω−
c(y)∇u(y, t) · n(y) = 0 ∀y ∈ ∂Ω−

(27)

with u(y, Δt) = I1(y), ∀y ∈ Ω−. In Figure 2 we visualize

the partition {Ω+, Ω−} obtained from the images in Figure 1.

The sets Ω+ (left image) and Ω− (right image) are visualized

by showing only the intensity of the original images in the

corresponding partition. The boundaries ∂Ω+ and ∂Ω− are

shown as a white line.

Notice that because of eq. (25) we have defined the partition

{Ω+, Ω−} so that the boundary conditions is always satisfied

and the imaging models for the pair of defocused images I1

and I2 involve only forward diffusion.

6We always consider the diffusion coefficient c to be computed via eq. (21),
where Δσ is the relative blur between I1 and I2.

Fig. 2

VISUALIZATION OF THE PARTITION {Ω+, Ω−} WITHIN THE IMAGE

DOMAIN Ω OF THE IMAGES IN FIGURE 1. THE SETS Ω+ (LEFT IMAGE)

AND Ω− (RIGHT IMAGE) ARE VISUALIZED BY SHOWING ONLY THE

INTENSITY OF THE ORIGINAL IMAGES IN THE CORRESPONDING

PARTITION. THE BOUNDARIES ∂Ω+ (LEFT IMAGE) AND ∂Ω− (RIGHT

IMAGE) ARE SHOWN AS A WHITE LINE.

VII. DEPTH-MAP ESTIMATION ALGORITHM

In previous sections we have derived an idealized image-

formation model in terms of the diffusion eq. (6): First we

eliminated the radiance from the model by introducing the

notion of relative blur (Section IV); then, we extended the

model to capture non-planar scenes (Section V) and, finally,

we enforced forward diffusion by partitioning the image

domain (Section VI). The result of these steps is an imaging

model composed of equations (19) and (27), which we rewrite

here in a more complete form, including boundary conditions,

as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇(y, t) =

{
∇ · (c(y)∇u(y, t)) , y ∈ Ω+

∇ · (−c(y)∇u(y, t)) , y ∈ Ω−
t ∈ (0,∞)

u(y, 0) =

{
I1(y), ∀y ∈ Ω+

I2(y), ∀y ∈ Ω−
0 = c(y)∇u(y, t) · n(y), ∀y ∈ ∂Ω+ ≡ ∂Ω−

u(y, Δt) =

{
I2(y), ∀y ∈ Ω+

I1(y), ∀y ∈ Ω−.
(28)

where n is the unit vector orthogonal to ∂Ω+, the boundary of

Ω+, which coincides with the boundary of Ω−. The boundary

conditions of the diffusion equations are satisfied since, by

construction, the diffusion coefficient c(y) = 0 for any y ∈
∂Ω+ and y ∈ ∂Ω−. Also, recall that the diffusion coefficient

c depends on the depth map s via eq. (22) and eq. (23), which

can be explicitly written as

c(y) =
γ2D2

8Δt

(
v2
2

(
1
F

− 1
v2

− 1
s(y)

)2

−v2
1

(
1
F

− 1
v1

− 1
s(y)

)2
)

.

(29)

Notice that c(y) = 0 when

s(y) =
(v1 + v2)F

v1 + v2 − 2F
(30)

or

s(y) = F (31)
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so that

∂Ω−, ∂Ω+ =
{
y
∣∣∣∣ s(y) =

(v1 + v2)F
v1 + v2 − 2F

or s(y) = F

}
(32)

and similarly, by direct substitution,

Ω+ =
{
y
∣∣∣∣ 0 < s(y) < F or s(y) >

(v1 + v2)F
v1 + v2 − 2F

}

Ω− =
{
y
∣∣∣∣ F < s(y) <

(v1 + v2)F
v1 + v2 − 2F

}
.

(33)

Note that the sets Ω+ and Ω− depend on the 3-D structure

of the scene; the depth s satisfying eq. (30) and eq. (31)

corresponds to regions where both images undergo the same

amount of defocus. Hence, if we were given a depth map

s̃ and the calibration parameters of the camera, we could

compute the diffusion coefficient c, the partition {Ω+, Ω−}
and then simulate eq. (28). If the depth map s̃ coincides with

the depth map s of the scene, then the solution of eq. (28)

must satisfy the condition u(y, Δt) = I2(y), ∀y ∈ Ω+ and

u(y, Δt) = I1(y), ∀y ∈ Ω−.

This naturally suggests an iterative procedure to tackle

the inverse problem of reconstructing shape from defocused

images. An intuitive description of the iteration is: Starting

from an initial estimate of the depth map (e.g., a flat plane

such that c(y) = 0) and the corresponding partition, find the

amount of diffusion for each image in the region where it

is more focused than the other image, so that the two are

close. The amount of diffusion required to match the two

images encodes information on the depth of the scene. More

formally, we could pose the problem as the minimization of

the following functional:

ŝ = arg min
s

∫
Ω+

(u(y, Δt) − I2(y))2dy

+
∫

Ω−
(u(y, Δt) − I1(y))2dy.

(34)

where the two terms in the cost functional take into account the

discrepancy between the simulated image u and the measured

images I1 and I2. It is well-known that problems like (34) are

ill-posed [45], i.e., the minimizers may not exist and even if

they exist they may not be stable with respect to data noise.

A common way to regularize the problem is by adding a

Tikhonov penalty, that is,

ŝ = arg min
s

∫
Ω+

(u(y, Δt) − I2(y))2dy

+
∫

Ω−
(u(y, Δt) − I1(y))2dy + α‖∇s‖2 + ακ‖s‖2.

(35)

The additional third term imposes a smoothness constraint on

the depth map s that is regulated by the parameter α > 0. The

last term is introduced to guarantee that the estimated depth

map is bounded. In practice we use a very small κ > 0, so that

this term has no practical influence on the remaining energy

terms. Notice that during the minimization of eq. (35) both

the partition and the depth map are estimated simultaneously.

As we shall discuss in the next section, minimizing eq. (35)

is not the only way of regularizing eq. (34). Indeed, the energy

eq. (35) does not yield the desired solution for α > 0. To

illustrate this, notice that the minimum of eq. (35) is reached

when the gradients of each term add up to zero at each point

x. Such a balance depends on the intensity of the images,

so that dark regions are subject to more regularization than

bright regions. To counterbalance this dependency, we will not

minimize eq. (35), but, rather, we will introduce an alternative

method that combines the minima of eq. (34) with those of

the regularizer ‖∇s‖2 + κ‖s‖2.

A. Gradient Flow and Preconditioning

In this section we describe an algorithm to compute reg-

ularized solutions of the cost functional (34). The complete

derivation of the algorithm is fairly lengthy and is reported in

Appendix I. For the benefit of those being familiar with these

calculations, and not to disrupt the flow, we will only provide

the main ideas in the following.

To simplify the notation, let

E1(s)
.=
∫

H(c(y))|u(y, Δt) − I2(y)|2dy

E2(s)
.=
∫

H(−c(y))|u(y, Δt) − I1(y)|2dy
E3(s)

.= α‖∇s‖2 + ακ‖s‖2

(36)

where H denotes the Heaviside function and α > 0, κ > 0
are arbitrary constants. Also, let

E(s) .= E1(s) + E2(s) + E3(s) (37)

so that eq. (35) can be rewritten as

ŝ = arg min
s

E(s). (38)

For the minimization of the above cost functional, a standard

gradient flow approach seems natural. This means that we

construct a flow of depth maps s indexed by a pseudo-time

variable τ , so that the depth map moves along the direction

opposite to the gradient of the cost functional, i.e.,

∂s

∂τ

.= −E′(s). (39)

For practical purposes this flow will be discretized in time.

Any suitable forward time integration such as the forward

Euler scheme can be applied [46].

Using eq. (37) we can split the computation of E′ into the

computation of E′
1, E′

2 and E′
3. In the following we use the

notation Ẽi, i = 1, 2, for the functional Ei, which is rewritten

as a functional of the diffusion coefficient c. By the chain rule,

we then have

E′
i(s) = Ẽ′

i(c(s))c
′(s) (40)

for i = 1, 2, where

c′(s) =
γ2D2(v2 − v1)

4s2Δt

[
(v2 + v1)

(
1
F

− 1
s

)
− 1
]

, (41)

and the gradients Ẽ′
i are given by

Ẽ′
1(c(s))(y) = −2H(c(y))

∫ Δt

0

∇u(y, t) · ∇w1(y, Δt − t) dt

+ δ(c(y)) (u(y, Δt) − I2(y))2

(42)
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and

Ẽ′
2(c(s))(y) = 2H(−c(y))

∫ Δt

0

∇u(y, t) · ∇w2(y, Δt − t) dt

− δ(c(y)) (u(y, Δt) − I1(y))2 .
(43)

The symbol δ(·) denotes the Dirac delta. Here w1 : Ω+ ×
[0,∞) �→ R and w2 : Ω− × [0,∞) �→ R satisfy the following

(adjoint parabolic) equations (see Appendix I)⎧⎨
⎩

ẇ1(y, t) = ∇ · (c(y)∇w1(y, t)) t ∈ (0,∞)
w1(y, 0) = u(y, Δt) − I2(y)
c(y)∇w1(y, t) · n(y) = 0 ∀y ∈ ∂Ω+.

(44)

and⎧⎨
⎩

ẇ2(y, t) = ∇ · (−c(y)∇w2(y, t)) t ∈ (0,∞)
w2(y, 0) = u(y, Δt) − I1(y)
c(y)∇w2(y, t) · n(y) = 0 ∀y ∈ ∂Ω−.

(45)

Finally, the gradient of E3 can be computed directly as

E′
3(s) = −2α	s(y) + 2ακs(y). (46)

Since the gradient E′(s)(y) depends on the radiance of

the scene (see eq. (42) and (43)), which is undesirable, one

can modify the above algorithm by preconditioning, i.e., by

replacing eq. (39) with

∂s

∂τ
= −M(s)E′(s), (47)

with M(s) a positive definite operator. Note that this approach

is a metric gradient flow [47] for the same energy E, obtained

by weighting the scalar product for s with M−1(s). In par-

ticular, we would like to use preconditioning with an operator

of the form

(M(s)φ)(y)=
φ(y)

2
[
H(c(y))I2(y)+H(−c(y))I1(y)

]|u′(y, Δt)| ,
(48)

where u′(y, ΔT ) is the functional derivative of u with respect

to the shape s. By simplifying eq. (48), we obtain(
M(s)Ẽ′

1(c(s))
)

(y) = H(c(y))
(

u(y, Δt)
I2(y)

− 1
)

u′(y, Δt)
|u′(y, Δt)|

+
1
2
δ(c(y))

(u(y, Δt) − I2(y))2

I2(y)|u′(y, Δt)|
(49)

and, similarly,(
M(s)Ẽ′

2(c(s))
)

(y) = H(−c(y))
(

u(y, Δt)
I1(y)

− 1
)

u′(y, Δt)
|u′(y, Δt)|

− 1
2
δ(c(y))

(u(y, Δt) − I1(y))2

I1(y)|u′(y, Δt)| .

(50)

It is now very clear what drove the choice of the preconditioner

in eq. (48): The gradients (49) and (50) have been “normal-

ized”, as there is no dependency on the magnitude of u′(y, Δt)
and on u(y, Δt). In practice, to avoid division by zero, we also

introduce a small positive value at the denominator of eq. (48).
Notice that by preconditioning E′ we are also precondi-

tioning the term E′
3, that did not need any normalization. This

motivates us to consider the flow

∂s

∂τ
= −M(s)(E′

1(s) + E′
2(s)) − E′

3(s)

= −M(s)(E′
1(s) + E′

2(s) + M−1(s)E′
3(s))

(51)

TABLE I

SUMMARY OF THE DEPTH MAP RECONSTRUCTION ALGORITHM VIA

RELATIVE DIFFUSION.

Algorithm (relative diffusion)
1) Given: calibration parameters (from knowledge of the camera)

v1, v2, F, D, γ, two images I1, I2, a chosen threshold ε, regularization
parameter α and step size β, seek for the depth map s as follows

2) Initialize the depth map with a plane at depth

s0 =
(v1 + v2)F

v1 + v2 − 2F
;

3) Compute the diffusion coefficient c and the partition {Ω+, Ω−} via
eq. (29) and eq. (33);

4) Simulate (i.e., numerically integrate) eq. (19) and eq. (27);
5) Using the solutions obtained at the previous step, simulate eq. (44) and

eq. (45);
6) Compute the gradient of u and w and evaluate eq. (42), eq. (43),

eq. (46), and (48);
7) Update the depth map s by performing a time step of ∂s

∂τ
=

−M(s)(E′
1(s)+E′

2(s))−E′
3(s), with precomputed right-hand side.

8) Return to Step 3 until norm of E′
1(s) + E′

2(s) + M(s)−1E′
3(s) is

below the chosen threshold ε.

instead, which we briefly discuss here below and more thor-

oughly in Appendix II. First, we summarize the algorithm

described so far in Table I.

Note that eq. (51) is possibly not a metric gradient flow for

some energy, since the last term M−1(s)E′
3(s) needs not be

a gradient. Even if it were a gradient, then the corresponding

energy functional will be different from E3 when M(s) is

not the identity. Hence, in general, the limit of eq. (51) at

infinity may be different from a stationary point or even a

minimizer of the energy E. This does not mean that we have

lost optimality. As we mentioned in the previous section, the

formulation of the energy E is not the only way to introduce

the regularization term ‖∇s‖2 +κ‖s‖2. Our method preserves

the location of the minima of each term of the energy E.

What changes is the tradeoff between these minima. Indeed,

notice that for α = 0 we obtain the original metric flow in the

data term, and, similarly, if we remove the data term, then we

obtain a metric flow that converges to the minima of ‖∇s‖2 +
κ‖s‖2. By leaving the realm of energy minimization, we do

not automatically have existence, uniqueness, and stationarity

of a solution of our modified gradient flow, but we need to

formally prove them. To this purpose we devote Appendix II.

VIII. EXPERIMENTS

To illustrate the algorithm above and validate it empirically,

we test it on a number of synthetic and real images. The

estimated depth maps are shown together with the ground truth

in the case of synthetic images, while in the case of real images

validation is performed qualitatively by visual inspection. We

provide the performance of the algorithm on a number of

examples and for various levels of Gaussian noise. In the case

of real data, we visually compare our algorithm to an existing

method.

A. Experiments with synthetic images

In this section we test the proposed algorithm to highlight

the three contributions in this manuscript. First, we show
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Fig. 3

INPUT IMAGES FROM THE SYNTHETIC DATA SETS. FROM TOP TO BOTTOM:

“WAVE” DATA SET, “SLOPE” DATA SET, “SIN” DATA SET, AND “BOX”

DATA SET. THE LEFT COLUMN SHOWS THE FAR-FOCUSED ORIGINAL

IMAGES AND THE THIRD ROW SHOWS THE NEAR-FOCUSED ORIGINAL

IMAGES.

that the method can handle smooth surfaces as well as sharp

boundaries; second, we show that using preconditioning in

the algorithm is essential to obtain the correct result; third,

we show that the algorithm is very robust to noise. In order

to do so, we evaluate the algorithm on the following shapes:

A wave, a slope, a sinusoid and a scene made of equifocal

planes at different depths (called “Box” data set). For each

of these shapes we show the results obtained with or without

preconditioning, and for 5 levels of additive Gaussian noise:

0%, 1%, 5%, 10%, and 20% of the radiance magnitude.

The effect of preconditioning is illustrated by varying the

intensity of the radiance and its content in frequency; we

choose radiances with 3 different intensity levels along the

vertical axis and 3 different texture sharpness levels along

the horizontal axis (see Figure 3). In these data sets the

camera brings in focus the plane at 520 mm in the near-

focused input image and the plane at 850 mm in the far-

focused input images, with focal length 12 mm, F-number

2 and γ = 1.5 · 104 pixel2/mm2. In Figure 4 we show

experiments conducted on a wave, a slope, a sinusoid and

a piecewise constant depth map. For each data set on the

leftmost column we show the true depth map in grayscale

intensities (light intensities correspond to points close to the

camera, while dark intensities correspond to points far from

the camera) and a mesh plot of the true depth map. From

the second to the fourth column we show results obtained

with the following 3 levels of additive noise: 0%, 5%, and

20% of the radiance magnitude. The first and third row of

each figure shows the estimated depth map and a mesh of

the estimated depth map computed with preconditioning. The

second and the fourth rows display the same results as above,

but obtained without preconditioning. Notice that in the case

without preconditioning there is a strong dependency of the

output on the intensity of the input images (see Figure 3).

Since we are made available the ground truth, we can also

compute the discrepancy between the true and the estimated

depth map. We compute two types of discrepancies:

ERR0 =
√

E
[
(s − ŝ)2

]

ERR1 =

√√√√E

[(
ŝ

s
− 1
)2
] (52)

where s is the true depth map and ŝ is the estimated depth

map. E[·] denotes the average over7 Ω. The first one, ERR0,

measures the absolute error in meters (m); the second, ERR1,

measures the relative error and it is therefore unitless. In

Figure 5 we show the absolute and relative errors of the

estimated depth maps of the 4 data sets and for all 5 noise

levels. Notice that when preconditioning is not used in the

algorithm, the estimated depth map depends on the intensities

of the radiance, and, in general, yields a poorer reconstruction.

The improvement of the estimate when using preconditioning

depends on the level of noise: Without noise, the estimation

error is halved; with the highest level of noise (20%), the esti-

mation error is reduced to about 2/3 of the un-preconditioned

error.

B. Experiments with real images

In the case of real data we run 3 experiments. In the

experiment with the white sponge and the experiment with

the statues we have the same camera settings as in the case

of the synthetic data apart from γ that is found to be about

3 · 104 pixel2/mm2. We used a 35mm NIKON NIKKOR

7In the experiments, the average does not include the boundary of Ω, ∂Ω,
which is 3 pixels wide.
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(A) (B)

(C) (D)

Fig. 4

(A) “WAVE,” (B) “SLOPE,” (C) “SIN,” AND (D) “BOX” DATA SETS. THE SAME DESCRIPTION APPLIES TO EACH DATA SET. LEFTMOST COLUMN: TRUE

DEPTH MAP IN GRAYSCALE AND AS A MESH. SECOND TO FOURTH COLUMNS: RESULTS WITH INCREASING NOISE. FIRST AND THIRD ROWS: ESTIMATED

DEPTH MAP AND MESH WITH PRECONDITIONING. REMAINING ROWS: AS ABOVE WITHOUT PRECONDITIONING.

lens with F-number 4 and an 8-bit monochromatic camera. In

the case of the cup and toast data set, the camera settings are

explained in [31]. In the first experiment (first two columns

in Figure 6), the scene is composed of a dark paper box at

the bottom, a grey cylinder, and a small white sponge on the

top of the paper box (see first two columns of Figure 6);

these images have been chosen purposefully to challenge any

global optimization method for shape from defocus. Indeed,

the three objects have very different graylevel intensities and

type of texture. The second experiment is the cup and toast
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Fig. 5

ERROR PLOTS. ABSOLUTE (ERR0 - IN METERS) AND RELATIVE (ERR1)

DISCREPANCIES BETWEEN GROUND TRUTH AND ESTIMATED DEPTH MAPS

OF THE 4 SYNTHETIC DATA SETS FOR 5 NOISE LEVELS.

data set. This experiment has been done for comparisons with

the results of [31]. Notice that we achieve very similar results.

However, [31] cannot easily incorporate regularization. The

third experiment is the dancing people data set. Notice that

since there is no large variation in the intensities of the input

images, there is no effect in using preconditioning. In Figure 6,

second row, we show the estimated partitions Ω+. Each pair of

images is the result of the algorithm with preconditioning (left

image) and without preconditioning (right image). In the third

row we show the estimated depth maps in graylevel intensity

scale. Each pair of images is the result of the algorithm

with preconditioning (left image) and without preconditioning

(right image). In the fourth row of the same figure we show

mesh plots of the depth maps estimated with preconditioning.

Finally, in the bottom row we show the mesh plot of the

depth maps estimated without preconditioning. Notice how the

non-preconditioned algorithm yields over-smoothed results in

regions where the image intensities are dark.

IX. CONCLUSIONS

Using the notion of relative blur we have been able to

formulate the problem of shape from defocus as a forward

diffusion process, that is numerically stable and yields a global

estimate of the depth map of a scene.

Our approach marries the benefits of local approaches (sep-

aration of shape from radiance, hence reduced computational

complexity) with those of global ones (optimal estimation of

shape, reduced sensitivity to noise), while having none of the

limitations (windowing effects of local approaches, radiance

regularization and computational complexity of global ones).

The resulting algorithms are implemented by solving nu-

merically partial differential equations using stable schemes,

and we have provided some analysis on the behavior of the

gradient flow. We have provided experiments with real as

well as synthetic images, which show the effectiveness of our

approach.

APPENDIX I

COMPUTATION OF THE GRADIENTS

To compute the gradients (42) we need to derive the first-

order variation [5] of the cost functional (38). For a general

cost functional the first-order variation is formulated in terms

of a directional derivative (in direction ϕ), defined via

E′(s)ϕ = lim
ε→0

1
ε
(E(s + εϕ) − E(s)).

In the case of

E3(s) =
∫

Ω

‖∇s(y)‖2 + κs(y)2dy (53)

with κ > 0, the computation amounts to:

E′
3(s)ϕ = lim

ε→0

1
ε
(E3(s + εϕ) − E3(s))

= lim
ε→0

1
ε

{∫
Ω

[
‖∇(s(y) + εϕ(y))‖2 + κ(s(y)

+εϕ(y))2
]
−
[
‖∇s(y)‖2 + κs(y)2

]
dy

}

= lim
ε→0

∫
Ω

2∇s(y) · ∇ϕ(y) + |ε|‖∇ϕ(y)‖2

+2κs(y)ϕ(y) + εϕ(y)2dy

= 2
∫

Ω

∇s(y) · ∇ϕ(y) + κs(y)ϕ(y)dy

for an arbitrary ϕ ∈ H1, where H1 .= {ϕ ∈ L2 | ∇ϕ ∈ L2},

such that ϕ(y) = 0, ∀y ∈ ∂Ω. Integration by parts yields

E′
3(s)ϕ = 2

∫
Ω

[
−∇ · ∇s(y) + κs(y)

]
ϕ(y)dy

+
∫

∂Ω

(∇s · n)(y)ϕ(y)ds(y),
(54)

where n is the normal to the boundary ∂Ω; then, because

ϕ(y) = 0,∀y ∈ ∂Ω, the second term vanishes and we are left

with

E′
3(s)(y) = −2	s(y) + 2κs(y) (55)

for y ∈ Ω. The derivatives relative to E1 and E2 are similar

to each other, so we will derive only the one in E1. The first
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Fig. 6

REAL DATA SETS. TOP ROW: INPUT IMAGES; EACH PAIR IS A NEAR-FOCUSED AND A FAR-FOCUSED IMAGE. SECOND ROW: ESTIMATED PARTITIONS Ω+ .

EACH PAIR OF IMAGES IS THE RESULT OF THE ALGORITHM WITH PRECONDITIONING (LEFT IMAGE) AND WITHOUT PRECONDITIONING (RIGHT IMAGE).

THIRD ROW: ESTIMATED DEPTH MAPS IN GRAY-LEVEL INTENSITY SCALE. EACH PAIR OF IMAGES IS THE RESULT OF THE ALGORITHM WITH

PRECONDITIONING (LEFT IMAGE) AND WITHOUT PRECONDITIONING (RIGHT IMAGE). FOURTH ROW: ESTIMATED DEPTH MAPS WITH PRECONDITIONING

SHOWN AS A MESH PLOT. BOTTOM ROW: ESTIMATED DEPTH MAPS WITHOUT PRECONDITIONING SHOWN AS A MESH PLOT.

difficulty that we meet in computing the functional derivative

of E1 is the fact that the function u is not given in explicit

form, but as the solution of a PDE{
u̇(y, t) = ∇ · (c(y)∇u(y, t)) t ∈ [0,∞)
u(y, 0) = I1(y) ∀y ∈ Ω+.

(56)

The first-order variation of the term

Ẽ1(c)
.=
∫

Ω+

(u(y, Δt) − I2(y))2dy

=
∫

(u(y, Δt) − I2(y))2H(c(y))dy
(57)

is

Ẽ′
1(c)ϕ = 2

∫
Ω+

(u(y, Δt) − I2(y))u′
ϕ(y, Δt)dy

+
∫

δ(c(y)) (u(y, Δt) − I2(y))2 ϕ(y)dy

(58)

for an arbitrary function ϕ : Ω+ → R such that ϕ(y) = 0,

∀y ∈ ∂Ω+. The variation

u′
ϕ(y, t) .= lim

ε→0

u(y, t)
∣∣
c+εϕ

− u(y, t)
∣∣
c

ε
, (59)
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where u(y, t)
∣∣
c+εϕ

is the solution of eq. (56) with diffusion

c + εϕ instead of c, is such that u′
ϕ satisfies{

u̇′
ϕ(y, t) = ∇·(c(y)∇u′

ϕ(y, t) + ϕ(y)∇u(y, t)
)

t ∈ (0,∞)
u′

ϕ(y, 0) = 0 ∀y ∈ Ω+.
(60)

Let z : Ω × [0,∞) → R be a function such that

z(y, Δt) = u(y, Δt) − I2(y). (61)

Then, by substituting z in eq. (58), we obtain

Ẽ′
1(c)ϕ = 2

∫
Ω+

z(y, Δt)u′
ϕ(y, Δt)dy

+
∫

δ(c(y)) (u(y, Δt) − I2(y))2 ϕ(y)dy

= 2
∫

Ω+

z(y, 0)u′
ϕ(y, 0)dy

+2
∫ Δt

0

∫
Ω+

ż(y, t)u′
ϕ(y, t)+z(y, t)u̇ϕ(y, t)dydt

+
∫

δ(c(y)) (u(y, Δt) − I2(y))2 ϕ(y)dy

(62)

which becomes

Ẽ′
1(c)ϕ = 2

∫ Δt

0

∫
Ω+

(
ż(y, t) + ∇ · (c(y)∇z(y, t))

)
u′

ϕ(y, t)

− ϕ(y)∇z(y, t) · ∇u(y, t)dydt

+
∫

δ(c(y)) (u(y, Δt) − I2(y))2 ϕ(y)dy

(63)

after integrating by parts twice and using the fact that both ϕ
and the diffusion coefficient c vanish at the boundary of Ω+,

and noticing that the initial conditions of u′
ϕ are u′

ϕ(y, 0) = 0.

To simplify the above equation we choose the adjoint solution

z in the interval (0, Δt) such that{
ż(y, t) = −∇ · (c(y)∇z(y, t)) t ∈ (0, Δt]
z(y, Δt) = u(y, Δt) − I2(y) ∀y ∈ Ω+.

(64)

The substitution of z in eq. (63) yields

Ẽ′
1(c)ϕ = −2

∫ Δt

0

∫
Ω+

ϕ(y)∇z(y, t) · ∇u(y, t)dydt

+
∫

δ(c(y)) (u(y, Δt) − I2(y))2 ϕ(y)dy.

(65)

Now, define w(y, t) = z(y, Δt−t), then we obtain the adjoint
equation (also notice that this is the definition of eq. (44) and

eq. (45)){
ẇ(y, t) = ∇ · (c(y)∇w(y, t)) t ∈ (0, Δt]
w(y, 0) = u(y, Δt) − I2(y) ∀y ∈ Ω+

(66)

which, substituted in the expression of Ẽ′
1, gives

Ẽ′
1(c)ϕ = −2

∫ Δt

0

∫
Ω+

ϕ(y)∇w(yΔt − t) · ∇u(y, t)dydt

+
∫

δ(c(y)) (u(y, Δt) − I2(y))2 ϕ(y)dy.

(67)

Now, the gradient of Ẽ1 is easily determined as

Ẽ′
1(c) = −2H(c(y))

∫ Δt

0

∇w(y, Δt − t) · ∇u(y, t)dt

+ δ(c(y)) (u(y, Δt) − I2(y))2 .
(68)

Both functions u and w can be computed by simulating the

respective models, and both models involve only forward

diffusions. Finally, the gradient of E1 can be computed by

the chain rule as E′
1(s) = Ẽ′

1(c)c
′(s).

APPENDIX II

PROPERTIES OF THE MODIFIED GRADIENT FLOW

In the following we prove uniqueness and existence of

a stationary solution obtained with the modified gradient

flow (51). For the analysis of the flow we assume that H
and δ are smoothed (i.e., at least continuously differentiable)

approximations of the Heaviside function and Dirac delta, so

that all functionals are differentiable. We start by showing

the existence and uniqueness of a solution and then prove

its stationarity by using Schauder’s fixed point theorem [48].

Let 	κ be an operator defined by 	κ
.= 	 − κId, where

Id is the identity operator and κ was defined in eq. (35);

then, −	κ is a positive definite operator on the Sobolev space

H1 .= {u ∈ L2 | ∇u ∈ L2}. Moreover, let us approximate

c′(s) by the following formula

c′(s) =
γ2D2(v2 − v1)
4 max{ε̂, s}2Δt

[
(v2+v1)

(
1
F
− 1

max{ε̂, s}
)
−1
]

,

(69)

with small ε̂ > 0, in order to avoid division by zero. In

particular, we obtain the uniform bound

|c′(s)| ≤ γ2D2 |v2 − v1|
4ε̂2Δt

[
(v2 + v1)

(
1
F

+
1
ε̂

)
+ 1
]

, (70)

We are now ready to verify the existence of the precondi-

tioned flow (51). By defining the operator

R(s) = −M(s)(E′
1(s) + E′

2(s)), (71)

the flow can be rewritten as

∂s

∂τ
= 2α	κs + R(s), (72)

that is, we obtain a heat equation with a nonlocal source term

(recall that 	κ
.= 	 − κId). One can verify that R maps

L∞ to L∞ and is even Lipschitz on these spaces. Hence, by

standard results for parabolic equations (cf. [49]) we obtain

the existence and uniqueness of a bounded solution, which

we summarize in the following
Proposition 2: Let I1 and I2 be positive and bounded, and

let s(0) ∈ L∞ be a given initial value. Then there exists a

unique solution s of eq. (51) such that s(τ) ∈ L∞ for almost

any τ ∈ R
+.

Since eq. (51) is possibly no gradient flow of an energy

functional, the existence of a stationary solution (the limit

τ → ∞ of the evolution) of our regularized solution does

not follow from standard variational arguments. Therefore, in

the following we provide a different argument. The equation

that defines a stationary solution is given by ∂s
∂τ = 0, i.e.,

E′
3(s) = −2α	κs = R(s) = −M(s)(E′

1(s) + E′
2(s)). (73)
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We then prove the existence of a stationary solution by a fixed

point argument, i.e., we show that

s = F(s) .= − 1
2α

	−1
κ R(s). (74)

satisfies the assumptions of Schauder’s fixed point theorem.

In order to do so, we prove that F maps L∞ into a compact

set. First notice that R is a continuous operator on L∞. Then,

notice that the inverse Laplacian −	−1
κ is a continuous and

compact operator on L∞ (which is due to the maximum prin-

ciple for elliptic differential operators), and one can verify that

also the concatenation is continuous on L∞ ∩ H1. Moreover,

we have∣∣∣(M(s)Ẽ′
1(c(s))

)
(y)
∣∣∣=
∣∣∣∣∣H(c(y))

(u(y, Δt)−I2(y))u′(y, Δt)
ε
2 + I2(y)|u′(y, Δt)|

+
1
2
δ(c(y))

(u(y, Δt) − I2(y))2
ε
2 + I2(y)|u′(y, Δt)|

∣∣∣∣∣
≤ ηH

( |u(y, Δt)|
ε

+ 1
)

+ηδ
(u(y, Δt) − I2(y))2

ε
,

(75)

where the constants ηH and ηδ are the maximal values of the

smoothed Heaviside function and Dirac delta, respectively, and

ε is a small positive value. Now finally, let ηI be an upper

bound for I1, I2, and uD. Then, a maximum principle for

parabolic equations (cf. [50]) implies |u(y, Δt)| ≤ ηI for all

y ∈ Ω. Hence, we obtain

sup
y∈Ω

∣∣∣(M(s)Ẽ′
1(c(s))

)
(y)
∣∣∣ ≤ ηH

(ηI

ε
+ 1
)

+ ηδ
4η2

I

ε
, (76)

i.e., an estimate of the supremum norm of M(s)Ẽ′
1(c(s))

independent of s. In an analogous way, we can estimate

the norm of M(s)Ẽ′
2(c(s)). Moreover, since we also have

obtained a uniform bound for c′(s) above, we may conclude

that the operator

R(s) = M(s)
[
Ẽ′

1(c(s))c
′(s) + Ẽ′

2(c(s))c
′(s)
]

(77)

maps into a bounded set in L∞. Finally, since 	−1
κ is

compact, we can conclude that the operator F maps into a

compact set in L∞ (and in particular this compact set into

itself). Thus, by Schauder’s fixed point theorem (cf. [48])

we conclude the existence of a solution of eq. (74), which

is equivalent to eq. (73). We summarize this result in the

following Proposition:

Proposition 3: Let I1 and I2 be positive and bounded, and

let κ > 0. Then there exists a stationary solution s ∈ L∞∩H1

of eq. (73).

Proposition 3 guarantees the existence of a bounded sta-

tionary solution for the preconditioned flow. Although the

stationary problem does not correspond to the minimization of

some energy, we have shown that the preconditioned approach

is a regularization of the original problem (34).
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